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Abstract. The kernels of operators associated with special chiral gauge trans-
formations ('kinks') in the 2Λ/-dimensional Dirac theory are explicitly deter-
mined. The result is used to obtain index formulas for Fredholm operators
corresponding to continuous chiral gauge transformations. Moreover, the Fock
space quadratic forms corresponding to the kinks are proved to converge to
the Dirac field as the kink size goes to zero. It is also shown that for
N = I,2(mod4) the Majorana field can be reached in a similar fashion.
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1. Introduction

The inspiration for this paper came from previous work of Matsui [1] and from
joint work with Carey [2]. Some of its results have been announced in [3]. In [1]
Matsui proves an Atiyah-Singer type index formula for scattering operators arising
for certain time-dependent external fields in the context of the four-dimensional
single particle Dirac equation. He also obtains index formulas for time-independent
unitary gauge transformations. His main tools are results from the theory of
pseudo-differential operators and an index theorem due to Hormander. Recently,
he has lifted some technical restrictions and obtained extensions to 2N dimensions
[4].

Inasmuch as the results of this paper overlap with those of Matsui, they are
arrived at in a quite different fashion. This will be clear from the sketch of the
paper which now follows. After setting up notation in Subsect. 2.1, we present our
key result, Theorem 2.1 in Subsect. 2.2. In this theorem the kernels of certain
operators are determined explicitly. These operators are associated with special
chiral gauge transformations (dubbed standard kinks) in the framework of the
2N-dimensional single particle Dirac theory. The kernel determination has
algebraic aspects that are dealt with in Appendix A, cf. Lemmas Al, A2, and
analytic aspects that are handled in Appendix B, cf. Lemma Bl. The proofs of the
former lemmas are self-contained, whereas the proof of the latter lemma makes
use of results from the theory of Schrodinger operators, all of which can be found
in [5-8].

In Subsect. 2.3 properties of bounded matrix-valued multiplication operators
are derived (Theorems 2.3-2.7) by using results on compactness and non-
compactness of operators having Schwartz kernels with certain properties. The
latter results are largely self-contained and can be found in Appendix C.
Subsequently, unitary multipliers are studied in Subsect. 2.4. Using the explicit
information on the standard kinks and Bott periodicity, index formulas for
continuous chiral gauge transformations with constant asymptotics and with
"hedge-hog" asymptotics for |x|-*oo are proved in Theorems 2.8 and 2.9,
respectively.

For N = 1 and vanishing particle mass the multipliers studied in Sect. 2 give
rise to (matrix-valued) Wiener-Hopf operators. The kernel problem for the
standard kinks is trivial in this case, since one is in essence dealing with one-sided
shifts. However, the fact that the relevant kernels can be found explicitly for N = 1
and m > 0 is already quite non-obvious and surprising. This state of affairs was
first pointed out and exploited in [2] to study the gauge groups arising in the
massive second-quantized Dirac theory in 2D via a rigorous version of boson-
fermion correspondence. Specifically, in [2] the N = 1 standard kinks are proved
to generate Bogoliubov transformations whose renormalized unitary implementers
converge to the free Dirac field as a scale parameter describing the kink size goes
to 0. The connection of this result to boson-fermion correspondence is discussed
in [2], and a corresponding "abstract" picture is sketched in [3].

In Sect. 3 we present the generalization of this convergence result and its
"neutral analog" to the arbitrary N case, cf. Theorem 3.1 in Subsect. 3.2 and
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Theorems 3.2 and 3.3 in Subsect. 3.3. This entails a change in perspective detailed
in Subsect. 3.1, and some information on charge conjugation assembled in Appendix
A. Moreover, a crucial technical result is relegated to Appendix D. We should
mention that the mathematical context of the results in Sect. 3 is possibly not
sufficiently explained in this paper; for more background the reader might consult
[2, 3, 9] and references given there.

The paper is concluded with Appendix E, where the main text is linked up
with the external field problem in the Dirac theory. The results obtained there
should be compared with the external field index formulas obtained by Matsui
[1]. Further work concerning index theorems on open manifolds includes the
recent paper [10], which also lists other references in this area.

Throughout the paper 2N denotes the space-time dimension, whereas the
symbol n is reserved for the integer 2N-1.

2. Matrix Multipliers in the One-Particle Dirac Theory

2.1. Preliminaries. In this subsection we introduce operators arising in the Dirac
description of a particle in a 2JV-dimensional Minkowski space-time. (Several more
such operators, which are not needed till Sect. 3, will be introduced in Subsect.
3.1.) First of all, the Dirac Hamiltonian H is the operator on L2(1R2N~ x, dx)2n with
domain the Sobolev space H^IR2^"1)2", whose action is given by

~TV wl;m\n iσ V

Here and below, differentiations act weakly. Also, σ1 ? . . . , σ2N- 1 denote self-adjoint
nxn matrices representing the Euclidean Clifford algebra in [R2^"1, and the
decomposition of C2" = ̂ a(CN) used in (2.1) is explained in Appendix A. Clearly,
H is a self-adjoint operator.

We shall employ Fourier transformation

F\ & = L2(U2N~ \ dx)2n -> J4? EΞ L2(U2N~ \ dp)2",

-ip<x)f(x) (2.2)

to transform operators A on $ to operators A on Jf and vice versa, i.e.,

A = &A&-^. (2.3)

With this convention we obtain

(2.4)
-σ p

Hence,
H2 = E2

pl2n, Ep = (p2 + mψ\ (2.5)

so the projections P± on the positive and negative spectral subspaces of H are
given by the multipliers

(2.6)
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We shall use the notation

where A is an operator on Jf. Note that

Next, we introduce the parity operator

and the scaling group

(D(ε)/)(x) == ε<2"~ ̂ /(εx), εe(0, oo).

Clearly, P and D(ε) are unitary, and one has

whereas the relation

does not hold for m > 0. Similarly, the chiral projections

/!„ 0\ „ /O 0

satisfy

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

but do not commute with Pa for m > 0.
From now on, we shall assume that an internal symmetry space Ck(k ^ 1) is

tensored on to & and 3?, and we shall denote the resulting Hubert spaces again
by & and Jf. Tensoring the above operators with lt yields operators that will be
denoted by the same symbols, whenever no confusion is likely to arise. When this
is done, all of the above formulas and relations are valid as they stand.

2.2. The Standard Kinks. In this subsection we study unitary matrix multiplication
operators on $ that reduce to the standard kinks of [2] for N = 1. First, we take
Ck ΞΞ C" and set

K =

where εe(0, oo). Note that one has

0

σ x-(-)Niεln

(2.16)

(2.17)

(2.18)

(2.19)
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in view of (2.10) and (2.11). The importance of these multipliers (henceforth referred
to as standard kinks) hinges on the following result.

Theorem 2.1. The kernel ofKfε_ _ is trivial, whereas the kernel ofKs ε_ _ is spanned
by

Li

O/

0N

u,

s=

s= —

where ueC"®C" is the unit vector of Appendix A. Moreover, the function

is given by

I, s= +

s= —

(2.20)

(2-21)

(2.22)

Proof. Due to (2.18) and (2.12) we need only prove this for s = +. We shall from
now on suppress the subscripts +, ε to ease the notation. We begin by noting that
the kernel of X _ _ consists of those vectors κ:_e^f _ for which KJC_ belongs to
3^ +. Also, since K is unitary, one has

(2.23)

Therefore, we shall study the equation

KK = κ_, κδeJPδ (2.24),
o

and show that (2.24)+ has no non-trivial solutions, and that any solution to (2.24) _
is a multiple of κ:+ ε _(p). To this end we set

so that

and rewrite (2.24), as

/ Ξ Ξ 7 C + + 7 C _ , 0 = ]

Λ 1

0

0 o o
Hence one concludes that (2.24), implies

'G\ _ 1 /(σ pOlJG

O mG

where G satisfies

•—<
ίC

(2.25)

(2.26)

(2.27)

(2.28)

(2.29),
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Conversely, if Gδ(p)eL2 (R2N~ x) ® C" <g) Cn satisfies (2.29)δi then g, f defined by
(2.28) satisfy (2.26), (2.27). Also, setting κδ = ̂ (f + δg) one infers that (2.24)δ holds
true. Thus we need only study (2.29)^. For N = 1 this is elementary: The solutions
cexp(-εEp) to the first order ODE (2.29)_ are in L2(1R), whereas the solutions
cQxp(εEp) to (2.29)+ are not. For N > 1 we invoke Lemma Bl to conclude that
(2.29) + has no non-zero ίΛsolutions, whereas any ίΛsolution to (2.29) _ is
proportional to

fiE>. (2.30)

This gives rise to the functions κ+tBfδ(p) in the way just explained. Π

Next, we consider a second generalization of the N = 1 kinks of [2] which is
more obvious, inasmuch as no internal symmetry space is needed. It consists in
taking

σ x — iεln

σ x f iεin

0 1.

(2.31)

However, this generalization is "wrong," as will be clear from what follows.

Theorem 2.2. For N > 1 one has

dimKerK'\ ε __=0, (2.32)

dimKerK' s > ε__ = oo. (2.33)

Proof. Proceeding as in the previous case, we arrive at obvious analogs of
(2.23)-(2.29)δ. In particular, the kernel problem can be reduced to finding the
L2-solutions of

σ VG(p) = ̂ σ pG(p). (2.34),
EP

Picking δ = + and setting G = exp(εEp)H yields σ-VH = 0. But if G is L2, then
H is also L2, so that σ xH(x) = 0, with H the Fourier transform of H. Thus, we
must have H = 0, so (2.32) follows.

Now consider (2.34)_. Setting G = Qxp(-εEp)H, we get again σ V# = 0. But
if we now take H equal to one of the columns of the matrix σ VP with P(p) an
arbitrary harmonic polynomial, then G not only solves (2.34)_, but is also L2.
Therefore, we may conclude that (2.33) holds true. Π

2.3. Bounded Multipliers. In this subsection we consider bounded operators on

jfc = L2(U2N-\dx)®C2n®Ck, k^l (2.35)

of the form

(Mf)(x) = μ(X)f(x) feJT, (2.36)

where μ is a (Ink x 2n/c)-matrix-valued function on IR2^"1. Such operators form a
PF*-algebra henceforth denoted .̂ Our aim is to obtain conditions on μ
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guaranteeing that the off-diagonal parts Ma >_5 are compact or not, and Hubert-
Schmidt (HS) or not. Clearly, this is equivalent to [P+,M] having this property
or not. We shall study this problem by applying the results of Appendix C to the
Schwartz kernel of [P+,M]. This kernel is proportional to

•a mίn

,μs(x)eMk(C)}.

(2.37)

(2.38)

(2.39)

(2.40)

9^9r (2-41)

Proof. Assume M e^. Picking eeS2N~ 2, one obtains from (2.37) the distributional
limit

Here, μ denotes the distributional Fourier transform of μ.
To state our first result, we introduce the following subalgebras of :̂

is compact},

X®μ+(x) 0

(Here, χ stands for "chiral.") Note that yχ is a PF*-algebra satisfying

^x = ̂ ntαi' > α 2Λr-ι} >

whereas ̂  is a unital C*-algebra.

Theorem 2.3. One has

lim CM(p + λe,q + λe) =
λ->oo

σ e 0

0 -σ e
fi(p-q)-μ(p-q)

σ e 0

0 -σ e
(2.42)

Invoking Lemma C2 and the compactness assumption, it follows that μ(x)
commutes with α e. In view of (2.40) this entails Me^r Π

For N = 1 multipliers in ^χ yield off-diagonal parts that are HS, provided a
Sobolev-type condition is met, cf. [2], pp. 29-30. This is in sharp contrast to the
case N > 1, as will now be shown. (For N = 2 the following result dates back to [11].)

Theorem 2.4. One has M± τ = 0 if and only if

fl'*λ+ "Λ AsβMk(C), , = 0
0 L(χ)/l /7 (243)

I2 n®/l, AeMk(C), m > 0

For N>1, [P+,M] is HS if and only (2.43) holds.

Proof. If (2.43) holds, then P+ commutes with M, cf. (2.37), so [P+,M] is trivially
HS. Conversely, assume [P+,M] is HS. Then
Theorem 2.3. Hence we obtain

Σ(p,q)®fl+(p-q)

— ft+(p-q)-—ft-(p-q) -

, so Me^χ by virtue of

_ (p - q)

(2.44)
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where

The HS assumption implies that the distributions

Ts(p, q) = Σ (p, q)®μs(p-q\ s=+9- (2.46)

have matrix elements in L2((R4N~ 2, dpdq). Now Σ is smooth and invertible on the set

Γ a Ί

since

Σ2(p9q) = (^-^\\n. (2.48)

Hence it follows that

μs(p-q)eL2

oc(S,dpdq)k2. (2.49)

A moment's thought shows that this entails

μs(p)eL2

oc(R2N~ 1\{0}, dp)k2. (2.50)

But then we must have, using (2.48),

J dpdq- Σ IA.(p-«)ul 2<oo. (2.51)
p^g \^p &q/ i j=l

Invoking Lemma C3, we infer that for ΛΓ > 1 this implies μs(fc) = 0, /c / 0. Thus,
μs(/c) must have support at the origin. But then the matrix elements of μs(x) are
polynomials. Since μs(x) is bounded, it must be constant. The rest of the proof is
obvious. Π

It remains to determine compactness conditions in terms of the functions μs(x).
The following result gives a sufficient condition.

Theorem 2.5. Suppose Me^χ and suppose there exist λ±eMk(C) such that the
functions

as(X) = μs(X)-λs (2.52)

are continuous and vanish at oo. Then M is in ̂  for m = 0, whereas M is in ̂  for
w > 0 if and only if λ+ = λ _ .

Proof. It suffices to show AE^^, where

0

Moreover, we may take a^eC^^2"'1)112, since ^^ is norm closed. Then
άs(/?)eL1([R2JV~1)k2, so that compactness follows from Lemma Cl by noting that
the matrix elements of CA(p, q) are kernels of the form (Cl) with B satisfying (C2)
and (C3). Π
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We now consider necessary conditions. It is presumably false that μ+ must be
continuous on [R2^"1 to obtain Me^. (For N=l this follows from known
results concerning Toeplitz operators, cf. [12, 13].) However, a particular kind of
discontinuity to be described now does wreck compactness: We shall say that
/eL°°([R*) has a hedge-hog discontinuity at x0e[R* if there exists a non-constant
function h on S1'1 such that

/ χ — χ \

lim f(ε(x - x0)) = ft I - - ̂  pointwise a.e. . (2.54)
ε->0 \ |X — *θl/

Note this amounts to a jump discontinuity when / = 1.

Theorem 2.6. Let Me^ c ̂ χ. Then (the matrix elements of] μ± have no hedge-hog
discontinuities.

Proof. We assume that a hedge-hog does occur for μ+ (e.g.) and derive a
contradiction. Since P+ commutes with translations, we may assume the hedge-hog
sits at the origin.

First, consider the case m = 0. Then P+ commutes with the scaling group D(ε)

and with the chiral projection I 1, cf. (2.13), (2.15). Since

\v limD(β) = 0 (2.55)
ε^O

due to the Riemann-Lebesgue lemma, and since diag(lπ®μ+ (\G)€^ by
assumption, it follows that

). (2.56)

Moreover, by assumption we have pointwise a.e.

(2.57)

where ft is a non-constant matrix-valued function on S2N~2. By dominated
convergence, (2.57) also holds in the sense of strong convergence of bounded
multipliers on L2(R2N~1

9dx)k. But then (2.56) entails

•
Invoking now Theorem 2.4, we conclude ft is constant a.e., which is a contradiction.

Next, we take m > 0. From Theorem 2.5 we have

, 0 , 0(0) =1,, (2.59)

so we may assume supp μ+ is compact and μ_ = 0. Then we have μ+eL r,Vre[l,αo].
Now it is easy to check

V r > 2 Λ Γ - l , (2.60)
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where the dependence on the mass is explicitly indicated. Hence, we may use
Theorem XI.20 in [7] to infer [P(m) + -P(0) + ,M] is compact. Since [P(m)+,M] is
compact by assumption, it follows that [P(0)+ , M] is compact. Thus we obtain the
desired contradiction. Π

Next, we study the behavior at oo. We say that /eL00^*) has a hedge-hog
discontinuity at oo if there exists a non-constant function h on S1"1 such that

lim /(εx) = hi — I pointwise a.e.. (2.61)

Now a distinction arises between the cases m = 0 and m > 0.

Theorem 2.7. Let w = 0 and assume Me^ c: r̂ Then μ±(x) have no hedge-hog
discontinuity at oo. Now let w > 0 and assume μs(x) are continuous on IR2^"1;
moreover, suppose a continuous function h on S2N~2 exists such that

|x|->oo, 5=+,-. (2.62)
x /

Then

Proof. The m = 0 assertion follows by arguing as in the proof of Theorem 2.6,
taking ε -> oo instead of e -> 0. To prove the m > 0 claim, it suffices to show Me^
for μs(x) of the form

-\ hεC(S2N~2)k\ φeC([0,αo)), φ(r) = ° !. (2.63)

The product of two such functions is again of this form, and this is also true for
the sum, provided φί = φ2. Thus, if we can show Me^ when h is equal to the
product of an arbitrary λeMk(C) and one of the functions Xι/|x|,...,x 2N-ι/M>
then it follows that Me^ when h is a matrix whose elements are polynomials in
these functions. By the Stone- Weierstrass theorem such polynomials are uniformly
dense in the continuous functions on S2N~2. Therefore, we may infer Me^ when
(2.63) holds.

The upshot is, that we need only consider the multipliers Mt for which

)' s = +'"' i=l , . . . ,2JV-l . (2.64)

Here, we have replaced φ(r) by the function r/(l -h τ*2)1/2, the difference being a
continuous function vanishing at oo and at 0. The point of this replacement is,
that the Fourier transform of the functions

α W^Λl + M2)1/2 (2.65)

can be found explicitly. Indeed, we have

exp(ipc) fθ(ln|p|), p-*0

and for N > 1 we can use
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exp(fpx-e|x|) 1 " cos|p|rexp(-βr)

21'2 M 2 1 2 (167)
(1+r2)1'2

to infer

IP!
32ΛΓ-3 j
°\P\ J (168)

(cf. e.g. [14]). The Fourier transform of at(x) is then obtained by taking the z'th

partial derivative of (2.68) in the weak sense. This yields a distribution αt (p) that
equals a smooth function on IR2N~1\{0}. This function has a non-integrable
singularity at 0, but multiplication by pj9je{ί9...92N — 1}, suffices to render it
integrable at 0. The result is then an //-function atj(p) which is easily seen to equal
the distribution Pjά^p).

The crux is now that (2.64) entails

2N-1

>= Σ - (2.69)

where the matrix elements of B t,..., #2jv-1 satisfy (C2) and (C3). Indeed, let us set

P q\ mi l 1 ,
) m\F. V]

(2.70)

σ
EP Eq

F FUp Zq

Using the Taylor expansion

1 1 \ P q
ml-—-— -σ —~ —

En EJ \En En

1 2N-1

0 7=1

and B(p, p) = 0, we then obtain

(2.71)

from which the assertion readily follows. Because ό^eL1, we can invoke Lemma
Cl to complete the proof. Π

2.4. Unitary Multipliers. In this subsection we study the groups G, Gχ and
obtained from ^9^χ and ̂  by restricting to operators of the form

= u(x)f(x)9 u(x)eU(2nk)9
(2.72)

(For most of what follows one can just as well consider multipliers with bounded
inverses.) We start with some simple observations concerning Fredholm properties
of the diagonal parts of U. First, using unitarity we conclude

ί/eG00<^l7±± are essentially unitary. (2.73)

(Of course, this is meant in the sense of operators on 3tf + , respectively.) In particular,
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Uδδ are Fredholm when ί/eG^. However, it is clear from Theorem 2.2 that there
exist smooth u(x) with limit 1 for |x| -> oo such that Uδδ are not Fredholm.

On the other hand, Uδδ can be Fredholm without U belonging to G^ . Indeed,
one need only pick UφGχ (and hence UφG^.cί. Theorem 2.3) whose eigenvalues
stay in a sector

: φ} (2.74)

with φ < π/2. For any unit vector / in Jf δ one then gets

\\VMf\\ έ|(/,l7M/)|^Re(/,l7/)^cosψ, (2J5)

and hence

|| C/,,-1II ^ (cos φΓ1 ΦeΓθ,|\ (2.76)

We continue by introducing a subgroup Ge of Gχ whose elements have an
obvious topological interpretation. By definition, UeGe if and only if the functions
u + (x)eU(k) are continuous on (R2Λr~x and satisfy

us(x) — l f e = 0(1), |x|-»oo, 5 = + , — . (2.77)

Thus, u±(x) may be viewed as continuous maps from S2N~l to U(fe), reducing to
l fc at the north pole. (Here and from now on, we view (R2ΛΓ~1 as arising from S2N~1

by stereographic projection.) In view of Theorem 2.5 we have Ge c G^, so Uδδ are
Fredholm when UeGe.

Now it is clear that the standard kink

j^ (2.78)

0

of Subsect. 2.2 belongs to Ge (taking k = n). Also, it follows from Theorem 2.1 that

index K _ _ ΞΞ dim Ker K _ _ - dim Ker K* _ - 1. (2.79)

Since the Fredholm index is norm continuous, the kink map

(2.80).
(J'X — ( — ) I

cannot be null homotopic.
Next, recall that by virtue of Bott's periodicity theorem one has

π2N_1(t/(k)) = Z, π2N_2([7(fc)) = 0, k^N (2.81)

(cf. e.g. [15] and references given there). By convention we shall choose the "winding
number" weZ of uκ positive. We claim this implies

w(uκ)=L (2.82)

Indeed, assuming w > 1, there would exist a continuous map uί with u™ homotopic
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to uκ. This would imply index K_ _ ewZ, which contradicts (2.79). Thus, the kink
map is a homotopy generator. (This can also be seen directly; in fact, uκ is in
essence the map % defined in [15], p. 228.) We are now in a position to state the
following theorem, which is one of the main results of this paper.

Theorem 2.8. One has GedGao and for k*^N,

index ( 7 _ _ = w ( w + ) - w ( w _ ) \/UeGe. (2.83)

Proof. We have already proved the inclusion, cf. Theorem 2.5. Picking ί/eGe we
have

u+( ) 0 \(ln®u+( ) 0 VlM(χ)l, 0

o 1Λ®M )/ V ° ι»®V\ ° ^Φ
(2.84)

and hence
index [/__ = index ί/ + > _ _ + index ί/_ ___ (2.85)

Furthermore, a continuous map

u .S2"-1-*^), XM>M(X), k ^ N (2.86)

has the same winding number as the maps

®!, V/>0.

It is also obvious that the Fredholm indices of the corresponding operators are
equal. Using all this, the index formula (2.83) readily follows from its validity for
the standard kink K (cf. (2.79), (2.82)) and its parity transform X _ f l (cf. (2.18)) . Π

In the remainder of this subsection we take m > 0. We shall consider continuous
multipliers in Gχ for which there exists w^eQS2^2, U(k)) with

u s ( x ) - u - = o(l\ |x |->oo, s=+,-. (2.87)
\\x\ J

On account of Theorem 2.7 such multipliers form a subgroup of G^, denoted Gh.
Clearly, the map u+ul 1 is continuous at oo, and hence has a well-defined winding
number weZ when k^N, cf. (2.81). This prepares us for our next result.

Theorem 2.9. Let UeGhandk^ N. Then one has

index [/__ = w^wl1). (2.88)

Proof. For k ̂  N the map u^ is null homotopic in view of (2.81). Thus, a continuous
map

u(ί,ί2):[0,l]xS2ΛΓ-2-^(7(k), ιι(l,β) = uα)(ί2), n(0,β)=lk (2.89)

exists. Fixing Te[0, 1] we define a map

(2.90)
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and UτεGh by

Uτ=l2n®uτ( ). (2.91)

Then it follows that ΌV^leGe and hence, using Theorem 2.8,

index U _ _ —index U ι-- = wfa+u^1) — w(u_uϊl)

= w(w+wΓ l(u-uϊ T ') = w(u+ uI 1). (2.92)

Thus it remains to show index Ul _ _ = 0. But this follows from the easily verified
fact that Uτ is norm continuous in T on [0, 1]. Π

For k = n there exists a family HεeGh,εe(0, oo), for which index Hε_ _ can be
determined without invoking Bott periodicity. This "standard hedge-hog family"
is defined by

<8Kσ * + (-)*fe) 0

The point is the simple relation

Hl = K+^K_. (2.94)

with the standard kinks: It entails

index ίΓe_._ = l, Vεe(0,oo), (2.95)

since Ks ε has index 1. We also observe that one only needs the last part of the
proof of Theorem 2.7 to prove that Hε± + are compact. Indeed, the proof of this
theorem hinges on reducing the general case to a special case which arises precisely
for the standard hedge-hogs, cf. (2.64).

3. Approximate Quantum Fields

3.1 . Preliminaries. So far, we have not had occasion to use the positive and negative
energy Dirac spinors in terms of which the Dirac and Majorana fields occur in
the physics literature. However, in Subsects. 3.2 and 3.3 we aim to elucidate the
intimate relation of these fields to fermion Fock space quadratic forms associated
with the standard kinks. Therefore, we shall in this subsection elaborate on the
classical (single particle) context as presented in Subsect. 2.1, in preparation for
the Dirac and Majorana quantizations to be described below. We again take k = 1
at first, so as to ease the notation.

We shall work with Dirac spinors

w'(<3/?)eC2w, (5=+,-, ./= !,...,*, peR2N~\ (3.1)

yielding orthonormal bases for the positive and negative energy subspaces of the
matrix multiplier H(p\ so that

(3.2)

cf. (2.4). The positive energy spinors are defined by
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/2

p+(p)bj> (3 3)

where bj are the unit vectors with components

(ft^-^ + ^+J, 7 = l,...,n, / = l , . . . , 2 n . (3.4)

Using (2.6) and (2.4) it is readily seen that these spinors are indeed orthonormal.
The negative energy spinors are now given by

wL(p)=Ue^(p)9 j=l,...,n. (3.5)

(As before, the bar denotes complex conjugation and not the Pauli adjoint.) The
relations (A43) defining Uc imply that the spinors wί( — p) yield an orthonormal
base for the negative eigenvalue subspace of H(p\ as promised.

Using these spinors we can now transform to a spectral representation for H on

L2(U2N~ \ dp)n 0 L2(U2N~ \ dp)n (3.6)

in the sense that the transform of H acts as multiplication by Ep\n® — Epin on
this space. Of course, (3.6) is just the space Jjf of Sect. 2, looked at from another
perspective. We shall use the following device in an attempt to simultaneously
prevent confusion and ease the notation: The space Jjf of Sect. 2 and operators A
acting on it will be denoted $ and A from now on, whereas the notation ffl and
A will be reserved for the spectral representation space (3.6) and operators acting
on it.

Explicitly, the representation is set up by the unitary operator

W .tf^tf, g^^~l2)~lg, (3.7)

where 2F is Fourier transformation, cf. (2.2), and 3)\$ -+tff is the diagonalizing
transformation

5=+,-, J =!,...,«, (3.8)

whose inverse reads

(3 9)

Then one gets

(Hf)δ(p) = δEpfδ(p) (3.10)

as announced. (We suppress the superscript j whenever it is not acted on.)
In the next two subsections we shall employ the customary Euclidean group

representation of the one-particle Dirac theory. Its action on 3& reads

(U(a9R)f)(x) = S(R)f(R-\x-a))9 αeR2""1, ReSO(2N - 1). (3.11)

(The spinor representation S(-) of SO(2N — 1) is defined in Appendix A.) Using
(A29) one gets

[£/(α, R), H] = 0, [t/(α, Λ), P J = 0. (3.12)
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We continue by introducing charge conjugation, which plays a crucial role in
Subsect. 3.3. It reads

(C/)(x)=[/c/(x) (3.13)

and satisfies

[C,I7(fl,Λ)] = 0 (3.14)

due to (A50). Moreover, (A43) entails

CH = -EC, CPδ = P_5C, (3.15)

and from (A46)-(A49) we have

f l 2
C2=±l N = l 9 mod 4. (3.16)

[^ j, U

The properties of Uc can also be used to calculate the transforms of P (cf. (2.10))
and C to 3?; These are given by

(3-17)

o mod4 (118)

From now on we again assume that an internal symmetry space Ck is tensored
on to Jf . As before, we keep the same notation and note that then all of the above
relations still hold.

3.2. Approximate Dίrac Fields. The free Dirac field is a C2n ® Cfc- valued quadratic
form on the fermion Fock space &a(J^^&a(tf +)®&a(3tf-\ defined by

+ bh(p)wL (p) (x) el exp (iEpt - ip x)]. (3.19)

Here, {e l 5...,ek} is the canonical basis of Ck. Since the functions involved are
bounded, we may and shall choose as form domain the dense subspace S^1

 0 of
algebraic tensors whose constituent functions are in CJ. One readily verifies

(3.20)

where

(3.21)

is the "abstract" Dirac field. This smeared field satisfies the CAR

[Φ(f\ Φ(g)} = 0, {Φ(f\ Φ(g)*} = (/, g), (3.22)

and hence the transformation Φ(f)->Φ(Uf) yields an automorphism of the CAR
(Bogoliubov transformation) provided U is unitary.

It is well known that such a transformation can be unitarily implemented if
and only if the off-diagonal parts U ±τ are Hubert-Schmidt. Moreover, the
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structure of the unitary implementer is known [16, 17]. It involves a multiplicative
factor that is in essence an infinite determinant. Omitting this factor yields an
operator Γr(U) (r for renormalized) which is expressed in terms of an operator Z.
When the HS condition is violated, this expression no longer defines an operator.
However, it still makes rigorous sense as a quadratic form on the subspace Q)at of
algebraic tensors, provided the diagonal parts U ±± are Fredholm.

We have already seen that for N > 1 the unitaries of interest to us, viz., the
multipliers of Subsect. 2.4, are trivial when one insists on the HS property, cf.
Theorem 2.4. However, multipliers in G^ do have the Fredholm property, and in
particular the standard kinks Ksε of Subsect. 2.2 have Fredholm diagonal parts.
Therefore, they give rise to well-defined quadratic forms on &al.

We shall take

Ck = C" (3.23)

from now on. If k> n one can obtain analogous results, but k = n is the minimum
value for which we can construct approximate Dirac fields, since we have no explicit
information on winding-number-one unitaries in G^ for k < n. The approximate
Dirac fields are expressed in terms of the form implementers of the Bogoliubov
transformations generated by the standard kinks. Explicitly, we may and shall take

-). (3.24)

Here, the operators ZSί£ are the kink conjugates defined in Appendix D, and

(3.25)

cf. (2.20), (2.22); the norm of the kernel functions is chosen with an eye on what
follows. Furthermore,

EC(Z) = exp(Z+ _α*fo*)Γ(Z+ + ®ZT_ _)exp(-Z_ +ba), (3.26)

where Γ( ) denotes the Fock space product operation.
Next, we introduce the forms

\l/*ε(a9R) = Γ(U(a9R))Γr(KSί^Γ(-ί)Γ(U(a9R))*9 aεU2N~\ ReSO(2N-l)

(3.27)

and their adjoints ψSίfί(a,R) with form domain @at. (This is well defined: @at is left
invariant by Γ(U) when I7±τ =0 and this is the case here, cf. (3.12).) Moreover,
we set

(3.28)

θ,Kα), (3-29)

where UR is defined in Appendix A, cf. (A35). Using (3.20) we then have, e.g.,

^^ fEL2(R2N^). (3.30)
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By virtue of Lemma A3 this implies that the smeared fields

-*)9 ReSO(2N-l)} (3.31)

act irreducibly in ^a(J^). We are now in a position to present a principal result
of this paper, showing that the forms ψ(

s?ε\a9 R) may be viewed as approximate
Dirac fields.

Theorem 3.1. One has

>(fl,«) = ^*)(fl,Λ) (3.32)

in the sense of quadratic forms on @£t0.

Proof. From (3.28)-(3.30) and (3.20) it follows that

^*>(α, R) = Γ(U(a, R))tf*\09 l)f (t/(α, tf ))*, (3.33)

so that we need only prove this for a = 0 and R = l, cf. (3.27). Also, we need only
detail the case 5 = + , since the case s = — then follows by using parity. Evaluation of

<F,fr(K + ,ε)G>, F,Ge#£o (3.34)

yields a finite sum of products of terms that are inner products in Jtif, so that we
need only determine the ε->0 behavior of these terms. Four types occur, viz.,

(f,g)9 (/,Z+ΛM0), (/,Z+A,-,0), (/,p + ,α (3.35)

where f,geC(ξ(U2N~l)n2. Each product contains one and only one term of type 4,
and using dominated convergence, (3.25) and (2.20), (2.22) one infers

(3.36)

Also, invoking Lemma Dl, one sees that type 2 and 3 inner products converge to
— (/,#) and 0, respectively. Using these facts it now follows that

= <Aΐ(0, 1). (3.37)

Indeed, one need only check that the factor Γ(—l) corrects signs where needed.
Taking the form adjoint of (3.37) completes the proof of the theorem. Π

3.3. Approximate Majorana Fields. The Majorana field is a C2n(x)C fc- valued
quadratic form on &Γ

a(jΊf+)9 given by (3.19) with a -+ c and b* -> c*. Its form domain
is defined just as in the charged case, and will be again denoted ?̂,o Now one gets

Idxg(x) ψ(t9 x) = £(exp (itH)W *g)9 Vgejfr, (3.38)

where

= c(P+f)±c*(CP-f)9 N = mod 4, (3.39)
^ j, u

cf. (3.18). The "abstract" Majorana field B clearly satisfies
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[B(f\ B(g)*} = (/, 0), V/, 06 Jf. (3.40)

Moreover, using (3.16) one obtains

B(f)* = B(Cf), ΛΓ=l,2mod4. (3.41)

These two relations give rise to a C*-algebra, the so-called self-dual CAR algebra
[18], which may also be viewed as a complex Clifford algebra. The second relation
is the smeared version of the form equality

ψ(t9x)* = Ueψ(t9x). (3.42)

For N = 3,0 mod 4 no such local relation for ψ* in terms of φ exists. Moreover,
(3.41) is replaced by

B(/)* = B(C(P+-P_)/), ]VEE3,Omod4, (3.43)

cf. (3.18). Correspondingly, one again gets a self-dual CAR-algebra, the conjugation
with square 1 now being C(P+ — P_).

The transformation B(f)-+B(Uf) yields an automorphism of these algebras,
provided U is unitary and satisfies

CU=UC, N=l,2 mod 4, (3.44)

C(P+ -P_)l/ = UC(P+ -P_), ΛΓΞΞ3,Omod4. (3.45)

Now it is readily verified that a unitary multiplier of the form

commutes with C provided

M±(x)eO(fc), N = 1 mod 4, (3.47)

M-(X) = MX), N = 2 mod 4, (3.48)

cf. (A46), (A47). However, for N = 3, 0 mod 4 no non-trivial multipliers commuting
with C(P+— P_) appear to exist, since the action of P+ — P_ is non-local.
Therefore, we shall henceforth restrict ourselves to a consideration of the cases
Λf-l ,2mod4.

First, let N = 1 mod 4. Then we take

(3.49)

(Generalizing what follows to the case C2->C* is a matter of bookkeeping when
/ > 2, cf. [2], where N =1 and / ̂  2. However, we see no way to get similar results
for / = 1.) We now define neutral kinks, using notation that will be clear from
context:

,3.50)

(3.51)
— is σ x



572 S. N. M. Ruijsenaars

M = L -1/2 (3.52)

Then it is easy to check that the matrices at the right-hand side of (3.50), (3.51)
are real for any xelR2^"1. Hence, K"ε commutes with C. Moreover, since M
commutes with Pδ, the relevant properties of the neutral kinks can be read off
from the above results on the charged kinks. Specifically,

-1/21

spans Ker K"*+ +, and

(3.53)

(3.54)

spans KerK"ε+ + , cf. Subsect. 2.2; moreover, the operators ^s,ε±*± are essentially
unitary, cf. Subsect. 2.4.

These properties suffice to conclude that the neutral Bogoliubov transformation
B(f) -> B(K"t£f) can be implemented in form sense by

Γr(K"ε) = c*(ps ε)£π(Z" ε) + En(Z^ ε)c(p's ε). (3.55)

Here, one has

(3.56)

iZ_+cc) (3.57)

and the neutral kink conjugate Z"ε is defined via (D3). (The symbol Eδ~
l now

denotes the operator that vanishes on the one-dimensional kernel of Eδ and equals
the inverse of Eδ on its orthocomplement, cf. [2,17].) Next, we note Γ(U(a,R)) is
well defined on account of (3.14); in fact, one has f(l/(α,#)) - Γ(U(a,R)+ +) due
to (3.12). Thus we may introduce the forms

, R) = Γ(U(a, (- ί)Γ(U(a,

and their adjoints, with form domain 3/M. We also put

UR

UR

, Λβ) j=

j = 1, 2,

ReSO(2N - 1)

(3.58)

(3.59)

(3.60)

cf. (A35). Thus, e.g.,

0

0

0

-1). (3.61)
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From Lemma A3 it then follows that the fields

{^(/^l/eL^R2*-1), ReSO(2N- I)} (3.62)

act irreducibly in 3Fa(3f'+). The next theorem shows that the forms ψ(

s*ε\a,R) can
be used to reach this irreducible set of fields for ε->0.

Theorem 3.2. For N = 1 mod 4 one has

lim ψ(

s*
}(a,R) = 2" 1/2(φStί(a9 R) - iψs>2(a, R))(*} (3.63)

inform sense on @%t0.

Proof. This follows in the same way as in the charged case, cf. the proof of Theorem
3.1. Specifically, from Lemma Dl one readily concludes

s-limZ" )£= -1

so that, e.g.,

limi/,* ,ε(0,1) = Hmf dp[c*(p) p + ,β(p) - c(p) p'+ie(p)].
ε-»0 ε->0

Moreover, using (2.22) one gets

and using (2.20) and (3.18) one gets

(3.64)

(3.65)

(3.66)

(3.67)

where i1,i2 = l,...,n and j = 1,2. Thus, one obtains

ε->0

in form sense. Π

(3.68)

We remark that the corresponding result for N = 1 in [2] differs from (3.63)
by a factor 2~1/2, cf. I.e. Eqs. (4.44), (4.71). This can and should be corrected by
adding a factor 2~1/2 to I.e. Eq. (4.75).

We continue with the case N = 2 mod 4. Then we choose

Ck = C" (3.69)

as in the charged case. To satisfy (3.48), we now take as neutral kinks the multipliers

σ x + ΐε

σ-x — iε

0

0

σ-x + iε

σ x + iε
1 (x) 0

0 1 < ?̂\

(3.70)
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Then K" >ε commutes with C, as desired. However, for m > 0 the determination of
the kernels of the diagonal parts is a problem on which the results obtained thus
far shed little light. Indeed, if we proceed as in the proof of Theorem 2.1, then we
get as the analog of (2.28), (2.29) δ, taking e.g. s = +:

GΛ f_l/ σ p®lnGl+mG2 \
G l' / r- l χ - ^ < ^ , y ^ P v /

2y Ep\—σ'p®lnG2 -\-mG1J

where G 1 ?G 2 should obey

δs
(3.72)

. (3.73)
P

For m > 0 we do not know any non-trivial L2-solutions to this system. Therefore,
we leave the case m > 0 open and take m = 0 from now on. Then we get from
Lemma Bl and (A47)

Gί=aexp(-ε\p\)u, G2 = 0, (3.74)

G 1=0, G2 = αexp(-ε|p|)lπ<8)Kctt. (3.75)

Thus, Ker K+* ε + + is spanned by K + >ε> + and, similarly, Ker Kn*y ε + + by K _ ̂  + . We set

^S,ε
Ξ^S,ε,+ (3 76)

and note KerK"ε + + is spanned by

(3.77)

We can now implement the kink Bogoliubov transformation with the form (3.55),
where the change in meaning of the symbols need not be spelled out. Then we can
use (3.59), (3.60) with the subscript; omitted to define Majorana fields ψ(*\a,R\
and we can use (3.58) to define approximate Majorana fields ψ(*ε\a,R). We are
now prepared for the last result of this subsection, which justifies this terminology.

Theorem 3.3. For N = 2 mod 4 and m = 0 one has

>(fl,R) = ̂ *)(α,Λ) (3.78)

inform sense on ̂ ?,0

Proof. This follows as before. Π

Appendix A. Finite-Dimensional Clifford Algebras and Spinor Groups

As is well known, the Euclidean Clifford algebra in 1R2N has an irreducible
2π-dimensional representation (recall n = 2N~ί) which is unique up to unitary
equivalence. This representation can be constructed on the fermion Fock space

£> Λ 2CN φ © Λ NCN (Al)
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by choosing

where the c(f} are the creation/annihilation operators on J^a. Indeed, using the
CAR one verifies

X J9 ^Ίί) jk9 j 7' J' 9 * m ' 9 ' \ /

We shall use 2 x 2 matrix notation corresponding to the decomposition of 2F'a
into its sectors of even and odd particle number,

^a(CN) = J% θ < "̂ i (A4)

/O *\
Thus, the matrix of ε7 is of the form I I. From now on we choose orthonormal

\* ϋ/
bases in J^0 and OF ± and correspondingly identify J^Q and 3F ± with CM. Moreover,
we choose the bases such that

*-(l 'o)
Next, we introduce the self-adjoint matrices

β = ε0. (A6)

Then {jS,α1,...,α2 ] V-ι} also satisfy the Euclidean Clifford algebra in R2N. Hence,
the αfc can be written

where {σ1,...,σ2jv-ι} are self-adjoint matrices satisfying the Euclidean Clifford
algebra in IR2^"1. The time-independent Dirac operator corresponding to a
2N-dimensional Minkowski space is now given by

, m^O. (A8)
7=1

It arises when one writes the time-dependent Dirac equation

(7μ3μ + ml 2 l lWr = 0 (A9)

in Hamiltonian form. Here one has

y° = β, yk = βκk, fe=l,...,2JV-l (A10)

so that

!,...,-!). (All)

We continue by proving two lemmas that are essential for proving Lemma Bl
below. The first one is concerned with operators

®Bj, J=1,...,2N-1 (A 12)
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on the Hubert space

& = ̂ a(CN) (x) ̂ a(CN)9 (A 13)

where JΓ denotes the Fock space product operation. (Thus, Γ(—1N) acts as
multiplication by I/— 1 on ^Ό/^Ί ) The second lemma may be viewed as a
corollary of the first.

Lemma Al. The operators αj *) satisfy the CAR:

{aj, ak} = 0, {aj, al} = 2δjk, j, k = 1,..., 2N - 1. (A14)

leave the subspaces

(A15)

invariant and act irreducibly there. The vector

β=ι;/||ι?||, v = a1aι -a2N_1Ω(S)Ω (A 16)

is well defined and may be viewed as the vacuum in 2F +. That is, one has

ajΩ=0, j=l , . . . ,2N-l . (A17)

Moreover, the number operator

2JV-1

jr^ Σ a*aJ <A18>
7=1

can be written

\ 2JV-1

^=±(2N— l ) l 2 π ® ^ 2 n + ~ Σ αj®αj^(~^]v) (A 19)

Proof. Using {ε7 ,jΓ(—1N)} =0 it is straightforward to verify (A14).
Since Γ( — 1N)®Γ(—1N) has eigenvalue ±1 on «^±, and since the a(f} commute
with this operator, they leave 3F + and ^' _ invariant. Next, we note

2N~l). (A20)

Since the αj *) satisfy the CAR over C2N-1, this equality implies an irreducible
action in ̂  + and 2F _ .

Consider now the vector ve^ + . Using (A 12) and expanding the product, the
first terms of each a^ give rise to a vector of the form λNc% '-cfiΩ® Ω for N even,
or λNcf - - c%Ω ®c^Ω for N odd, with λN φ 0, cf. (A2). The remaining terms in the
expansion cannot cancel this vector, so that v^O. To prove (A 17) holds true, we
first note this is clear for j odd, since aj = 0. Picking now j = 21, one need only
verify a2ιa2ι + ιΩ®Ω=Q, and using (A 12) and (A2) this is easy. Finally, (A19)
follows from (A 12) and (A6). Π

Lemma A2. There exists a unit vector W6CW®C", unique up to a phase, which
satisfies

,2ΛΓ- 1, (A21)
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if and only if λ = ( — )N + 1. The matrix

2N-1

(A22)

0>u=-(2N-l)u (A23)

/z0s eigenvalues —(2N — 5), — (2JV — 9), . . . , 2ΛΓ — 3 on the orthocomplement ofu.

Proof. Setting z = 0, 1 for N even, odd, the vacuum Ω is in ̂  {® 3F {. Hence, the
number operator Jf has spectrum {0, 2, . . . , 2N — 2} on ̂  { ® 3F {. Also, using (A19)
and (A 7) we conclude

^\&i®^i^(2N-\)ln®ln + ̂ . (A24)

Thus, 9 has spectrum {-(2N-1), -(2N- 5),...,2Λf-3}, the spectral value
— (2N — 1) corresponding to

u = Ω (A25)

and being non-degenerate. (Of course, the identification of ̂ 0 and ̂ 1 with C"
via the choice of bases made above is understood here.) Using the relation

2N-1

£ (σj® 1B - λΐn®σj)2 = (1 + λ2)(2N - l)ln®ln - 2λ(-f0>, (A26)
7=1

the remaining assertions readily follow. Π

Next, let EeSO(2N). Then there exists a unitary matrix S(E\ unique up to
phase, such that

2N-1

S(E)£jS(E)*= Σ E^ (A2?)
fe = 0

(Indeed, the matrices at the right-hand side are self-adjoint and satisfy the Clifford
algebra.) Requiring det S(E) = 1, the phase ambiguity is reduced to ± 1 and a faithful
representation of the simply-connected spinor group Spin(2iV) arises (for N > 1).
Its Lie algebra is spanned by the matrices

εjk = 8j3k Q^j<k^2N-l (A28)

so that ^Q and 3F ^ are left invariant. The irreducible representations obtained by
restriction are usually denoted Δ+ and Δ_.

To avoid confusion, it should be mentioned at this point that the operators
B(f) and Γ(U) of Subsect. 3.3 may be viewed as generalizations of the operators
£o>- >£2N-ι and S(E) to an infinite-dimensional context. However, normal
ordering is not necessary in the finite-dimensional case, so that εjk has non-zero
vacuum expectation value for j ~ 21, k = 21 + 1, cf. (A2), in contrast to operators
of the form dΓ(-).

It is easily seen that the chiral parts of the standard kinks and hedge-hogs of
Subsect. 2.2 and 2.4 belong to Δ+ for fixed xelR2^1, but we have no occasion to
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make use of this. In fact, we will only employ rotations in SO(2N — 1), obtained
by taking E0j = EJO = δ0j in (A27). Then one gets

2JV-1

[S(Λ),j8] = 0, S(R)ajS(R)* = £ R^, VReSO(2N-l). (A29)
fc=l

Also, the Lie algebra is spanned by

l £ / < f c £ 2 N - l . (A30)

Thus, the restrictions of S(R) to «^0 and J^ are given by two identical n x n
matrices, which will also be denoted S(R). The corresponding irreducible represent-
ation of Spin(2]V — 1) will be denoted A.

From Lemma Al one can obtain the decomposition of A ® A into its irreducible
components. Indeed, due to (A 12) and (A27) we have

S(R)®S(R)a*(v)S(R)*®S(R)* = a*(Rv), VϋeC2^"1, VReSO(2N- 1), (A31)

and since the α(*) satisfy the CAR, one infers

S(R) ® S(R) s Γ(R) ® Γ(R). (A32)

(Here we are thinking of ̂  as 2F + © J^_ , cf. Lemma Al.) Therefore, denoting the
defining representation of SO(2N-1) by D and noting Λ*D^ A2*"1"*/), it
follows that

4®zi^ 0 /\kD. (A33)
fc = 0

(This also follows from the theory of weights, cf. e.g. [19].) Since u spans the vacuum
sector in J^ + , we get in particular

S(R) ® S(K)u = u, \/RεSO(2N - 1). (A34)

In Subsects. 3.2 and 3.3 we shall use the following cyclicity result.

Lemma A3. C" ® C" is spanned by the vectors

UR = S(R)®lnu, ReSO(2N - 1). (A35)

Proof. Denote the span of the UR by K From (A34) it follows that V can also be
written

V = span{ln®S(R)u\RεSO(2N - 1)}. (A36)

Thus, the VF*-algebras

s/L = {S(R)®ln}"9 ^R = {ln® S(Λ)}", RεSO(2N - 1) (A37)

leave V invariant. But the S(R) act irreducibly on C", so that

Λ/L = JS?(C") ® lπ, ^R = ln ® JSP(C"). (A38)

Hence, F must equal C" ® C". Π

Our last topic in this appendix is the charge conjugation matrix Uc, which
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plays an important role in Sect. 3. Its properties depend on Λfmod4 in a way
which can be read off from an explicit representation on ®NC2 in terms of the
Pauli matrices

Instead of presenting unwieldy general formulas, we shall detail the cases
N = 1,2, 3,4, from which it will be obvious how to continue. Using shorthand
illustrated by τ2 (x) 12 ® τ3 -> 203 we set:

ε2 = 23
AT = 4: ε0 = 1000 ε3 = 21

ε! = 2222
ε2 = 2223 N = 3: ε0 = 100

ε5 = 2210 ε3 = 221
ε6 = 2300 ε4 = 230

ε7 = 2100 ε5

From this one concludes: (i) (A3) holds true, (ii) one has

P — P P P —ΊNT ί^N~1Hε = ε^ " ε2jv- 1 — ̂  τs^9 u 2 ,

(iii) one has

(due to (A2) and ε~Γ( — t N ) ) ; (iv) the σk are obtained from the εfe by omitting the
first entry (since iτ2^\ = τ3, cf. also (A5)-(A7)).

The matrix Uc is the unitary matrix, unique up to phase, such that

Ucβ=-βUc9 Ucock = xkUc. (A43)

Equivalently, Uc satisfies

L/cε-0--ε0[/c, UJ§k = ekVe. (A44)

From (A40) we then see that we may take

Uc = 3, 22, 302, 2202, ... N = 1, 2, 3, 4, . . . . (A45)

Hence, we conclude

N E E ! mod 4: Ue = _ Ueΰe=l2Λ9 (A46)

ϋcϋc=l2 > l, (A47)
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'^ ], UCUC=-I2n, (A48)
* cj

N = 0mod4: l/e = ° V*\ UcUc=-l2n. (A49)
\ * c υ /

Note that the relation UCUC= + I2n is base-independent. It is known that for
N =1 mod 4 one can choose orthonormal bases in J^0 and J^ such that Fc

transforms into ln, but we shall not need this. (In view of (A40) this amounts to
the existence of a unitary matrix M satisfying MMT = 0202.) We do need the
relation

UCS(R) = S(R)UC9 VReSO(2N - 1), (A50)

which follows by using (A30) and Ucttjθik = o/a fcl/c, cf. (A43).

Appendix B. A Zero-Mode Lemma

The following lemma is needed to complete the proof of Theorem 2.1.

Lemma Bl. Let GeL2(U2N-\dp)®Cn®Cn. Then G satisfies

G (Bl)
p

if and only if

G = 0, < 5 = + ,

G = αexp(-ε£p)w, αeC, <5=-, (B2)

where weC"® C" is ί/ze wm'ί vector of Lemma A2.

Proof. This is obvious for N = 1, so we take TV > 1 from now on. Also, from Lemma
A2 it follows that (B2) implies (Bl). Thus we henceforth assume (Bl) holds, and
show that this entails (B2). To this end we begin by noting that the multiplier
(σ-p®ln)/Ep is bounded, so that (Bl) implies the components of G belong to the
Sobolev space H^R2^"1). For m > 0 the multiplier is smooth. Hence, multiplying
(Bl) by !M®σ V it follows that G satisfies the PDE system

(-Δ + Wδ(p))G = V, (B3)

ε2Ό2 δε f2*-i 1 \
P^)Ξ^lM(x) !„ + (-)»-!- Σ σj®σj--ϊσ p®σ p). (B4)

EP EP\J=ι LP )

Since Wδ is bounded for m > 0, this implies

GeH2(R2N~1)®C' l®C l l = ®. (B5)

Thus, for m>0 the existence of ίΛsolutions to (Bl) reduces to the existence of
zero-energy bound states for the operator

HΛ=-Δ+WΛ9 (B6)

which is clearly self-adjoint on 2.
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For w = 0 the multiplier (σ p(χ)lπ)/£p is not continuous at 0. However, (B3)
still follows for p Φ 0. To handle the singularity at p = 0, we exploit the "uncertainty
principle lemma,"

R*), *£3, (B7)

(For C6CJ((Rk) this follows by generalizing the k = 3 argument on p. 169 of [6]
in the obvious way; for CeH1 it then follows by taking limits.) It implies that the
components of G are in the domain of multiplication by l/|p|. Moreover, since
Wδ(p) is smooth for p Φ 0 and A is hypo-elliptic, (B3) implies that the components
are C°° on R2N"1\{0}. Using this and the inequality (B7) one readily verifies

[ln®σ V,σ p®ln/|p|]G(p) = — - £ σj®σj--^σ'p®σ-p G(p), (B8)
I P I \ j=ι IP! /

which holds in the sense that the distributional action on G of the commutator
yields the L2 -function at the right-hand side. Thus, (B3) holds weakly for any p,
and hence one again obtains Ge^.

Next, we claim that Hδ is self-adjoint on @ for m = 0, too. To prove this, it
suffices to show that the operator of multiplication by

" in (B9)r > J\

(say) is a relatively compact perturbation of Δ, viewed as a self-adjoint operator
on Ή^ίR2*'1) c L2^2*"1). But this follows by noting that the functions </>(|p|)/|p|
and l/(p2 + /) belong to L2N~2((R2]V-1) and using Theorem XI.20 of [7].

The upshot of the above is, that both for m > 0 and for m = 0 we are reduced
to finding the zero-energy bound states of the self-adjoint operator Hδ with domain
Q). To this end we note that Lemma A2 entails

2JV-1

~(2N-3)£ Σ σj®σj\uλ^2N-3, (BIO)
7=1

Wδ(p)u=Vδ(\p\)u, (Bll)

where

Vδ(r) = s2r2/E2 + δε(2N - 1 - r2/£2)/£, E = (r2 + m2)1/2. (B12)

Combining this with the obvious estimate

-l g-^rpΘσ p g l (B13)
EP

we conclude

(B14)

Hence we obtain

(B15)
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where H is the self-adjoint Schrόdinger operator

H=-Δ+V_, @(H) = H2(U2N-ί). (B16)

We claim that H is a positive operator which has an isolated eigenvalue zero,
the corresponding eigenspace being spanned by the function exp ( — sEp). Accepting
this for the moment, we can now prove (B2), as follows. First, recall that we have
already shown that (Bl) entails GeKerHd. By virtue of (B15) this implies

G = Qxp(-εEp)v, v<=Cn®Cn. (Ell)

Since G satisfies (Bl), we conclude

, 7=1,...,2N-1, (B18)

so invoking Lemma A2 once more we infer v = 0 for δ= + and v = αw, αeC, for
δ= -, which is (B2).

It remains to prove the claim just made. For the special case

(B19)

this is obvious (at least to a physicist), since H — ε2 is just the hydrogen atom
Hamiltonian. More generally, it is clear that exp( — εEp) is a zero-energy bound
state of H for any N ̂  2 and m ̂  0, and this fact combined with the positivity of
exp( — εEp) will suffice for an expert in Schrodinger operator theory.

We shall, however, add a few details so as to render the proof somewhat more
self-contained, and also because in the case at hand we have extra information,
compared to the general set-up to be found in Chap. XIII. 12 of [8]. First, relative
compactness arguments as used in the paragraph containing (B9) imply that H
has essential spectrum [ε2, oo). Thus the eigenvalue 0 is isolated, and we have

£0 = infσ(#)^0. (B20)

Secondly, we note that exp( — H) is positivity preserving. Indeed, for m > 0 this
follows from the Trotter product formula for exp(-#), using the fact that exp (A)
is positivity preserving and F_ is bounded for m>0. Also, using dominated
convergence we have

so that

R2N~1) (B21)
rojO

s limexp(-H(m)) = exp(-H(0)). (B22)
mjO

Hence, exp( — H) is positivity preserving for m = 0, too.
Thirdly, suppose ψ is an eigenvector of H with eigenvalue E0. We may assume

ψ is real-valued. Since

A==e-H^e-E° (B23)

is positivity preserving, we have

(B24)
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Hence,

(\ψ\,A\ψ\)^(ψ,Aψ) = e-E°m\ψ\). (B25)

In view of (B23) this implies \ψ\ is an eigenvector of H with eigenvalue £0, too.
Thus, we must have £0 = 0 and |ι/Ί ~ exp( —ε£p), since \ψ\ cannot be orthogonal
to the positive function exp( — εEp). Moreover, since ψ satisfies the PDE Hψ = 0,
it must be continuous for p Φ 0. Because | ψ \ does not vanish, we must have ψ = \ ψ \
or ψ = — \ψ\. Thus, 0 is a simple eigenvalue of H and the proof is complete. Π

For w > 0 the Dirac operator involved in (Bl) satisfies the assumptions
guaranteeing that the index theorems of Callias [20] and Hormander [21] apply,
cf. also [22]. Consequently, its index can be written in terms of an integral over
S2N~2. Since the index can be read off from Lemma Bl, the value of the integral
follows as a corollary. Conversely, if one is able to calculate the integral, then the
value of the index results. This would suffice for the index formulas of Subsect.
2.4. However, in Sect. 3 the far more explicit information of Lemma Bl is
indispensable.

Appendix C. Compactness and Non-Compactness

Due to Schwartz's nuclear theorem any bounded operator K on L2(Ul, dp) can be
represented by a tempered distribution K(p,q)GS'(U21). In this appendix we isolate
conditions on K(p, q) guaranteeing compactness or non-compactness of K (Lemmas
Cl and C2). We also prove a lemma (Lemma C3) that will enable us to show that
certain operators occurring in the main text are not Hubert-Schmidt.

Lemma Cl. Let K be an operator on L2(Ul) with kernel

K(p, q) = F(p - q)B(p, q\ FeLl(Rl\ BeL"(U21). (Cl)

Assume that for any r > 0 one has

lim sup I B(x + y, x) | = 0, (C2)
K-"oo |x|>R

\y\<r

lim sup\B(x,x + y)\ = Q. (C3)
R^ao\χ\>R

\y\<r

Then K is compact.

Proof. The proof is based on two well-known facts. First, norm limits of compact
operators are compact, and second, an operator T with measurable kernel T(p, q)
satisfies

)|. (C4)

(This follows either from the Riesz-Thorin theorem or directly from a slightly
subtle application of the Schwarz inequality.)

Due to (C4) and (Cl) we have

(C5)
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Now C^ is dense in L1, so we need only prove compactness of K for FeCJ by
virtue of (C5) and the first fact. Thus we assume from now on

supF c Br = {yeUl\ \y\ < r}. (C6)

Next, we take R>2r and set

KΞEKR + HR, KR(p, <?) ̂  [1 - χR(p)χR(qm(P> 4), (C7)

where χR denotes the characteristic function of BR. Then HR(p,q) has support in
BR x BR, and since F and B are bounded, one concludes HR(p,q)eL2(R21). Thus,
HR is Hubert-Schmidt. Invoking the first fact once more, it remains to prove

lim || XR | |=0. (C8)
R-+CO

To this end we exploit the second fact, cf. (C4). We shall show

supfdp|KΛ(p,9)|->0, £-+00 (C9)
q

by invoking (C2); the second supremum behaves in the same way due to (C3).
(In fact, the alert reader will have noted that (C2) and (C3) are equivalent.) To
prove (C9) we fix q and consider

ldp\KR(p9q)\ = J dyll-χR(q + y)χR(qn\F(y)B(q + y9q)\9 (CIO)

cf. (C6)-(C7). Since r < R/2, the function in brackets vanishes on Br when \q\ 5g R/2.
Thus, we obtain

p,q}\^ sup j dy\F(y)B(x + y,x)\ (Cll)

for any qeR1. As promised, this yields (C9) due to (C2). Π

Lemma C2. Lei K be an operator on L2(Rl) whose kernel K(p,q)eS'(U21} has the
following property: There exist f,ge S(Ul) and eeSl~l such that

lim j dpdqf(p)K(p + λe,q + λe)g(q) Φ 0. (C12)
A-»oo

(Here, the integral stands for distributional evaluation.) Then K is not compact.

Proof. We assume K is compact and derive a contradiction. Denote by Uλ

the translation over λe. Then Uλ weakly converges to 0 for A->oo by the
Riemann-Lebesgue lemma. Hence, KUλ converges strongly to 0, so that

Q. (C13)
λ-»oo

But this implies

]ίm(Uλf9KUλg) = Q9 (C14)
Λ^oo

which contradicts (C12). Π

Lemma C3. Letf ^Obea measurable function onRlJ>l, and let c ̂  0. Then one has
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( ίχ _j_ y)2 (x _ y)2 ίχ2 — y2) \

(χ + yf+c+(χ_y)2 + c-\((χ + y)2+c)((χ + y)2 + c)γi2)<K

(C15)

if and only iff = 0.

Proof. We assume / =£ 0 and show that when (C15) holds a contradiction arises.
Indeed, (C15) implies by virtue of Fubini's theorem that there exists y0 ^0 with
f ( y 0 ) > 0 such that the x-integral of the bracketed function with y = y0 converges.
Now introduce

x = re, eeS1"1, a = y%, b = e-y0. (C16)

Invoking Fubini's theorem again, we infer that there exists e such that a Φ b2 and

00

Jdrr'-1/(r)<co, (C17)
0

where

. , _ . , . , „ r2 — 2br + a (r2-α)

(C18)

But one has

(C19)

and since a Φ b2 and / > 1, this contradicts (C17). Π

Appendix D. A Convergence Lemma

This appendix contains the definition of the kink conjugates Zsε and a lemma that
is a crucial ingredient in the proofs of Theorems 3.1-3.3. We shall use notation
explained in Subsect. 3.1. Suppose U is a unitary with compact off-diagonal parts
for which Ker C/t _ is trivial and Ker 17 _ _ is one-dimensional. Then Ker U+ + is
trivial and Ker l/ΐ + is one-dimensional, since U is unitary. Thus, the operators

£_ = ϊ 7 _ _ ί y * _ _ = P _ - t / _ + ί/*+_, (Dl)

£ + ΞEl/* + + t / + + =P + - ί/* + _ί/_ + (D2)

have bounded inverses (as operators on Hδ\ and we can define an operator Z by

This operator is referred to as the conjugate of (7; it is related to the associate
A used in [16] by Z(U)= 1 + (P+ -P_)Λ(- U). (This sign convention ensures
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absence of signs in the associated Fock space implementer, cf. Eq. (5.15) in [16].)
We have shown that the operators Ks^ε satisfy all of the above assumptions,

cf. Theorems 2.1 and 2.5. Thus we may introduce operators E+^ε and Zs>θ in the
way just described. This prepares us for the following result.

Lemma Dl. One has

Him Zs>ε = - 1, 5 = +, -. (D4)
ε-» 0

Proof. Once this is proved for s = +, the s = - case follows by using parity. Thus
we take s = + and suppress this index henceforth. First, we shall handle the massless
case. We claim that

\\Kε_+\\ = C<l Vε>0, m = 0. (D5)

Indeed, using (2.13) we obtain

\\Kε.+ || = BDίεrP-KiP+Dίε)!! = ||X1-+ || = C, (D6)

and since E+tl has a bounded inverse we must have C < 1, cf. (D2).
Next, we note

sΊimKε=L (D7)
ε-+0

(This is immediate from (2.16).) By majorizing the tail in the Neumann series for
E^"1 with the uniform bound (D5) it readily follows from this that

sΊimE^-^P,. (D8)
ε-*0

Moreover, combining (Dl), (D2) with (D5) we get

ll£^-1ll = (l-C2)-1'2, Vε>0, m = 0. (D9)

Using all this, it is routine to verify (D4): One has, e.g.,

\\(Ze+ + +P+)f\\ί}\Ke+ + E+,ε-i(E+,e-P+)f\\ + \\(Kε+ + -P+)f\\^0, β->0,

(D10)

cf. (D3).
The massive case involves more work. Suppose we can show

| |K £ _ + | |gC'<l, Vε6(0,l], m>0. (Dll)

Then we can argue as in the massless case to prove (D4); we need only replace (D9) by

UE^-Ml^σ-C'T1'2, Vεe(0,l], m>0. (Dll)

To prove (Dll) we observe that

IIK.. + || = ||£._+ II = IIP^-D^K^P,,^ II = UP^K!?,^ || =/(εm).

(D13)

(Here and from now on the mass dependence of P^ is made explicit.) Since P(μ)δ

is norm continuous in μ on (0, oo), the function f(μ) is continuous on (0,1].
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Moreover, one has f(μ) < 1 on (0, 1]. Therefore, / is bounded away from 1 on
compact subintervals of (0,1]. But then we need only show

lim/(μ) = \\P(0}_K1P(0}+ || = C < 1 (D14)
μ->0

to obtain the desired bound (Dll).
We shall prove (D14) by making suitable use of the estimate

'(R<), re[2,oo), (D15)

where || ||r denotes the Schatten norm at the left and the E norm at the right, cf.
Theorem XI.20 in [7]. To this end we introduce (omitting the carets from now on)

[P(,)--P(0)-,Kι] (D16)

and note

CM = (P(,)-(p)-P(o)-^
M(x) = Kl(x)-L (D17)

Now it is easily seen that the matrix elements of M(x) and of P(μ)_(p) — P(0)_(p)
belong to L r(lR2N~1) for re(2N — 1, oo]. Moreover, by dominated convergence the
latter matrix elements converge to 0 in E for μ->0 and re(2N — 1, oo). Hence, the
estimate (D15) entails

lim || C(μ) ||=0, (D18)
p-*0

since the operator norm is dominated by any Schatten norm.
Next, we multiply C(μ) by P(μ)_ from the left and by P(μ) + from the right, and

conclude

lim || P(μ) _ K1 P(μ) + — P(μ) _ P(0) _ K1 P(0) + P(μ) + -f P(μ) _ P(0) + K{ P(0) _ P(μ) + || = 0.
μ^O

(D19)

Since the projections P(μ)δ strongly converge to P(0)j5 for μ->0, the norm of the
second operator has limit ||P(0)_£1P(0)+ ||. Hence, (D14) will result from (D19),

provided one has

lim HP^.P^K^.P^ || =0. (D20)
μ^O

But this can be proved by another application of (D15): We may replace K^ by
Kί — 1, and since P(μ)_ (p)P(0) + (p) has matrix elements that converge to 0 in E for
μ -> 0 and r e(2N - 1, oo), (D20) holds true. Π

Appendix E. The Connection to External Field 5-Operators

In this appendix we present some results on the (interaction picture) evolution
operators and S-operators corresponding to the Dirac equation with certain
time-dependent external fields. This will yield a different context for the above
results, which is closer to the physical picture of chiral anomalies [23]. We shall
make use of concepts and results that are detailed in [24,25]. Using the notation
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of Subsect. 2.1, the external field Dirac operator is given by

H(t) = H + λV(t). (El)

Here, λeC is the coupling constant and

(V(t)f)(x) = 7(ί, *)/(*), fetf, (E2)

where V(t9 x) is a 2n/c x 2rc/c matrix-valued function on 2JV-dimensional Minkowski
space.

First, we shall assume V(t,x) is continuous and vanishes at oo, so that || V(t)\\
is continuous and vanishes at oo. In addition, we assume

\\V(t)\\eIΪ(Λ). (E3)

These two assumptions guarantee that the evolution operator Uλ(T2, 7\) is norm
entire in λ and norm continuous on R2, where R = IRu{±oo} with the obvious
topology, cf. [24], Sect. 2.

Theorem El. For any (A,T1,T2)eC x R2 the operator U λ(T29T^ has compact
off-diagonal parts and Fredholm diagonal parts with vanishing index.

Proof. We shall first prove this under the extra assumption that the matrix elements
of V(t9 x) are in S(R2N). Then the operators U = Uλ(oo9 - oo) and V = Uλ( - oo, oo)
have Hubert-Schmidt off-diagonal parts, as follows by generalizing the relevant
arguments of [25] in a straightforward way, cf. also [26]. Since UV= VU = 1, it
follows that U and V have Fredholm diagonal parts; furthermore, these have index
0 since U and V are norm entire in λ and equal to 1 for λ = 0. Now consider (e.g.)
£/λ(T,0) with Te(0, oo). Multiply V(t,x) by a C°° function φε(t) that is 1 on
[ε, T - ε], 0 on (- oo, 0] and [T, oo), and monotone on [0, ε] and [T - ε, T]. Then
the corresponding evolution operator l/A,fi(T,0) equals the S-operator for the
Schwartz space external field λφε(t)V(t, x) and, therefore, has HS off-diagonal parts.
Using the Dyson expansion to estimate l/A(Γ,0) - Uλt8(T9Q), it readily follows that
this difference converges to 0 in norm for ε-»0. Hence, l/A(T,0)δ_δ and, similarly,
Uλ(T2, Tl)δ,δ are compact.

Next, consider the general case. Since V(t,x) is continuous and vanishes at oo,
one can find a family Vε(t,x) with matrix elements'in S(R2N) such that

\\Vε(t)-V(t)\\^ε, Vί6[Γ1,Γ2]cR. (E4)

Telescoping the Dyson expansion in the obvious way, one infers n lim ί7λ>ε(T2, TJ =
ε->0

Uλ(T2, Tj). Thus the assertions follow for AeC and T felR, and taking norm limits
for Ti6R, too. Π

The second assumption (E3) is critical. Indeed, in [1] Matsui proves (for N = 2
and m — 0) there exist external fields that are continuous and vanish at oo, yet lead
to an 5-operator with index 5__ ^0. For these fields one has || V(t)\\ ~ j ί ) " 1 for
large times, so (E3) is violated. His fields are in essence pure gauge for large times,
but they have a time dependence which leads to considerable complications.
Here, we shall obtain S-operators with non-zero index (for N ̂  1 and m ̂  0)
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corresponding to external fields that are time-independent for large times (so that
both assumptions are violated).

Specifically, let us assume V(t, x) is continuous and self-adjoint on IR2N, vanishes
for |x|-κx> and t fixed, and is equal to time-independent matrices Vτ(x) for
τt ^ T > 0, where τ = + , — . Then the issue of existence of the S-operator for the
field V(t9x) reduces to the existence problem for the wave operators W+(H9H+)
and W_(H_9H)9 where

+,-. (E5)

Indeed, one has

U(t9s) = eitHe-i(t-T)H+e-ίTHU(T9-T)e-iTHei(s+T)H-e-ίsH

9 t>T9 s<-T9 (E6)

cf. Eqs. (2.27), (2.106) in [24]. If V± ^0, the norm limits of the right-hand side for
t ->• oo and s -̂  — oo do not exist, but the strong limits may exist. Since Fredholm
indices can jump under strong limits, the S-operators associated with such fields
may yield diagonal parts with non-zero index.

To study this, we further restrict ourselves to the case

» 1-β°_0)),
where MTιS(x) are (7(fc)-valued functions with the following properties:

u^MeC1, τ,s=+,-, (E8)

V«tiβ(x) = o(l), |x|->oo. (E9)

Then it is easy to verify that Hτ is indeed of the previously assumed form (E5),
with λ = 1, say. Specifically, one obtains

V(t x\ = ίv(t,x) A v Q

(E10)

Recall that the interpolation of the two fields involved need only be continuous,
self-adjoint and 0 at oo. First, we require in addition to (E8), (E9),

uτ,s(x)-lk = o(l)9 |x |->oo. (Ell)

Thus one has UτeGe c G^, cf. Subsect. 2.4.

Theorem E2. Under the assumptions just made, the S-operator

s lim t/(T2,T1) (E12)
Γ2-^oo

7Ί-> -oo

exists and is given by

eίTHU+e-iTHU(T9-T)e-iTHU*eiTH = S. (E13)
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Moreover, the operators S+ + are compact and the operators S++ are Fredholm, and
one has

index Sδδ = index U+δδ — index U _ δδ . (E 14)

Proof. In the case at hand we can rewrite (E6) as
HU_e-isHl t>T, s<-T. (El 5)

Therefore, the first assertion follows if we show that the bracketed operators have
strong limit 1 for £-> oo and s-> — oo, respectively. To this end we need only prove

s lim M( ) exp (itH) = 0, (E16)
ί-*oo

where M(x) is continuous and vanishes at oo. Let / be of the form (H + i)~l

An application of the trace ideal estimate (D15) shows that M(x)( — iα V + βm + i)~ ί

is compact when M(x) = 0(|x|~1) (say), and hence (taking a norm limit) when
M(x) = o(l) for |x| -» oo, too. Since exp(itff) weakly converges to 0 for ί-^ oo by
the Riemann-Lebesgue lemma, we conclude

Af (•) exp (itH)f = M(-)(H + i)~ 1 exp (itH)g Λ 0, t -> oo. (El 7)

From this (El 6) readily follows.
Next, we note that Theorem El implies U(T, — T)δ^δ are compact and

U(T, — T)δδ are Fredholm with index 0. Since l^eG^, this entails the validity of
the second assertion. Π

We shall now relax the assumption (Ell). Assume continuous functions
uτ> «, : S2N ~ 2 -> U(k) exist such that

= o(l), |x|-*oo, τ,s=+,-. (El 8)

That is, we allow hedge-hog asymptotics at oo. In particular, UτeGh<^G^ for
m > 0, cf. Subsect. 2.4.

Theorem E3. Under these assumptions the S-operator (El 2) exists and is given by

where S is defined by (El 3). Moreover, for m > 0 the operators Sh± + are compact
and the operators Sh±± are Fredholm, and one has

index Shδδ = index U+M — index U _ δδ. (E20)

Proof. Because (E15) still holds when (Ell) is replaced by (E18), and because of
the above argument containing (El6), we need only show

S lim<J*^-^-ιe-^ = l£ (P *L\ (E21)
ί-»oθ

s limu^l e»«F^^e-™ ) = «_.„( -£-£ }. (E22)
ί-> -oo
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(The notation used here calls for a comment: When Aj = aj (x) 1 k , j = 1, . . . , 2N — 1,
are commuting self-adjoint operators and u a map from IR2^"1 to U(k\ then the
operators ulm(ai,...,a2N-ι) are defined by the functional calculus, and

u(A)= £ "im(*)®*im (E23)
Z , m = l

is unitary, where {elm} is the obvious basis of Mk(C).)
To prove (E21), (E22) we set

vJ(t) = e*a(idj/t)e-1tH

9 ί^O (E24)

and exploit the fact that

lim Vj(t) = PJ/H (strong resolvent sense). (E25)
|f|-»oo

Taking (E25) for granted, it follows that

S'UmvJ(t)/\υ(t)\=pJH/\p\Ep. (E26)
|t |-+co

(To see this, note the discontinuity of the function at the left-hand side is harmless,
since Vj(t) has no point spectrum.) Since one has

e?H&(xJ/\x\)&-le-ίtH=±Όj(t)/\Ό(t)\9 ί^O, (E27)

and since u^.>ao and w_ > 0 0 are continuous on S2N~2, (E21) and (E22) follow.
It remains to prove the relation (E25). Its validity was first shown by Thaller

and Enss [27], who were studying the (interacting) N = 2, m > 0 case, but their
argument generalizes to any N ̂  1 and m ̂  0. (Cf. also [1] for what follows.)
Indeed, following [27], we set Fj = α,- — PJ/H and note FjH = — HF^ so that
Fje~itH = eίtHFj. This can be rewritten

^ Idj, H^e-itH = ̂  + e2itH (*j-%:\ (E28)
H \ H)

Denoting the domain of idj by ,̂ one readily verifies eilH<2> = &. Hence, (E28)
entails that on 2 one has

*" = id}/t + + ~-^j - . (E29)

But it is obvious that the first term converges strongly to 0 on 3), whereas the
third term has norm ^ 2 and strongly converges to 0 by virtue of a routine
argument. Hence, (E25) follows. Π

It is clear from the above proofs that the assumptions can be relaxed to obtain
similar conclusions, but we shall not pursue this. We do point out that one may
allow V(t, x) to have jumps as a function of time. (Indeed, this is clear from the
relation l/(T3, T^= l/(T3, T2)l/(T2, TJ.) In particular, we may take T = 0 and
L/_ = 1 in the above. Then we conclude that unitary multipliers UeGe for which
us(x),s= +, — , satisfy (E8), (E9) may be viewed as S-operators corresponding to
external fields that vanish for t < 0 and are given by the right-hand side of (E10)
(with uτfS^us)for ί^O.
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In particular, the standard kinks KS)S of Subsect. 2.2 and any finite product of
their transforms under translations and rotations satisfy (E8), (E9) and (Ell). From
the viewpoint sketched in this appendix the results of Theorem 2.1 can be interpreted
as follows: Scattering at the external field associated with Ksε via the right-hand
side of (E10) can move states in the negative energy subspace of H to the positive
energy subspace (viz., those states proportional to τcs<ε>_), but not vice versa.
Equivalently, these states are negative energy states with respect to H, but positive
energy states with respect to H+, defined via (E7) with U+ =KSjS, but no states
exist that have positive energy with respect to H and negative energy with respect
to H+.

For the (massive) standard hedge-hogs (2.93) the assumptions (E8), (E9) and
(E18) are fulfilled. Hence, the index of the corresponding S'Λ__ equals 1, cf.
Theorem E3. However, in this case we have no explicit information on the relevant
kernel states but for the dimension difference.
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