
Commun. Math. Phys. 125, 469-513 (1989) Communications ΪΠ

Mathematical
Physics

© Springer-Verlag 1989

Conformal Scalar Fields and Chiral Splitting
on Super Riemann Surfaces *

Eric DΉoker1 and D.H. Phong2

1 Department of Physics, University of California, Los Angeles, CA 90024, USA
2 Department of Mathematics, Columbia University, New York, NY 10027, USA

Abstract. We provide a complete description of correlation functions of scalar
superfields on a super Riemann surface, taking into account zero modes and
non-trivial topology. They are built out of chirally split correlation functions,
or conformal blocks at fixed internal momenta. We formulate effective rules
which determine these completely in terms of geometric invariants of the super
Riemann surface. The chirally split correlation functions have non-trivial
monodromy and produce single-valued amplitudes only upon integration over
loop momenta. Our discussion covers the even spin structure as well as the odd
spin structure case which had been the source of many difficulties in the past.
Super analogues of Green's functions, holomorphic spinors, and prime forms
emerge which should pave the way to function theory on super Riemann
surfaces. In superstring theories, chirally split amplitudes for scalar superfields
are crucial in enforcing the GSO projection required for consistency. However
one really knew how to carry this out only in the operator formalism to one-
loop order. Our results provide a way of enforcing the GSO projection to any
loop.

1. Introduction

Closed fermionic strings are built out of independent left and right movers on the
world-sheet. In the Ramond-Neveu-Schwarz formulation, the string coordinates
are the world-sheet scalars xμ and Majorana spinors ψt9ψ^.9 and although both
are space-time vectors, the theory actually carries space-time fermions [1]. A
supersymmetric spectrum is obtained after performing the projection of Gliozzi-
Scherk-Olive (GSO), which retains only the even G-parity states in the Neveu-
Schwarz sector, and the positive (space-time) chirality states in the Ramond sector
[2]. On world-sheets of non-trivial topology, spinors such as ψμ_, ψμ+ require a spin
structure - which specifies the sign ambiguity as the spinor is transported around a
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homology generator. In functional quantization, the GSO projection is realized in
all channels of a superstring diagram by summing over all spin structures
independently for ψ*. and ψμ+ [3,4]. This summation is natural from a geometrical
point of view since no spin structure on the surface is preferred. It is required for
the unitarity of the theory; in particular states of odd G-parity or negative (space-
time) chirality fermions are never produced in pairs [5]. The independent sum over
left and right world-sheet chiralities results in a spectrum that is a tensor product
of left and right states with independent space-time supersymmetries: the so-called
Type II theories, with their N = 2 low-energy supergravity limits [6]. In the
heterotic string, only one world-sheet chiral half of the superstring is retained and
assembled with half of the bosonic string, so that only one space-time supersym-
metry survives [3,7]. Thus it is crucial for the very construction of the Type II and
heterotic strings to be able to separate left from right movers and endow them with
independent spin structures.

In practice there are many obstructions to realizing this prescription:

(a) The fields xμ and ψμ are non-split in nature on surfaces with euclidian
signature. This is clear for the xμ field which is real, but there is a problem as well
with the spinors ψ^.ψ^. Since on a surface with euclidian signature there are no
Majorana-Weyl spinors, opposite chirality components ψμ

+ and ψ*L of a spinor are
complex conjugates of one another and must carry the same spin structure. In
particular chirally symmetric determinants can be regularized preserving repara-
metrization invariance, but determinants for chiral fields which should be their
square roots will have anomalies.

(b) The RNS action given in (3.4-3.11) below and in general vertex operators
must be invariant under local supersymmetry, and this forces the appearance of
terms which explicitly couple opposite chiralities [8]. For example in the case of the
action, this gives rise to the quartic coupling χϊ χ~ ψμ+ ψμ_ which prevents any
naive splitting prescription.

(c) A final source of serious difficulties is the correlation functions of the matter
fields xμ and ψ*L, ψ^. In fact the correlation function (xμ(z)xμ(w)y cannot be
split into holomorphic and anti-holomorphic components due to the zero mode of
the scalar Laplacian, and on world sheets of non-trivial topology, also to the
presence of holomorphic one-forms. For odd spin structures, the ψt, ψμ+ fields
have zero modes - holomorphic 1/2-forms - which have to be projected out of the
propagators (ψμ

+ (z) ψμ+ (w)>, breaking their meromorphicity.

All these phenomena seem to spoil the independence of left and right degrees of
freedom on the surface. It should be noted that they arise only from the matter
fields, and not from the additional ghost fields that are needed for the gauge-fixing
of the superstring. From the outset, the ghost contributions are chirally split.
From this point of view the difficulties we face in constructing superstrings stem
from the very simplest superconformal field theory, namely that of scalar
superfields.

A number of known results partially remedy some of the difficulties outlined
above. The first is that the Cauchy-Riemann operators dn acting on forms of
weight n depend holomorphically on moduli parameters. Thus there is an intimate
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relation between e.g. left movers on the surface - holomorphic fields in Euclidian
signature - and holomorphicity on moduli space. In particular Belavin and
Knizhnik [9] have shown that appropriately normalized determinants of Laplace
operators Δ ~ = dl dn are the modulus squared of holomorphic functions on
moduli space, up to a local "holomorphic" anomaly caused by insistence on
reparametrization invariance:

(1.1)

Here Nn denotes the determinant ratio

_

det ^-"l^1-") '

cn is the same coefficient as that of the conformal anomaly

cn = 6n2- 6/2 + 1. (1.3)

φ" are the zero modes of dn, and μ = μ/ is a Beltrami differential measuring the
deformation of complex structures. This implies that the holomorphic anomalies
for combined matter and ghost fields cancel for the bosonic string and the
superstring, but only as far as determinants are concerned. For the bosonic string
the partition function at each loop level can be written solely in terms of
determinants

13. (1.4)

Thus the Belavin-Knizhnik theorem suffices in this case to split ZB into a
holomorphic and an anti-holomorphic factor

ZB= j (detImί2Γ 1 3 FΛF, (1.5)

where .Fis a modular form of weight 13. Applied to the superstring, the theorem
insures that the product

N05N!I2N2N^9 (1.6)

which constitutes part of any gauge-fixed amplitude is also the modulus squared
of a holomorphic function ̂  (m) on moduli space. The function 2F depends on
spin structures (since Nί/2 and N3/2 do) and is uniquely determined up to a
constant phase. This means that we can extract chiral determinant products and
circumvent the first difficulty presented by the non-chiral nature of the matter
fields discussed in (a) above. In contrast with the bosonic string, however, even the
Type II superstring partition function Zπ alone involves (besides a natural factor
(detlmΩ)"5 which is the analogue of the factor (detlmΏ)"13 appearing in ZB)
correlation functions of the matter fields, so that we still have to resolve the
difficulties of (b) and (c).

A second result is that the superstring action can be recast in terms of analytic
supergeometry, so that correlation functions resulting from terms in the action
can be handled by superholomorphic splitting. Supermoduli space is a complex
supermanifold with moduli space as its body, and it carries a canonical complex
structure induced from the complex structure of the individual super Riemann
surfaces. The super-derivatives ££"_ depend holomorphically on supermoduli
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parameters, and we have the following super analogue of the holomorphic
anomaly [10]:

_ ,

a b a b ~ " J U j

Here
£„ = 4/ ι- l . (1.8)

H = H_Z is a super Beltrami differential, and J5f is a local super-reparametrization
invariant function linear in H and #and independent of n. Again the coefficient of
the superholomorphic anomaly is the same as that of the super- Weyl anomaly
given in [11-13], and the superholomorphic anomalies of matter and superghosts
will cancel in the critical dimension d = 10. Since the partition function can be
expressed entirely in terms of super-determinants in the superfield formalism, this
result exhibits the partition function as the modulus squared of a holomorphic
function on supermoduli space, up to a factor of (det Im ί§) ~ 5, where Ω is the super
period matrix. Only the case of even spin structures is needed here, since odd spin
structures always admit a Dirac zero mode which kills off their contributions to
the partition function. Thus the chiral mixing terms in the action still allow
superholomorphic splitting. This may seem surprising, and is only possible
because the supercomplex structure of supermoduli space itself mixes chiralities of
the gravitino field χf to second order. More recent proofs of superholomorphic
splitting for the partition function have since appeared in [14-16]. Although this
result eliminates the difficulties of (a), (b), (c) that arise from the action, it provides
no information on how to split chiralities when vertex operators are inserted.
Furthermore it is still not clear how to make connection with the component
formalism and modular forms.

The first goal of this paper is to show that all apparent obstructions to chirally
splitting superstring amplitudes can be resolved completely upon fixing the
internal loop momenta, and in the case of odd spin structures also the fermion zero
mode. In [13] we have already presented the basic ingredients of this remarkable
property of chiral splitting, and we have also argued that it is equivalent to the
property of holomorphic splitting on supermoduli space discussed above.
However the treatment of [13] was restricted to the case of exponential insertions
only and to even spin structures, except for the torus where the odd spin structure
case was also treated. Here we shall show that all amplitudes with external bosonic
states are the modulus squared of functions holomorphic in supermoduli
parameters and polarization tensors, meromorphic in the vertex insertion points,
provided the internal loop momenta, and for odd spin structure the Dirac zero
mode are fixed. This allows chiral splitting and GSO projection, which are
required for the consistency of the superstring.

The second goal is to obtain a complete description of the correlation
functions and conformal blocks in the conformal theory of scalar superfields. This
description is succinctly summarized by a set of simple and explicit effective rules
for evaluating the conformal blocks in both component and superfield formal-
isms. The rules incorporate all effects due to the non- trivial topology of the world-
sheet. In general correlation functions in a conformal field theory are built out of
conformal blocks. These are solutions to differential equations on the universal
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moduli curve resulting from Ward identities [17]. Conformal blocks will have
monodromy as insertion points are moved around non-trivial cycles. This
monodromy is of crucial importance, since it provides constraints on possible
combinations of conformal blocks which can be formed to produce single- valued
correlation functions. Although operator product expansions dictate the con-
formal weight, analyticity, and pole structure of conformal blocks, they provide
no clue as to the monodromy. This deeper information can usually be obtained
only with methods adapted to each conformal field theory, such as Feigin-Fuchs
contours for the minimal models [17, 18] and bosonization for c = 1 Gaussian and
orbifold models [19]. Our effective rules will provide an explicit expression for the
monodromy in the case of scalar superfields.

As a byproduct of splitting, we shall arrive at natural candidates for super
abelian differentials, super period matrices, and super prime forms, in terms of
which the chiral amplitudes can be recast. These are all analogues of fundamental
concepts in the theory of Riemann surfaces, and should play a similar role in the
study of superconformal field theories on super Riemann surfaces. The ap-
pearance of these global objects indeed indicates that the passage from local data
in conformal field theory to global expressions is in general highly non-trivial.

It may be worthwhile to give at this point some qualitative indications as to
why it is necessary to fix internal loop momenta and, for odd spin structure,the
Dirac zero mode. In the operator language, a scalar field xμ satisfying the
equations of motion can be expanded as

(1.9)
n = l

The oscillator modes α£ and άμ are naturally complex conjugates of one another
and each can be considered a chiral half of xμ, and the collective coordinate xg
effectively never enters any amplitude due to translation invariance. The momenta
pμ on the other hand do not admit a natural splitting and are at the origin of the
non-split nature of the xμ propagator. Fixing all momenta however will allow us
to split xμ and its correlation functions. A similar situation arises for the Dirac
zero mode in the Ramond sector:

dμz\ (1.10)
n = l

Although ψξt + has definite chirality, it must be correctly normalized and this
again introduces non-holomorphic dependence. In fact working with fixed
internal loop momenta (to be integrated over ultimately) is familiar from the dual
model, where the closed string propagator is usually written as

so that holomorphically split expressions appear at fixed moduli (#), but also at
fixed momenta (pμ\ Similar ideas have been encountered in orbifold and toroidal
compactifications, and in recent work of Verlinde and Verlinde [20].

As stressed in [13] the notions which arise out of a correct prescription for
chiral splitting are also the ones needed for a consistent formulation of the
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superstring measure in covariant perturbation theory. We shall however discuss
these last issues elsewhere.

2. Scalar Fields on a Riemann Surface

We shall need some standard facts about scalar fields on a Riemann surface M.
We shall go over them in some detail, since one of our objectives is to find their
super analogues on super Riemann surfaces. Let ds2 = 2gzS dz dz be a metric on M.
The lagrangian for a scalar field x is dz xd^x/4π. The partition function is given by

det'zf V1 / 2

In view of the Belavin-Knizhnik theorem (1.1) we can cancel the holomorphic
anomaly by introducing the Liouville action

ί d2zd, lngzids \ngzl, (2.1)

and the inverse partition function ZΔ of a chiral scalar field by

/ _ \γ |4 -2S(0ZZ-) (2 2}

' ( }

where ω/? 1= 1, . . . , h is a basis of holomorphic 1 -forms.
It is convenient to choose this basis in the following way. Recall that the first

homology group for a surface with h holes can be generated by 2h cycles Al,B3,I,
J= 1, . . . , h, with the canonical intersection relations

BJ) = 0. (2.3)

We can now single out a basis ωI by the duality requirement

§ ωj = δu.
AI

The period matrix Ωu can then be defined by

$ <*>j = ΩIJ. (2.4)
BI

The matrix Ωu is symmetric, and the matrix of inner products of holomorphic
1 -forms in (2.2) takes the simple form

. (2.5)

Under a deformation of metric the period matrix changes by

δΩu= ~ J d2zgz^^jogz-^ (2.6)

which confirms in particular that it is invariant under Weyl scalings and small
reparametrizations. With this construction for the torus the period matrix reduces
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to a single complex parameter τ, and the chiral partition function ZA is just the
Dedekind eta function η (τ).

Correlation functions of conformal fields can be written in terms of the theta
function and the prime form. Recall that after fixing a homology basis, the 22h spin
structures can be indexed by their half-integer theta characteristics δ = (δ'^δ'ί),
/ = 1, . . . , A. The parity of a spin structure is given by 4δ' δ", and is the same as the
parity of its number of zero modes. Generically an even spin structure will have no
zero mode, while an odd one will have exactly one. In this latter case it can even be
written down explicitly. In fact let the theta function with characteristics be
defined as (see e.g. [21,22])

If δ is odd, a holomorphic spinor hδ with spin structure δ is obtained by setting

h \ l / 2

Σ dI9[δ\(09Ω)ωI(z)\ . (2.8)
1 = 1 /

Next we construct the prime form:

(2.9)

which is actually independent of the choice of the odd characteristic δ. The prime
form is a holomorphic form of type (—1/2,0) in each of the variables z and w, and
should be viewed as defined on the universal covering of the surface M.
Alternatively we can choose fixed representatives Af, Bl of the basis of homology
classes along which the Riemann surface can be cut open into a polygonal domain
Mcut (see Fig. 1). Restricted to Mcut the prime form is single-valued, but has
monodromy. In other words its boundary values along the two edges correspond-
ing to the same cut may not agree. If we denote by z + Aκ and z + Bκ points that
are identified with z after parallel transport along the cycles Aκ and Bκ

respectively, then the monodromy of the prime form can be described as follows

E(z + BK,w) = E(z,w) exp ( —πiΩκκ + 2πί f ωκ I . (2.10)V Λ ? J \ 5 I- ^ AΛ J Λ / \ J

This implies immediately that

w). (2.11)
Bi

We note that

dzdw\nE(z,w) (2.12)
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b P Bί

Fig. la, b. A basis of homology cycles, b The Riemann surface M cut along the curves A j , Bl

is just the abelian differential of the second kind with a double pole at w, and (2.11)
is its usual normalization. Similarly

E(z9w)
E(z9P)

(2.13)

is a well-defined meromorphic form in z with poles at w and P. It is the third order
abelian differential normalized by requiring that its integrals around the Al curves
chosen to cut open the surface be zero.

We can now return to correlation functions of scalar fields. The two point
function G(z, w) = <x(z)x(w)) satisfies the equations

dzdsG(z9w) = -2πδ(z-w)

-w)-π £ ωI (z) (Im β)/~J

1 ώj (w), (2.14)
/ ,J=1

and is clearly neither conformally invariant nor holomorphically split in terms of
the moduli parameter Ω and the insertion points z and w. The lack of conformal
invariance reflects the fact that x is not a well defined conformal field with a
definite dimension. On the other hand vertex operators

* i c \Z) = \^Szz) .£ μ (Z.ljJ

have well-defined conformal dimensions (&2/2, k2/2). Their correlation functions
can be written as

V k i ( z i ) = ( 2 π Y ° δ ( k ) (2.16)
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where k = ̂ kt and F(z, w) is defined by

w,vty (2.17)

with GR(z,z) the reparametrization invariant regularized Green's function at
coincident points. The function F(z, w), though conformally invariant, can still
not be split into a holomorphic and an anti-holomorphic part. Rather it admits the
following expression in terms of the prime form

/ z z \

F(z, w) = I E(z, w) |2 exp I -2πlm J ω^lmΩ)^1 Im J ω} . (2.18)
\ w w /

The second factor on the right-hand side is typical of many obstructions to
holomorphic splitting we shall encounter. From (2.17) and (2.18) we can isolate
those pieces of the Green's function G (z, w) which are both conformally invariant
and holomorphically split:

π Im J ω7 (Im ί3)7/ Im J ω,
w w

(2.19)
where

. (2.20)

The multiple-valued functions — lnE(z, w) and — ln£(z, w) can be viewed as
effective Green's functions for chiral scalar fields x+ and x _ . The multiple-
valuedness will disappear from physical amplitudes. For such amplitudes we may
use the symbolic rule

dzd, ln£(z, w) = 2πδ(z - w) . (2.21)

Finally we note that the expectation value of the chiral stress tensor can also be
derived from the prime form

= - lim a, dw In E(z, w) - ̂ ^ . (2.22)

3. Scalar Superfields on a Super Riemann Surface

In this section we provide a brief description of scalar superfields on super
Riemann surfaces in the supergravity formalism [13, 24].

Local two-dimensional superspace is parametrized by coordinates (ξ, ξ, θ, θ).
The supergravity fields are a superzweibein EM

A and a U(\) connection ΩM

satisfying the Wess-Zumino constraints. If we denote by 1

(3.1)

1 The index A stands for A = (a, α), where a is the (7(1) vector index and α is the C/(l) spinor index
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the superderivatives on £7(1) tensors of rank n, and define the torsion and
curvature tensors by

{9A9 Q)B} = TAB

C @c + inRAB, (3.2)

then the constraints are

ΓΛ' = V = 0, Γα/ = 2>V (3.3)

They are invariant under local £7(1) transformations, local super-Weyl rescalings,
and super-reparametrizations. An equivalence class under these transformations
of supergeometries satisfying the Wess-Zumino constraints is a super Riemann
surface.

The unique action for a scalar superfϊeld Xμ consistent with the above
symmetries, as well as space-time Poincare symmetry is given by

Im(EM\ Xμ} = ̂ \ d2zE® + X" ®_ X" + λχ (M), (3.4)

where χ(M) is the Euler characteristic, and E = sdetEM

A.
In superstring theory the history of the string is given by a supergeometry and

10 scalar superfields Xμ which describe the imbedding of the super surface into
10-dimensional space-time. Summing over histories means that both scalar super-
fields and supergeometries have to be quantized. As explained in the introduction,
the difficulties in constructing chiral amplitudes are however entirely due to the
scalar superfields. This is why we have concentrated on quantizing these fields
only, viewing the supergeometry as a fixed background. Quantization of
supergeometries will be taken up again only in Sect. 7 and thereafter.

In a theory of scalar superfields correlation functions are of the form

Π ^(z,)*-'-, (3.5)
i = l

where the measure and the operators V{ (zf) are constrained by invariance under
sDiff, sWeyl, and local £7(1). It is well-known that sWeyl is anomalous. In
practice we shall deal with situations where the s Weyl anomalies of the scalar
superfields are cancelled by other fields, and we can thus ignore them. This is for
example the case in superstring theory, where the anomalies of the 10 scalar
superfields cancel those of the superghosts. The z—fo ,^-) denote insertion
points, which are just n distinct points on the super Riemann surface.

We shall restrict our attention to those vertices only which can later represent
physical particles in the superstring spectrum. Rules for identifying such vertices
have been enunciated in [23]. Here we just note that Poincare symmetry in the
space-time index μ and s Diff invariance dictate that they be of the form

Ffe(z) = EP(@+ X», 3)_ X»9 ε) e^x\ (3.6)

where P is a polynomial in the covariant derivatives and derivatives thereof, and is
linear in the polarization tensor ε. Of course there are further conditions on the
precise form of Vk due to local £7(1) and sWeyl invariance which imply in
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particular that the masses of these particles must be m2 = — kμ k
μ = 0, 2, 4, . . . . Of

central interest to us are the vertices for massless bosons, which are rather simple
and given by

Xϊeik»χμ . (3.7)

They can be obtained by selecting the ζμζμ coefficient in the generating function

]. (3.8)

Thus our main task is to analyze the holomorphic structure of the following
correlation function

i = l

(3.9)

as a function of the background supergeometry, the polarization tensors ζh and
the insertion points zf = (zί9 θι).

We shall carry out quantization in component language, and at the end
regroup the answer in terms of super-analytic objects. The passage from
superfields to components is achieved by going to Wess-Zumino gauge, where the
fields of supergeometry can be expressed in terms of an ordinary zweibein em

a, a
world-sheet gravitino/m

α, and an auxiliary field A (see, e.g., [24, 13]). In the critical
dimension super- Weyl invariance allows to set γmχm = Q, so that only the
components #/ and #7 of the gravitino survive. Similarly A may be set to 0. The
scalar superfield and its superderivatives are then given by

Xμ (z) = xμ (z) + θψμ

+ (z) + θψμ.. (z) + iθθFμ (z) ,

^_ Xμ = ψμ_ - iθFμ + θ(DΣ-xμ + ±χ+ ψμ

+}

Dz-ψμ

+-±χ+ Dzx
μ-±χ? χ ~ ψ μ _ ) . (3.10)

The superfield action of (3.4) is easily evaluated in components and we recover the
standard RNS action,

7m = J- j </2

 ze [Dfx*Dtx
μ - ψμ

+ D, ψ»+ - ψ<L Dz ψ* + F» F"

+ χί ψ<ίDzx» + χ; ψtDt^-hϊ χ~ ψ»+ ψ L } . (3.11)

The co variant derivatives acting on C7(l) tensors of rank n are

DV> = e?(dm + inωm) (3.12)

with the spin connection given by

ωm=-em

aspqdpeq

bδab. (3.13)

The symmetries of the theory are now reduced to those that fix Wess-Zumino
gauge. They translate into reparametrization invariance, Weyl scalings, and local
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super symmetry. The infinitesimal forms of the first two symmetries are well-
known. The last one acts in the following way:

δem

z = -Γ *m

+ , δχϊ = -2DZ- ζ + . (3.14)

Although the auxiliary field Fμ is often discarded from the start, we shall keep it
for the time being. This guarantees that local supersymmetry is kept linear. The
contractions of auxiliary fields give rise to contact terms which we shall discuss in
Appendix B.

4. Chiral Amplitudes for Scalar Superfΐelds: Preliminary Version

In this section we shall obtain first a version of chiral amplitudes which is not yet
manifestly supersymmetric. We consider non-chiral amplitudes, and both chir-
alities are endowed with the same spin structure δ. The goal of chiral splitting is to
separate not only opposite chiralities, but also holomorphic and anti-holomorphic
dependence on moduli, world-sheet gravitino field//, chiral polarization tensors,
and vertex insertion points.

Even ignoring all global issues on the world-sheet such as zero modes, we
cannot - even naively - expect to obtain such splitting as things stand. The reason
is that the exponential factor exp (ίkX) in (3.6-3.9) for real k is not even formally
the product of an operator by its complex conjugate. Let indeed X= X+ + X-
with

X+=x++θψ+9 X_=x_+θψ_. (4.1)

Then

exp (ikX) = exp (ikX+) exp (ikX-),

and the factors on the right-hand side are not complex conjugates of one another.
Clearly this can be remedied by analytically continuing k to purely imaginary
values, so that the vertex operators are at least formally split. For massless
particles, this is certainly consistent with the mass-shell condition, but in general
this analytic continuation should only be viewed as a useful trick in exhibiting the
chiral and holomorphic splitting of string amplitudes. The remaining contri-
butions to the vertex operators in (3.8) are already formally split provided one
views ζ"as the complex conjugate of ζ. Consistency requires that the internal loop
momenta which appear later be continued to purely imaginary values as well.
Henceforth we assume that this has been done.

It is convenient to rewrite the amplitudes under consideration

fl V(ki9 zi9 z,; ζ i 9 Q) = \DX*e*>* f[ V(ki9 Zj, zf; ζi9 Q
i = l / i = l



Scalar Superfields on Super Riemann Surfaces 481

as

e-Io(ψ+)-Io(ψ-} es* + s* + τ*j*xs/F9 (4.2)

where jtfx and J/F are the amplitudes resulting from the xμ and Fμ contributions:

j/x = $Dx'le-r'W Π eiktχ>Mes*,
i = l

stfF=\DFμeSF. (4.3)

The actions 70 are the purely quadratic actions for the corresponding fields, and
the interaction terms Sx, SF, Sψ9 and Tφ are given by

Sx = - ̂  μ2 zχ? ψ<ί dzx»-^\d2 zχ; ψ»_ d,x* + ̂  K zχϊ χ~ φϊ ψ L

+ £ (if θ, dz x» (zt) + iΓ, 9i ^i ̂  (̂  ) ̂ z * (*/) + c. c.),
i = l

SF=-±-\d2zeF,1F»+Σ(-θiUikf F"(z«) + /CΓ ^F*(z,)-/CΓ^iF"(z()),
π π ί = 1

SΨ = Σ (̂ Γ ̂  Ψl (^ + tf Ψl (^ - Γ/1 »(5; DS ψ»+ (z4) + c. c.),
ί = l

Contractions of Fμ

Contractions of the auxiliary fields Fμ are independent of the other fields and
evaluated in Appendix B, where it is argued that they can be dropped from the
final answer for scattering amplitudes.

Contractions of xμ Fields

Our first task is to obtain a more tractable expression for the amplitude <ςtfx in
(4.3). Rewriting the Sx term of (4.4) as

ι _
C _ f Λ2 y + - μ μ , Γ J2 fμ 3 rμ _ι_ Γ J2 f fl ^μ /Λ c\
ox — n^Γ J a zXz Xz Ψ+ Ψ- ^ ] a zsz °zx * J " Z(= °zx (:*•'>)

with
1 n

and ζμ (z) its complex conjugate, we obtain in view of the rules for bosonic scalar
contractions of Sect. 2,

[ 8π2det'z/ Ί " 5 / - , τ ^-s -̂ 0 + ^1 + ^2 ,. _,
— (detlmί2) D e . (4.7)

detlmί2jd2zj/gj
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Here the terms Jf l are of degrees i in (f ,

j f°= -

Jf 1 = Σ »*f J ̂  Zff 5, <?(*, 2,.) + ikf I d2 Zζl dz G(Z, Z,) ,
ί=l

^2=$d2zχ? χ~ ψί ψt+$d2zd2wζϊζ% dz-dwG(z, w)

) . (4.8)

Now the combination involving the determinant of the Laplacian in (4.7) can
be considered as split, since it equals \ZA(Ω)\~20 up to a local holomorphic
anomaly which will ultimately cancel in view of (2.2). Next we can rewrite
everything else in terms of the effective chiral Green's functions — ln£"(z? w) and
— lnE(z, w) of (2.16), and the imaginary part of the period matrix. This is because
all the terms involving the non-scale invariant part/(z) of the Green's functions
G (z, w) will cancel due to overall momentum conservation ]£ kf = 0. The result is

jίrί = g>ί

++<eί_ + g>i, i = 0,1,2, (4.9)
where the <£{

+ , JSf L 's are the terms involving the chiral Green's functions,

z, w), (4.10)

and the =S?''s are terms involving the imaginary part of Ω,

J2p° = 2π X k f k f l m I cθj(ImΩ)ΰl Im / ωjt
i<j P P

&* = _4πi Σ *f Im | d2zζμ

ίω,(z) (ImΩ)^ Im f ω j ,
i = l P

y2= -2πlmj d2zζ?ωI(z)(lmΩ)ΰ1 lm\ d2wζjίωj(w')

+ ̂  f rf2^f+ Λ~ ̂  Ψμ-+2π\ d2zζzζ1. (4.11)

We have again exploited momentum conservation to arrive at the above
expressions for Jz?' in terms of an arbitrary base point P. The last two terms in Jέf 2
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lead to some drastic simplifications. In fact the quartic terms χ£ χ^ ψ+ ψ-
immediately cancel as already noted in [25]. The other terms can be expanded as

-4 Σ ̂  Ψ- &) (if θt + iCΓ fft ΘΛΪ (z4)) + c.c. (4.12)
L ί=l

plus a contact term which we ignore again in view of the considerations in
Appendix B. This sum cancels precisely the non-split terms arising from the vertex
operators, i.e., Tψ. Actually there is a contribution arising from the passage from
the super measure to the component form at this point that has to be taken into
account. The remaining terms in j?1 now all involve (Im Ω) ~ l in the same way and
can be recast as

exp (g« + JS?1 + ̂  + Γv) = exp (ζf - ζ?) (ImΩ)i}1 (# - Cjθ (4.13)

with

ζ^SdtzζζωM + i Σ fcfjω,. (4.14)
p

We observe that the fields ζ^ involve fermionic fields of one definite chirality
only (although they do not depend holomorphically on insertion points). Thus a
first form of chiral splitting can be achieved if we could separate ζ% from ζ£.
Remarkably, the expression in (4.13) can be split at fixed internal momenta p f .
More precisely

(4.12)

The subscript 2Γ indicates that the absolute value is taken with pf and kf purely
imaginary, after which the result is analytically continued to real values and then
integrated over. The motivation for this prescription was given at the beginning of
this section. We have in this way arrived at a form where the contributions

<^T (Pi )> ^T (Pi) °f fields of opposite chiralities can be recognized in the chirally
symmetric amplitude

f dpi \^?(PΪ)\2 (4.15)
&

with

As usual we omit the contribution of the Weyl anomalies.

Shifting of the ψ+ Integrals

Our next objective is to exhibit the holomorphic dependence on insertion points
and polarization tensors. To isolate the non-split terms, we decompose the various
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factors in (4. 15) and (4. 16):

_ , tf = Cf, + + if, - , (4-1 7)

with the holomorphic contributions given by

^i+ =i Σ *!* ί Pzχϊ ψl dz \nE(z, z;)-/£ k?ζfθjdtj \nE(zt, z,),

J d2zd2wχϊ ψ^. dzdw \nE(z, w)χ$ ψ+ (w)

ί = l

and the non-holomorphic terms by

Σ ̂ 9,^^ ̂  (zjζf/; (zj) dzιdzj \nE(zh Zj)
0 ij

It is a remarkable fact that the non-holomorphic contributions J5f i _ , JSf + _ , 5̂  _
and C/, - completely cancel out of the final answer. To see this, it is necessary to
carry out all contractions of fermion fields occurring within the non-holomorphic
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contributions of (4.19). A key feature is the emergence of an additional quadratic
term in ψ + at this stage, which is the first term in the expression for & + + above. It
can be characterized by the kernel

K(z, w) = ̂  xί U dz dw In £(z, w) (4.20)

and leads to a modified Dirac operator

δsψ+=Dz-ψ++$ d2wK(z, w) ψ+(w). (4.21)

We note that the kernel factually has only a simple pole due to its anti-symmetry,
so that the integral defining 3z-is absolutely convergent. With this new operator we
can single out the sources in the ψ+ dependent terms of (4.16), (4.18), and (4.19)

S = J d2zψμ

+ §,ψ»+ + f d2zJ"ψϊ +± f d2zf»(z) SgΨ+(z) (4.22)

with

= i Σ WXΪ< ί=1

+ Σ (ίki θi + CO δ(z- zt) - ±χϊ ωl(z)pf,
i = l

/" (z) = - 2 π J ζf θίθίδ(z-zί). (4.23)

Shifting the ψ\ fields by -/" yields

1 . 1
(4.24)

It is easy to check that the last two integrals cancel precisely all the non-
holomorphic parts in ̂  listed in (4.18) and (4.19), up to contact terms. More
precisely

exppπ tf

• exp [&°+++&l

++ + &2

+++SVt++ 2πpϊ ζft +] . (4.25)

We have then attained the main goal of this section, namely the entire chiral
amplitude ^™(PJ) of (4.16) is an integral over fields of definite chirality, and all
terms mixing holomorphic and anti-holomorphic external parameters have been
eliminated. It is useful to recast the cumbersome effective actions £*+'+ and SVt +
in terms of contractions of a chiral scalar field x+ ,

f̂ = Z,(ί2Γ10exp \iπpfΩIjP!t + 2πpϊ £ (ikf ] ω, + ζf θt ω, (z,)
L i=ι \ P

x f Dψϊ e-1*^ {^exp [~±pf f d2zχ+ ψl ̂ -~\ d2z

x Π exp [ikf (x»+ (Zi) + θiψ^ (zt)) + CΓ (Ψμ

+ (zj) + 0f dzι x»+ (z4))] , (4.26)
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where the x+ propagator is given by

eikiX+(z,\ = j-j £(Z;j z^kjt (4.27a)

w). (4.27 b)

An equivalent formula which is more suggestive from certain points of view is
obtained by also re-expressing £/, + in terms of x+ contractions, and representing
the period matrix by iterated contour integrals, with the help of formula (2.11)

x Π exp W (*ϊ (z,.) + θt v/t (z,.)) + ίf (yί (z,.) + θt dt cΐ (z,))] ) - (4.28)
ί=l /x+

To complete our prescriptions, we still need to specify the fermionic
propagators. As noted in the introduction, this issue requires some care. Also the
above prescriptions are not yet written in terms of super-analytic notions, so that
local supersymmetry is not manifest. This will be our next task. The analysis is
rather different for even and odd spin structures, and we shall discuss the two cases
separately.

5. Superabelian Differentials, Superperiod Matrix,
and Chiral Amplitudes for Even Spin Structures

It is easy to see that for generic even spin structure δ, the ψ + functional integrals
appearing in the prescriptions (4.25-4.28) for chiral amplitudes will be holo-
morphic in both moduli parameters and insertion points. In fact they will produce
a chiral determinant and correlation functions of the Dirac operator on spinors of
£7(1) rank 1/2. For generic even spin structure the Dirac operator has no zero
mode. The correlation function of chiral fermions is then given by the Szego kernel

Sδ(z,w) = -(ψ+(z)ψ+(w)y,

dz-Sδ = 2πδ(z-w).

In terms of the prime form it can be expressed as

e _
δ E(z,

which is a meromorphic 1 /2 form in z and w, with a single simple pole at z = w. It is
also manifestly holomorphic as a function of the period matrix Ω. As for the chiral
determinant, the Belavin-Knizhnik theorem (1.1) guarantees that one can
construct a holomorphic determinant from the one of the Laplacian A f/ 2 ,

det Δ Γ/2 = det Ds det Dz , det D2 = Zδ (Ω)2 (5.2)
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up to a local anomaly which will cancel in the end. This immediately implies the
holomorphicity properties of the amplitudes OF™ we listed out earlier. We can now
restate 3F™ in a more compact form using the chiral scalar superfϊeld

(z) (5.3)

in terms of which (4.26-4.28) become

(5.4)
ί=ί

The contractions of x+ and ψ+ are to be carried out with the propagators of (4.27)
and (5.1).

Geometry of Super Riemann Surfaces with Even Spin Structures

We shall now lay down the effective rules which will reproduce the chiral
amplitudes just obtained in terms of the superconformal structure of the
background supergeometry.

First we need the notion of super-abelian differentials ώ, which are the forms
of rank 1/2 satisfying

= 0. (5.5)

In components ώ and ^i/2ώ can be expanded as

= θ(dz-ώ+ +\χϊ ώz) + θθ (δfώz + R Of/ ώ+)) , (5.6)

and the equation for superholomorphicity is equivalent to the system

8sώ+ + 1// ώz = 0 , dz-ώz + \dz (xϊ ώ+) = 0 . (5.7)

It is easy to see that this system admits h independent solutions, so that the space of
super abelian differentials for even spin structures is /z-dimensional. It is an
important issue to produce a basis with the correct normalizations. We begin by
noting that solutions of (5.7) can be generated perturbatively from abelian
differentials. In fact since the Dirac operator is invertible for generic even spin
structures, we can solve the first equation for ώ+ and substitute in the second
equation

f d2wd2ydzlnE(z, w}dw(χ* SΛ(

= - f d2 wSδ(z, w)χ+ (ώj,(w) . (5.8)

These formulas actually determine easily the full solution since they can be iterated
to give a series in //. In practice χϊ will depend on only 2h — 2 Grassmann
variables which parametrize the odd supermoduli of the super Riemann surface,
so that the series will terminate after h terms. It should be noted however that the
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integrals in (5.8) should be carried out over the cut Riemann surface, due to the
multiple- valuedness of dz\nE(z, w). Thus the super abelian differentials in (5.8)
depend on the choice of cuts within the homology classes. A more convenient basis
of super abelian differentials which depends only on the homology classes and not
on the curves themselves is given instead by

(ώJ7(z) = ωj(z) - --2 J d2 wd2ydzdw lnE(z, w)χϊ Sδ(

(5.9)
J d2wSδ(z, w)/ί (ώjj(w).

The integrals in (5.9) are only conditionally convergent due to the double pole in
dzdw lnJE(z,H>). If we denote the original solutions found in (5.8) by ώf to
distinguish them from the ώj of (5.9), their difference can be evaluated by an
integration by parts using the monodromy of the prime form. We obtain in this
way

«), (z) = ω, (z) + -L J d2 w dz dw In E(z, w) χΐ (ώ"), (w)

-4 Σ <»*(*) f dwχ+(ώt)W (5-10)
Z K=ί Aκ

Since the relation between the two bases is linear it follows that

(ώf), (z) = (ώz), (z)- Σ (ώz)κ (z) § dwX; (ώt ),(w). (5.11)

Thus the relative normalization of the two bases of solutions is described by the
h x h matrix MIK ,

(ώz)I(z)= Σ MU(ώ»)κ(z). (5.12)
X = l

We now require a notion of line integrals in supergeometry. Let ώ be a super
holomorphic 1/2-form. Then over simply connected domains the line integral

}ώ = ] (dzώz-±dzχϊ ώ+) + θzώ+ (z) - θpώ+ (P) (5.13)
p P

is independent of the choice of paths. In superfield language the difference
between two paths is the integral over the region they enclose of d2 z dθ dθ@ ί/2 ώ
which is zero since ώ is super holomorphic. The resulting function of z is thus well-
defined and satisfies

z z

0 + J ώ = ώ(z), ^ _ J * ώ = 0. (5.14)
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The super line integrals provide us with a generalization of the usual periods of
abelian differentials, which will again depend only on the basis of homology cycles
and not on the choice of curves within a given class. More precisely we may define
the period of the super abelian differential ώ around a closed curve C as

$ώ = §(dzώ,-±dzχ+ώ+) (5.15)
c c

which depends only on the class of C.
Returning to the two bases of super abelian differentials of (5.8) and (5.9), we

evaluate their periods. Due to the conditional convergence of the integrals
defining ώ/? we cannot interchange the dz integrals around a given cycle and the
d2 w integrals in (5.9). We shall provide shortly a rule for correction terms that
allow such interchanges. At this point it may be instructive to start rather from the
periods of the cut-dependent basis &I which are easier since the integrals there are
absolutely convergent. For the Al cycles the results are

A, A,

-^\d2w § dzdz\nE(z, w)

'ώ1)j, (5.16)

where we have used (2.10). It is easy to convert (5.16) into a statement about ώ/ in
view of (5.12),

§ώj = δu. (5.17)

Next the periods of ώN around the BJ cycles are given by

— — j d2 w § dzdzln E(z9 w)

a°u 9 jL BJ

1 f 2

x^OtίίώϊMvv)), (5.18)
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again using (2.10). Since χ^ ώ+ is single-valued, the term Ωn does not contribute.
An integration by parts with respect to w produces

9 $ dwχ*(ώ+)ι §
Δ Aκ Bκ

j I coj §
Δ Aκ B

-^ΩKJ I dwχ^(ώ+)j(w). (5.19)
Z AK

In terms of ώj this is equivalent to

)χ,,(ώ + )I(w). (5.20)

In practice we see then that the results for line integrals of the super abelian
differentials &l are the same as if we had treated the integrals in (5.9) as absolutely
convergent, and ignored the correction terms // ώ in the contour integrals. More
precisely the formulas (5.17) and (5.20) for the periods can also be derived from the
following rule for interchanging the order of integration in the presence of
conditionally convergent integrals:

-L j f d2 wdzdw lnE(z, w)φ*-]dzφz = ± μ2w] dzdw \nE(z, w) φΛ. (5.21)

Indeed both sides are path independent, the left-hand side because the integrand is
a closed form, and the right-hand side because dz dw In E(z, w) has a double pole.
Furthermore they have the same dz and d^ derivatives. We note that this argument
holds as long as φ is smooth, and does not require specific information about the
boundary values of φ.

The relation (5.17) exhibits the ώj as the basis of super abelian differentials
which are cut-independent and dual to the homology cycles A j . We may thus
define the right-hand side of (5.20) as the super period matrix. It can also be
written as

ΩU = ΩU- j d2yd2 wMw)/t Sδ(w, y}χϊ (ώy)j. (5.22)

From the above expressions it is not evident that Ω is symmetric. This can only be
seen by using the Green's function Sδ (z, w) for the generalized Dirac operator Sf of
(4.21) which is defined by

S2- Sδ (z, w) - 2π δ (z - w) . (5.23)
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This is equivalent to the integral equation

Sd (z, w) = Sδ (z, W) - -L f d2 ud2 v Sd (z, u) K(u, v) Sδ (υ, w) , (5.24)

which again gives immediately the full solution by iteration. A useful identity
linking Sδ, Sδ9 ώl9 and ωl is

f d2ySδ(w, y}χ; (ώy)j= f d2 y§δ(w, y)χϊ a>j(y). (5.25)

This is a consequence of (5.9), of iteration procedures, and the fact that

ti (ώz), = /; <*>j(z) + \d2 wd2yK(z, W)Sδ(w, y)χΐ (ώ,),. (5.26)

Thus the super-period matrix can also be written in the manifestly symmetric form

χ+ Sδ (w, y)χ+ ω, (y) . (5.27)

A final crucial superconformal invariant is a super analogue Sδ (z, w) of the
prime form. A guiding principle for the definition of this "super prime form" is
that it should give the full (i.e. in presence of a non-vanishing gravitino //) two-
point function of the effective chiral field X+

%+ (z, w) = (X+ (z) X+ (w)> x+ = - In βδ (z, w), (5.28)

and thus lead to a simple expression for exponential insertions

( exp I -̂ - J d2zχϊ ψμ

+ dzx
μ

+ + i £ k f X + (z,-)
\ L ί=1 J / Λ . V _ τ-r

(5.29)

z;)l \
J/*.» _

—

These are evidently the super versions of the fundamental properties (4.27 a) and
(4.27 b) of the usual prime form. Performing x+ and ψ+ contractions according to
(4.27) and (5.1), we obtain an explicit expression in components

? z)

+/(z) + g(w). (5.30)

The functions/(z) and g (w) are at this point arbitrary. They are not determined by
(5.29) alone, since their contributions cancel out due to overall momentum
conservation ^fcf = 0. Also the functions dy\nE(y,w) and dylnE(y,z) have
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monodromies, so the integrals in (5.30) depend on the choice of fundamental
domain over which we are carrying out the integration. This ambiguity is again of
the form/(z) -f g(w), and we can view it as absorbed in the earlier ambiguity. We
observe that the chiral amplitudes themselves are always well defined.

We shall now show that the functions /(z) and g(w) can actually be fixed by
additional natural conditions on the monodromy of the super prime form. First,
requiring that ^(z,w) be antisymmetric implies that/=g. Next we note that

d*+d"+ ln<f,(z, w)

is well-defined and has no monodromy. Its periods around the basis homology
cycles are unambiguous and can be evaluated to be

f d\d\\κ£δ(Ί^ w) = 0,
Ax

w). (5.31)
BI

Integrating d\ dy. ln^(z,w) with respect to z shows that the monodromy of
<3+ In Sδ (z, w) as a function of z must be a function of w alone. In view of (5.31) we
must have

dl In Sδ (z + AK9 w) = dl In Sδ (z, w) ,

δ!J In δδ (z + BK,\v) = d"+ In δδ (z, w) + 2πiώκ (w) . (5.32)

This monodromy as z is transported around is consistent with (5.30) for any
function/ (z). If we impose the condition that the super prime form be invariant as
both z and w are transported around the same cycle,

δδ (z + C, w + C) = δδ (z, w) , (5.33)

we obtain from (5.32) the following monodromy as w is transported around
nontrivial cycles

z, w),

d*+ In δδ (z, w + Bκ) = d*+ In δδ (z, w) - 2πiώκ (w) , (5.34)

which is incidentally the natural extension of the corresponding property for the
usual prime form. On the other hand we can use (5.30) to evaluate the monodromy
of <9!μ ln^(z, w) in terms of/(z). In this way we arrive at the equation

w). (5.35a)

More explicitly

/(w + Bκ) =/(w) + θw f d2 yχϊ ωκ (y) Sά (w, y)
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This determines /(w) up to an additive constant

+ 2 J d2xd2 yχ£ dx lnE(x, w)χϊ dy\nE(y, w)Sδ(x, y}. (5.36)

Combining this expression with (5.30) we get

z? w) = - In £(z, w) + θz θw Sδ (z, w)

(5.37)

Remarkably the expression (5.37) is now well-defined on the Riemann surface,
and the super prime form for even spin structures is completely unambiguous.

The super prime form shares many properties with the standard prime form; in
particular

(ii) δδ(z, w) is a (-1/2, 0) x (-1/2, 0) form in z and w,

(iii) δδ (z, w) is superholomorphic in all its arguments,

(iv) δδ (z + A j , w) = δδ (z, w),
/ w \

δδ (z + 5j, w) = δδ (z, w) exp ί - ίnΩu + 2πί \ώλ. (5.38)
\ z /

The properties (i), (iii), (iv) are direct consequences of the component expression
(5.37), while (ii) is a consequence of the local supersymmetry covariance of the
expression (5.29). However, since Sδ involves the Szego kernel with spin structure
(5, it depends on a spin structure as opposed to the ordinary prime form which does
not.

We can now produce a more intrinsic version of the chiral amplitudes ̂ δ.
First, the source-independent part of !Ff is a power of the chiral scalar superfϊeld
determinant:

HZ^(ί2,χ;)|4exp(-2SsL), (5.39)
~Z£,

and we have the relation

Zaδφ9χiΓ1=ZΔ(ΩΓ1 Zδ(Ω) (exp -̂ - f d2zχ? ψμ

+ dzx
μ

+1 \ . (5.40)
\ L 4 π J J/x > ψ
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The action SsL is the super Liouville action which expresses the super conformal
anomaly

SsL(\ngzS, Zz+) = 4^ J d2z(d,\ngzidz- \ngzz + X; d^ + χi d z χ j ) . (5.41)

Since we have dropped the γ~ traces of the world-sheet gravitino, it reduces to the
Liouville action. The supersymmetry anomaly of the chiral super determinant is
given by

δ\*Z9tδ=±ίd2zχϊ dlC(z). (5.42)

Altogether (5.4), (5.29), and (5.40) combine to give a manifestly supersym-
metric formula for J%m, up to the anomaly of (5.42),

9f = Z9tδ(0, χίΓ10 exp \ίπpΐ Ωu p$ + 2πpf f (ifcf + Cf dl

+) ] ώλ
L i=ι P J

exp Γ Σ (ikf XI (zt.) + CΓ S+ XI (Z|))l \ . (5.43)
Lί = ι Δ/X+

x
\

In the above formula the indefinite line integrals of the super abelian differentials
are taken in the sense of (5.13) and in particular path-independent. One can check
that it coincides with the component expression of (5.4) by arguments similar to
those used in the evaluation of periods (5.17) and (5.20), where the contributions
o f χ ϊ ψ+ cancel those of the double pole in the definition of ώ/. The contractions
in X+ are to be carried out with the super Green's function —In Sδ (z, w) of (5.28).
In terms of the super prime form they can be rewritten as

(exp Γ Σ (ikf X»+ (z£) + ζ?d+ X»+ (Zί))]\
\ L i = ι J/x+

= exp Γ Σ βfcityn^fo, z^ + KCΛ dj

+
Li, j=l

(5.44)

These are the chirally split, manifestly super-reparametrization invariant ex-
pressions for the scalar superfϊelds correlation functions that we have been looking
for. Translation invariance in X*{ guarantees that the full correlation functions are
well-defined on the super Riemann surface.

A last equivalent form for chiral amplitudes is obtained by introducing the
internal loop momenta of the effective scalar superfields,

(5.45)

The chiral amplitude ^f is a form of weight (1/2,0) in each of the insertion
points z f, with monodromy only around Bκ cycles:

Fϊfa + δuB^ ff, fcf; 4 XΪ pf) = &?&, ζf, kf\ 4 χί 9pf + δικkϊ) . (5.46)
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In view of translation invariance of the integration domain of the internal
momenta pj*, the monodromy is cancelled out in the full integrated amplitude jtfδ9

which is then a regular form.

6. Superabelian Differentials, Super-Period Matrix,
and Chiral Amplitudes for Odd Spin Structure

We come now to the more complicated case of generic super Riemann surfaces
with odd spin structures. The additional difficulties arise from the zero mode of
the Dirac operator on rank 1/2 tensors, which has been written down explicitly in
(2.8). Thus the field ψ+ should be decomposed as

, <rίΊ*ί> = 0, (6.1), ί ,
\nδ\nδ/

and the propagator satisfies the modified equation

S'δ (z, w) = - O'+ (z) ψ'+ (w)\, ,

D?2 S'δ(z, ») = 2πδ(z-»)-2πh'®?W. (6.2)

Due to the last term in (6.2), Sδ cannot be meromorphic in its arguments however.
We can construct a meromorphic propagator, at the expense of introducing a pole
at an arbitrary point Q on the surface

(6.3)

In terms of the θ-function and the prime form, it can be expressed as

rf- .,. 0)- * 9[δ\(z-w + P-Q) E(z, P)E(w, Q)
Si (Z' W> Q) ~ E&-JJ 9(δ](P-Q) E(z,Q)E(W,P) '

where we have identified its additional zero P. Another possibility is to rely on a
meromorphic propagator without any additional pole, but which is defined only
on the universal covering of the surface. Such propagators can be parametrized by
the choice of an arbitrary generic point Vl in the Jacobian, after which it can be
characterized by

SΛ(z, w; V) = -—-^-h - . (6.5)
M ' ^ Σ
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The monodromy of this propagator can be described as follows. When z is taken
around

• an A! cycle,

Sδ(z + AK9 w; V)=-exp(-2πiδ'κ) Sδ(z, w; V)

• a Bj cycle,

Sδ(z + Bκ, w, F) = exp (-2πiδ'ϊ)[Sδ(z, w; V) + hδ(z)ΐκhδW]9

where

Vκ=-2πi-h - ̂ - . (6.6a)
Σ d Z I 9 [ S ] ( 0 , Ω ) V I

1=1

Upon specializing to the case where Vκ is a vector of abelian differentials evaluated
at a fixed point Q

(6 6b)

we recover the propagator introduced by Verlinde and Verlinde [24]. The
monodromy is then given by

(6 6C)

Any two of these different propagators are linked by the same relation. For
example Sδ (z, w) can be written as

S'δ (z, w) = Ss(z, w) - I d2yKt(y) S,(y, w)

f ̂ ^

where *Sδ(z, w) could be either one of the other two propagators.
We return to the chiral amplitudes 3F™ of (4.25)-(4.28) in the case of odd spin

structure. In principle the ψ+ contractions occurring there should be carried out
with the propagator S'δ (z, w) of (6.1). At first sight it may seem that holomorphic-
ity is lost, but we shall presently show that it will be restored upon integration over
the Dirac zero mode.

To see this, we begin by isolating all terms in (4.28) involving the field ψ+ they
can be recast in a simple form upon introducing a source jμ:

£ (ikfθi + t

(6.8)
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We then split the measure according to the decomposition (6.1):

dψγ exp -w+) + O'μ I y'-f > + ψY "2' (6'9)

In terms of the propagator Sδ (z, w) this is readily evaluated to be

f _ ! f 2 2 \ π
5 δ ^ 2 ^ / μι μιo

β=1

(6.10)

Here the chiral determinant Zδ(Ω) is defined as the holomorphic square root of
the determinant of the Laplacian on rank 1/2 spinors, normalized with the inner
product of its zero mode

, 4 _ d e t / z ί Γ /

As pointed out before, we can ignore the anomalies of the Liouville term since they
will cancel in the end. Powers of (hδ \ hδ) in (6.10) arise from the ψ'+ integration, but
also from the zero mode factor in (6.9). It is now clear that &$ is kft unchanged
under a shift of the form

Sί(z,w) -> SJ(z, w) + hδ(z)qΐ(w) + q2(z)hδ(w) (6.12)

for arbitrary q1 and q2 . In particular we can replace S'δ(z9 w) by either one of the
other two propagators and obtain a holomorphic expression for $F$ . We can now
assemble the expression obtained for the chiral amplitude in (4.28) with the above
result (6.10) for the integration over the chiral fermion field. To simplify the
notation, we shall henceforth denote ψ'% simply by ψμ

+ . Introducing a chiral scalar
superfield X+ as in (5.3) we arrive at

where

§ dzd.xl + ί £ kfX$ (z,) + X f/ δ+ XI (z;)l\,
Bj i=l i = l J /

(6.13)

and the fermion propagator used to contract ψ+ may be Sδ(z9 w; F), S'δ(z, w), or
5ί(z,w;β).

In summary the chiral amplitude 3F™ (p£) can be represented in a number of
ways, each with its own advantages and disadvantages. With Sδ(z, w) it is well-
defined on the Riemann surface but its holomorphicity is obscured. With both
Sδ(z9 w; F) and Sδ (z9 w; Q) it is manifestly holomorphic; however in the first case
it appears to be multiple valued while in the second it carries spurious poles. It is
likely that the use of Sδ (z9 w) will prove particularly convenient when discussing
degenerations. In the rest of this paper, we shall instead rely on Sδ(z9 w) = Sδ(z, w;
F), as it will guarantee holomorphicity of intrinsic supergeometric quantities such
as super prime forms and super abelian differentials. It will also lead us to
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formulations of correlation functions in terms of conformal blocks, which are
of special interest from the point of view of conformal field theory.

Geometry of Super Riemann Surfaces with Odd Spin Structure

The notions of super Abelian differentials and super-period matrix are more
subtle for odd spin structure. To begin with we need a suitable Green's function
for the generalized Dirac operator d f . There is no canonical choice satisfying, say,
the generalized Dirac equation with its zero modes projected out. Rather we shall
make use of propagators Sδ (z9 w) defined through the integral equation

§δ(z, w) = Sδ(z, w)-^$d2ud2vSd(z, u}K(u, v)§δ(υ, w) . (6.14)

Here it is understood that Sδ(z, w) is a generic notation for the various
propagators Sδ(z9 w), Sδ(z, w), or S'δ(z, w) above, and we shall denote the
corresponding Sδ(z9 w) by Sδ(z9 w), Sδ(z9 w), or Sδ(z9 w) when it is appropriate to
make a distinction. They will all satisfy equations of the form

δs§δ = 2πδ(z-w)-M(z, w), (6.15)

where the correction term M(z9 w) is given respectively by

M(z,yv) = 0,

in the cases of Sδ(z, w), §δ(z, w), and §δ(z, w).
Whereas Sr and S" are well defined spinors on the Riemann surface, the spinor

Sδ (z, w) has monodromy. This is of course required by the presence of the zero
mode, and the fact that Sδ has only one pole. Indeed from (6.6) we readily find that

(Sδ(z, w) + Aό(z) ^(ώ + )0(w)), (6.16)

where

(ώ + )0(w) = hδ(w) -± f d2xd2 ySδ(w, x)K(x, y)hδ(y) . (6.17)

The half form (ώ + )0 satisfies the homogeneous equation

ίf(ώ+)0 = 0. (6.18)

Furthermore it has no monodromy2. In fact the monodromy of (ώ + )0 is
proportional to

$d2xd2y(ώ+)o(x)K(x, y)hδ(y}=-hδκ\ -- Sδκ hδ, (6.19)

which vanishes due to the antisymmetry of K and Sδ .

2 We regard as trivial the phases associated with the choice of spin structure
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A few remarks about allowed monodromies are in order here. Since
SsSδ = 2πό(z — w), we would naively expect that the monodromy of Sδ should
satisfy the corresponding homogeneous equation. However it should be kept in
mind that Sz is actually a non-local operator which depends on the choice of
fundamental domain for the surface. Thus the monodromy of Sδ satisfies only a
modified version of the homogeneous equation which takes into account the
variation of domains. This is why (6.16) is correct, despite the fact that df hδ φ 0.
To get constraints on allowed monodromies, we can exploit the fact that (ώ +)0 is a
solution of the homogeneous equation. If the monodromy of Sδ is of the form

w)=-exp(-2πiδ'κ)Sδ(z, w),

w)= -exp(-2π/^)(S,(z, w) + Σκ(z, w))9 (6.20)

then as a consequence of the antisymmetry of Sδ

SvΣκ(z,w) = Q. (6.21)

Also the equation dz-Sδ = 2πδ implies

f d2z(ώ+)Q(z)SiSδ(z9 w)

which after integration by parts is equivalent to

= 2π(ώ+)0(w). (6.22)
7=1

We observe that both conditions (6.21) and (6.22) are manifestly satisfied by (6.16)
to first order in // .

Returning to super-abelian differentials, we could look for solutions of the
equation 3) i/2 ώ = 0 which translates in component language into the system (5.7).
At first sight it would seem that this system should admit h + 1 solutions, to be
generated perturbatively from the solutions at χ = 0 given by θωl ,1=1, ... ,h and
hδ . However for χ different from 0, solvability of the first equation in (5.8) imposes
a constraint

$d2zhδχϊώz = 0, (6.23)

which is not satisfied generically. From this point of view, the super Riemann
surfaces with χϊ = 0 constitute a singular variety about which we cannot expand
perturbatively, and generically there will be only one single-valued super-
holomorphic super abelian differential, the one which generalizes the Dirac zero
mode.

Conformal field theory suggests on the other hand to allow for super-
holomorphic differentials with non-trivial monodromy. The monodromy should
only cancel out in the end for the full amplitude. That super-holomorphic
differentials of this more general type do exist is evident from the fact that allowing
for non-trivial monodromy, the Dirac operator with odd spin structure is still
invertible, and its inverse is given by the meromorphic propagator Sδ (z, w) of (6.5).
Although there is great freedom in defining these notions, the choices we shall
make are dictated by the structure of the chiral amplitudes. The situation becomes
then similar to the case of even spin structure, and there are indeed h + ί super-
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abelian differentials, h of which are odd super-fields (analogues of the ordinary
abelian differentials), and one of which is even (analogue of the Dirac zero mode).
More explicitly, they are defined by

ώ0 = (ώ+)0 + 0(ώz)o (6-24)

with the following perturbative expansions for the components of the odd super-
multiplet

(ώz)7 (z) = ω, (z) + ̂  J d2yχ$ dz dy In E(y, z) (ώ+), (y) ,

(ώ+),(z) = - f d2yχϊ Sδ(z9 Jθω,(y), (6.25)

and for the even supermultiplet

(ώ+)0 ω = hδ(z) + ± J d2y$ό(z, y)χ + (ώz)0 (y) ,

(ώz)0 (z) = ̂ $d2w dz δw In E(z, w)χ t (ώ+)0 (w) (6.26)

It should be noted that all these forms depend on the choice of curves along which
the surface is cut, and not just on the choice of basis for the homology group.
There is also an arbitrary normalization in ώ0 not related to the homology. We
have chosen it so that ώ0 reduces to hδ when // = 0.

Next we list out all the monodromies of the super abelian differentials. It is
easily seen that the (ώ+)0 introduced above coincides precisely with the object
introduced in (6.17). We have already shown there that (cδ+)o is a half-form
without monodromy. From (6.25) it follows that the entire half-form ώ0 has no
monodromy either, in agreement with the general discussion in terms of the
constraint (6.23). From the monodromy of Sδ in (6.14), we can read off the
monodromies of the other super abelian differentials

(ώj, (z + Aκ) = (ώz\ (z) , (ώz\ (z + Bκ) = (ώj, (z) ,

where

β/o = ̂  ί ω7(w)/t (ώ+)0 (w) . (6.27)

To evaluate the periods, we can just use the formula (5.21) which is valid even
in presence of monodromy for the forms φf. The result is

tώj^Ωu + ϊ-fd2* J
B, *π P

(6.28)
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This means that the super period matrix can be taken as the expression on the last
line of the above equations, and put in symmetric form

I(z)Sδ(z,w)χ+ωJ(w) (6.29)

by the same iteration arguments as in (5.24)-(5.26) for the even spin structure case.
Analogously one finds

f ώ 0 = 0, $ ώ 0 = ί5/0, (6.30)

with ΩIO the vector given by (6.27). It should be noted that since these super
abelian differentials were defined relative to a cut surface, the super period matrix
depends as well on these choices. This dependence will cancel out in physical
amplitudes.

Finally it is to be expected that we shall also require a generalization of the
super prime form to odd spin structure, in analogy to (5.18):

- In gδ (z, w) = - In E(z, w) + θz θw Sδ (z, w)

+ -τ-θz\ d2yχ± dy \nE(y, w)Sδ(z, y)

J d2xd2y Xt dxlnE(x, z)χϊ dylnE(y, w)Sδ(x, y).

(6.31)

The above integrals should be viewed as carried out over the cut Riemann surface.
As in the case of even spin structure, In Sδ is defined through chiral amplitudes
only up to an additive function/(z) +/(w). Moreover we shall establish later on
that the presence of the Dirac zero mode also allows a redefinition of the form

Inδδ(z, w) -> Ingδ(z, w) +/(z) +/(w) + g(z) J ώ0 + g(w) } ώ0, (6.32)

where/(z) and g(z) are arbitrary functions dependent only on z and possibly
exhibiting non-trivial monodromy. It is easy to see that

®° δ+ ln^(z, w) = 2πθz (θz — θw)δ(z — w), (6.33)

where the right-hand side can be viewed as the Dirac delta function on super-fields
dependent only on θ and not on θ. If this property is to be preserved under
redefinitions by / and g functions as above, we have to restrict to

^_g = 0. (6.34)
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By analogy with the case of even spin structures, we shall add functions /as in
(5.37), so as to obtain monodromies close to those of that case and the bosonic
case:

w) + θz θw Sδ (z, w)

ώ0 + *(w) ώ0 . (6.35)

This expression is still not properly defined, since Sδ has non-trivial monodromy.
Taking Sδ as in (6.14) defines a particular super prime form with monodromy
given by

z z

<^(z + Bκ, w) = <fό(z, w) exp ί -inΩκκ - 2nί } ώκ + θzhδ(z) Vκ } ώ0 J ,
V w w /

dl In gt (z + Aκ, w) = δϊ In ̂  (z, w) ,

δϊ In ^^ (z + 5K , w) = δϊ In ̂ a (z, w) + 2πiώκ (w) + 6>z hδ (z) Vκ ώ0 (w) ,

d\ ΰl In ̂ δ (z + Λκ , w) = δz

+ 3ϊ In ̂ , (z, w) ,

δz

+ δϊ In βt (z + 5K , w) = δz

+ δ? In Sd (z, w) + h, (z) Fκ ώ0 (w) . (6.36)

The super prime form for odd spin structure shares a number of further
properties with the ordinary prime form:

(ii) <f 3 (z, w) is a (- 1/2,0) x (-1/2,0) form in z and w.
(iii) (̂  (z, w) is holomorphic in all its arguments.

We may now rewrite the full chiral amplitudes for scalar superfields in terms of
the above superconformal invariants of the super Riemann surface. First the
source independent part of C™ is obtained from (6.13) by setting

. (6.37)
,v +

The ψ+ contractions are performed with the propagator Sδ(z, w). Since any
function of Ω and// can be expressed as a function of Ω and// and vice versa, the
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quantity ZQtδ should be thought of as a function of Ω and// . Returning to (6.13)
we can carry out the x+ contractions, obtaining

exp πpIJp π p i i I i ω,-- f d2zχ? ψ+ ωj

x Π exp [(̂ ^ + ϋ^+fe)-^ (W^ + ̂ i) f d2zχϊ ψ+ dz\nE(z, z,)]

xexp γ^2 Π d2zd2wχ? ψ+dzdw\nE(z, w)χ?v hδ(w)J ψ*,

x exp (ifc, ̂  + Q hδ (Zi) - (ζt θi dzι + ikt) J d2 z £ hδ dz In E(z9 zt)

— Pn^zχ
L

x / Π exp (C( 0, 5Zi + ιfc£) Λ+ (2,) (6.38)
\ i = l

Next we contract the term

This shifts all the abelian differentials and period matrix in the above expression to
their super analogues as defined in (6.25)-(6.30),

/ Γ - Zl>θί 1
Cδ

n=Uxp\iπp!fΩIjp$ + 2πpt(iki + ζ i d + ) J d^ώλ

n Γ 1
x Y[ exp (ikiθί-\'ζi)ψ+(zi) — ̂ — (ζt0tdz. + ikt) J d2zχ? ψ+ dzlnE(z, zf)

^—y J d2zd2wχ^ ψ+ dzί

i=l

exp (,*, 0, + C() A4(z,) - (f , θ, dzi + ikt) J rf2

Zχ; A,

(6-39)

A final partial contraction with the term involving both ψ+ and ψ®+ above will
shift the hδ terms in the remaining ψ°+ factors to (ώ + )0 The net answer takes the
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following simple form in terms of super abelian differentials and super period
matrix

CΓ (z£, CΓ, kf; ί5, χϊ\ ψ^9 pΐ} = Z^(Ω,

x exp \2π f (ikf + if d\) *]* (pf ώ, + ψ°+μώQ)]
L ί=ι P J

x <exp [ikf Xμ

+ (Z/) + ζ f d + Xμ

+ (z£)]>^+. (6.40)

The last expectation value can be evaluated in terms of the super prime form,
exactly as in (5.44),

-exp ktkj + ζiζjd** dJ+-iktζjd{ ln^(z<9 z
\i,j \ /

Under redefinitions of the super prime form by (6.32) this picks up a factor

- ί<5+ *(**) ίfcj1 f ώo + f^ί J ώ 0 ,2 '

which in (6.13) amounts to shifting ψ^:Q by

)kf + Cf<Hg(z/)) . (6.41)

This clearly leaves the full amplitude 3Ff unchanged.
It is useful to determine the precise relation between the super determinant of

the super Laplacian on scalars and the determinants of the usual Laplacian and
Dirac operator in component language. For odd spin structure this is achieved by
integrating out the internal momenta/?^ and the Dirac zero mode ψ°+'μ. In this way
we obtain

1 =\Z9,S\-2 *-25 * (detImβ/JΓ
1/2 (ΩIO(lmU)^UJO),

(6.42)

where the prime stands for the omission of the constant zero mode only. In
superstring theory we integrate also over the supergeometries, parametrized by
supermoduli (see Sect. 7 below). The above expression will thus contribute to the
superstring amplitude only if the Dirac zero modes are absorbed by the
supermoduli. This can only be the case when the dimension of space-time (which is
the number of scalar superfields) is larger than the genus of the surface. So in
d = 10, the odd spin structure starts contributing to the superstring partition
function only at genus h = 10.

We conclude this section with a discussion of geometric invariants in the case
of odd spin structures. As shown in the beginning of the section, the amplitudes
J%m are chiral with manifest holomorphic dependence on the supermoduli
parameters, and meromorphic dependence on the vertex operator insertion
points. We have also succeeded in expressing it in terms of quantities such as super
abelian differentials, super period matrix and super prime form, which are
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formally supergeometric. Even though individually these notions depend on a
choice of cuts, the amplitude 3F£ is independent of these choices. We shall now
argue that completely intrinsic versions of these objects exist, in terms of which
gϊ™ can be expressed in a similar way.

We begin with an intrinsic version of δ^ In Sδ whose monodromy should be of
the form

δ (z + Aκ, w) = 3T In gδ (z, w) ,

κ, w) - 3ϊ ln^(z, w) + 2π/ώ*(w) + j ώ0 Wκώ0(v), (6.43)

with

Wκ = -h - 5ί - __ (6.44)

Σ W / f ώ o W f ώ o
1=1 Ax

for an arbitrary vector Wl in the Jacobian. These monodromies are characterized
by the fact that they are superholomorphic, in agreement with the equation
satisfied by 3 + In^,

0° 3ϊ \ngδ(z,vt) = 2πθz(θz-θw)δ(z-w), (6.45)

and have themselves monodromies no worse than those of ώκ. Furthermore they
satisfy the key consistency requirement on the monodromy of d^ In gδ which
follows from orthogonality to the only half-form without monodromy, namely
ώ0 . lίi fact integrating (6.45) versus ώ0 gives

z, w)) = 2πώ0(w) . (6.46)

The left-hand side of (6.46) can be evaluated in terms of the monodromy alone,
and we get

Σ j ώ0(z)^ln^^|z^
W) = 2π. (6.47)K = l Λκ ^όV z

?

 w/

The monodromy prescribed in (6.43)-(6.44) does satisfy this equation. The
general theory of equations tells us that if the consistency requirements are
satisfied the solution should exist. From the monodromy of dy. In Sδ we can
deduce the monodromy of Sδ itself, as well as those of the super abelian
differentials

δδ (z + BK9 w) - δδ (z, w) exp - ίnύκκ + 2πi J ώ^ + J ώ0 ̂  f ώ0 1 . (6.48)
\ z /

Similarly the super abelian differentials can be written as

2πiώκ (w) = $ d\ d\ In gδ (z, w) , (6.49)
BK

and thus their monodromy is given by

= ώκ(w),

= ώκ (w) + ΩKQ WL ώ0 (w) .
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We note that the monodromies derived in this manner are consistent with the
constraint Λ

0 = j ^ _ ώ L = Σ § ώ0ΩL,Wκ.
K=l Aκ

It would of course be very valuable to have explicit expressions for all these
quantities. We expect then the same formula (6.40) for 3F™ to hold with these
intrinsic supergeometric invariants.

7. Chiral Superstring Scattering Amplitudes

With the above completely explicit description of correlation functions of scalar
superfields on super Riemann surfaces, it is now easy to clarify the chiral structure
of superstring scattering amplitudes.

The action for superstring propagation is obtained by coupling 10 scalar
superfields Xμ to two-dimensional supergravity EM

A. In the Polyakov formula-
tion of Type II superstring theory, the amplitude for the scattering of on-shell
physical particles will be constructed out of the correlation function

<»>//= Σ ί DEM

ADX* Θe-1-, (7.1)

where one sums over all topologies (H) of underlying Riemann surfaces and all
supergeometries satisfying the torsion constraints (3.3), as well as over all
embeddings Xμ. The Gliozzi-Scherk-Olive projection in the functional formalism
requires that for each Riemann surface, the scalar superfield integrals be carried
out with respect to a fixed spin structure, upon which contributions of left and
right movers are separated, given independent spin structures which are to be
summed over. Our goal is to give a precise and workable version of this
prescription. The operator Θ is the product of n vertex operators of the form (3.6),
or in the case of massless bosons, of the form (3.7), constructed in such a way as to
be s Diff (M) and s Weyl (M) invariant. Once these invariances are guaranteed, the
integration over all supergeometries reduces to an integral over the equivalence
classes under these symmetries of the supergeometries, or supermoduli space s JKh:

s Jίh = (£*/> ΩM satisfying (3.3)} (y 2)

with graded complex dimensions

(0|0) h = 0
(110) A = 1, even spin structure

(111) h = 1, odd spin structure

(3A-3|2A-2), h^2

In [10] it was shown that supermoduli space is a complex super-manifold, whose
complex structure is naturally induced by the one on the super geometry. After
gauge-fixing a slice EM

A (nij) for s Jίh, the integration over supergeometries can be
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recast in terms of an integral over supermoduli parameters ms and superghost
fields B and C of £/(!) weights 3/2 and — 1 respectively:

oo 5Λ-5

<0>/ι= Σ ί Π d2mjD(BBCCXμ}\δ((μj\By}\2 Θe-1™-1*** (7.3)

with the superghost action given by

ISah(B* O = τr- f d2τE(B2)_ C + B@+C) (7.4)y 2πJ

and μj is the super-Beltrami differential of the slice EM

A

It is clear that the superghost action is split into a holomorphic function ^s

δ

gh on
supermoduli, times its complex conjugate, up to a local anomaly which cancels
that of the matter fields in the critical dimension d = 10. Thus up to the local
anomaly

5Λ-5

\D(BC) [] δ((μj\B}}e-^d2*EB®-c = ̂ l9h(Ω,χί}. (7.5)
J = l

Massless Bosonίc Particles

We can combine this contribution of the superghosts with the chirally split
contributions of the scalar superfields in (5.4) and (6.13) to produce the manifestly
split, anomaly-free superstring amplitudes for massless external bosonic particles,

" r- \

Π PYΠ Γi f1 Yf (Ί \ A- Fμ 1 /F Qί Y^(τ\4- Γ^λ /F Qi YP (Ί \~\ \ (Ί f\\CXp \ll^i Λ \£>i) i bi y J-' o^ + Λ \^ι) ι \>ί y J-^ <=^ — Λ \J^ι)\ / \l v)

i=l /

oo 5h-5

fc = 0 sJίh J = l

Here

δ even

δ odd

Recall that the amplitude 3F™ involves an integral over the Dirac zero mode, as
indicated in (6.13). The first term on the right-hand side of (7.7) is always parity
conserving, and the second one is always parity violating since it involves a
10-dimensional ε symbol due to the Dirac zero mode integration. If the relative
sign between the even and the odd contributions are the same for both^ andjj, we
have the Type IIA string, if they are opposite, we have the Type IIB string.
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Heterotic string amplitudes are obtained in a similar way

HS

oo 5h-5 3/J-3

= ΣQ ί Φ/ ί Jl dmJ Π dmj

x/s(z,, Cf , */•; 4 ti,Pt)f*(Zi> if, *f, *?, fl, /tf) (7.8)

the chiral bosonic amplitude, and kf the external momenta corresponding
to the external gauge degrees of freedom of the heterotic string states.

Arbitrary Massive Particles 3

It was shown that scattering amplitudes can be constructed out of meromorphic
chiral amplitudes for tachyonic external states in [13] and for general massless
bosonic states in the present paper. After the GSO projection, the tachyon no
longer belongs to the superstring spectrum, so for the superstring per se, we have
established the chiral splitting of massless bosonic external states. What are the
properties of amplitudes for scattering of massive bosonic or fermionic states?

Though bosonic vertex operators at any fixed mass level may always be
constructed by insisting on super- Weyl invariance, there is no closed formula for
the general case. As a short cut, we shall use factorization properties of superstring
scattering amplitudes instead, to make statements about the properties of
amplitudes including massive bosons. Except when some conservation laws or
superselection rules apply, any massive bosonic particle will couple to some
number of external massless bosons. Indeed, a massive particle will ultimately
decay into massless particles, bosons and fermions. But through loop effects, pairs
of fermions again produce massless bosons, so that there will always be a coupling
of any massive boson to some massless bosons. Some processes that do go through
loop effects may however not occur at tree level. As an example the decay into
photons of any neutral particle cannot occur to any tree level, though it does to
one loop. Of course sometimes there are superselection rules, like for the Spin
(32)/Z(2) heterotic string theory. The massless gauge bosons are as always in the
adjoint representation, but at the first mass level, the spinor of Spin (32)/Z(2) can
never decay into massless particles. It is stable, and hence cannot be produced by
scattering massless bosons alone. It can also not be produced by scattering
massless bosons and fermions.

We now claim that scattering amplitudes involving massive external states
admit a chiral splitting exactly as the massless amplitudes did, in terms of chiral
amplitudes that are holomorphic in supermoduli, chiral polarization tensors, and
meromorphic in vertex insertion points. To show this, let us assume at first that the
massive particles we wish to scatter can be produced at tree level from massless
particles. It will arise as the amplitude in which the massless particles are all close
together and the massive boson vertex operator will arise in the operator product

3 We thank S. Mandelstam for discussions on these issues
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expansion of the massless operators. Now the operator product expansion
proceeds independently for meromorphic and anti-meromorphic fields, so that
the left chiral polarization tensor for the massive state is built only out of the left
chiral polarization tensors of the massless states. By construction the massive
amplitude is still chirally split, i.e. can be separated into a chiral amplitude and its
complex conjugate at fixed momenta, depending holomorphically on super-
moduli and polarization tensors, meromorphically on insertion points. If the
massive bosons to be scattered cannot be produced from massless bosons at tree
level, then factorization has to proceed by letting the Riemann surface degenerate
into two disconnected Riemann surfaces. The degeneration will maintain the
separation between the two chiralities, so that the polarization tensor for the
massive state only involves the chiral polarization tensors of the scattered massless
particles. Thus the analyticity is maintained at higher mass level.

The construction of amplitudes involving space-time fermions cannot proceed
along these lines. To show the chiral splitting property, one would have to start
from a fully covariant expression for the fermion vertex operator, which is not
available at present. Of course states with fermion pairs can always be obtained by
factorization as above, so we can in general expect that amplitudes with external
space-time fermions will also admit chiral splitting, though chiral amplitudes
should now be allowed to have quadratic branch cuts between vertex operators.

8. Conclusion

We have investigated the analyticity properties of non-chiral correlation functions
jtfδ of scalar superfields on a background supergeometry with an arbitrary fixed
spin structure δ:

V(k ,

The vertex operators we consider are the ones that describe creation and
annihilation of bosonic particles in the superstring spectrum. The points zt are
insertion points on the super Riemann surface, kf are the external momenta, and
Cf are the chiral polarization tensors. The main results of this paper can then be
stated as

Chiral Splitting Theorem

The non-chiral correlation function sίδ in which left and right chiralities are
complex conjugates of one another and endowed with the same spin structure δ,
splits into a chiral amplitude J%m and its complex conjugate up to a local anomaly
SL

^δ(kf; z i ; z;; ζt, ζt; Ωu, Ωu, χΐ ,χ~)

= (2π)10 ό(k)elos- ί dpi \ PfW; z,, ζt; Ωu, x + ;

The chiral amplitude depends holomorphically on the background supergeometry
and the chiral polarization tensors, meromorphically on the vertex operator
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insertion points. It is a form of weight (1/2,0) in each z ί9 but has monodromy. The
single-valuedness of the correlation function is restored upon integrating over the
loop momenta p%.

For vertices corresponding to massless particles in the superstring spectrum,
explicit expressions in terms of contractions of effective chiral fields were given in
(5.4) and (6.13), and in manifestly supersymmetric form in (5.43-45) and (6.40)
for even and odd spin structures respectively. The key supergeometric notions of
super abelian differentials, super period matrices, and super prime forms are
introduced in (5.9), (6.25), (6.26), (5.20-22), (6.28-29), and (5.37), (6.35).

The effective rules leading to these expressions for 3F™ can_now be^ easily
formulated. One should replace the non-chiral X=x + θψ++θψ_ + ίθθF by a
chiral field X+=x++θψ+, super covariant derivatives 22+ by their flat
analogues d+, drop the chiralities mixing terms in the action, and introduce pf as
the momenta flowing through the loop At. For odd spin structure 3F™ also
requires an integration over the Dirac zero mode, paired with the even abelian
differential ώ0.

To obtain superstring scattering amplitudes from the scalar superfield
correlation functions, one endows the chiral amplitudes of opposite chiralities
^T> «^T with independent spin structures δ and S and matches them at the same
value of the internal momenta/?f. This gives the Type II superstrings of (7.6), (7.7),
and the heterotic string of (7.8).

Appendix A: Conventions

General two-dimensional coordinates are denoted by ξ1 and £2, or

ξ = — τ= (ξ 1 + iξ2). The metric is then ds2 = gmn dξm dξn. Locally conformally flat

coordinates are denoted by z, w, etc., and the metric becomes ds2 = 2gzzdzdz,

= gzzdxdy.
U(l) vector indices are denoted by α, b, ... and take on the values z and z;

spinor indices are denoted by α, /?, . . . and take on the values + and — . We use the
same notations z and z for conformally flat coordinates and U (1) indices because
in conformally flat coordinate systems they may be identified. Furthermore

: —\ό"υ — -%8"υ y , εzz = — i.

We take the convenient representation of the Clifford algebra

and raising and lowering indices are performed as follows

ψ+ = -ψ~, ψ- = ψ+.

We use a somewhat unusual normalization of the Dirac delta function

d= = 2nδ(z— w).
z— w
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Appendix B: Contact Terms

In this appendix we collect all contact terms between vertex insertion points that
arise from the various contractions, and explain why they need not be included in
the final expression for superstring scattering amplitudes.

Contractions of the auxiliary field Fμ give rise to the contribution j&F of (4.2),
which is readily found to be

Σ δ(zί,zj)(θίθίθjθjklίkf-2iζ?θjθiθikli

i, j=ι

Contractions of the xμ fields produce

exp 2π £ δ(zi9 z}) (ζμ θ{ - jζμ θ{θtχ^ (
L ij=ι

Finally the contact terms from the contractions of ψ+ are

r "
expL \£i l '' l j j j Zj Z ί ' Z j l l l l j j

The above contributions are contact terms in the sense that if the vertex operators
are inserted at different points on the Riemann surface, these terms do not
contribute.

Due to the presence of the θ factors, the exponentials may be expanded in a
finite order power series, where any insertion point is at most common to two delta
functions. Now the full amplitude always contains an overall factor of

Π E(zi9 Zj}kikι.

By analytic continuation in the external momenta, all powers can always be made
positive, so that the delta functions of the contact terms have no effect. Thus
contact terms do not contribute, even when vertex operator positions are
integrated over. This argument is equivalent to what was called the argument of
the cancelled propagator in dual model theory.

Appendix C: Existence of Super Holomorphic Forms

For completeness we wish to investigate the number and nature of holomorphic
forms satisfying the differential equation 2n_ V=Q. For simplicity we shall
consider the case when the auxiliary field A is zero. Solutions are given by

satisfying
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• For n < 1/2, the homogeneous equations with // = 0 have no solutions, hence
V=Q.

• For «>1, the adjoints of the Dϊ operators are invertible, so there are
(2n — l)(/z — \) + 2n(h — 1) solutions, which are odd or even, depending on
whether n is half an odd or half an even integer. This is true for all values of//.

• For n = 1,1 /2, 0, — 1 /2, the preceding count of solutions still holds, but now the
forms Fwill in general have non-trivial monodromy, except for n = 1/2 and even
spin structure, which is the one of the cases we examined in detail in this paper.

As an example we can consider the case n = 1, solved by

/= i 4ττ

which has monodromy through the dz In E(z9 w) factor. On the other hand, we see
that the number of solutions for the case n = 3/2 is always the same independently
of //, which just corresponds to the dimension of supermoduli space.

Acknowledgements. We would like to thank A. Morozov for stimulating discussions, Ken Aoki
for useful comments on the manuscript, and the Aspen Center for Physics where part of this work
was carried out.

References

1. Ramond, P.: Dual theory for free fermions. Phys. Rev. D3, 2415 (1971)
Neveu, A., Schwarz, J.H.: Factorizable dual models of pions. Nucl. Phys. B31, 86 (1971)
Neveu, A., Schwarz, J.H.: Quark model of dual pions. Phys. Rev. D4, 109 (1971)
Neveu, A., Schwarz, J.H., Thorn, C.: Reformulation of the dual pion model. Phys. Lett. 35B,
525 (1971)
Thorn, C.: Embryonic dual model for pions and fermions. Phys. Rev. D4, 1112 (1971)

2. Gliozzi, F., Scherk, J., Olive, D.: Supersymmetry, supergravity theories, and the dual spinor
model. Nucl. Phys. B122, 253 (1977)
Green, M.B., Schwarz, J.H.: Supersymmetrical string theory. Nucl. Phys. B18, 502 (1981)

3. Gross, D.J., Harvey, J.A., Martinec, E., Rohm, R.: Heterotic string theory (I) The free
heterotic string. Nucl. Phys. B256, 253 (1986)

4. Witten, E.: Global anomalies in string theory. Argonne Conference on Anomalies, Topology
and geometry, Bardeen, W., White, A., p. 61, Singapore: World Scientific 1985

5. Seiberg, N., Witten, E.: Spin structures in string theory. Nucl. Phys. B276, 272 (1986)
6. Green, M.B., Schwarz, J.H.: Supersymmetrical string theories. Phys. Lett 109B, 444 (1982)
7. Gross, D. J., Harvey, J. A., Martinec, E., Rohm, R.: Heterotic string. Phys. Rev. Lett. 54, 502

(1985); Heterotic string (II), the interacting heterotic string. Nucl. Phys. B267, 75 (1986)
8. Gervais, J.L., Sakita, B.: Field theory interpretation of supergauges in dual models. Nucl.

Phys. B34, 63 (1971)
Zumino, B.: Relativistic strings and supergauges. In: Renormalization and invariance in
quantum field theory, Cainiello, E. (ed.). New York: Plenum press 1974
Brink, L., DiVecchia, P., Howe, P.: A locally symmetric and reparametrization invariant
action for the spinning string. Phys. Lett. 65B, 471 (1976)
Deser, S., Zumino, B.: A complete action for the spinning string. Phys. Lett 65B, 369 (1976)

9. Belavin, A., Knizhnik, V.G.: Phys. Lett B168, 201 (1986)
Bost, J.B., Jolicoeur, J.: Phys. Lett. B174, 279 (1986)
Catenacci, R., Cornalba, M., Martinelli, M., Reina, C.: Phys. Lett. B172, 328 (1986)



Scalar Superfields on Super Riemann Surfaces 513

10. D'Hoker, E., Phong, D.H.: Superholomorphic anomalies and supermoduli space. Nucl.
Phys. B292, 317 (1987)

11. Polyakov, A.M.: Quantum geometry of fermionic strings. Phys. Lett. B103, 211 (1981)
12. Martinec, E.: Superspace geometry of superstrings. Phys. Rev. D28, 2604 (1983)
13. D'Hoker, E., Phong, D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60,

917 (1988)
14. Sonoda, H.: Berkeley Preprint LBL-24327
15. Bershadsky, M.: The loop measure over moduli space. Phys. Let. B201, 67 (1988)
16. Alvarez-Gaume, L., Gomez, C., Nelson, P., Sierra, G., Vafa, C.: Fermionic strings in the

operator formalism. Nucl. Phys. B 311, 333 (1988)
17. Belavin, A., Polyakov, A.M., Zamolodchikov, A.: Nucl. Phys. B241, 333 (1984)
18. Dotsenko, V., Fateev, V.: Nucl. Phys. B241, 312 (1984)
19. Dijkgraaf, R., Verlinde, E., Verlinde, H.: c = 1 conformal field theories. Commun. Math.

Phys. 115, 649 (1988)
20. Verlinde, E., Verlinde, H.: Multiloop calculations in covariant superstring theory. Phys. Lett.

B192, 95 (1987)
21. Mumford, D.: Tata lectures on Theta I, II. Boston: Birkhauser 1983
22. Fay, J.: Theta functions on Riemann surfaces. Lecture Notes Series vol. 352. Berlin,

Heidelberg, New York: Springer 1973
23. DΉoker, E., Phong, D.H.: Vertex operators for closed string theories. Phys. Rev. D35, 3890

(1987)
24. Howe, P.: Super-Weyl transformations in two dimensions. J. Phys. All, 393 (1989)
25. DΉoker, E., Phong, D.H.: Loop amplitudes for the fermionic string. Nucl Phys. B278, 225

(1986)
26. Verlinde, E., Verlinde, H.: Nucl. Phys. B288, 357 (1987)

Communicated by S.-T. Yau

Received December 15, 1988






