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Abstract. The Becker-Doring equations, in which c^t) can represent the
concentration of /-particle clusters or droplets in (say) a condensing vapour at
time ί, are

with
Jι(t):= apάήcάή - bl+1cl+ί(t)

and either ci = const, ('case A') or p:= £ lct = const, ('case B'). The equilibrium
i

i
solutions are ct = Qtz

l, where 6/:=Π(flr-ι/^r) The density of the saturated

vapour, defined as p5:=X/Q^Λ where zs is the radius of convergence of the
i

series, is assumed finite. It is proved here that, subject to some further plausible
conditions on the kinetic coefficients αz and bl9 there is a class of "metastable"
solutions of the equations, with c±— zs small and positive, which take an
exponentially long time to decay to their asymptotic steady states. (An
"exponentially long time" means one that increases more rapidly than any
negative power of the given value of c± — zs (or, in case B, p — ps) as the latter
tends to zero). The main ingredients in the proof are (i) a time-independent
upper bound on the solution of the kinetic equations (this upper bound is a
steady-state solution of case A of the equations, of the type used in the
Becker-Doring theory of nucleation), and (ii) an upper bound on the total
concentration of particles in clusters greater than a certain critical size, which
(with suitable initial conditions) remains exponentially small until the time
becomes exponentially large.

1. Introduction

In 1979 an article entitled "towards a rigorous theory of metastability" was
published by J. L. Lebowitz and this author (Penrose and Lebowitz 1979, 1987).
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Just how difficult it has been to make progress in the suggested direction is shown
by the fact that the same article could be reprinted 8 years later with only a few
pages added to bring it up to date.

The approach described in that article is the one used by Penrose and Lebowitz
(1971), Capocaccia et al. (1974) and Cassandro & Oliveri (1977) in which a metastable
state, associated with a first-order phase transition in some macroscopic thermo-
dynamic system, is represented by a region R in phase space characterized by three
criteria: (i) only one thermodynamic phase is present; (ii) the metastable state has
a very long lifetime; (iii) once the system has left the metastable state, it is very
unlikely to return. In the papers mentioned, the main part of the work was to
estimate the lifetime of the metastable state by estimating the rate of escape from
R for a system started in the "restricted canonical ensemble"—one whose
phase-space density is canonical within R but zero outside. Unfortunately, in neither
paper was it possible to obtain an estimate which was valid in the thermodynamic
limit; that is to say, the estimated rate of escape from R is proportional to the size
of the system, so that in the thermodynamic limit the rate of escape becomes infinite
and the estimated lifetime goes to zero. The difficulty can be eased somewhat by
using a different definition for the lifetime (Vanheuverzwijn 1979) but the rigorous
estimates which have so far been obtained for this lifetime, though greater than
zero, are still unrealistically short. One response to the difficulties with the
infinite-system limit is to argue that it is the finite rather than the infinite model
which most properly represents the essential features of metastability (Sewell 1986).
The viewpoint of the present paper, however, is that these difficulties can be
overcome by improvements in the infinite-system theory.

The root of the difficulty we have been discussing is the unrealistic picture of
the breakdown of metastability used in the first four papers cited above. According
to that picture, at the moment when the condition defining the phase-space region
R is violated in some particular part of the system the metastable state breaks
down throughout the whole of the region of three-dimensional space occupied by
the system—as if the whole of the very large system immediately "knows" when
a super-critical nucleus of the new thermodynamic phase has formed in some other
part of it, no matter how distant. Such a thing would make sense if the super-critical
nucleus immediately grew in a catastrophic or explosive way as soon as it formed.
But in reality super-critical nuclei grow very slowly, and so even if a super-critical
nucleus has formed in one part of the system the rest of the system is likely to go
on as usual for a long time. The real breakdown of metastability comes only when
the density of super-critical nuclei has become significant over the whole system—
quite a different thing from the formation of just one super-critical nucleus at one
place in it. Thus we may expect that if we explicitly take into account the density
of super-critical nuclei we can get a more realistic estimate of the lifetime.

In order to make such estimates we need a specific kinetic model from which
to estimate the rate of growth of the super-critical clusters. One would like to do
this for a specific molecular model, such as the Ising model with Glauber (1963)
stochastic dynamics considered by Capocaccia et al., or even the simpler "bootstrap
percolation" model considered by Aizenman and Lebowitz (1988) but the aim of
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the present paper is less ambitious. Instead of using a microscopic model we shall
work from a system of kinetic equations of the type introduced by Becker and
Dδring (1935) in their pioneering treatment of this topic. In these equations the
system is modelled as a collection of droplets of one thermodynamic phase
embedded in an otherwise uniform matrix of the other. These droplets (also called
clusters) are assumed to change size through the gain or loss of just one particle
at a time. The resulting changes in their concentrations are assumed to satisfy a
system of kinetic equations similar to the ones used in chemical kinetics.

There are two versions of the Becker-Doring equations: the original version
used by Becker and Dδring themselves, in which the concentration of monomers
(one-particle clusters) is taken to be constant while the overall concentration of
particles can vary, and the modified version (Penrose & Lebowitz 1979, Burton
1977) which takes account of the depletion of monomers as larger clusters form,
by requiring the overall concentration of particles in all clusters to be constant.
In the present paper, the original version will be referred to as version A9 or as
the constant-c^ version (the symbol c1 representing the concentration of monomers),
and the modified version will be referred to as version B, or as the constant-density
version. The constant-c^ version leads, as shown in Becker and Dόring's original
paper, to a simple representation of the metastable state as a steady-state solution
of the kinetic equations. This representation, outlined in Sect. 3 below, is not free
of difficulties: the overall concentration of particles diverges (Penrose 1978, or see
Eq. (10.5) below), and the method does not give a direct estimate of the lifetime
of the metastable state; but it is good enough to form the basis of a very successful
physical theory. In the constant-density version, however, the Becker-Doring
representation of the metastable state cannot consistently be applied at all, since
it is not a solution of the kinetic equations.

What we shall do here, therefore, is to go beyond the theory based on
steady-state solutions of the kinetic equations, and instead study time-dependent
solutions. The main result is to prove the existence of a class of solutions which
have (in a well-defined sense) very long lifetimes. These solutions provide a
description of the metastable state which avoids the difficulties mentioned above.

2. The Model

We start from the Becker-Doring cluster equations, as given in (for example
Sect. 9 of Penrose & Lebowitz (1979, 1987),

Jl_,(t)-Jl(t) (/ = 2,3,4,...), (2.1)

J,(ί) = atcάW) - bl + lcl + l(t) (I = 1,2,3,...). (2.2)

Here c^t) denotes the concentration of /-particle clusters at time t and Jt(i) denotes
the net rate per unit volume at which /-particle clusters are being converted into
(/ + l)-particle clusters. The kinetic coefficients al, α2,... and b2, fr3,... are positive
constants. To complete the system of equations we need an equation for dcjdt.
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As already mentioned in the Introduction, there are two cases to consider:

dc'ίt)— iL:
αί

= 0 (case A: constant cj

-= _ j (t) - Y J,(ί) (case B: constant p)

A third version of the equations, which is suitable in cases where there is no
conserved order parameter, will be considered in Sect. 12. It does not lead to
anything really new since it can be transformed into case A.

The simplest solutions of Eq. (2.1-3) are the ones where the Jl are all zero and
the q are independent of ί. We may call these the equilibrium solutions. They have
the form

Cl = Qtz
l (1=1,2,...), (2.4)

where βι,β2>' are 'cluster partition functions,' defined here by

βι:=l (2-5)

(' = 2, 3,...), (2.6)

and z is an arbitrary positive number, which can be interpreted as the activity or
fugacity of the equilibrium state (2.4).

We shall assume that the constants al,bl satisfy the following conditions

(i) there exist positive constants A, A', α, with 0 < α < 1, such that

A'<aι<AP (1=1,2,...); (2.7)

(ϋ) limb l + !/&! = !; (2.8)
ί->oo

(iii) the sequence bjfy is monotonic decreasing, with a positive limit which we
shall call zs (it can be interpreted as the fugacity of the saturated vapour)

(/ = 2,3,...), (2.9)

; (2.10)
/->00

(iv) the sequence bt/at converges to its limit like a negative power of /, but not
as rapidly as ί"1; that is to say, there exist positive constants y,/, G, G satisfying
the conditions

0 < y < l and 0</, (2.11)

such that

zsexp(GΓy) < &,/*! < zsexp(G;ry/). (2.12)

This last assumption can be given the following physical interpretation: the chemical
potential inside an /-particle cluster or droplet, /cTlog(βz/<2ί+1), is by (2.6)
proportional to log(&ί+1/flι); so, if we approximate bl+i by bl in accordance with
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(2.8), Eq. (2.12) is telling us that the chemical potential inside a cluster of size /
exceeds that of the saturated vapour by an amount which (assuming y = y') is
asymptotically proportional to Γγ. According to Thomson's formula (see Frenkel
1946, Sect. VII. 1) it is also inversely proportional to the radius of the cluster, so
that if the clusters are approximately spherical we exprect (in 3 dimensions)
y = y = 1/3. This estimate for y and y' also appears in the simplest version of the
droplet theory of condensation (Andreev 1963, Fisher 1967, Langer 1967).

The conditions (i)-(iv) are all satisfied by the choice of ahbt used by Penrose
et al. (1983), (1984), appropriate values for the exponents being α = y = y' = 1/3.

One consequence of the assumptions (i)-(iv) is that the series for the equilibrium
density,

Σ Id*1 (2-13)
1=1

has (by (2.6), (2.8) and (2.10)) the positive radius of convergence lim (bl+1/at) = zs.
J->oo

Moreover, it follows from (2.12) (for details see Theorem 2) that this series converges
when z = zs. Its sum will be denoted by ps:

Ps:=J;>e^<oo. (2.14)

This sum may be interpreted as the density of the saturated vapour. In this paper
we shall be mainly interested in values of z and p which exceed the saturation
values zs and ρs.

3. The Becker-Doring Theory

As mentioned earlier, the original Becker-Doring theory of metastability applies
to the constant-Cj version of the kinetic equations. Suppose we give c1 some value
just greater than zs, and look for a steady state solution, i.e. one where dcjdt = 0
(/ = 1,2,...). The relevant equilibrium solution, with all Jl = 0, is given by (2.4) with
z = cί. This solution may well be a good approximation to the steady state for
small /, but it cannot be right for large /, because if z > zs the right side of (2.4)
becomes very large for large /. A more sensible steady-state solution can be obtained
by relaxing the condition Jl = 0, in which case the Jl are independent of / but not
zero. Their common value, denoted here by J(cx), is determined by using the
condition that ct be bounded for large /. The quantity J(cx) is called the nucleation
rate; it gives the rate per unit volume at which clusters are acquiring new particles
in the steady state. The resulting steady-state solution will be denoted here by

*ι=/ι(cι) (/=U,...). (3.1)

Explicit formulas for J(cx) and/^cj are given in Eqs. (5.8) and (5.9) below.
The crux of the Becker-Doring theory of metastability is that, for moderately

small values of cx — zs, the nucleation rate J(c^ can be extremely small, so small
as to be completely undetectable experimentally. This makes it possible to think
of (3.1) as representing a metastable state in which large clusters (i.e. the new phase)
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are being formed extremely slowly. The mathematical feature responsible for these
very small nucleation rates, proved in Theorem 2 below, is that J(z) is exponentially
small in the limit z\zs. This means that, as z — zs becomes small, J(z) goes to zero
more rapidly than any power of z - zs.

4. The Main Results

In this paper, we shall go beyond the Becker-Dόring theory by treating
metastability as a time-dependent rather than a steady-state phenomenon. We
shall show that there exist solutions of the kinetic equations which, although not
equilibrium or even steady-state solutions, persist for an exponentially long time.
The main results can be summarized in four theorems, which are stated in the
present section and proved in Sects. 5-11. Theorem 1 puts an upper bound on the
rate of increase of the number of clusters larger than a certain critical size /*.
Theorem 2 gives estimates showing that, under suitable conditions, this rate of
increase is exponentially small, so that the time necessary for the number of particles
in super-critical clusters to become appreciable is exponentially large. Theorems
3 and 4 contain the explicit construction of metastable states, with lifetimes which
are exponentially long but not infinite.

Theorem 1. Let z be chosen greater than zs, and let the initial data in a solution ct(t)
of the Becker-Dόring equations (2. 1-3 A or B) satisfy

/=1,2,...) (4.1)

and

Σ/2cI(0)<oo, (4.2)
i

where fj(z) is the unique solution (given explicitly in (5.9), the symbol J(z) appearing
there being defined in (5.8)) of the difference equation

*ι- ι*/ι- 1(*) - (bι + fl,*)/i(*) + V ι/ι + 1 (z) = 0 (/ = 2, 3, . . .) (4.3)

with the end conditions

Λ(z) = z (4-4)

and
/,(z) is bounded as ί->oo. (4.5)

Then for all t — 0 we have

(1 = 1,2,...), (4.6)

, (4.7)

Af t(ί) g 2'-2{Af t(0) + toJ* + toJ*[(/* + IVjS]''1 [1 + M0(0)/t0J* + t/to]'}, (4.8)

where Mr(t), β and t0 are defined by

Mr(ί):= Σ l'cr(t) (r = 0,l), (4.9)
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/?:=(2-α)/(l-α), i.e. (/?- 1)(1 -α)= 1, (4.10)

ί0:=(/* + l)A4z (4.11)

with A the constant in (2.7), J* is defined by
1, (4.12)

and /* is the critical cluster size, defined as the value of I that minimizes the
quantity α/β/z'.

By (2.6) and the mono tonic decrease of bt/ah this value of / is the unique
solution of

bp/ar ^z>bt* + Jap +ί (4. 1 3)

with the convention b± — oo to take care of the case where z > b2/a2. By (2.10) this
definition implies that /* increases without bound as z \ zs; further information
about /* and related quantities will be found in Theorem 2.

The proof of Theorem 1 is given in Sects. 7 and 8. It depends on two lemmas,
which are stated and proved in Sects. 5 and 6. Before embarking on this proof,
however, we state the other three theorems. The following terminology will be
used, where q(z) stands for any quantity depending on z.

"q(z) is exponentially small": for all positive m we have
q(z) = 0(z - zs)

m (i.e. q(z)/(z - zs)
m is bounded as z \ zs)

"q(z) is at most algebraically large": for some positive m we have
q(z) = 0(z-zsΓ

m

Theorem 2. This theorem is about the orders of magnitude of the quantities /*, J*
and M0(0) appearing in Theorem 1. Let z be any number greater than zs. Then the
following results hold:

(i) /*, defined in (4.13), is at most algebraically large.
(ii) All moments of the equilibrium cluster size distribution converge when z = zs:

(4.14)

in particular, the case n = 1 gives Eq. (2.14).
(iii) The quantities J*(z), defined by

J*(z):=α^z'*+1 (4.15)

and J(z\ defined by

(416)

are exponentially small.
(iv) The ratio p*(z)/J*(z), where

p*(z):= Σ /β,zΛ (4.17)
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is at most algebraically large', moreover, p*(z), being the product o/p*(z)/J*(z) with
the exponentially small quantity J*(z), is itself exponentially small

The proof of this theorem is given in Sect. 9.
The final pair of theorems use Theorems 1 and 2 to construct a metastable

solution of the Becker-Doring equations (2.1-3) — more precisely, a family of
solutions, one for each z > zS9 such that as z — zs becomes small a quantity which
we can interpret as the lifetime of the solution becomes exponentially large.
Theorem 3 applies to version A of the equations, and shows that in this case the
concentration of super-critical clusters eventually grows beyond all bounds, but
takes an exponentially long time to do so. Theorem 4 applies to version B; in
addition to containing the analogous result that the number of super-critical clusters
takes an exponentially long time to reach its final equilibrium value, the theorem
also shows that the entire distribution of sub-critical clusters in the metastable
state changes exponentially slowly.

The particular cluster distribution investigated is given in (4.18). For clusters
smaller than the critical size /* it is identical with the one given by Becker and
Dδring; but for larger clusters a different formula is used, chosen so as to ensure
that the condition Σl2ct < oo (Eq. (4.2)) is satisfied and that the initial number of
particles in super-critical clusters is exponentially small. The exact choice is not
very significant; it was made so as to give a total concentration of particles which
was manifestly greater than the critical concentration ρs.

Theorem 3. Consider the solution ct(t) of the Becker-Doring constant-c^ kinetic
equations ('case A') with initial conditions

This solution has an exponentially long lifetime, in the sense that

(i) Ift is at most algebraically large then M^t), the concentration of particles in
super-critical clusters as defined in (4.9), is exponentially small.

(ii) In the limit of large t,M\(t) grows beyond all bounds.

That is to say, the number of super-critical clusters remains exponentially small
until an exponentially long time has elapsed; but eventually it does become
large — large enough, indeed, to invalidate the low-density approximations upon
which the derivation of the Becker-Doring equations was based in the first
place.

Theorem 4. For constant-density kinetics ("case F), the solution of the kinetic
equations with initial conditions (4.18) has an exponentially long lifetime in the sense
that for each fixed I the following two results hold in the limit z \ zs (which implies

/*->oo):

(i) I f t is at most algebraically large, then ct(t) — Cι(Q) is exponentially small

(ii) lim [ct(t) — Cj(0)] is not exponentially small.
r-»oo

That is to say, cluster concentrations with / « /* remain exponentially close
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to their initial values until an exponentially long time has elapsed; but eventually
they do change.

The proofs of Theorems 3 and 4 are given in Sects. 10 and 11.

5. Properties of the Becker-Doring Steady State

To prove Theorem 1 we need some preliminary results. These will take the form
of two lemmas. Lemma 1 gives some useful properties of the steady-state solution
fl which forms the basis of the Becker-Doring theory of metastability

Lemma 1.
(i) For each z>zs the conditions (4.3-4.5) define a unique sequence ft(z)

(/=1,2,...)
(ii) For fixed z, aj^z] decreases monotonically with I:

*ι + ι/ι + ι(*)^fl|/ι(*) (/=1,2,...) (5.1)

(iii) For fixed I, fι(z)/z increases monotonically with z, and hence ft(z) increases
strictly monotonically with z:

if z'>z then fl(z')>fl(z) (/=1,2,...). (5.2)

(iv) The sequence ft(z) (I = 1,2,...) has the upper bound

fι(z)^QιZl (5.3)

(v) In the limit z \ zs, the sequence f{(z) becomes the equilibrium cluster
distribution at z = z '

= QA' (1=1,2,...) (5.4)
z\z s

so that, by (5.2),

fl(z)>Qlzs

l for z>zs (/=1,2,...). (5.5)

Proof of Lemma 1. First we obtain the explicit solution of the difference Eq. (4.3).
The method is essentially that of Becker and Dδring (1935). To start, we note that
the difference equation is equivalent to the statement that J(z), defined for the
moment by

J(z):=fl,z/,(z)-Vi/i + iW (/=1,2,...) (5.6)

is independent of /. Dividing both sides of the above equation by a^z1*1 and
using the identity atQt = bl+1Ql+ί derived from (2.6), we obtain

J(z) fl(z)

Now, as we saw when discussing (2.13), the ratio of successive terms of the series
oo

]Γ Ql z
1, in the limit of large /, is z/zs. Since we are requiring z > zs, the denominators

i
on the right of (5.7) grow without bound as /-> oo. Hence, by the condition (4.5) in
the definition of fl9 both terms on the right of (5.7) tend to zero as /-> oo. Summing
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both sides of (5.7) from / = 1 to oo, and using (2.5) and (4.4) to show that fJQ^z — 1,
we conclude that

The series is a convergent sum of positive terms, so that we can be sure J(z) > 0.
Equation (5.8) is the formula for J(z) used in Theorem 2 (Eq. (4.16)).

To obtain ft(z) explicitly, we sum both sides of (5.7) from / to infinity and obtain

If the conditions (4.3-5) have a solution at all, this is it; but we must still show
that /j(z) as given by (5.9) does indeed satisfy the conditions. For (4.3) and (4.4)
this is a matter of substitution. For (4.5) we use part (ii) of the lemma (proved just
below) to show that d ι + ι f ι + ι ( z ) ^ a ί f ί ( z ) 9 and hence that fι + ι(z)^aίfί(z)/A' =
const, by (2.7); if (as is normally the case) the coefficients a{ increase without bound
as /-» oo, then we have in addition lim /,(z) = 0.

/->oo

Part (ii) of the lemma concerns the monotonic decrease of aj{(z\ From (5.9)
it follows that

hl + 1z-ι + hl + lhl + 2z~2 + .-.], (5.10)

where

h -bl+l- aβl (5 i n"ί+i — — -^ ly 11;
"1 + 1 al+Ml+\

By our hypothesis (2.9), ht is a decreasing function of / and hence every term in the
series for aj^z) is a decreasing function of /; so part (ii) of the lemma is proved.

To prove part (iii) of the lemma we define, for any given z and z' both greater
than zS9 two new sequences

7,(z', z):= z'f^z] - z/,(z') (/ = 1, 2, . . .), (5.12)

Jάz'^at'f&'Λ-b^J^^z'Λ (/=1,2,...). (5.13)

Using these definitions and then the difference equations (4.3) for ft(z) and fι(z'\
we calculate (for / ̂  2)

Jt-^z) - J,(z',z) = at.jft-^z) - (ft, + atfJtfΛ + ftί + 1/ι + 1(z',z)

= z'{flI.1z
//I.1(z)-(6l + αϊzO/,(z) + ft| + 1/l + 1(z)}

- zjα,. !//!_ t(z') - (ftf

= z'(z'-z)(αl.1/I-1(z)-

^0 if z r>z, (5.14)

the last line being a consequence of (5.1). Thus (assuming from now on that z' > z)
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the sequence J1 , J2, . . . is monotonic decreasing, and can therefore change sign at
most once.

Let Γbe the (unique) value of / at which this sequence changes sign, so that

where we take 1 = 0 if all terms are negative and Γ= oo if all are non-negative. By
the same manipulations as in the derivation of (5.9) from (5.6), we can solve the
system of equations (5.13) for fh obtaining

r (5 16)

Setting / = 1 and noting that (by (5.12) and (4.4)) Jι(z'9z) = 0, we obtain

v ft*') , v *.(*«) -o (517)
Afl,βX'+1+

rtKδX'+1 α ( }

By (5.15), the first sum consists entirely of non-negative terms and the second
consists entirely of negative terms.

Now we can complete the proof of part (iii) of the lemma by using (5.16) to
show that Jι(z'9 z) is non-positive. There are two cases to consider. If ί ̂  Γ, then by
(5.15) all terms of the sum in (5.16) are negative, and so 7f(z',z) is negative. If / < Ϊ9

then there may be some positive terms in the sum as well, but by (5.17) these terms
can at most cancel the contribution of the negative terms. Thus in either case we have

)gO. (5.18)

Referring back to the definition (5.12) of /z(z',z), and remembering that we have
been assuming z' > z, we obtain part (iii) of the lemma.

Part (iv) of the lemma follows immediately from the fact that the series in (5.9)
is a subset of the series in (5.8) for l/J(z), in which all terms are positive.

For part (v) of the lemma we first show that

limJ(z) = 0. (5.19)
z\zs

From (2.6), (2.9) and (2.10) we have

fliβiM + iGi+i = bl+Jal + i^
 z*> (5.20)

and hence

= Π arQr/ar+1Qr+1 ^z.l~l. (5.21)
r = l

Putting this estimate into (5.8) we have

<5 22'from which (5.19) follows immediately.
Taking the limit z \ zs in (5.6) we obtain
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αA/l(zJ-6l+1/l+1(zβ) = 0, (5.23)

where fι(zs) means lim /z(z). Solving this recurrence relation, as in the derivation
z\zs

of (2.4), we obtain (5.4) and so complete the proof of the lemma.

6. Approximation by a Finite System of Equations

Lemma 2 is concerned with some properties of the infinite system of differential
equations (2.1-3), of which the most basic are the existence and uniqueness of
solutions. Unfortunately it is not possible to apply the standard existence and
uniqueness theory of ordinary differential equations in Banach space because the
coefficients al and bl are not bounded; some kind of limiting process in which the
infinite system is approximated by a sequence of more tractable equations has to
be used. The method we shall use here follows earlier work on infinite systems of
equations of this kind (Reuter & Ledermann 1953; McLeod 1962, Ball et al. 1986
etc.) in which the infinite system is approximated by an auxiliary finite system with
only n non-zero dependent variables, where n can take any positive integral value.
The approximating system we shall use is

AΓ (n)(t\
= J,_1'»>(t)-Jl""(t) (/ = 2,3,...,n), (6.1)

..), (6.2)

J,W(ί) = αίCl<">(£)c/«'(ί) - bl+1cl+ !<«>(ί) (/ = 1,2,3,..., n), (6.3)

- = 0 (case A: constant c t)

W
= - J!(n)(ί) - Y J/w)(0 (case B: constant p)

at

with the initial conditions

cI

(">(0) = C, (/=l,. . . ,n), (6.5)

where n is an arbitrary positive integer. The non-negative constants C1? C2, . . . are
independent of n and correspond to a finite total density, denoted by p:

p:=|/C,<oo. (6.6)

This auxiliary system of equations is similar to the one used in Ball et al. (1986),
but with the difference that the method used there is equivalent to setting Jn = 0,
whereas here we set cn+ ^ = 0. The method used here gives a little more information
about the values of the cl variables and so enables us to apply a maximum principle
to these variables (see Eq. (7.8) below).

Lemma 2.

(i) For each positive integer n the system of equations (6.1-6) has a unique continuous
solution c/w)(ί) (/ = 1, 2, . . . ίe[0, oo)).
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(ii) This solution is non-negative

(/=1,2,...). (6.7)

(iii) The density at time t has an upper bound independent ofn, given by

f lc (n)(t) < [PQ*V(2AC^ (case A: constant cι)l
r l |p (case B: constant p ) j '

(The inequality (6.8A) and its relevance to this work were pointed out to me by
J. M. Ball (1988)).
(iv) If the initial data C1,C2,. . have a finite second moment

i

then the second moment at time t has an upper bound independent of n, given by

A:

(6.9)

(6 10)
|σexρ(2v4pί) (case B: constant p )J

(v) // (6.9) holds then there exists an increasing sequence of positive integers
n 1,n 2,. . . such that as n tends to oo through these values the solutions to the
approximating system of equations converge to the unique non-negative solution ct(f)
of the full system of kinetic equations (2.1-3) with initial conditions cz(0) = Q

(1=1,2,...):

limcl

(nk)(t) = cl(t) ( ί=l,2, . . . ;0gf<oo), (6.11)

the convergence being, for each fixed /, uniform on compact intervals of the positive
real t-axis.

Proof of Lemma 2. For parts (i) and (ii) the method of proof is just the same as in
Lemma 2.1 of Ball et al. (1986).

For part (iii) the method is to calculate the rate of change of the sum we are
interested in, using the given differential equations (6.1,2 and 4), and then to
estimate this rate of change using the upper bound

J/M) ̂  ΛPc/V0 ^ Alc^cf* (I = 1, 2, . . . , n), (6.12)

which follows from (6.3), (2.7) and (6.7), and the lower bound

Λ(M)^0, (6.13)

which follows from (6.3), (6.2) and (6.7). Thus, in case A we have (omitting the
superscripts (n) for easier reading)

Σ'( Λ-ι- Λ) by (6.1)
2

by (6.12). (6.14)
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From (6.4A) and (6.5) we know that ct(ί) = CΊ for all t ̂  0; putting this value for
Ci(ί) into (6.14) we obtain a differential inequality for ΣMO Dividing both sides
by ΣMO> integrating from 0 to f, and noting that (because of (6.5) and (6.6)) the

n

initial condition satisfies Σ MΦ ̂  P> we obtain (6.8A).
i

For case B, the corresponding calculation, using (6.4B), gives

(d/dt) £ Mi) =
1

= -(n+l)Jn

^0 by (6. 13). (6.15)

n

Solving this differential inequality, with initial condition satisfying Σ MO) ̂  p as
before, we obtain (6.8B). x

The method for proving part (iv) of the lemma is very similar. In case A we have

5J2 + 7J3 + .- +(2n- l)Jn_i -n2Jn

by (6.12 and 13) (6.16)

with the initial condition Σ '2c/(0) = Σ '2^z ̂  σ, from which (recalling that cx(ί) is
i i

equal to the constant CJ, we obtain (6.10A). In case B the corresponding calculation
gives

ϊ(ί). (6.17)

From (6.8B) and (6.7), we have cx(ί)^p. Substituting this bound into (6.17) and
then solving the differential inequality, we obtain (6.10B).

To prove part (v) we apply the methods used in Ball et al. (1986). For each /,
inequalities (6.7) and (6.8) and the constitutive relation (6.3) show that the right-hand
sides of the differential equations (6.1) and (6.4) are uniformly bounded as n-> oo.
The sequence of functions c/rt)(ί) (n = 1, 2, . . . ) is therefore equicontinuous, and so
we can apply Ascoli's theorem together with the "diagonal" argument described
by McLeod (1962) to show that it has a sub-sequence converging uniformly to a
solution of the full system of differential equations. To do this, consider first
case A. Let T be any positive number. Ascoli's theorem shows that there is a
sequence of integers S2 <= {1,2,3,...} such that the sequence of functions c2

(n\f)
(neS2) converges uniformly on the interval [0, T] of the real ί-axis to a continuous
function c2(ί); a second application of Ascoli's theorem shows that there is a
sub-sequence S3 c S2 such that c3

(w)(ί) (ne53) also converges uniformly to a
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continuous function c3; a third application shows that there is a S4 c S3 such that
c±n\t) (neS4) also converges, and so on. Then we can take nk in (6.11) to be the
fcth member of Sk+1, so that (6.11) gives a continuous function c^t) for every /. By
the constitutive relations (6.3) and (2.2), the sequence of functions J/"k)(ί)
(fe = 1, 2, . . . ) also converges as k -* oo to a continuous function Jj(f), uniformly on
[0, T], for each value of /. Integrating both sides of (6.1) from 0 to T, taking the
limit n -> oo on both sides of the equation, setting T = t and finally differentiating
with respect to £, we conclude that the functions cz(ί) defined by (6.11) do satisfy
the infinite system of differential equations (2. 1-3 A).

In case B, the method of constructing the continuous functions cz(ί) is the same
except that we start with cί rather than c2. The method of proving that these
functions satisfy the differential equations is also the same in the case of c2, c3, ____
In the case of the differential equation for c^t) we also need to show that as n -» oo
the sum of the series in (6.4B) converges to the sum of the series in (2.3B) uniformly
on [0, T]. Now we know from (6.7), (6.8B) and (6.10B) that

I

p (/ = 2,3,...)J ? l * '

and hence, from (6.3) and (2.7), that

J/w)(0 ̂  Apσ exp (2Apt)/l2 ~α (/ = 2, 3, . . . ), (6.19)

and (from (2.12)) that

J/π)(£)^ -Azsexp(G')σexp(2Apt)/l2-* (1 = 2,3,...). (6.20)

Thus we have, for all t in [0, T],

(ίe[0,Γ]) (1 = 2,3,...), (6.21)

where K(T) = const. Qxp(2ApT). Since the series £ l//2~α converges we can, given
i

oo

any small positive number ε, choose L large enough to make £ | J/w)(0 — Jι(t) I < ε/2
L+l

for all £e[0, T], and then (by the uniform convergence in Ascoli's theorem) choose
L

n large enough to make £ | J/w)(ί) - Jt(t)\ < ε/2 for all £e[0, T]; so the sum of the
i

infinite series in (6.4B) converges as n-» oo, uniformly on [0, T], to the sum of the
infinite series in (2.3B). Then at last we can, as before, integrate both sides of (6.4B)
from 0 to T, take the limit n ->• oo on both sides, and differentiate again (using
the continuity of the functions Jt(t) and the uniformity of the convergence as n -> oo)
to show that the function c^t) defined by (6.11) satisfies Eq. (2.3B).

It remains to show that the solution of (2.1-3) constructed in this way is unique.
For case B, a proof is given in Theorem 3.6 of Ball et al. (1986). For case A the
following version of their argument applies. Let ct and c{ be any two solutions of
the full Becker-Dόring system (2. 1-3 A) with the same initial conditions satisfying
(4.2). Define

xl(t) = cl(t}-c{(t) (/=1,2,...) (6.22)
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Let N be any positive integer and define the function sgn by

f h l if x>Q}
sgn(x):= < 0 if x = θL (6.23)

[-1 if x < θ j

so that d\x\/dt = sgn(x)dx/dt a.e. . Then we have from (2.1-2),

N N

^\xr\=^sgΐi(xr)[_ar.1cίxr^1-(arc1+br)xr + br+1xr+l']
2 2

N

= Σ lAcι sgn (xr+ i) - (arCi + br) sgn (xr) + br sgn (xr_ Jjx,

^ + bN+1xN+ 1 sgn(xN)

(6.24)

since the summand is always non-positive, regardless of the signs of xr-l9xr and
xr+1. From (6.7), (6.8) and (6.11) we have

c,(ί) ̂  /- 1pexp(2>4c1(0)ίX (6.25)

so that

|xN|^27V-Vexp(2^c1(0)ί), |xw + 1 |^2(N+ !Γ1pexp(2^c1(0)ί) (6.26)

Substituting this into (6.24), integrating from 0 to ί with the initial conditions
xr(0) = 0 (r = 1, 2, . . . ), and then taking the limit N -> oo, we obtain

Σ l*r(*)l^0. (6.27)
r = 2

From this it follows that all the xr(ή are 0 for all ί. So the two solutions ct and c{
are in the fact identical, and uniqueness is proved.

7. The Becker-Dόring Steady State as an Upper Bound

Now we can prove the first result in Theorem 1: Eq. (4.6). We prove that if
Eq. (4.6) (repeated here for convenience)

O^c^/Xz) (/=1,2,...) (7.1)

holds for t = 0, then it holds for all t ̂  0.

Proof. We first prove the inequalities (7.1) for the auxiliary n-dimensional system
of equations considered in Lemma 2 (Eqns. 6.1-4) and then take the limit Π-+CQ
using (6.11). The first step is to show that (7.1) is true of the modified version of
these equations obtained by subtracting a term εc/w)(ί), where ε is a small positive
constant, from the right side of (6.1). This modification does not affect the proofs
and results in Lemma 2. In particular, (6.7) still holds, and so the left-hand part
of (7.1) is proved for the modified system. To prove the right-hand part of (7.1),
choose any positive integer n, let c/π)(ί) be the solution of the modified version of
the equations, and suppose the right-hand inequality in (7.1) to be untrue for some
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particular positive value or values of / and t. We shall show that this hypothesis
leads to a contradiction.

Supposing the hypothesis to be true, let T be the infimum of the values of ί
for which the right side of (7.1) fails, so that T^O and (by continuity of
the functions Cj)

0£Cj<">(T)£/,(z) (/=!,..., n), (7.2)

but there is at least one value of /, call it L, and a T+ greater than T such that

CL(n)(t)>fL(z) (τ<t<τ+)y v ' '

It is clear from the definition of a derivative that (7.3) implies

^-cL

(π)(T)^0. (7.4)

Consider first the case L= 1. For version A of the equations, c^(n\f) does not
change in time, so that (7.3) contradicts (7.1). For version B (again omitting the
superscripts (ή) for easier reading), we have from (6.4B and 6.3)

at 1 2 1 = 1

= - a^z2 + b2c2(T) - a^z2 + £ (fy - arfc^T), (7.5)
1 = 2

since c1(T) = /1(z) = z by (7.3a) and (4.4), and cn+1(T) = 0 by (6.2). Now the
coefficient of cl is, by (2.9) and (4.13), non-negative for / ̂  /* but negative for larger
/, and so we obtain, using (7.2),

dc i**
1 /T~"\ <* n _2 i L f n 2 i \^ /L .- \ f (H fΛ

at = 1 = 2 l l h

where /** means the smaller of /* and n. Rearranging, we obtain

dCi 2 t"-1

dt ~ 1=1

= —/**J(z) — α**zf ** (77)

by (4.4) and (5.6). Since both J(z) and ft** are positive (by (5.8) and (5.9)), we have
a contradiction with (7.4).

Now consider the case L> 1. The modified version of'(6.1), with (6.3), gives

-ι(Γ)-[&L + ΛLc1(T)]cL(Γ) + 6L+1cL+1(T)-εcL(T)

+ ̂ ^A^ί^-εc^T) (7.8)

by (7.2 and 3); for the case where L = n we have also used (6.2) in the form
cn+ι(n)(T) = 0. Subtracting the left side of (4.3) (with / = L) from the right side of
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(7.8), we obtain

^(T) ^ (aL.JL- ! - αL/L.)(Cl(T) - z) - scL(T). (7.9)

By Lemma 1 (Eq. (5.1)), the first quantity in brackets on the right is positive, and by
(7.2) and (4.4) the second is non-positive; so we have a contradiction with (7.4). Thus,
for the system of equations obtained by subtracting εc/π)(T) from each equation
in (6.1), our hypothesis that the condition (7.1) is violated for some positive t leads
to a contradiction in all the possible cases, and we conclude that (7.1) is true for
this system of equations.

To complete the proof that (7.1) is true of the finite system of equations (6.1-5)
we take the limit ε->0 and use the fact that the solutions of a differential equation
depend continuously on parameters in the equation (Hartman 1964, pp. 93-94).
Finally we extend the result to the infinite system of equations (2.1-3) by applying
Eq. (6.11).

8. Proof of Theorem 1: A Bound on the Number of Large Clusters

Now we can complete the proof of Theorem 1. To prove the upper bound (4.7)
on M0(ί), the number of super-critical clusters, as defined in (4.9), we use
(2.1) to obtain

M0(ί)-M0(0)=lim £ {(J^M-J^Ai
L-»oo J*+l 0

= lim }(J,.(ιι)-JL(M))du
L-»oo 0

= f J,*(ιι)dιι (8.1)

because of the uniform upper bound on JL implied by (6.19). Using (2.2) to evaluate
J/* we obtain

by (4.6) and (4.4)

by (5.3) and (4.12). (8.2)

Substituting from (8.2) into (8.1), we complete the proof of (4.7).
The proof of (4.8) is analogous. From (4.9) and (2.1) we have

M1(ί)-M1(0)=lim £
L-»oo Z*+l

= lim } [(/* + 1) MU) + LΣ Jι(u) - LJL(u)]du
L->oo 0 |_ J*+l J

J Γ(
o|_

= J (/* + 1)̂ (11) + Jι(
o|_ ί*+ι

the last line following, by dominated convergence, from the uniform upper bound
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on Jj(w) implied by (6.19). Differentiating both sides of (8.3), we obtain, since the
integrand is continuous (being, because of (6.19), the sum of a uniformly convergent
series of continuous functions),

dM °°
— I (t) = (/* + !)/„(«) + £ J,(t)

at ι=f«+ι

ζ(l* + l)zal,fl,+ £ zα(c,(t) by (4.6) and (4.4)
ί = l*+l

^ (/* + 1)J* + zAMl

Ό-*(t)Ml(t) (8.4)

by (2.7) and Holder's inequality (Hardy et al 1959).
To solve the differential inequality (8.4) it is convenient to introduce the scaled

variables

μr(t) =Mr(t)/t0J* (r = 0,l), (8.5)

τ:= ί/ί0, (8.6)

where ί0 is defined in (4.11). In this notation, (8.4) becomes

(8.7)

by Holder's inequality. Using the integrating factor (1 + μ^", we obtain

^(1 + μj - ί (/* + 1)(1 - «)(! + μo)1 -«, (8.8)

and hence

(1 + μι(τ))1 - £(l+μι (O))1 -" + (/* + 1)(1 - α) f (1 + μ0(τt))1-"dτt. (8.9)
0

Substituting from (4.7), which in the present notation takes the form μ0(τ)g
μ0(0) + τ, and carrying out the integration, we obtain

(l + μΛτ^-^l+μΛO))1-^

(8.10)

where β = (2 — α)/(l — α) as defined in (4.10). It follows, by omitting the negative
term on the right-hand side and then applying Holder's inequality once again, that

(l+μ1(τ))1-α<2α[l+μ1(0) + [(P + l)/jβ]W-α>(l+μ0(0) + ̂  (8.11)

Solving for μx(τ) and returning to the original notation with the help of (8.5) and
(8.6) we obtain (4.8), completing the proof of Theorem 1.

9. Proof of Theorem 2

For part (i), that /* is not exponentially large, we use (4.13) and the right side of
(2.12) to show that

z ̂  VM* < zsexp(G'/*-y/). (9.1)
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Rearranging, we obtain

7 \~\-i f (Q 9\zs)j - \?'L)

So /* grows no faster than [log(z/zs)]~w as z\z s and is therefore at most
algebraically large.

For the other three parts of the theorem, the following lemma will be useful.
Let n, m be any integers with 1 g m ̂  n. Then we have

Qn/Qm = (<*Mrfl+ ι (
flA) by (2.6)

^(ajan)zs

m~n^\- Σ Gr~Λ by (2.12)
L r = m + l J

^ (flm/«Jzs

m-nexp - J Gr'^dr , since y < 1 by (2.11)

= (ajan)zs

m~nexp [ - G(nl ̂  - m1 -y)/(l - y)]. (9.3)

We first use this lemma to prove part (ii) of the theorem, that all moments of
the equilibrium cluster size distribution converge when z = zs. Setting m = 1 in
(9.3), and remembering that Q1 = 1 by (2.5), we can use the lemma to estimate the
large-AT behaviour of the sum

Σ FQiZ*^ Σ ϊ"*.(*ι/*ι)^Pl-G(l^- !)/(! -y)] by (9.3)
1=1 ί=l

< 2zs(aJAf) J /"exp [- G(lί~y- !)/(! - y)]d/, (9.4)
i

since ΐ/at ^ I/A' by (2.7), y < 1 by (2.11), and the integrand comprises at most 2
monotonic sections. The integral converges as N-> oo, and hence the sum does so
too, which proves part (ii) of the theorem.

For part (iii) it is enough to show that J*(z) is exponentially small; for J(z) is
even smaller, the sum for l/J(z) in Eq. (4.16) being larger than its largest term
l/J*(z). Setting m = 1, n = I in (9.3) and again using Qί = 1, we have

flifii^1 < *ιΦ/zJ exp [ - G(ll ~y - !)/(! - y)]
= α^exp [Πog(z/zs) - Gil1 ̂  - !)/(! - y)]. (9.5)

The minimum value of the right-hand side, achieved when / = [G/log(z/zs)]1/y, is

.)]-<!-rt/rj.

Since we are considering the limit z \ zs, we may take z close enough to zs to
ensure that [G/log(z/zs)]1/y^ 1̂ . Then the second derivative of the exponent in
(9.5), Gy/"7"1, is bounded above by Gy for all / in the interval defined by

and so (by Taylor's theorem) the exponent itself exceeds its minimum value by at
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most iGy(^)2 for all / in this interval. There is an integer value of / within this
interval, and for this value of / the inequality (9.5) therefore implies

zs)Y^-^ (9.6)

Since /* is by definition the value of / minimizing the left side of (9.6), it follows
that (9.6) is also true with / replaced by /*, that is when the left-hand side is
(by the definition (4.15)) equal to J*(z). Since y<\ by (2.11) and log(z/zs)^
(z — zs)/zs, the right-hand side is exponentially small and so part (iii) of the theorem
is proved.

For part (iv) we use the definitions (4.15) and (4.17), and then (9.3) with
m = /*, to write

zp*(z)/J*(z)= f nQrf/apQpZ*

/*+!

1 -< (21 A) nexp [ - Gfo1 -> - (ί*)1 ->)/(! - y)]rfn, (9.7)

since z > zs is a condition of the theorem, an ̂  A' by (2.7), and the integrand

comprises at most 2 monotonic sections. Changing the variable of integration to

x:= Gin1 -'-

we obtain

p*(z)/J*(z)<(2/yl'G)f

(9.8)

So, as z \ zs, the ratio p*(z)/J*(z) grows no faster than a power of /*, and therefore,
by part (i) of the theorem, it is at most algebraically large. This completes the proof
of Theorem 2.

10. Proof of Theorem 3

For part (i), that M±(t) is exponentially small if t is at most algebraically large, we
use the bound on Mx(ί) given in (4.8). On the right there are various quantities to
be bounded. The first is Mt(0); this is exponentially small because it is equal
(by (4.17 and 18)) to p*(z) which is exponentially small by part (iv) of Theorem 2.
By part (iii) of Theorem 2, the factor J* is exponentially small, and by part (i) the
factor involving /* is at most algebraically large. By (4.17 and 18) we have here
M0(0)<p*(z), and hence by part (iv) of Theorem 2 the factor in (4.8) involving
M0(0) is at most algebraically large. So part (i) is proved.
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For part (ii) of the theorem, that Mx(ί) -> oo for large ί, the proof is longer. Let
m, n be any integers satisfying /* < m ̂  n. We shall first prove the following
preliminary results:

(a) MΛO^ Σ MO; (lo.i)
(b) c,(0^/%, (10.2)

with c/^ί) the solution of the finite approximating system used in Lemma 2;

(c) limcI<->(ί) = /I<">(c1), (10.3)
f-»αo

where //(π)(z) *s defined as in (5.8-9) but with the sums going from 1 to n instead
of 1 to oo (see Eq. (10.18) below);

(d) lim/,<">(*) = /,(z); (10.4)
w-»oo

(e) ft(z)2:J(z)/Arz. (10.5)

By combining the results (10.1-3) we find that

m

liminfM^ί)^ £ /;<">(Cl). (10.6)
f-»QO l*+l

Taking the limit n-> oo on both sides, and using (10.4 and 5) with z replaced by
cl9 we find that

liminfM^f)^ JΓ J(cι)/APcl9 (10.7)
f-» oo /*+!

and since the right side increases without bound as m-> oo, part (ii) of Theorem 3
follows.

It remains to prove the results (10.1 to 5). Equation (10.1) comes from the
definition (4.9) of Mj(ί) and the non-negativity of solutions. For (10.2), we define

y,(t);= cf* + 1\t) - cf»(t) (I = 1,2,..., n + 1) (10.8)

with the aim of showing that yt(t) is non-negative for all / ̂  n + 1. By (6.1-3) the
quantities j ί̂) satisfy the equations

dyjdt = α,.^!^.! - (alc1 + b^ + bl+1yl+1 (I = 2,3,... ,n), (10.9)

but

dyΛ +ι/Λ = αllc1cll

(" + 1)-(fl ϊ lc1 + 6 l l)y l l+1 since cn+1

(n) = 0

^^^-(^Ci + ftJ^+i by (10.8). (10.10)

The end condition is

^(0 = 0 (allί^O), (10.11)

and the initial conditions satisfy

(10.12)

(10.13)
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By an argument similar to the one used in proving the right side of (7.1), we can
now show that

y,(ί)^0 (/ = 2,3,...,n + l andallί^O), (10.14)

and hence (by (10.8)) that c/n)(ί) increases monotonically with n at fixed / and t.
Using the formula (6.11) for ct(t) we deduce (10.2).

To prove (10.3) we again start from the finite approximating system (6.1-4).
We define the Lyapunov function

l (10.15)
1=1

which, by (6.2-4) satisfies

dV/dt =

-i00 - J,w)2 by (2.6) and (6.1). (10.16)
2

This shows that V(t) is non-increasing, and since it is also non-negative it tends,
as t -> oo, to a limit at which Jl_l=Jl(l = 29...9n). Proceeding as in the argument
based on (5.6) we obtain (10.3), with

To prove (10.4), we need only take the limit «-> oo in the formula (10.17) and
compare with the formulas (5.8 and 9) for /z(z).

Finally, to prove (10.5) we use (5.6) and (2.7), obtaining

z, (10.18)

which is equivalent to (10.5).

11. Proof of Theorem 4

For part (i) we use Theorem 1 to obtain upper and lower bounds on cz(ί). Condition
(4.1) for the validity of Theorem 1 is satisfied because of (4.18) and (5.5), and
condition (4.2) because of (4.14). Some of the bounds we need are given by (4.6):

Ogc,(i)g/i(z) (/=1,2,...). (11.1)

00

To obtain the rest of them we use the fact, proved in Ball et al. (1986), that £ lct(t)
is independent of t. By (4.9) this gives 1

Σ i[cι(0) ~ Φ)-] = M,(t) - M^O). (11.2)
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Given any fixed value of /, the summation in (11.2) will eventually include a
term /[cj(0) — ct(t)~]9 since /* increases without bound as z \ zs. By (4.18) and (4.6),
every term of the sum in (11.2) is non-negative; so the term corresponding to the
given value of / cannot exceed the right-hand side. But we have already seen, in
the proof of part (i) of Theorem 3, that the right-hand side is exponentially small;
so we conclude, for every fixed value of I, that cz(0) — c^t) is non-negative and
exponentially small. This completes the proof of part (i) of Theorem 4.

For part (ii) we use the result of Ball and Carr (1988) that

β

1, (11.3)
f-*oo

so that, by (4.18),

lim [Cί(0) - c,(ί)] = ft(z) - Qtzs

l (I £ /*). (11.4)
t-+oo

Now, we know from parts (iii) and (v) of Lemma 1 that //(z)/z increases
monotonically with z at fixed / and has the limit QιZs

l/zs when z \ za. So we have
(since z > zs)

/,(z) - β A' £ zQtzJ/z, - QlZs

l = (z- zs)QlZs

l/zs, (11.5)

which is not exponentially small. For any fixed /, we can always make /* ̂  / by
choosing z close enough to zs; so Eq. (11.4) will apply as we approach the limit
z \ zs and hence, by (11.5), the left side of (11.4) is not exponentially small. This
completes the proof of Theorem 3.

12. Discussion

The discussion given so far refers to the case of a phase transition in a system of
particles, even though the equations of case A do not in fact conserve the total
concentration of particles. However, we would also like to have corresponding
results for a system such as a ferromagnet in which the order parameter is not
conserved. A version of the Becker-Dόring equations suitable for the Ising
ferromagnet is

(/= 1,2,3,...), (12.1)

1(t) (1= 1,2,3,...), (12.2)

(12.3)

where ct represents the concentration of clusters of "wrong" spins — i.e. ones that
are magnetized in the opposite direction to the majority — and z0 is a parameter
related to the strength of the applied magnetic field. In the equation for J0 the
term α0z0 represents the spontaneous appearance of isolated "wrong" spins and
the other term represents their spontaneous disappearance.

The system of equations (12.1-3) is equivalent to case A of the original system
(2.1-3), under the following change of notation:
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Eqs. (12.1-3) Eqs. (2.1-3)

(/ = <U!...)

Thus, all the theorems proved in this paper can be carried over to the system
(12.3). The only change of any moment is the factor cί in the last line above, which
has the effect of introducing a factor cί or c±~l into some of the formulas. This
change does not, however, affect the conclusions about metastability drawn in
Theorem 3.

To conclude, let us see how far the picture developed in this paper agress with
one's usual ideas about the nature of metastability. First, we test it against the
three criteria for a metastable state mentioned in the Introduction. (By a metastable
state we mean here a set of values for the ct variables differing by at most an
exponentially small amount from the initial values (4.18) used in Theorems 3
and 4.) The three criteria are:

(i) A single thermodynamic phase is present,
(ii) The lifetime of the metastable state is very long.

(iii) The probability of return, once the system has left the metastable state, is
very small.

For criterion (i) we need an interpretation of the phrase "a single thermodynamic
phase." It is natural to interpret small clusters as belonging to the vapour phase
and large ones to the liquid phase. If we draw the line between small and large
clusters at the critical size /* then we can interpret Mί9 defined in (5.9), as the
density of the liquid phase. According to Theorems 3 and 4, Ml is exponentially
small for the metastable state; thus there is virtually no liquid present and so
criterion (i) is satisfied. Moreover, to a very good approximation, the vapour phase
can be regarded as being in thermodynamic equilibrium in the sense that the
distribution of cluster sizes in the vapour is very close to the equilibrium distribution
(2.4), albeit with too large a value of c^ this follows from the fact that when z is
only a little greater than zs most of the contribution to the sums in (5.8) and (5.9)
comes from terms with / not far from /*, so that Eq. (5.9) implies ft(z)« Qtz

l for /«/*.
The second criterion is taken care of in Theorems 3 and 4, where it is shown

that the lifetime is very long.
For the third criterion we can use an argument based on a Lyapunov function.

For case A, the Lyapunov function given in (10.15) is appropriate; for case B a
suitable Lyapunov function (in physicist's language, the free energy density) is

oo

F(Cl,c2,...):= Σ c,Dog(c,/βrz/)- 1], (12.4)
r = l

which is shown in Theorem 4.7 of Ball et al. (1986) to be a non-increasing function
of time if c^ί), c2(t\... satisfy the Becker-Dόring equations (2.1-3B). For brevity,
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we give the rest of the argument only for case B. By (11.13) the value of F in the
final equilibrium is

- Σ βAr, (12-5)
r = l

whereas its value for the metastable state with cluster concentrations given by
(4.18) is

Σ/rP°8(/r/QAr)-l], (12.6)
r = l

which exceeds the final equilibrium value by

r = l
rC- login,)- 1 + tιJ, (12.7)

where ur stands for Qrzs

r/fr. Since the summand is non-negative, the sum is bounded
below by its first term, which is z[ — log(zs/z) — 1 + zs/z] and is not exponentially
small, being positive and 0(z — zs)

2 as z \ zs. This indicates that no return from
the final equilibrium to the metastable state is possible, no matter how small we
make z — zs. This argument provides a partial verification that criterion (iii) is
satisfied. A complete verification is hardly to be expected without going outside
the framework provide by the Becker-Doring equations; for it would demand a
discussion of the role of fluctuations in the distribution of cluster sizes, while the
Becker-Doring approximation is concerned only with the average behaviour of that
distribution.

In addition to satisfying these three criteria, we would also like the metastable
state to have, in keeping with its name, some stability against perturbations of the
cluster size distribution ct which are not too large. Provided the perturbation
does not seriously affect M l 5 the number of particles in super-critical clusters,
it is plausible that the metastable state will exhibit some form of asymptotic
stability — i.e that the perturbed system will return close to its original metastable
state in a time which is not exponentially long, and then remain close for a time
which is exponentially long — but the results given here are not sufficient to prove
it. This insufficiency may be connected with the fact that our results do not say
anything about the uniqueness of the metastable state. Our results are, however,
sufficient to prove a weaker kind of stability: that for a particular class of
perturbations — namely those which do not violate (4.1) and (4.2) and which lead
to only exponentially small changes in M0 and A^-the perturbed state will also
be metastable, in the sense that, despite the perturbation, M0 and M1 will remain
small for an exponentially long time. It may be possible to improve on this last
result, using the method Lyapunov functions as in Theorem 5.7 of Ball et al. (1986),
but we shall not enter into such a discussion here.
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