
Communications in
Commun. Math. Phys. 125, 385-416 (1989) MathgΠfiatK^

Physics
© Springer-Verlag 1989

Monopoles and Baker Functions

N. Ercolani1* and A. Sinha2

1 Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
2 Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

Abstract. The work in this paper pertains to the solutions of Nahm's equations,
which arise in the Atiyah-Drinfield-Hitchin-Manin-Nahm construction of
solutions to the BogomoΓnyi equations for static monopoles. This paper
provides an explicit construction of the solution of Nahm's equations which
satisfy regularity and reality conditions. The Lax form of Nahm's equations is
reduced to a standard eigenvalue problem by a special gauge transformation.
These equations may then be solved by the method of Baker-Krichever. This
leads to a compact representation of the solutions of Nahm's equations. The
regularity condition is shown to be related to the monodromy of the gauge
reduced linear operator. Hitchin showed that the solutions of Nahm's equations
can be characterized by an algebraic curve and some data on that curve. Here,
this characterization reduces to a transcendental equation involving certain
loop integrals of a meromorphic differential. Donaldson coordinatized the
moduli space of fc-monopoles by a class of rational maps from the Riemann
sphere to itself. The data of a Baker function is equivalent to this map. This
method gives an "apriori" construction of the (known) two monopole solutions.
We also give a generalization of the two monopole solution to a class of elliptic
solutions of arbitrary charge. These solutions correspond to reducible curves
with elliptic components and the associated Donaldson rational function has
a simple partial fraction expansion.

Introduction

The work in this paper pertains to the solutions of the St/(2)-BogomoΓnyi
[1] equations. These solutions are called monopoles and have been the subject
of extensive analysis by Nahm [2], Atiyah and Hitchin [3], and Donaldson
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[4] among others [5]. In particular we concentrate on the algebro-geometric
formulation of Hitchin [6,7]. This approach classifies monopoles in terms of
solutions to a periodic Lax equation (Nahm's equations I.I) built from an algebraic
curve.

For completeness, we begin with a brief historical review. The SU(2)-
BogomoΓnyi equations are1

B^&ljkFjk = D^. (1)

Here Ah i= 1,2,3 and Φ are 2 x 2 skew-hermitian zero-trace matrix (i.e. su(2)-
valued) functions of xί9x29x3'9 and Fij = diAj — djAi + [_Ai9Aj'] and DιΦ=dιΦ +
[A^Φ], dj = d/dxp i, j = 1,2,3. Ai are the (SU(2)) gauge potentials, Ftj are the field
strengths, and Φ is a scalar field, called the Higgs field, transforming via the adjoint
representation of SU(2). Geometrically A — AtdXi should be viewed as a connection
on an SU(2) principal fiber bundle over R3 and F = F^dxi Λ dXj is the associated
curvature and Φ is a section of the adjoint bundle. The C°° solutions of (1) with
the boundary condition,

| |Φ| |=itτΦ*Φ->l (2)

as r = yjxl + x\ + X3 -» °°> gives static, localized solutions with "minimum" energy
of the field equations of a spontaneously broken gauge theory in the so-called
Prasad-Sommerfield [1] limit. Note that Eq. (1) is invariant under the gauge
transformation

Ai ^g-lAig + g'ldig9 Φ-*g~lΦg, (3)

where g(xl9x2,x3)εSU(2).
The boundary condition (2) gives a map of the "sphere at oo in space" into the

field values Φ satisfying || Φ|| = 1, or, topologically, S2. Thus the solutions of (1)
are classified by an element of π2(S2) = Z provided by this map, i.e. these solutions
are characterized by an integer k, called the magnetic charge or topological charge
of the solution. Solutions of the BogomoΓnyi equation which minimize the energy,
for a given magnetic charge k, are called monopoles. These solutions depend on
4k — 1 parameters.

The BogomoΓnyi equations can be viewed as time (x0) independent solutions
of the self-duality equations F = *F in ίR4 with coordinates X09xl9x2,x3, the gauge
fields Al9A2,A3 being identified with gauge fields Al9A2,A3 in IR3 and the Higgs
field Φ being identified with AQ. Nahm [2] used this formal identification to adapt
the ADHM [8] solution of the self-duality problem to the BogomoΓnyi equation.
This approach can be summarized as follows: Let T^z), i= 1,2,3, where z is an
auxiliary variable, be k x k matrices, satisfying the Nahm equations

~ = ¥tjk[.Tj,Tk ] (4)

and Hitchin's [7] conditions

1 The summation convention is adopted in this section.
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Cl
C2 Ti(z)=-Ti(-z),
C3 Ti(z) are analytic functions of ze( — 1, 1) and have simple poles at z = ± 1,
C4 The residues of T^z) at z = + 1 give an irreducible /c-dimensional represent-

ation of su(2).

The Nahm (4) equations can be rewritten [7] as a Lax equation, by defining

A~A-.^-l + A0 + A& (5a)

A+~$A0 + A& (5b)

A _ 1 = T1 + iT2> A0=-2iT3, A, = T,-iT2, (5c)

then Eq. (4) is equivalent to

dX
^-DMΛ. (6)

It was shown by Hitchin that under these conditions, the operator

where ej9 j =1,2,3 are the imaginary quaternions, has quaternionic index 1. Thus
let v9 a fc-component vector of quaternions, be the unique solution to

Δ + v = 0 (8a)
and

ί v+Ό=L (8b)

Here + means transposed and quaternionic conjugate. Note that υ has the form

Then, the solution to (1) with (2) is given by

Φ(x1,x2,x3)= f zN + Ndz, X i(χ1,χ2,x3)= } N+d{Ndz, i=l,2,3. (9)
-1 -1

This solution has magnetic charge fc, i.e. this gives a fe-monopole solution. Moreover,
it was shown by Hitchin [7] that all solutions are obtained this way.

Our contribution, in this paper, is the construction of explicit solutions of
Nahm's equations which satisfy the regularity and reality conditions required for
the physical monopoles. We begin with Hitchin's approach to solving Nahm's
equations. To a monopole he associates a so-called spectral curve (i.e. a Riemann
surface) together with the data of a line bundle on this curve. This is analogous
to the direct scattering procedure for KdV solitons in which a soliton is associated
to certain spectral variables that evolve simply in time. Here, the bundle evolves
simply, in the Nahm "time" z, on the Jacobian (a torus) of the curve.

In order to explicitly solve Nahm's equations one needs to invert Hitchin's
map by an "inverse scattering" procedure. There is a standard inverse procedure
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for solving Lax type equations which goes back to Baker [9], but its more recent
formulation is due to Krichever [10]. Unforturnately, these methods are not directly
applicable to the Nahm-Hitchin equation (6). The difficulty is that Hitchin's
covariant derivative

^ + ±A0(z) + Aι(z)ζ (10)

does not have the form of a standard eigenvalue problem because of the z
dependence of A{.

The first result is to observe that "gauge transformation" by C(z) which satisfies

dz '

reduces (10) to an eigenvalue problem:

d
έ (Ha)

and the reduced Nahm equations become:

=[β,β + ], (lib)

This reduction may be explained geometrically. Hitchin [7] has observed that
there is a hierarchy of equations, like Nahm's, which correspond to other flows
on the Jacobian of the spectral curve. He further remarks that these flows do not
commute on the space of Nahm matrices. However, they do commute abstractly
on the Jacobian as shown and explained by Griffiths [11]. This is due to the fact
that the connection determined by (10), which defines the horizontal lift of the
Jacobian flows into skew-hermitian matrices, has non-vanishing curvature which
obstructs the commutation of flows. Equation (lib), on the other hand, may be
regarded as the first in a hierarchy of commuting flows which are Hamiltonian
with respect to the natural Lie-Poisson bracket on the coadjoint orbit of a
Kac-Moody algebra [12]. The relation between these two hierarchies and possible
Hamiltonian structures for Nahm's equations are interesting topics for future
consideration, but will not be treated further here.

H. F. Baker showed how to systematically represent a function, the Baker
function, on a Riemann surface, having prescribed transcendental singularities, in
terms of integrals of abelian differentials. Krichever applied these ideas to construct
the so-called "finite gap" Schrodinger eigenfunctions by matching their asymptotics
for large eigenvalues to the transcendental singularities of a Baker function. We
apply this method to (11) and construct Q0 in terms of theta functions for the
spectral curve:

(fio)ϋ = ~ (Pt ~ Pj)

- Tcz - W(Δi) - K) Θ(W(ooi) - W(Δl) - K)
( ]Θ(W(ooj)-W(Δi)-K)Θ(W(ooi)-κz-W(Δi)-KY
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where Θ is the Riemann's theta function (a Fourier series, see Eq. (11.15)), W is
Abel's map (see Eq. (11.14)), cθj are the transcendental singularities of the Baker
eigenfunctions for (lla) and Δt is a certain divisor on the curve. The frequency
vector 7c, the normalization constants pi9 vh c0 and the Riemann constant K can
be explicitly computed from the curve and the data of Hitchin's line bundle.

The organization of this paper is that in Sect. I we derive the reduced equations
(11) which are solved in Sect. II with Baker functions. Section II also shows from
the solution (12) how Hitchin's gauge invariant formulation of the boundary
conditions is satisfied, and how the boundary conditions in Nahm's formulation
are met. Although this may seem redundant, it has led to an elegant formulation,
Theorem LI, of the monopole non-singularity condition for Eq. (lib). Namely,
the operator (lla) has regular singular points with integer exponents of singularity.
The non-singularity condition becomes the requirement that, at singular points,
this operator has scalar monodromy; i.e. the solutions of the associated homo-
geneous equation have no logarithm in their expansion at a singularity. This
formulation may be useful in the construction, either analytical or numerical, of
a physical /c-monopole.

In Sect. Ill, Donaldson's rational map, which encodes the moduli space of
fc-monoρoles, is constructed in terms of Baker data. Section IV spells out completely
formulas like (12), and uses these for the construction of the two monopole solution.
Also presented here is a class of elliptic solutions of arbitrary charge which
correspond to reducible spectral curves with elliptic components, and, one finds
an expression for Donaldson's map in this case:

(13)

^
where K is the complete elliptic integral of the first kind.

It is assumed, except in Sect. IV, that the spectral curve is non-singular.
To satisfy the boundary conditions these curves must satisfy a set of quantization

conditions:

§y00 = πiπij for some m7 eZ, (14)

where y^ is a differential of the second kind canonically associated to the spectral
curve (see (11.13)) and bj are the normalized b-homology cycles on the curve. These
are transcendental equations on the moduli space of curves and it has not yet been
proved that these equations have solutions in the domain of non-singular curves.
However, this is likely to be true and these results will enable one to study this
question perturbatively for 3-monopoles.

Atiyah and Hitchin have studied the dynamics of slowly moving monopoles
under the reasonable ansatz that they follow geodesies in the space of static
k-monopoles. The Baker formulation given here provides the natural ingredients
for studying this question through a kind of two-timing perturbation analysis
called modulation theory in the spirit of [13-15]. Because of the "periodic"
quantization conditions, the effect of slowly moving monopoles on the differential
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y^ may have some structural similarity with the modulation differentials of a
perturbed sine-Gordon equation [15].

I. Gauge Normalization of Nahm's Equations

The kth order Nahm's equations may be written in the Lax form2:

A' = lA9A + ]9 (LI)

where A = A-^~l+A0 + Ai£ with Atesl(k, C) satisfying the reality conditions3

Λ * _ A Λ* — _ Λ
/10 — /io> Λl — Λ _ j .

A+ = ±AQ + Alζ and, for later reference, we set A _ = %AQ + A _ ± ζ ~ 1 . Equivalently,
one can rewrite (LI) as the triple

ιl (Lla)

AΛ, (Lib)

We will study solutions of (LI) subject to the following boundary conditions4 on At:

At(z) are analytic in (—1,1) and meromorphic near the endpoints,

having simple poles at ± 1; i.e., Ai(z) = — l— + Ri(z\ with jR^ analytic,
z — I

near z = 1 and a similar expansion holds near z = — 1. (L2a)

The residues α0>
αι as operators on Cfc, have no non- trivial invariant

subspaces. (I.2b)

At(-z) = A\(z). (L2c)

The Lax equation (1.1) can be integrated via the spectral theory of the linear
differential operator (with parameter ζ)

+ , (D = d/dz). (1.3)

This spectral transform method [10] will be the subject of this and the next section.

Remark 1. It follows from Eq. (Lla) and condition (I.2a) that the residues 00>
f l-ι

satisfy the bracket condition

Hence, a,ί plays the role of a raising operator and α0 has the integer eigenvalues
{ — (k— 1), — (k — 3), . . . , ( fe — 3),(fe— 1)}. By examining (Llb,c) as well, one can

2 A' = dA/dz and [_A, K]=AB- BA
3 A* denotes the conjugate transpose of A and A* denotes the transpose
4 The matrices At presented here differ by a unit translation from those of Hitchin [7] which
satisfy A.^2 — z) = Ά\(z). The relation to our At is given by At(z) = A^l - z). Note that At( - z) =
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further deduce that a^ is a lowering operator for a0 and, in fact, (αj constitutes
an irreducible representation of s/(2, C).

To apply this spectral method, the linear equation, (1.3) needs to be transformed
to a standard eigenvalue problem with eigenvalue parameter ζ. Actually it suffices
to have the coefficient of ζ be independent of z. To accomplish this, take the
differential equation associated to (1.3),

O, (L4)

and apply a general gauge transformation

Ψ= C(z)φ (1.5)

to transform (1.4) to

φ'

For this to be a standard eigenvalue problem it is necessary that the C~1A1C
term in C~1A + C be independent of z. If

= Aΐ(0) ze(-l,l), (1.6)

then the transformed system becomes

(1.7)

which is an eigenvalue problem. Note that (I.2c) implies that ^(0) is a symmetric
matrix.

Next to determine a differential equation to define C(z), observe from the
Nahm equation (1.1 a) that A±(z) is conjugate to A^Q). But this is precisely what
we want C(z) to do. Thus

ί(z) iff ^[C'C-UJ.

Comparing with Nahm's equation one deduces

C'C-^K). (1-8)

Equation (1.8) determines C up to multiplication by a constant matrix from the
right. This corresponds to the possibility of conjugating Nahm's equations by a
constant matrix. Therefore, we require (for consistency with (1.6) in general):

C(0) = / = the identity matrix. (I. Sic)

Then Eq. (1.7) becomes:

φ' + (C-1A0C)φ=-Aιmφ. (1.9)

Another way to characterize the gauge transformation C(z) is to say that it
transforms (1.3) into (1.9).

If one defines
Q1 = C-1A1C = A1(0), (I.lOa)

e0 = c-1>toC, (i.iob)
β.^C^ΛLiC, (I.lOc)
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then Eq. (1.9) becomes

(1.11)

This transformation preserves the Lax form of the Nahm equations:

βi=0,

β'o = [β-ι,βι],

with βj
Observe from Eq. (1.8) that

C~ΐC'—^C~1A C —
^ ^ — 2^ ^O^ —

moreover, since (C"1)' = — C~ 1C'C~ 1, we have

-^0 (1.13)

with C~1(0) = /. So C"1 is the normalized fundamental solution of D + i<20.
A useful consequence of this reduction is that one can now express the boundary

conditions (1.2) for the At directly in terms of the linear operator D + iβ0

Theorem I.I. The following requirements are equivalent to the boundary conditions
(1.2) for equation (LI):

(a) D H-^βo (w a neighborhood of the interval [— 1,1]) is an operator with regular
singular points (which are simple poles) at z = ± 1 and ordinary points elsewhere.
Moreover, the monodromy matrices at these singular points are scalar.
(b) The residue, g0, o/Q0 atz = \ together with q1 — A^Q) have no common invariant
subspaces in Ck.

(c) β0(-*) = β'o(4
The proof of this theorem will be deferred to Sect. Ill, where this characterization
will also be related to Donaldson's coordinates on the space of /c-monopoles.

II. Solving Nahm's Equations via the Spectral Transform

The principal ingredients in the explicit solution of the reduced equations (1. 11)
are the operator5 D + Q + and the spectral curve of Q. The solutions are constructed
from meromorphic differentials on this curve and theta functions. This analysis is
described in parts A and B. Part C gives a concrete realization of Hitchin's gauge
invariant formulation of the boundary conditions in terms of Baker functions on
the spectral curve.

A. Asymptotic Analysis of the Normalized Equations. One may take the constant

6 = 6-ιΓ1 + 60 + 61? and Q + = β0+ 6ιC
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symmetric matrix A^O) of Eq. (I.Sic) to be diagonal:

A ! (0) = diagonal (pl9...9 ρk\ (II. 1)

Asymptotically, for large ζ, Eq. (1. 11) becomes

The spectral curve associated with Nahm's equation is given by:

S:det(if - Aζ) = detfo - Qζ) = 0 (II.2)

which has the form:

2 + - + α*(0, (Π.2a)

where degα£ = 2ί and the coefficient of f?*"1 is zero since A,Qesl(k,C). By the
reality conditions (I.I), the zero set of p(η9 ζ) is invariant under the anti-holomorphic
involution6:

τ(ιj,ζ) = (-ιϊ/P,-Γ1). (Π.2b)

Hence, the polynomials α£ satisfy the "reality" condition:

Near ζ = oo,

pfo.0 (Π.2c)

The k roots of this polynomial

PJ = Pj(*2> •••>«*) 7' = 1, . - , fc (Π.2d)

are the diagonal entries of the matrix ^(O) in Eq. (II. 1).
Assume that the ρi are distinct7. 5 may be singular; in fact, it may be reducible.

However, in this section 5 will be taken to be non-singular.
Let oo ls . . . , oo £ denote the k points of S which lie above ζ = oo. Let g be the

genus of S and let

« = *ι + - + Wι

be a positive divisor on S such that

oo! ----- obi ----- °o*) = l> *' = !,. - Λ (Π 3)

where Jδf ( - •) denotes the space of meromorphic functions on 5 with poles contained
in δ and zeroes at oc^ + — h oc^-i + ooί+1 + — h ook.

6 ζ denotes the complex conjugate of ζ.
1 This can be achieved by a linear fractional transformation of ( which moves oo. Such a transformation
alters the spectral curve and, hence, also Nahm's equations. However, these transformations correspond
to rotations in the physical space of the monopoles and so no essential information is lost in our
assumption
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One can now characterize the eigenfunctions of D + Q+ as Baker functions. The
fundamental existence theorem for the Baker functions is:

Theorem ILL [9, 10] For a given δ as above, there exist unique functions Φ/(z,p)
for j — 1, . . . , k (p = (η, ζ), a point on S) on S with parameter z in a neighborhood of
z = 0, such that:

(i) Φ are meromorphic on S — {oo ί9 . . . , oofc} with poles in δ.
(ii) Near oof, Φ, exp (£/?,- z) is holomorphic and equals δtj at oo£.

These Baker functions will now be used to construct the reduced Nahm potentials.
Let φl9. . . , φk be the columns of the fundamental matrix solution, Ω, of Eq. (1.11)
normalized so that:

exp(C^(0)z)β|ζβco = identity. (II.4)

From the asymptotic structure of (II.l) and the above theorem it follows that φli9

the ϊth component of φh is given by:

OO

φu = Φ;(z, p) for p near ooj = exp ( - £p,z) £ 4(z)Γ7', with αg = δn. (11.5)
j=o

To construct Q0 in terms of the coefficients of this expansion, observe that:

near ook. Seek functions

mi(z), i, /=!,.. .,£; 7 = 0,1;

such that:

fiφ. k

ί7Z Σ ̂
near oo/. It then follows from a standard argument using the Riemann-Roch
theorem (Date [16] page 145) that the last expression is identically zero. From
Eq. (II.6) and the condition α$ = δu (independent of z),

m ι=0 if i^/,

mi=-pi, (Π-8)

™?ι = (Pi ~ Pι)«a(4

so that:

dφι £ , x i / x Λ ί ° nearoo ί ?

,̂ nearo0;

Therefore:

(60)11=- (Pi -Λ)4W (

is the desired construction. Note that the diagonal elements of Q0 are zero.
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B. Baker Functions. The functions Φj may also be described in terms of mero-
morphic differentials on S. Let DFK denote the differentials of the first kind [17]
on S. These are 1-forms ω on S which are everywhere holomorphic. The elements
of DFK have the form

(11.11)
dp/dη

where c{(ζ) is a polynomial of degree 2i and we recall that p = p(η, ζ)9 Eq. (Π.2a),
defines the curve S. One may relate this expression to η by the identity

dζ dη

dp/dη dp/dζ'

The genus of S is equal to the dimension of DFK. From Eq. (11.11),

ί? = (/c-i)2.
We will now list and describe the basic ingredients involved in constructing

the Φ/s.

(i) Differentials of the Second Kind:

It follows from Eqs. (II.2c, d) that the rational function η/ζ has the asymptotic
behavior

η/ζ ~ pjζ near oo J9

and a similar analysis shows that

>7/C~σJ.<Γ1 near 0J9

where Qj9j=\9...9k9 are the k points of S which lie over C = 0 and σ,= — p7 .
Elsewhere η/ζ is analytic. Therefore, the exact differential d(η/ζ) has k double poles,
without residues, at oo 1 ?...,oo f c, and has k double poles, without residues, at
O l 5 . . . , Ofc; i.e. in terms of local coordinate ί:

nearo°/ (Π.12a)

nearO,, (Π.12b)

Motivated by this, we define a differential y^ which satisfies:

near oo,.; (Π.13a)

y^ holomorphic away from oo. (Π.13c)

Because (Π.13b) imposes g conditions on these differentials of the second kind, y^
exists and is unique. However, unlike d(η/ζ), γ^ is not exact, y^ encodes the
asymptotic behavior of d log Φj for large ζ.
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(ii) The Abel Map:
W:S->C9

is defined by

W(p)=]ω, (11.14)
Po

where pQ is a fixed base point, p is an arbitrary point of S and ω = (ω1? . . . , ωg}\
where {ωj is a basis for DFK. This is defined, up to periods, whether S is singular
or not. When S is non-singular, it is natural to choose a normalized basis for ω:

The numbers

are the entries of the Riemann matrix B. B is symmetric with positive definite
imaginary part. It is natural to regard W as a map from S to Cg/Λ, where A is
the lattice in C9 spanned by the 2g columns of (I\B). Cg/Λ is a ^-dimensional torus
called the Jacobian variety of S or Jac (S). The Abel map W relates the geometry
of S to that of Jac (S).

(iii) Riemann's Theta Function:

This is an entire analytic function Θ(~?) on C9:

Θ(z)= Σ exp[π/{<£m,m> + 2<7,m>}]. (11.15)

This function is automorphic with respect to the periods in A:

Θ(~z + AI) = Θ(~z\ (Π.lόa)

Θ(~z + nlB1 + -• + ngBg) = exp { - πΐ«£~n, 7Γ> + 2<~z,7ί»} &(~z\ (Π.lόb)

where "n = (n l9 . . . , ngy and the vectors Ah Bt are the integrals of ω along the αt and
bi loops respectively; i.e., Bt are the columns of the Riemann matrix B. Note that
AI are just the unit vectors ~et if ω is normalized.

A fundamental result which relates Θ to the function theory of S is

Riemann's Vanishing Theorem.8 There is a vector KeC^, such that for all ~zeC9,
f(~z) = Θ(~z + W(p)) either vanishes identically, or has g zeros q1 , . . . , qg such that

(iv) Normalization Factors:

We now introduce several functions and constants which will be used
in our construction to insure that the normalization conditions in (ii) of
Theorem II. 1 are satisfied. Let δ be an effective divisor on S of degree g -h k — 1 =

8 see Siegel [18] for an explicit expression of K
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k(k -1) which satisfies (II.3). Then there are unique rational functions gt in
&(δ — oo!~ db; — ook) (this is the space of rational functions on S with
poles in δ and having zeros at coi -f —h do,- + —h oofc) such that ^(oo,-) = 1. The
divisor of gh

(Oi) = 4 + ooj + ... + cfc. + ... + oofc _ ,$, (11.17)

where Δt is the unique divisor of degree g consisting of the residual zeros of gt.
Next we define the normalization constants:

v~ lim Γ(f
p-'αυLwo

where ζ is, naturally, regarded as a function on S. Because of the asymptotics
(II.13a), the Vj are finite numbers. Note that Vj depends on the basepoint p0, just
as Riemann's constant K depends on the basepoint of the Abel map.

Using the above ingredients one can now present an explicit formula for Φ,:

17 ?
Φ/z, p) = gj(p) exp <^ [ z f 7

(Λ Po

Θ(W(p) -KZ- W(Δj) - K) θ(W(oQj) - W(Δj) - K)

θ(W(p)-W(Δj)-K)θ(W(<nj)-κz-W(Δj)-K)9 ( ' '

where W(pλ + —h pn) = W(pl) -f —h W(pn). The "frequency" vector 7c is uniquely
determined by the condition that Φ, should be a function on S (as will be shown
later in Eq. (Π.34b), 7c is a vector with half-integer components). This amounts to
requiring that Φj remain unchanged when we transport p around any cycle in the
homology basis for S. By the normalization condition (Π.13b) and the periodicity
(Π.lόa) of the Θ-functions, this is already satisfied for the α-cycles. However, if we
transport p around a b-cycle, then Φ7 (z, p) gets multiplied by the factor

exp § zy^ x (exp(- (2πi)fcjz)).
^ bj /

Since this factor must be 1,

°° j=ί' ' g (IL20)

We will now check that these functions satisfy the conditions of Theorem II. 1.
Since the theta function is analytic, the theta ratio in (11.19) must be meromorphic
on S. The function gt is meromorphic by construction. On S — {oo 1,...,oo f c} the
leading exponential factor has no singularities. Hence, Φ7 is meromorphic in
S — { oo !,..., ook}. The poles of gt all lie in δ. However, the zeros of the theta
function in the denominator of (11.19) introduce poles. Now, by Riemann's vanishing
theorem, Θ(W(p) — W(Δ3) — K) is zero precisely at the g points in Δj. But by (11.17)
gj has zeros at each of these points which cancel the potential singularity. Hence,
Φj has its poles inside δ. Next, consider exp(zpιζ)Φj(z,p). This is holomorphic near
oo i by the asymptotics (IL13a). Moreover, it goes to zero as p goes to ooj if / Φ j9

since g/ooj) = δβ. Finally, if j = /, then as p goes to oo,, #,-( = gι) goes to 1, and the
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exponential factor also goes to 1. Therefore, all the conditions in Theorem II. 1 are
satisfied by these Φ,.

Finally we can construct β0. Recall that from (11.10)

(βo)y=-(Pι-P>ιMz)

Therefore, using (II.5), for i Φ y,

otlj= lim
P-+COJ

j) -KZ- W(Δt) - K)&(W(^} - W(Δt) - K)
9 ( ' }

where ctj = lim ζg^p), is a finite constant since gt vanishes at oo7 and we have used:

lim ( p j ζ + J γ00} = Vj.
P-ooΛ Po /

Note that due to the factor (Pj — Pι\ α» does not contribute to β0.

C. Gauge Invariant Boundary Conditions. Hitchin showed that the monopole
conditions encoded in Nahm's equations (I.I and 1.2) could be formulated purely
in terms of the spectral curve S and a one-parameter family of line bundles, Ls, on
that curve. L5 is defined by the transition function

n

where

Let L denote L1 and set z = s — 1. Also, take δ to be the divisor associated to
the line bundle L(k — 1); condition (II.3) then becomes equivalent to

dimc &(L(k - 2) ® 0(oo4)) = 1, i = 1, . . . , fc, (11.22)

where 0(oof) is the line bundle associated to the divisor oof and J^( ) denotes
"the space of holomorphic sections of." If (11.22) is satisfied then dimc J^(Lz(/c - 1)) = k
for z in some neighborhood of z = 0 and the Baker functions Φ7 (z, p) correspond
to a basis of the space of sections &(Lz(k — 1)) under the association of Φj to the
section which is

1 on U2

and Φ/(z,p) on U1 — {δ}.

Hitchin's boundary conditions, which will be further explained in the subsequent
discussion, are

(i) L(k — 1) is real with respect to the anti-holomorphic structure induced by (Π.2b).
(ii) L2 is trivial on S. (11.23)
(iii) &(U(k - 2)) = 0 for se(0, 2).
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These conditions are the equivalent of (1.2) (see Hitchin [7]) under the implicit
assumptions that S is non-singular and L satisfies (11.22). In what follows we will
point out where these assumptions enter. Let us examine (11.23) one condition at
a time.

(i) A basis for <£(L(k — 1)) is given by

*/(0,p) = flf/p) on U,
and 1 on l/2

for ; = !,...,k.
The induced anti-holomorphic involution, σ, on these sections is given by

1 on 17!

gj(τp) on U2 - {τδ}.

Clearly, σ2 is the identity on these sections and therefore L(k — 1) is real (see [19]).

(ii) To say L2 is trivial means that one can find functions9

/! holomorphic on Ul9 (II.24a)

/2 holomorphic on l/2, (II.24b)

such that /2 = Φi2/ι =exρ(-2>//0/ι on UίnU2. (Π.24c)

Taking the logarithmic derivative of (Π.24c) gives

d log /2 = d( - 2η/ζ) + d log Λ. (II.24d)

If/2 is not to have an essential singularity on C/2, then it follows from (Π.24c, d)
that dlog(fι) must cancel the poles of d(-2η/ζ) at ooj. Hence, using (Π.12a),

near oo,, (11.25)

If/! is to be a function on 171? one must have

exp|dlog/1 = l for all AeΛ, (11.26)

where A is the group of all finite integral linear combinations generated by the
homology basis a±... ag; b1... bg on S. (Even though Ul is S with k points deleted,
the homology group of one cycles on S does not acquire any linear relations when
restricted to L^.) Normalize dlogf^ so that

(11.27)

As discussed in (11.13), a differential, ί/log/t which satisfies (11.27) and is
holomorphic in Ul must be unique. In fact,

. (11.28)

9 For the case k = 2, a similar construction, also based on meromorphic differentials, may be found
in Hurtubise [20]
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Now to also satisfy the full condition (11.26) it is necessary and sufficient that

for some m^-eZ. (11.29)

This imposes g conditions on the space of all Nahm spectral curves. Equation
(11.29) is equivalent to the condition (II.23U); however, since these are transcendental
conditions, one does not know that this condition can be satisfied for a non-singular
curve when k> 2.

It will be convenient later to have defined another differential related to d log /2 :

yo = d(-η/ζ)-yao. (11.30)

A special case of this condition, for 5 = 1, is <£(L(k — 2)) = 0 which is equivalent
to (11.22). In classical language the full condition (iii) states that the divisor
associated to Ls(fc — 2) is non-special for se(0,2) and hence the Baker functions
have no singularities in this range. At the present time this condition must be
assumed.

Using (11.23) we can streamline the functional representation of Baker's function
and hence of the potential β0. Firstly we have

which follows from inserting (11.30) into the definition of v, (11.18).
Next, combining (11.22) with (11.17), there is an isomorphism of line bundles

0(4) = L(k - 2) (x) 0(00,), (11.32)

which means that the associated divisors are linearly equivalent and, by Abel's
theorem, they have the same values under the Abel map. Thus

W(Ai) = K + W((k - 2)(oo ! + - - - + oofc)) + W(aoi). (11.33)

Here one uses the identity between the Abel image of the divisor of L and the
characteristics of L( = 7c). Taking (k — 2)(aol + — h oofc) to be the basepoints of
the Abel map on divisors of degree g — 1( = k(k — 2)), one may write

K = W(Δj) - W(<x>t) for all i. (IL34a)

Since

(Π.34b)

for some integer m, (see Eqs. (11.29) and (11.20)),

_ _ m ! w
κ — ~2~ * ~^~ ' " ~^~ ~9~ β*

where At are the αrperiods of the Abel map.
So, finally, adopting characteristic notation (see Fay [21] ) with m = (m1 , . . . , mg)\
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( P °0j

f V G O + ί
Po Po

Θ (W(p) - W(oθj)-κz -

(Π.35)

(W(p)-W(aθj)-K)Θ\ \(κz + K)

where we used the fact that is an even characteristic (this means that these

Θ-functions are "even," Θ ™ (-*) = Θ\™ (3c); see Fay [21])

minus signs.
Note that when z = ± 1,

i to remove some

Θ\ \(κ + K) = non-vanishing factor x Θ(K) by (Π.34a)

= 0.

So Φj(z,p) has a singularity at z = ±1.
The symmetry condition (I.2c) becomes a normalization for Baker functions.

Precisely, if one rewrites (11.21) using the characteristic notation of (11.35), then,

because Θ (x) is even, the symmetry condition reduces to the requirement that

cy=-<*. (Π.36)

We end this section with another useful characterization of the "periodic"
quantization conditions in terms of the normalized holomorphic differentials. First,
some notation. Considering the normalized differentials ωh near coh we have
3 = 7 (l)(t)dt, where / (l\t)dt is analytic near t = 0. Let C(/) = (c?>, . . . , cfj = J (Z)(0).

Theorem 11.2.

(i) L2 is trivial on S iff

7=1

where ρj is given by (I LI) or (I LI 2 a).
(ii) H°(S,

_^
<̂ > Y 2pjC

ω is α generator of I9.
7=1

Proof. By Riemann's bilinear identity for differentials of the first and second kind
(see e.g. Springer [17], p. 260):
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Using yao(aj) = Q, the normalization ωi(aj) = δίj and the quantization condition
(11.29) we have:

Conversely, from the quantization condition one can construct a trivializing section.
This proves part (i) of the theorem.

By the reasoning used before, H°(S, U) = 0 is equivalent to

*, S6(0,2).
\I=1 /

Since,

by part (i), it follows that this must be a generator.

III. Monodromy of the Linear Operator

In part A of this section we prove Theorem I.I. This involves comparing the linear
operators D — ^A0 and D + ̂ βθ5 and in particular their monodromy at the regular
singular points z = ± 1.

In part B the singular solutions of the linear operators (1.3) and (I.I 1), evaluated
at ζ = 0 (these are D -f %A0 and D + β0 respectively) near z = 1 provide data for
constructing an invariant of the monopole. This is Donaldson's rational map
/•.CP1 -+CP1 of degree k such that /(oo) = 0. Donaldson [4] shows that the space
of such maps is a circle bundle over the moduli space Mk of /c-monopoles. Our
constructions show how to define this map in terms of the Baker functions of

A. Proof of Theorem LI.

Theorem I.I. The following requirements are equivalent to the boundary conditions
(1.2) for Eq. (LI).

(a) D -f iQo (in a neighborhood of the interval [— 1, 1]) is an operator with regular
singular points (which are simple poles) at z = ± 1 and ordinary points elsewhere.
Moreover, the monodromy matrices at these singular points are scalar.
(b) The residue, q0, ofQ0 at z = 1 together with q1 = A^Q) have no common invariant
subsapces in Ck.

(c) β0(-z) = β'0(4

The equivalence of (c) in the theorem to (I.2c) is based on:

Lemma III.l. // AQ( -z) = A*Q(z\ then C( - z) = (C(z)Γ *•
One easily checks that, if AQ( — z) = A^(z\ then both sides of this equation satisfy
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Since C(0) = /, both sides satisfy the initial condition X(Q) = /.
Since β0(z) = C~ί(z)A0(z)C(z)9 we have

On the other hand

= C(z)A0(-z)(C(z)Γl by(L2c)

= (C(-z)ΓlA0(-z)C(-z) by the lemma.

Hence (I.2c) implies (c) in the theorem.
An analogous argument shows that the conclusion of the lemma also follows

from (c) and, hence, so does I.2(c) for A09 essentially by interchanging A0 and β0

in the preceding paragraph. A similar argument also proves I.2(c) for Aί once we
observe that Aί=Aί(Q)ίs symmetric and independent of z.

The discussion of condition (a) will be based on a trivial lemma concerning
the monodromy matrices of (1.8) and (1.13). Let C(z) be the fundamental solution
of (D — ̂ A0)C = 0 normalized so that C(0) = /. If A0(z) is analytic on ( — 1, 1), so
is C(z) which, in addition is invertible there. Hence β0 = C~ 1y4 0C is also analytic
on (— 1, 1). A similar argument based on (1.13) proves the converse.

At z= ± 1 we assume (I.2a,b); viz., that AQ(z) is meromorphic with simple
poles, and further that the residues a0yaί have no non- trivial invariant subspaces.
Let 7 be a circuit around z = 1 (the argument for z = — 1 is similar). C(yz) denotes
the transport of the fundamental solution around this circuit; C(γz) = ΓC(z) and
Γ9 a z-independent matrix, is called the monodromy matrix of y. One can now
develop the lemma mentioned above.

Lemma III.2. The monodromy matrices for the fundamental solution, C(z\ of
(D —^A0)C = 0 are scalar matrices.

Since A0 = 2C'C~1 and^ = CA1(0)C~1, the monodromy of Ai is induced from
that of C:

ι. (III.l)

In particular, a{ — ΓatΓ~l. But by Remark I.I {α} is an irreducible representation
of s/(2, C); hence, by Schur's lemma, Γ must be scalar.

To apply this lemma, observe that since A0(z) has a simple pole at z = 1, z = 1
is a regular singular point of D — ^A0. By Remark I.I this operator has a
fundamental set of basis elements for its kernel which near z = 1 start like
(z- l)(fc~2j'+1)/2, j =!,...,&. Because these exponents differ by integers, the full
series expansion of these solutions at z = 1 will have resonances. However, by the
lemma the monodromy matrix is diagonal and hence the series may be continued
without the introduction of logarithmic terms. Therefore, the fundamental solution
of (1.8) has algebraic exponents (in fact, they are half-integer) near z = 1.

From this it follows that the Qt have Puiseux expansions in (z — 1); but, granted
this, from Eqs. (1.12) one sees that the Q{ go like

β -ΓΓΪ+ β-'=(τ:%+- (ΠL2)

so that D -f^βo has a regular singular point (simple pole) at z = 1. By (1.13) the
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fundamental solution of this operator is C~l(z) which, by Lemma III.2, has scalar
monodromy.

The proof of the converse, that the conditions of Theorem I.I imply (I.2a), is
entirely similar to the previous argument.

Finally, condition (b) of Theorem I.I is equivalent to (I.2b). Suppose that there
is a z-independent 7" such that

Γ-1^Γ = ̂ ί for i = 0,l.

Then, by (1.12),

Γ-iQί(z)Γ = Qί(z) for i = 0,l.

Conjugate (1.13) by Γ,

(ΓC-ιΓ-iy = -

Since

But

= ΓCQiC~1Γ-1 by (1113)

This implies that Γa{Γ
 1 = ai for i = 0,1; hence, JΓ must be a scalar by the

irreducibility of {a^.a^}. The converse is similar.

B. Donaldson's Rational Map. Our version of Donaldson's construction is based
on a consequence of Theorem I.I:

Corollary II.3. — (fc— 1) is an eigenvalue of the residue q0.

Proof. In an eigenbasis, α0 may be taken to have the form (see Remark I.I):

' fc-1 0

0 '" -(fc-l)y

>0,(L4)is

Expanded near z = 1 this becomes

(z_ i)Ψ> = -i[α0 + (z- l)fll + -] Ψ.

Related to the eigenbasis of α0 this has fundamental solutions

Applying the gauge transformation, C(z), to this (recall that (D — ^A0)C = 0), we get
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which relates Ψj to a function ~ΌJ(Z) which solves

From now on we restrict attention to ~vl. Near z = 1,

ir^c-1^
= (z - 1) - «* " 1)/2)F(z) ¥Ί , with F(z) analytic near z = 1

= (z_l)-»-ι>F(z)(eί + 0(z-l)).

The second line holds because (C~1(z))t solves

and, since α0 is diagonal, this has the same asymptotic behavior near z = 1 as (III.6).
Furthermore, by the form of (III.6),

F(z) =

1 0 .-. 0

0
+ 0(z -1).

lo }
Hence,

-^(z) = (z - l)~(k~ 1)e1 + O(z - 1). (111.10)

Evaluating (III.9) on (III. 10),

Z

whose leading terms give the relation

Now recall Donaldson's construction. Referring to the previous proof one
defines the vector

Also, set ̂  = ̂ ι(O) = βt. Then Donaldson's map is the rational function

/(λ) = w tμ/-J5)"1w. (III.ll)

However, since ^(z) - C(z)71(z) and C(0) = /,

f(λ) = (-v

where Q0 = diagonal (p l5 . . . ,pk) is determined by the curve equation (II.2). Since
"ϊJΊ solves (IIL9) it is expressible in terms of the Baker functions Φ,. w = 7^0) is a
linear combination of Baker vectors at z = 0 an J ζ = 0. Hence
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where ~Q^ = ( g f o i ) , . . . ,
implicitly by (III. 10).
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)', the 0j(p) are given by (11.17) and the Cj are determined

IV. Elliptic Solutions of Nahm Equations

This section begins by describing a class of solutions of Nahm's equations, that
can be written in terms of Jacobian elliptic functions.10 These solutions generalize
those of Prasad and Rossi [23]; Nahm [2]; Brown et al. [24]. It is conjectured
that they correspond to equally spaced monopoles with centers located along the
x2-axis (see [24] for k = 2).

A. The Elliptic Solutions. It is well known that, up to equivalences, the Lie algebra
su(2) has a unique fc-dimensional irreducible representation. Choosing a basis of
this representation in k x k hermitian matrices Ja = (Ja}*, a = 1,2,3, let us also
define J±=J1± iJ2, so that J+ = (J_)*. They satisfy the commutation relations:

These matrices will be taken to be:

A-l
0 fc-3

V 0 0

0

0

-(k-\)J

(IV.l)

(IV.2a)

and

/ O -

0

0

v o

y/c-1

0

0

0

0

0̂

0

0 \

0

0 J

(IV.2b)

We now make the following ansatz for the solution of Nahm equation:

Tα = ̂ 4̂ , α=l,2,3. (IV.3)

Substituting these in Nahm's equations and using the commutation relations (IV.l)
we find that the functions /α(z) satisfy

/Ί=/2/3, /2 = /3/ι and

Imposing the boundary conditions, one finds:

LcnKz 2 02(z/2)'

(IV.4)

(IV.5a)

We follow the notations and conventions of Erdelyi et. al. [22]
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where sn(Kz) = sn(Kz, k) etc. are the Jacobian elliptic functions and k'2 = 1 — /c2; k
being the elliptic modulus11 and

1 dx
K = K(/c) - f - = (IV.6)

o,/(l-x2)(l-/e2x2)

is the complete elliptic integral of the first kind. The theta functions are defined by:

l (IV. 7 a)

(IV.7b)

(IV.7c)

(IV.7d)

and b = ίK'/K and K' = K(fc') and 0J. = 07.(0) = 0j(0|b). In this notation, Θ3 is the
Riemann theta function defined in Eq. (11.15). Note that these functions are periodic
with period 4 and satisfy "conservation laws," corresponding to the Lax form of
Nahm's equations:

/ι~/2 2 = K2, fl-fl = K2k2 and /i-/| = K2fc'2. (IV.8)

Using equations (5) from the introduction, (IV.2) and (IV.3), the matrix A is
tridiagonal with OLI , . . . , αk along the diagonal, β1,...)βk^1 above the diagonal and
γl9...9yk-ί below the diagonal, where:

(IV.9a)

(IV.9C)

Thus the curve S is given by p(η, ζ) = det (A — ηl) — 0. Define

1J Unfortunately, k sometimes denotes elliptic modulus and sometimes the monopole number. However,
the meaning should be clear from the context
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Then for the charge k = 2m, we have

Pfo, 0 = U (n2 + (27 - i)2a2(0λ (iv.i la)

and for k = 2m+ 1,

pfo, 0 = * Π to2 + (2j)2«2(0). (iv.i ib)
j=ι

Alternatively the two equations (IV.I la and b) can be combined as:

Pfo. 0 = .Π fo + 2i(k + 1 - 27)7 (̂0). (IV. 1 Ic)

Lemma 4.1. For ί/ie elliptic k-monopole solutions, Donaldson's rational function is
given by:

(IV 12)

Proof. Recall (see (III. 11)) that Donaldson's rational function is given by:

where

and w = w(0), with

^ + iX0(z)ιι(z) = 0, and κ(z)«(z- 1)"*"1^!^,...^)' near z = l .
αz

Since the matrix ^40 is diagonal, this equation can be solved exactly, leading to
w - ( - 2/Kf- 1)/2(1, 0, . . . , O)', and,

Now the matrix Jί can be diagonalized by the orthogonal matrix
O = exp[ — i(π/2)J2] = Ot, i.e. O is the /c-dimensional representation of 5O(3)
corresponding to a rotation of π/2 about the x2

 aχis? and we find 0*3^0 = J3. To
complete the proof note that

and, using the known representation matrices of 50(3) (see e.g. [25])

(0lJ)2=-^(k-^

We end this section with some remarks. The gauge transformation C(z), is a
diagonal matrix, and can be found explicitly and this gives
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(IV.13)

In Sect. II, we have chosen Ql to be diagonal, and this can be done by using the
orthogonal matrix O of the previous lemma:

βι = «J3, fio=-2/3(z)J1, 6-1 =£((/? + /l)^ + 2i/1/2J2). (IV.14)

Also, by taking elliptic modulus k = 0, these solutions reduce (up to a rotation of
the coordinate axes in R3) to the axisymmetric solutions of Prasad and Rossi.
Secondly, for k = 2, we can start with a general curve and then impose the condition
of Sects. II and III, to show that up to a rotation and translation in 1R3 that curve
must have the form given in (IV.9a), i.e. this gives the most general two monopole
solution.

B. Construction of the k = 2 Solution Using Baker Functions. We now present an
example of how one can construct solutions of the Nahm equation using the Baker
theory of Sects. I and II, to construct the k = 2 solution of Sect. IV. A. Even though
this does not give any new solutions, besides giving a concrete example, this
construction shows that these give all [20] solutions for fc = 2, and, gives an
indication of the ingredients that may be necessary for the explicit construction of
the general solutions for k ̂  3. We begin by imposing all the constraints on the
curve. We then compute the necessary integrals and finally use Eq. (11.21) to
construct the Q-matrices.

(i) Choice of the curve:
Begin with a general elliptic curve:

η2 + α2(Q = η2 + (c0ζ
4 + c^ + c2ζ

2 + c3ζ + c4) = 0. (IV.lSa)

As noted earlier the coefficient of the ηk~l =η term can be chosen to be zero,
which corresponds to a choice of origin in (R3. The reality condition (II.2b)
implies c0 — c4, cί = — c3 and c2 = c2. Then using real (5(7(2)) linear fractional
transformations (corresponding to rotations in IR3) one can choose cx = c3 = 0 and
c0 to be real and positive to reduce a2(ζ) to

a2(ζ) = JV2(1 - 2cζ2 + C4) = ΛΓ2(1 + 2(k2 - k'2)ζ2 + C4), (IV.lSb)

where, one can take 0 ̂  c ̂  ̂ , and with c = — cos 2α = k2 — k'2, k = sin α, k' =

y/1 — k2 = cos α. The branch points, the roots of a2(ζ\ are at ± e±iy = ± k' ± ίk.
In this case, we need to impose one (g = 1) condition on the curve. To do this, we
choose a homology basis of α-cycle and fr-cycle as shown in Fig. 1; then the
normalized holomorphic differential is given by:

Ndζ

where K = K(k) is the complete elliptic integral of the first kind. From Eq. (Π.2c),
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k'+ik

Va

Fig.1

Pι= — ίN, p2 = iN and expanding ω near oc^ and oo2 we find c(1) = l/(2iK) and
c(2) - - l/(2/K). Then, using Theorem II.2,

2N
2(p1c

(l) + p2c
(2)) = -— is a generator of Z =>Λί = ± K/2. (IV.16)

Jv

Thus, the general elliptic curve (see also [2,5,20,23,24]) can be taken to be:

η2 + α2(ζ) = ̂  + ]L(i + 2(k2 - k'2)ζ2 + C4) - 0, (IV. 17)

which is unique up to an SU(2) linear fractional transformation. Of course, the
choice of this form of the curve has been dictated by the solution in Sect. IV.A,
but any of the standard forms of the curve would serve as well,
(ii) Some differentials, integrals and constants.

With this choice of the curve the normalized holomorphic differential and the
Abel map is given by:

dζ
(IV.lSa)

where P0 is chosen to be the branch point k + ik. The Riemann "matrix" is:

K „.
(IV.lSb)

and

Riemann constant = K =
1+b

(IV.ISc)
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We also need:

(IV.19a).9

J = - W(02) = 1-̂ . (IV.19b)

The above integrals can be evaluated using symmetry with suitable choice of contours.

Note that branch through ao1 is defined by η = (- iK/2),/l + 2(k2 - k'2)ζ2 + ζ4.
To construct the meromorphic differentials ym and y0, recall that y^ has poles

only at oo^ and y^ + y0 = - d(η/ζ). So we have:

K 2(C 2-A) R 2(-Γ 2-Λ)

where the constant λ is determined by requiring:

$ 7 » = f 7 o = 0, (IV.20b)
α α

and, is given by:

2E — K 1 /I — k2x2

λ= , where E = E(fc) = jv dx (IV.20c)
^ o yi-x 2

is the complete elliptic integral of the second kind.
Using bilinear identities or direct evaluation of the integral, one finds

$y«> = i π = - $ y o (IV 21)
b b

Hence from Eq. (11.20):

κ = i (IV.22)

Note that one could also have used the "quantization" condition (11.29) to show
that the constant N in Eq. (IV.15a) is given by N = ± K/2. Also, by direct evaluation
of the integral:

(IV.23)

(iii) The Baker functions and the solution.
First note that η and ζ can be expressed as theta ratios:

where, as noted earlier θ(u) = Θ3(u) is the Riemann theta function and we have
used Eqs. (IV.ISc and I V.I 9) and introduced the notation

/ = w(P) - W(aol) = W(P) - (1 + 6)/4. (IV.25)
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Similarly:
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η
03(2Q K Θ 2

2 ( θ j ( l ) Θ2

2(l)\

2 θ
To construct the Baker functions, we need to choose the divisor δ and the

functions g^P). The requirement that β0(z) has poles at z = ±1 implies that Δί = 02

and ^^Oj. Since the function g±(P) has zeros at oo2 and Δl = 02 and poles in
δ = q^ -f g29 we can take

= constant x

I. = W(qj) — W(coi). Since ̂ ^P) is a function, this must be invariant under / - > / + !
and / -> / 4- fc, which is equivalent to /! -f 12 = b/2 iff VF(^) = — 1/2. Using this and

0ι(°°ι)=l>

Similarly,

Then using Eq. (IV.24),

and

c2 1= lim ζg2(P)= ~ik' Q π\θ*πy

By the symmetry (11.36), c12 = — c2l requires

(ιv.27a)

dV.27b)

(IV.28)

Note that the form of these equations implies c12 = — c21 = ± ikr. Up to equivalence
there are four choices for / x and therefore two choices for the divisor δ, which can
be taken to be

or

= + and

(IV.29a)

= and

(IV.29b)
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The Baker functions are

MWAl-zβ)

1)θ2(l-l1)θ2(z/2)'

where we have used Eqs. (11.19), (I V.I 8, 19, 22, 23, 25 and 26) and
by Eqs. (IV.20) and (IV.29) respectively.

Finally, since, pl = — p2 = — iK/2,

2 i θ - 1

and using Eq. (11.21) we obtain

0 α12

0
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(IV.30a)

αV 30W(IY 30b)

are given

(IV.31)

M2
— _ /y — X ίVs, ~ iπz/2— — —-

2 2
= + -

iK
(IV.32)

The choice of the top sign in (IV.32) corresponds to the choice (IV.29b) of δ and
to the solution in Eq. (IV. 14), and we can solve for C(z) and obtain A1(z),AQ(z)
and then take A,ί(z)= — A%(z) to obtain the solution in Sect. IV.A. This calculation
is done most easily by diagonalizing β0 by Q^O^O with:

0 = 0t = n-ι=J_(-1 I

2\ 1 1

Then the matrix C(z) is diagonal and given by:

0

If this construction is carried out with the other choice of sign in Eq. (IV.32); i.e.,
with δ given by (IV.29a), one obtains the same A matrices with z replaced by — z
or equivalently interchanging Al and A-±. Note that these matrices do not satisfy
Eqs. (I.I), but that they satisfy appropriately modified (I.I) (z-> — z;ζ-> — 1/^etc.).

Here, we have presented a "first principles" construction of the general two
monopole solution. As noted earlier, though this does not give any new solution
of Nahm's equations, this gives a concrete example of the procedure of the earlier
sections. This procedure can, in principle, be carried out for arbitrary monopole
number, however, there are obvious technical difficulties in almost every step of
the above construction.
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Conclusion

We conclude with a summary and some open problems, conjectures and work in
progress.

A. Summary. We are interested in the static monopole solutions of the BogomoΓnyi
Eq. (1). It has been shown by Hitchin [7] that these solutions are characterized
by solutions of Nahm's equations (4) with the conditions C1-C4 or by an algebraic
curve satisfying the conditions (11.23). Our primary focus has been the explicit
solution of Nahm's equations. Note that we are using a slightly modified form of
Hitchin's boundary conditions.

In Sect. I there is a gauge transformation Qα(z) = C'1(z)AΛ(z)C(z)9 α = 0, ± 1
of the Lax form of Nahm's Eq. (I.I). In Theorem I.I, the boundary conditions
are reformulated in terms of the linear operator D + iQ0

In Theorem II. 1 we characterize the eigenfunctions of the operator D + Q +

and then present explicit formulae for the Baker functions and the β0 matrix in
terms of the meromorphic differential y^ and Riemann theta functions. The gauge
invariant boundary conditions require that the curve must satisfy the g = (k — I)2

conditions given in Eq. (11.29). These are transcendental conditions involving loop
integrals of the meromorphic differential y^. Theorem II.2 provides an alternative
formulation of these conditions in terms of normalized holomorphic differentials.

Section III is devoted to the proof of Theorem I.I and the relation of
Donaldson's rational function to the Baker data.

In Sect. IV.A, we present a class of elliptic solutions of Nahm's equations for
arbitrary monopole number, which correspond to singular (for k ̂  3) curves with
elliptic components. Donaldson's rational function for these solutions has a simple
partial fractions expansion. In Sect. IV.B we provide an example (k = 2) of the
following "algorithm" for the construction of the solutions of Nahm's equations:

1. Start with an arbitrary curve of the form (IL2a), satisfying the reality conditions
(IL2b). Then impose the "quantization" conditions (11.29) or equivalently the
conditions in Theorem II.2.
2. Construct the Baker functions and the matrices βι,β0 using Eqs. (11.19) or
(11.35) and (II.l,2c,2d, 10 and 21). This requires the function g^P) and its divisor
which involves δ and Δp the divisor can be determined using the requirements
that the Baker functions Φ/(z,P) have poles at z= ± 1 (see Eq. (11.33)) and the
skew-symmetry conditions ctj = — cβ.
3. Solve the linear equation C' = ̂ Q0C, C(0) = / for the gauge transformation.
Then construct A^A^ using (I.lOa) and A_γ = A f .

We note that, as in the two monopole case there may be two sets of A matrices,
one set satisfying the original Nahm's equations and the other set satisfying the
equations given by z -» — z in the Nahm's equations.

B. Some Open Problems and Conjectures. A fundamental open problem is the
existence (and also the construction) of non-singular curves (for k> 2) satisfying
the transcendental Eq. (11.29). We believe that the answer is affirmative, and
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hope to study this question at least perturbatively for the three monopole solutions.
Another open problem is to extend the Baker theory to singular curves, which

may arise in some limiting case as in Sect. IV.A. We have some partial results on
this and further work is in progress.

The Nahm matrices can be expressed in terms of simple exponentials times
a ratio of theta functions and are periodic in z with period = 4. The proof of
periodicity requires showing vt — Vj = ίπn/2. We have expressed Q1? Q0 in terms of
theta functions; however, to show this for the A matrices may involve some
cancellations in the gauge transformation matrix C(z). An alternative approach to
this question is to use the "squared Baker functions" [12]. A discussion of this is
deferred to a future publication.

One would also like to solve the linear Eq. (8) of the introduction and construct
the solution of the BogomoΓnyi equations given by (9). Recall that the zeros of
the Higg's field Φ(xί9x29x3) give the "positions" of the monopoles, and are
important in the study of monopole dynamics. The explicit formulas presented
here may be useful for this purpose.

Finally, as noted in the introduction, we would like to see how our study may
be used to better understand and extend the results of Atiyah and Hitchin on the
dynamics of slowly moving monopoles.
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