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Abstract. We introduce a Weyl group for the highest weight modules over the
Virasoro algebra and the Neveu-Schwarz and Ramond superalgebras. Using
this group we rewrite the character formulae for the irreducible highest weight
modules over these algebras in the form of the classical Weyl character formula
for the finite-dimensional irreducible representations of semi-simple Lie
algebras (and also of the Weyl-Kac character formula for the integrable highest
weight modules over affine Kac-Moody algebras). This is the same group we
introduced recently in order to rewrite in a similar manner the characters of the
singular highest weight modules over the affine Kac-Moody algebra A^.

Introduction

The present paper is an attempt to extend the notion of Weyl group to the Virasoro
and N = 1 super-Virasoro algebras. As we know Weyl groups and their general-
izations are very important in the representation theory of semi-simple Lie algebras
@0, of affine Kac-Moody algebras © and of super-algebras ©s associated with
(generalized) Cartan matrices (see e.g. [1-5]). In the generic cases the Weyl(-Kac)
group is essential in the formulae describing the characters of the irreducible finite-
dimensional representations of ©0, of the integrable representations of © and of
the typical representations of ©s [1-5]. Nevertheless, there are large and
interesting classes of representations for which the Weyl(-Kac) group does not play
a similar role. Examples of these are the singular representations of affine Kac-
Moody algebras [6,7] characterized by the fact that the central charge is equal to
the dual coxeter number and the atypical representations of finite-dimensional ©s.
Recently [8], using results of [9] we derived character formulae for singular
highest weight modules over A^\ Then we introduced new Weyl groups Wa, Wa

+,
which we used to rewrite these character formulae so that they look exactly as the
usual Weyl(-Kac) formulae with the Weyl(-Kac) group W replaced by Wa or Wa

+.

* Permanent address: Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of
Sciences, 72, Boul. Lenin, BG-1784 Sofia, Bulgaria
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A priori it is not clear whether the notion of a Weyl group can be generalized to
the (super-)Virasoro algebras since these algebras do not have (generalized) Cartan
matrices. We do this in the present paper. It turns out that the Weyl group Wa of [8]
can play the same role in describing the characters of the irreducible highest weight
modules L over the Virasoro and JV = 1 super-Virasoro algebras. The only
difference is that one needs also the notion of F-active elements of Wa9 where V are
the Verma modules with quotients L.

The paper is organized as follows. Section 1 and the two tables summarize the
necessary information on the Virasoro, and the N = \ super-Virasoro algebras
(that is the Neveu-Schwarz and Ramond superalgebras) and their representations.
Section 2 recalls the character formulae for L. Section 3 contains our main result.

1. Preliminaries

The Virasoro algebra [10] W is a complex Lie algebra with basis z, Lb i e TL and Lie
brackets:

[Lί? Lj] = (i —j)Lt+j-i—- (i3 — ί)b{ _ j, [z, LJ = 0. (1)

The N=l super-Virasoro algebras are the Neveu-Schwarz and Ramond
superalgebras.

The Neveu-Schwarz superalgebra [11] § is a complex Lie superalgebra with
basis z, Lί? z'eZ, /α, αeZ+^ and Lie brackets

[Lί? LJ = (i —7)1^+j + - (i3 — ί)(5f _ j, (2a)

,.-„, (2b)

[Z)L,.]=0, [z,/J = 0. (2c)

The Ramond superalgebra [12] .R is a complex Lie superalgebra with basis z, Lf,
/eZ, Jα, αeZ and Lie brackets given again by (2).

Further Q will denote W, S or R when a statement holds for all three algebras.
The elements z, L{ are even, and 7α are odd. The grading of Q is given by degz = 0,
degLf = i, deg/α = α. We have the decomposition

where W± are generated by L±i, i= 1,2, S+ are generated by /±α, a=-j,f £+ are
generated by L +1 5 /+ 1 and ί̂ 0

 and ^o are spanned by L0 and z; ̂ 0 is spanned by z,
L0, and /0.

Besides highest weight modules (HWM) we shall use generalized highest
weight modules in the .R case because of the relation L0 = (70)

2 -
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A generalized highest weight module over β is characterized by its highest
weight λ e βg and generalized highest weight vector v0 such that

1̂ 0 = 0, i>0, f o r β ? (4a)

/αtJ0 = 0, α>0, for£,#, (4b)

L0#0 = /l(L0)ί;0 = hvQ, h e C, for Q, (5a)

zvQ = λ(z)v0 = cv(), ceC, forβ. (5b)

A generalized highest weight vector v0 can be defined in the JR case as the direct sum
Io^o ®v0, where v0 fulfills all conditions (4), (5), i.e., it is a usual highest weight
vector. For W, §, v0 = v0 so generalized HWM (GHWM) for ty § are usual HWM.

Further we shall work with the so-called (generalized) Verma modules over β.
A (generalized) Verma module vλ=Vh'c is an induced GHWM with highest
weight λ such that Vλ ^tfl(Q, -)®ϋQ, where ̂ ((5 _) is the universal enveloping algebra
of (5 _. (V λ is the largest GHWM with highest weight λ as every other GHWM with
the same highest weight may be obtained as a factor module of Vλ.) It is known (see
[13-15] for W9 [14,16] for §, [17,16] for R) that Vλ= Vh>c= Vh>c is reducible iff h
and c are related as follows:

χ++nα_) 2+iμ, forβ, (6)either h =

where m,ne-N,
1 for W,

for S,jR,

m — neZ + μ, for

θ fo

c-1
24

c-1

for

16

for S,R;

or h=- (7)

It is known [13]-[17] that the reducible V= Vh'c, h = h(mtn) contains a proper
submodule isomorphic to the (generalized) Verma module v = vh+vnm'c. In other
words there exists a non-trivial embedding map between V and V. These
embedding maps are realized by the so-called singular vectors. A singular vector
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vs 6 V is such that vs φ v0 and vs has the property of the highest weight vector v'Q of
V. More than this vs can be expressed, as an element of ^(Q_)ί;0 by

vs=p(&-W<» v*w(&-)ff0*<tί(G_)p(G_)ύ0, (8)
where ^(Q_) is a homogeneous polynomial in ^(β_) of degree vmn. (Here we
should note that for superalgebras the maps under consideration are not
embedding maps in general. This may happen if ^((5_)2 = 0, then

#oΦ^(β-)#ό It cannot happen if there does not exist an element
_) such that X2 = 0. This is the case for β and thus all maps in

consideration are embeddings.)
In the case h = c/16 for R the reducible V= Vc/16'c contains a proper submodule

which is isomorphic to an ordinary Verma module v=Vc/ΐβ'c with the same
highest weight and highest weight vector ί;J = /0ι;000 = /0ι;0. In order to see this
consider first P#0 = P/0t;0φPt;0, where Pe%(R_) is a homogeneous element and
the action of X e R on Pv0,

XPv0 = (Pf + β'/oK = (F + β70)/0»o θ (Pf + β'/0) v0

= (F + β') Vo θ (F + β'(L0 - z/1 6)K

- (F + β')/0t>oΘ(F + (h - c/ί 6)β>0 , (9a)

where P',β'e*(J^_); actually P',β' are zero if degX>|degP| and the action of
L0,z on v0 is accounted for in P',Q'. Analogously Pϋs

0 = PI0v0 and let h = c / l 6 :

^0 - (9b)

Note that the factor module V/V is isomorphic to K Further in the case h = c/ί6 we
shall consider V instead of Fc/16'c for R. It is also possible that (6) and (7) hold
simultaneously; then

h= ~Ϊ6 =Λ<» m)= Ϊ̂6~ + 4(mα+ +nα-)2 + Ϊ6' (10a)

or,
(lOb)

or,

(lOc)

In this case V is further reducible and everything we said after formula (7) applies
also to this case.

The reducible (together with some irreducible in some cases) GHWM are
grouped into multiplets ([18, 6, 19, 20, 21, 7]). A set M of GHWM over a complex
(infinite-dimensional) (super) Lie algebra is said to form a multίplet if: 1)
VeJ(=>JOJIίvϊΦ, where Jίv is the set of all GHWM F'ΦF such that there
exists a non-trivial embedding map between V and F; 2) ̂  does not contain
proper subsets fulfilling 1).
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As usual we shall represent a multiplet Jt by a connected oriented graph. The
vertices of the graph correspond to the GH WM of M and the arrows connecting
the vertices correspond to those embedding maps which are not compositions of
other embedding maps. The multiplets represented by the same graph are said to
belong to one and the same type of multiplets [6, 7, 18-21]. Then we use
parametrization to distinguish the multiplets belonging to a fixed type. Also in
some cases it is useful to consider subtypes when there is no convenient
parametrization for the whole type.

Let us summarize the results on the multiplet classification of the reducible
(generalized) Verma modules for W [22] in the form given in [19] (cf. also [23])
and for S, R [21]. There are five types in each case denoted by JV°, N+, JVL, JV+, JV2.
which are shown in Table 1 . Note that in our convention F-> V means that V can
be invariantly embedded in V (arrows point to the embedded modules). We have
also indicated the notation of [22] for W.

The type N° occurs when α_/α+^QcR. All other types occur when
α_/α+ eQ; then either c rg l or c^c + , where

? Ά
For c < 1 we have type N L and subtypes Nl1 , Nl2 of type N2. . In this case — α _ /α +
= p/q, p,geN and then

, x

= c- β=:21-8v-(10-4v) - + -H

-6 + forty,

5~2P- +
P

For c = 1 we have subtype N2? of type N2, (note cίtl = ί). For c > c + we have type

JV+ and subtypes ΛΓ+1, AΓ+2; α_/α+ = -, p,geN and

V<3 r/ (12b)8v + (10-4v)l + ) =

For c = c+ we have subtype JV+3 (note that c£1 = c+).
The explicit parametrization of all types is given in Table 2. Note that in each

case the types with c ̂  1 have the same parametrization as those with 26 — c ̂  c + .
(For parametrization of subtypes see [19,21].) We shall not need the explicit
parametrization of the multiplets, i.e. the values of h for the (generalized) Verma
modules in Table 1. We shall give only the values of h for F00, F0o, V09 V0

+:

(p-q)2^+-μ = h(P_m^n} (13)

for N L, p, q, m, n are the parameters as of Table 2; Λ(TO>II) is the same quantity as in
(6); note that for R,
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Table 1. Types of multiplets (embedding diagrams) of reducible Verma modules over the Virasoro
[22, 19, 23] and N = l super- Virasoro [21] algebras (arrows point to the embedded modules)

JV° (or II [22]) V» <-

JV1-(or III. [22]) K0,

N\ (or IΠ+ [22]) K0

ΛΓ2- (or III0., III00 [22])

N2

+ (or III0., IΠ0

+° [22])

> Vh

^.vύ

Fl\
\v+

YIO

FO >V,-

>VL

•V[k-

-Vίί'

X X/ \ .*• \

>Vk-

Table 2. Parametrization of the types of multiplets of (generalized) Verma modules over the
Virasoro [22,19] and N = l super-Virasoro algebras [21]

Type Param- Range and constraints
eters on parameters

Remarks

N° (II) c,m,n ceC,

m — neZ + μ

(ΠI±)

(IΠ0

±,m°±

0)

, p<q, pXq

m,«e-N,

^qn, m<q

( q/2, if both p and q

are odd for S,R

q otherwise

p, q G N,

ne-Z
v

=

For £ and Ni

(m,n) = (p/2,(?/2)is

the only possibility for Fc/16><

forNl

=>n = 0, p = l for

π = 0, p = 1/2 for

π = p = l for ̂
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is the only possibility for the reducible Fc/16'c;

-v2^

+? Λ = Vw forN2-1, h = h+mtl» for AT 2 1 , (15)

* = W = fc<M)) for AT2-2, Λ = Λ£.,) forJV 2

+

2, (16)

h = h*=^ + ̂  forJV 2 3 ,
4v 8

Λ«+ = l + IAI-/, =i + lμ_i. for TV 2 3 . (17)
v 4 v 8 4v

The interested reader can find the complete parametrization of all multiplets in
[19] for W and in [21] for $,R.

2. Characters of (Generalized) Verma Modules

We recall the weight space decomposition of Vh'c

for S, (18)

where F/*'c are eigenspaces of L0

V*><={υeV
h <\L0v = (h+jy>}2ίV(G-)jSo, (19)

where the last equality follows from

Φ«2-) = φΦ(6-)j (20)
j

with the range of j as in (16). For R we have also

The character of Vh-c is defined (cf. [13, 14, 17]) as

chVh'c(t)=Σ(dimVj>>c)th+i = thΣp(j)ti=thψ(t), (22)

where p(j) is the partition function [p(j) = # of ways; can be represented as the sum
of positive integers (and half-integers for S); p(0) = 1] while ψ(t) is given by [13,14,
17]:

(1-ί*)"1 for W,
fteN

Π(l+**~1 / 2)/(l-ί t) forS, (23)
fceN

/ceN

The factor of 2 for ̂  appears because of the relation

I,. (24)
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For R and Λ = c/16 we have for V= Vc/16>c = qt(R_)I0v0,

chV(t) = tc^6 l\(\ + tk)/(l-tk). (25)
feeN

Further ϋ'c shall denote the unique irreducible quotient of Vh'c, such that LΛ}C

= jA <y/* ^ where /Λ' c is the maximal proper submodule of Vht c. For R and Λ = c/1 6,
7=p>c/i6,c? L = Lcll6 c=Ϋ/79 7 is the maximal proper submodule of V,

(V^ FC/16'C/F). If Vh>c (respectively V) is irreducible, Lh>c = Vh>c (respectively L - V).
If Vh'c(V) is not irreducible then the character formula for Lh'c(L) is more
complicated than (22) [respectively (25)].

We recall the character formulae for W [24, 23, 25] (for partial results see [13,
14, 26-30]) and for S, £ [25] (for partial results see [14, 29, 31]) in a form suitable
for our purposes.

In the N° case the embedded Vh + vmn'c is irreducible while for Lh'c using the
results of [23] one can obtain

vmn>c (26)

= (l-tvmn)chVh>c. (27)

In the JVi case let us denote by L0fc, L lfc, L'0fc, Lik the irreducible factor-modules
of V0k, Vlk, Fόfe, V[k respectively, where [19, 21, 25]

T/ _ Ύ/h + vk(pqk + qm- pή), c T/ — Ί/h + vk(pqk -qm + pri)

°k~ ' lk~
τ/r _ Ί/h +
yί~ y

(28)
_ Ί vq q-m -n,c

yίk

and h = h(mfn} is given by (13). Then we have [23], [24], [25], (22):

chLlk = chVlk+Σ (ch V0j + ch V.j) - Σ (ch V^ + ch V$ , / - 0, 1 , (29a)
7 > f c J^k

chLlk = chV{k+ X (chVL + chV[:-chVQj-chV^, / = 0,1 . (29b)
J > Λ

For ̂  and Λ = c/16, L/fe, L
r

/fc, ^fc, ^-^I/fc, £/fc, ^1? ̂  and formulae (29) hold again.

Note that in the case q = p+ - (q = p+l for W,q = p + 2 for S,.R) the modules

L00 = L10 [parametrized by (m, n) as in Table 2] and L00 = L10 for R and
(w,tt) = (/?12,g12) form the c<l series of unitarizable HWM over W,S,R [17].

In the N + case we denote by L ,̂ L^ , (/ = 0, 1 ), the irreducible factor-modules of
VM, Vιk

+ respectively, where Vlk , V{k

+ are given by (28) with the change p->— p,
m-+ — m (or q-+ — q, n^> — n\ h-^h^ n) given by (14) (cf. [19, 21, 25]). Then we have
[23-25], (35):

i = ch V+ + *Σ (ch Voj + ch V^ + ch L+0
7=1

" ' j + ch V$ , / = 0, 1 , k > 0 , (30a)

'ί = cA V{+ + V (cΛ F^ + cfc 7/;) -

(30b)
J = l

since FOQ is irreducible).
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In the N2

± cases let us denote by Lfc, Lk the irreducible factor module of Vk, Vk

+

respectively. Then we have [23], [24], [25], (28), (29), (31):

k = chVk-chVk+1, fc^O, (31)

and [23], [24], [25], (42), (43), (44), (45):

chLl=chVk

+-chVk^ί9 fc>0, (32)

(chL+

0=chV0

+).

3. Weyl Group for the Virasoro and 7V= 1 Super- Virasoro Algebras

Consider the following infinite abelian multiplicative group Wa [8] generated by

the symbols w(n), ne-N with the properties

w(n)2 = 1 , >φ)vφ') = w(nXn) . (33)

Thus the group Wa consists of the elements

w(0) = l . (34)

Such a group is called a torsion group or a p-group [32] (here p = 2). If w = 1 or
1

w = w^) . . . w(wfe), HI e - N, nf Φ w,-, / 4=7 we shall say that w is given in a reduced form.

Because of (33) it is clear that every element of Wa has a reduced form.
Let w be given in a reduced form, then the length of w, denoted /(w) is defined as

follows:

W = 1' , (35)
/c w = wίnj . . . \v(nk), ^ e - N, nt φ π7 , i

The length of any element w is defined as the length of its reduced form. [If /(w) = /c,
then w has /c! reduced forms.] We need to introduce the action of Wa on Qg. We set
for w in a reduced form and

! + ... + nk) λ0 , w = w(n t ) . . . w(πfc) , (36)

^e-N, njΦnj,

where A0 e Q$ is defined by

A0(L0) = 1, A0(z) = 0. (37)

Setting as usual λ(L0) = h, λ(z) = c we shall write (36) equivalently as

1 + ... + ntoc) = (w ft,c). (38)
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Note that this action is non-associative; however, this is not essential for our
purposes.

Definition. Let V= Vh'c be a (generalized) Verma module over Q. We shall say that

an element w e Wa is V - active if either w = 1 or w = w(nj)... w(nk), nt e- N, nf φ «/

and there exists a chain of invariant embeddings Fh'c-> Fj -»... -> VJ. (remember that
the arrows point to the embedded modules), where the submodules Vj are
isomorphic to (generalized) Verma modules over (5: ϊ^ = 7h+»i + -+ l |j»c

j 1 <^j<*k.
For Λ = c/16 and £ we consider Fc/16'c instead of Fc/16'c.

Obviously this definition can be extended to (generalized) HWM.
It is clear that Fis irreducible iff only w = 1 is F-active. It is also clear that if w as

above F-active and w φ w(n) there are also other F-active elements of Wa.

Lemma. Let w = w(n1)... w(nk) be V-actiυe. Let ίeN, /</c, {il9 ...,ij be a subset of
{nl9 ...,nk}, SMC/I ί/iαί f 1 <...<i z , let mj = nί._ί + 1 + ... + nij9 7 = 1,...,/, ί'0 = 0.
w' = w(iA)... w(ίz) is also V-actiυe.

Proof. Let vj = Vh+mι + '" + mjtC. Note that m1 + ...+mj = n1 + ...+nij. Thus Vj=Vtj.
Obviously F-^F^-*...-^.

The usefulness of this notion should become clear from the following which is
the main result of the paper.

Theorem. Let Lh'c be an irreducible GHWM over Q, so that Lh>c^vh'c/Ih'c, where
V= Vh'c is the (generalized) Verma module of Q with the same highest weight and IhfC

is the maximal submodule of Vh'c. Then we have for the character of Lh'c,

\veWa

w —F-active

or,

(t) X (-ly^r *-*. (39b)
weWa

w — F-active

Proof. First we note that if FΛ'C is irreducible Lh'c= Vh'c and chLh'c = chVh'c which
follows from (39) - the sum involves only w = 1, (/(1) = 0). Further we consider the
different types of embeddings according to Table 1.

CaseNQ. vh+vmn'c is irreducible, while for F=FΛ'C there are only two F-active
elements w = 1 and w = w(vwn). Thus we have from (39)

chLh>c = chVh'c-chVh+vmn'c, (40)

which is the correct result according to (26).

Case Λ/A We consider Vjϊτom Table l,j eZ+, V~VhjtC

9c = c~q. We shall not need
the explicit values of hj (the reader can find them in [19] formulae (15), (17), (18) for

ty [21 ] (13), (16), (19) for §, R, [25] (27), (30), (32)) but only the fact that hj - ft; e - N

for i <j. We introduce the following notation

w^vK/i;-/*;), iJeZ+, i^/, (w(O)^l). (41)
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It is clear that

wίf j λt =
 ΛI + hj-hi , wίs j - ht = hj . (42)

We fix fee Z+ and consider Vk. It is clear that wktl9 leZ+, /^fe, is J^-active. We fix
l>k. We want to enumerate all possible ^-active elements which act on hk as WM,
i.e. wkj hk = h l . I f l = k + l there are no other such elements. If / > fc + 1 besides wfe> l

they are all of the form:

w k , k l w k l f W 2 . . .w w , r=l,. . . ,/-fc-l, k<kl<...<kr<l, (43)

and we agree that wfc z is obtained for r = 0. For fixed r there are ( I possible

choices of kl9 ...,fcr. We note that ί(wkffcl, ..., wkr>ί) = r + l. Thus for the
character of Lfc = t^//fc we have

Γ oo l-k-ί

chLk(t)= ι+ Σ Σ Σ
\_ l = k+l r = 0 k<kί<...<kr<l

χ (_iy(w k , k l . . . W k r ι) ί w k f k l . . .w k r rΛ-Λ LjjJ^)

[ oo i-k-1 / / _ L : _ 1 \ Ί

ι+ Σ ί*1"*16 Σ (-i)r+1 kfc^ί) (44)
Z = fc+l r = 0 \ Γ /J

1(ί) (45)

which coincides with the correct formula (31).

CaseN2

+. We consider F,+ from Table l,7'eZ+, Vj=Vh^\ c = c^q. The explicit
values of A/ can be found in [19] for t^ in [21] for §, R, in [25] for β, but we shall

use only the fact that hj — /ί fe-N for ί>y. Instead of (41) we introduce

l). (46)

We apply the same reasoning for the case JVl and obtain for Lj = Vk

+/Ik, fc>0,

[ k-l ί-k-1

i + Σ Σ Σ
ί = 0 r = 0 k > k ι > . . . > k r > ϊ

i + Σ ί"'"^ Σ (-1
ί = 0 r = 0 _

= ll-thί-1-ht]chVk(t) = chVk(t)-chVk-1(t), Jk>0, (48)

which coincides with the correct formula (32).
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Case NL. We consider Fok, Flk, Fόk, V[k from Table 1, given explicitly in (28). We set
[cf. (28)]

h0k = h + vk(pqk + qm — pn), hlk = h + vk(pqk — qm + pn) ,
(49)

with /z = /ι(m>n) from (13).
We start with Fok. Let j/&, I > k, j/jj, I > fc, j/ό*> ' = fc> « ί̂*> I ̂  fc denote the sets of

Fok-active elements of Wa such that when acting on h0k we obtain hob hlb h'0b h'u
respectively.

We claim that all elements of J/QI are obtained as follows. To every element
w e ja/oj- 1 ̂ ere correspond three elements of Λ/QI First vi^ = ww', where w' /ZQ,/- i
= Λ0/. Next vv = w'w(w), where w' /ι0k = H (for / = fc + 1, w' = 1, ίi = /z0k), w(w)lz = /ί0, z - 1
To w there correspond w2 = w'w(tt7)j where w(w') ff= ftoz and w3 = w'w(υ)w(v'\ where
wίϋJ ^ΛΊ ,_!, wίϋO ft'i i-i = V τhus wrfco^Λoi. ^0 = ̂ 3) = /(«) + !, /(w2)
= ί(w). Proceeding analogously we find that \s/^\ = 32(l~k)-l

9 |̂ | = 32(I"k), |j^f,|
= 32(ί "k)" S 1̂ 1 = 32(ί ~fc). Further, let ̂ + respectively ̂ f (and analogously for
the other jaΓs) be the elements of J/Q/ witrι even, respectively odd, length.
(Naturally, \^ \ + |Λ/* f I = Ko/l )

We claim that

(50a)

KΓ I = l^oΓ I - 1 , Kί/+ 1 = 1̂ 'ίΓ I - 1 , ϊ^ fe (sob)
Indeed, let l fl/oΓNI ̂ oΠ+1 f°r some '• According to our reasoning above we have

l + l ?

It remains to note that \j&Qk+1\ = 2, \
Next we substitute (50) in (39b) and we obtain for L0fc (the irreducible quotient

of V0k),

c/ιL0fe(ί) = Γl- Σ (ί*OI-*
*k

(th<"-h°« + thll-hok)]chVQk(t) (51a)
J

*(t)- Σ (cΛK^ + cΛKίXί))
ί^fc

(51b)

which coincides with the correct result (29a).
For chLlk9 chL0k, chLlk the argument goes analogously and the correct results

in (29) are obtained as claimed from (39).

Case N1,. We consider K0ΐ, F^, V£9 V^ from Table 1 given explicitly by (28) with
the changes p->— p, m^ — m [as explained before Eqs. (30)]. The proof is
analogous to that of Case Nl . We start with F0k, fc > 0. Let j%, / < fc, ̂  „ 0 < / < fc,

denote the sets of F0k-active elements of Wa such that when
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acting on h$k we obtain h$b h±b /z'0|, ̂ ίί > respectively, Analogously to the TVi case
wf* finH tViQt \^k I — Q2(fc-0-l I ,>fc|_^2(fc-ί-l) I :jrk I _ o 2 ( f c - 0 - l I «3r'fc| _ ?2(fc-l- 1)we iinα mat \<wu\ — ~> , |j#0ί| —:> ->\&*u\~ £ > leβί rozl~" )^
For the elements with even (respectively odd) length j/o/+ (respectively .s/oΓ), we

obtain the same relations as (50):

(52a)

(52b)

Then we substitute (52) in (39b) and obtain (30a) for chL^k. Analogously one obtains
the rest of (30). T his concludes the proof of the theorem.
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