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Abstract. We study the general mathematical structure of unitary rational
conformal field theories in two dimensions, starting from the Euclidean Green
functions of the scaling fields. We show that, under certain assumptions, the
scaling fields of such theories can be written as sums of products of chiral
fields. The chiral fields satisfy an algebra whose structure constants are the
matrix elements of Yang-Baxter- or braid-matrices whose properties we
analyze. The upshot of our analysis is that two-dimensional conformal field
theories of the type considered in this paper appear to be constructible from
the representation theory of a pair of chiral algebras.

1. Introduction

In this paper we study the general structure of unitary rational conformal field
theories in two dimensions. The starting point of our analysis is motivated by
concepts of two-dimensional statistical mechanics: The basic properties of a
statistical system are coded into its thermodynamic and correlation functions.
The correlation functions are expectations of products of local order- and disorder
variables in a Gibbs equilibrium state. If the system is at a critical point its
correlation functions tend to exhibit asymptotic Euclidean- and scale invariance,
as one learns from the study of exactly solved models and the renormalization
group. Scaling limits of the correlation functions then exist. They turn out to be
the Euclidean Green functions of some Euclidean field theory. If the underlying
statistical system has a self-adjoint transfer matrix, the scaling limits of its
correlation functions satisfy reflection positivity. A variant of Osterwalder-
Schrader reconstruction then permits us to associate with the sequence of scaling
limits of correlation functions of such a system a unitary relativistic quantum field
theory. At a critical point the scaling limits of correlation functions of scaling
operators are Mobius-invariant. This invariance property, combined with reflection
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positivity, permits us to associate a quantum field theory with every parametrized
disk on the Riemann sphere. Our construction proves, in particular, that standard
Osterwalder-Schrader quantization and radial quantization provide equivalent
descriptions of the quantum field theory. See Sect. 2.

Points in the two-dimensional Euclidean domain are conveniently parametrized
by complex numbers z = t + ix, z* = t — DC, where t is the time- and x the space
component of a point x = (f,x)eE2. The variables z and z* are the Euclidean
versions of the standard light cone variables.

One of the objectives of our paper is to analytically continue the Euclidean
Green functions of two-dimensional conformal field theory in the light cone
variables z, z to a maximal domain of holomorphy. A point (z, z) belongs to the
Euclidean domain if z = z* = complex conjugate of z. This process of analytic
continuation of the Green functions is started in Sect. 2.

Let L0 and L0 be the generators of the transformations (z,z)κ->(eθz,z),
(Z,Z)H^(Z,^Z), respectively. We show that, in a unitary conformal field theory, L0

and L0 are positive operators on the Hubert space of radial quantization, under
natural regularity assumptions on the Euclidean Green functions.

In Sect. 3, we consider unitary conformal field theories with a symmetric,
conserved energy-momentum tensor of dimension 2. We recall the Lίischer-Mack
theorem which shows that, in such theories, the energy-momentum tensor has only
two independent components T(z) (independent of z) and Γ(z) (independent of z)
which generate two commuting, unitary representations of Virasoro algebras, Vir

and Vir, on the Hubert space, J f, of radial quantization. We show that these
representations are completely reducible into direct sums (or -integrals) of
irreducible, unitary highest-weight representations.

We then proceed to study the notion of chiral algebras: Given some unitary
conformal field theory, we consider all those scaling fields which are independent
of z (independent of z). Among these fields are of course Γ(z) (T(z), respectively).
They generate algebras j/, (j/, respectively) which we call chira algebras. We
define the symmetry algebra, 91, of the conformal field theory to consist of all local
operators in j f ® jtf.

An important aspect of the notion of rational conformal field theory, as used
in this paper, is that the Hubert space, 3£, of the theory splits into finitely many
irreducible subspaces for 91. This assumption is made more precise in Sect. 3. There
we also formulate the Ward identities which describe how the symmetry algebra
91 acts on the scaling fields, φα(z, z), of the theory. The main result of Sect. 3 is the
existence of chiral intertwiner fields: We show that under natural assumptions on
the structure of the symmetry algebra 91 and the algebra of scaling fields (0α(z,z)}
of the theory, every field φΛ(z, z) can be written as a sum of products of chiral
intertwiner fields φa(z) (independent of z) and φά(z) (independent of z).

In Sect. 4, we study the vacuum expectation values of products of chiral
intertwiner fields φa(z) (or of products of fields φά(z)) which we call conformal
blocks. We then determine the envelope of holomorphy of the conformal blocks.
For an π-point conformal block this is the domain

Mn = {(z l 5...,zn): zt. / z;, for i
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whose fundamental group is the pure braid group, Pn. The conformal blocks are
multi-valued analytic functions on Mπ. The different branches of these functions
are connected to one another by matrix representations of the braid group Bn

generated by a Yang-Baxter (or braid-) matrix R = (R°a

d

b). This matrix can be viewed
as a matrix of structure constants for the algebra generated by the chiral intertwiner
fields: A product, φa(z)φb(w\ of two such fields is well defined, a priori, only if (for
example) Re z < Re w. But it has a multivalued analytic continuation to the space
M2. If φa(w)φb(z) is defined by analytic continuation of φa(z')φb(w') in z' from z to
w and in w' from w to z along paths shown in the following figure:

rz\
^̂ ^_ r̂*w

then

Φ«(w)φfc(z) = Rc

a

d

bφc(z)φd(w). (1)

This equation captures the basic structure of the algebra of chiral intertwiner fields.
In Sect. 4, we specify a class of unitary conformal field theories which we call
rational theories for which Eq. (1) can be proven. We also derive some of the
simplest properties of those ^-matrices which can appear as structure constants
in Eq. (1). A more systematic study of the properties of R will appear in a separate
paper.

As a consequence of our analysis we are able to determine the envelopes of
holomorphy of the Euclidean Green functions of rational, unitary conformal field
theories and to calculate their monodromy in terms of the braid-matrices R and
R, where R is the matrix of structure constants for the algebra generated by the
fields φα-(w), i.e.

(2)

In the final section (Sect. 5) of this paper, we extract the basic mathematical
structure of rational, unitary conformal field theory from the results in Sects. 2, 3
and 4. We show that in a sense to be made more precise in future work on the
subject, two-dimensional conformal field theory can be viewed as the representation
theory of a pair of abstract chiral algebras j/, sJ. Examples of such algebras are
the Virasoro algebra, current algebra, algebras of higher-spin currents, or of
parafermions. The chiral intertwiner fields are then viewed as "tensor operators"
for a chiral algebra si. Products of such fields are sections of bundles whose base
spaces are the spaces M n and whose fibres consist of tensor operators for si which
intertwine different representations of si. These bundles carry flat connections
whose holonomy generates a representation of the braid group Bn. Under suitable
hypotheses (which will require further study) these representations are generated
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by Yang-Baxter matrices, R, which appear as structure constants in a quadratic
relation between chiral intertwiner fields, φa, of the form (1). Finally, we show how
one can reconstruct local fields φα(z, z) out of the chiral intertwiner fields φa(z\
φά(z) associated with the algebras stf, stf.

In separate publications the structure described in Sect. 5 will be investigated
in more detail and an application to minimal models will be given.

2. Quantum Field Theory on the Riemann Sphere

2.1. In this section we review some fundamental properties of two-dimensional,
unitary conformal field theory in a mathematically precise form. In view of the
basic significance of conformal field theory for the theory of two-dimensional
critical phenomena and string theory, the Euclidean formulation of conformal field
theory [1] is an appropriate formalism. It is based on work in [2,3] which develops
the Euclidean description of relativistic quantum field theory. Our analysis will
show that, given Euclidean Green functions of a two-dimensional conformal field
theory satisfying reflection positivity [2], one can associate with each parametrized
disk on the Riemann sphere a conformal quantum theory, or "quantization."
Different quantizations are intertwined by isometries which form a representation
of the Mόbius group, PSL(2, C). Special cases are Osterwalder-Schrader quantiza-
tion [2,3] corresponding to the right half plane {z = t + ix:t >0}, and radial
quantization [1] corresponding to the unit disk {z:\z\ < 1).

In two dimensions, quantum field theory has peculiar features intimately
connected with the fact that the complement of the closure of the light cone is
disconnected: The statistics of fields is not limited to Bose- or Fermi statistics—as
it was in higher-dimensions. This is related to the property of Euclidean Green
functions to be, in general, multi-valued functions on the space

Aί f i = {x = (xι,...,xπ):ϊ ίeE2,x i^x J.,foπ>j} (2.1)

corresponding to single-valued functions on the universal cover, Mπ, of MM. [The
fundamental group of Mn is the pure braid group on n strings [4].] Different
branches of a Green function are connected to each other by a matrix representation
of the braid group on n strings, [4]. In statistical mechanics, multi-valued Green
functions appear as order-disorder and parafermion correlation functions. These
features are discussed in some detailed in [5]. In the following, we shall assume
that Euclidean Green functions are single-valued functions on MΛ, symmetric under
permutations of their arguments. This will merely simplify text and notations. The
general case will be discussed elsewhere; see also [5].

It will be convenient to write points, x = (t,x)eE2, as complex numbers,
z = t -f ix, z* = t — ix = complex conjugate of z. Here x is the space component of
x and t its (imaginary-) time component. Both parametrizations will be used.

Next, we describe some basic properties of Euclidean Green functions of unitary
conformal field theory. These properties are variants of the Osterwalder-Schrader
axioms [2]. In order to describe them, we require some notation and definitions: Let

^ίf - Rez; > 0, for i = 1,.. .,n}. (2.2)



Unitary Conformal Field Theory 421

We set

<S+ = C,

and

<?: = {/e^(E2"):supp/CMn+}. (2.3)

Here ^(E2n) is the Schwartz test function space over E2n. We also introduce some
transformations of E2:

0(f,x) = (-ί,x), i.e. 0z=-z*, (2.4)

(time reflection)

π(ί, x) = (ί, - x), i.e. πz = z*. (2.5)

(space reflection)

Mόbius transformations are denoted by

,
cz- fα c a

with z*h->w(z)*. Special cases are

ίf l:zh->z + 0, αeC, (2.7)

(space-time translations)

rφ:z\-*eiφz9 0^φ<2π, (2.8)

(rotations = Euclidean boosts)

and

.dτ:z^e'τz. (2.9)

(dilatations)

We shall study theories given in terms of a sequence, {Gαι...αn(x1,...,xn)}"=0,
of Euclidean Green functions of scaling fields with the following properties which
are motivated by the analysis of models, like the two-dimensional Ising-, Potts-
or six-vertex models , at a critical point.

(PI) G(0)= 1; Gα ι...α n(x 1,...,xn) is a well defined, continuous, polynomially
bounded function on MM, for arbitrary a,ί9...9(x.n and all rc=l,2, 3, . . . . [The
subscripts α x , . . . , αΛ label different scaling fields and range over a finite or countably
infinite index set A0J] It is also assumed that

Gαι. ..«„(* i , - . , x«) = G

απ(1)...απ(Π)fe(i)? , x«(»)), (2.10)

for arbitrary permutations, π, of n elements.
In statistical mechanics, (PI) expresses the property that the scaling limits of

order- or disorder correlation functions of a statistical system at a critical point
exist and are well defined, symmetric functions on Mn. [Mixed order-disorder
correlation functions are discussed in [5].]

(P2) There are real numbers /z(α) and /z(α), αe/l0, called conformal weights, such
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that, under a Mόbius transformation w, see (2.6),

(2.11)

where wt = w(zj), ht = hfa) and ht = hfa).
Assumption (P2) expresses the property of scaling limits or correlation functions

of critical statistical systems to be Mόbius-invariant. Actually, full Mόbius
invariance pre-supposes that one works with order parameters which, in the scaling
limit, transform tensorially under Mόbius transformations. This is more than what
is needed in many parts of our analysis. Often it would be enough to assume

(P2fl) Euclidean Green functions are translation-invariant
(P2b) Rotation invariance:

where st = s(αf) = Λ(α f) — /z(oii), i = 1, . . . , n; s(α) is called "spin."
(P2C) Dilatation invariance:

)( (2.12)

...^x1,...,xπ), (2.13)

where dt = d(αt ) = h(af) + Λ(a f) is the so-called "scaling dimension," i = 1, . . . , n.
Next, we formulate a property, reflection positivity [2, 3], which is somewhat

unnatural from the point of view of statistical mechanics, but plays an important
role in our analysis of conformal field theory; see also [1]. By ̂  + we denote the
space of finite sequences of test functions,

{/αr αn(^ι i ^M)e^+,αl 6>l 0,i=l,.. .,n}π = 0 > 1 > 2 ).... (2.14)

["Finite" means that /α ι...β n(xι,...,x l l) = 0, except for finitely many choices of
(o^,..., απ) and finitely many n.]

(P3) We assume that there is an involution, *:A0ι— >y40,αι->α*, such that

Gα*...αί(θxM,...,fe1) = Gαι...αn(x1,...,xn)*, (2.15)

and, for arbitrary sequences /e«$f 4",

Σ Σ ί G«ί-«T^ι-/ϊm^»' > θ*lφ» » >!m)
π,m α,/?

•/.l...*,(ϊ1,. .,ϊ,,)*//,1...flM(j:ι,...,3:m)d2"xd2"y^O. (2.16)

Reflection positivity (P3) can be derived from the selfadjointness of the transfer
matrix of an underlying statistical system. This is a frequent, but not a fundamental
property of lattice systems. [It fails e.g. in the theory of selfavoiding walks.] But
without assumption (P3), it is more difficult to undertake a general analysis of
conformal field theory; but see [6].

2.2. Next, we review some important consequences of assumptions (P1)-(P3),
(i.e. we sketch Osterwalder-Schrader reconstruction, [2,3]).

Assumption (P3) permits us to define an inner product, <v> y + , on ^+: For
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/ and g in ̂ +, we define

faι..«n(xί, ,Xn)*9βί βJyι, ,yJ<l2nxd2my. (2.17)

Here y + denotes the right half-plane {z:Rez > 0}. Let Λ^+ be the kernel of < v> y +

in ά? + . An equivalence class of a sequence /6^ + , mod,^"*", is denoted by
ί(/)"=iy+(/).Then

^γ+={iy+(f)'f^ + Γ, (2.18)

where the closure is taken in the norm induced by < , > y + , is a separable Hubert
space. We let Ω=Ωy+ denote the image under iy+ of the sequence / with
/(0)= 1 and /αι...<xn(*ι> >:*n) = 0> for all n^ l Ω is called vacuum.

Assuming (PI), (P2α) and (P3), Jf y + can be shown to carry a representation of
space- time translations, constructed as follows: Given /e^+, let -f be given
by the sequence

If a° ^ 0 then */e5?+, for fe&+, and we define

e-
a°H-iapi(f) = i(<!f), α°^0. (2.20)

A standard result of Osterwalder-Schrader reconstruction says that (2.20) defines
a semigroup on Jf v + generated by selfadjoint operators H and P, and

#^0; (2.21)

see [2]. If, in addition, (P2b) holds we may define an operator M by setting

e*Mi(f) = im (2.22)

where φf is given by the sequence

Clearly, for /e^f+, φ/ is contained in ^+, provided |φ| is small enough. A
theorem in [3] then says that (2.22) defines a selfadjoint operator M. It is the
generator of boosts. It is easy to conclude now that

H ± P ̂  0, (2.23)

which is the relativistic spectrum condition, [2, 3]. Assuming also property (P2C),
the equation

e i τ D i ( f ) = i(n (2.24)

where /ι— >τ/ represents dilatations on ^+, defines a selfadjoint operator D
generating a unitary representation of dilatations on JΊfy+.

By construction, Ω is invariant under the operators e-
a°H-iap^ev

M

 an(} e

iτD^

1 If (P2C) holds Ω is the unique invariant state in Jf y +
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Since {e~a°H~iap:a° ^0} is a contraction semigroup on ^fy +, and since i(<9? + ) is
dense in ^fy +, by construction, the subspace ί(q^ + ) is dense in J f^, for
all α°^ O.Here

and, by (2.20),

i(*¥+) = e-a°H-iapi(¥+). (2.25)

Let / be a test function with

supp/c={χ:0<x 0<α 0},

for some a° < oo. Let /e-<5f +, and define fa x fe^+ to be the sequence

{f(Xl}δ*ίJ«2. .Λn+ί(X2, ,Xn+l)}n = 0,l,2,... (2-26)

We define an operator φΛ(f) by the equation

i ( f * * f ) , fεq¥ + (2.27)

Since ί(-5f + ) is dense in J4?y+,φΛ(f) is densely defined. Since the Green functions
Gαr..otn(x1,...,xn) are continuous on Mπ, we may let / approach a ^-function at
some point x = (x°, x), x° > 0, and obtain a densely defined operator

This is the Euclidean field operator.
We define

(2.28)

P), K = $(H-P). (2.29)

By (2.19) and (2.20), e~ζ*,Re( ̂  0, represents the transformation ZH-*Z -f ζ,z*h-^z*
on «^y+, and by (2.23) the operator norm of e~^κ is bounded by 1, for Reζ^O.
Similarly, e~^* represents the transformation z\-*z, z*\-+z* -ff on J^y+ and is
bounded in norm by 1, for Ref^O.

We define some subspaces of C2":

^ = {z,f:z-. = z f , /=l , . . . ,n} , (2.30)

Mn

> = {z:Rez B >...>Rez 1 },

MZ-*={i:Rez1c-l(n}>.:>RezK-nl}}9 (2.31)

where π is a permutation of {1, . . . , n}9

M^'π = MM

> 'πxMΠ

> 'π, (2.32)

and

MJ'π(w) = M^ 'π(w) x M> 'π(w*), (2.33)

where

ΛC'π(w) = {zrίwίzO, - - , w(zJ)eM>'π}, (2.34)

with w zh- ̂ w(z) a Mδbius transformation.
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Proposition 2.1. Let {GΛί...(χn(x1,...,xn)}™=0 be a sequence of Euclidean Green
functions satisfying properties (PI), (P2α), (P2b) and (P3). Then Gαι :..Λn(zί9 z? , . . . , zπ, z*)
is ί/ιe restriction of a function

holomorphίc in(zl9...9 zn) and (zl9..., zn) on the domain

U U MΓ(w) (2-35)
πeSn w: Euclidean

motion

to the Euclidean domain $n. If the Green functions are Mobius invariant, see (2.77),
then w in (2.35) can be an arbitrary Mobius transformation.

Sketch of Proof . A complete proof of Proposition 2.1 can easily be inferred from
[2]. Here we sketch the heuristic ideas on which the proof is based. From (2.27),
(2.28) and translation invariance, (P2fl), we conclude that if RezM > ••• > Rez 1 ?

(2.36)

From (2.19), (2.20), (2.27), (2.28) and (2.29), i.e. K ^ 0, K ^ 0, it follows that

φa(z + ε,z- + ε) = e-zK-^φΛ(ε)ezK+^ (2.37)

for Re z ̂  0, Re z ̂  0, ε > 0, as an operator equation on the dense domain i(-5f + ),
where α° > max (Re z, Rez) + ε. We have set φα(ε,ε) = φΛ(ε). Hence, using (P2α),

(2.38)

if Rez n > ••• >Re/1. By (2.23) the norm of e~zK~*κis bounded by 1, for Rez^O,
Rez^O. Hence, formally, the right-hand side of (2.38) extends to a function

Haί...Λzl9zl9...9zΛ9zΛ) = <Ω,φΛ^

(2.39)

holomorphic in (z, z) on M^ x M^. Due to difficulties with domains of definition
of the unbounded operators φΛ.(ε)9 the formal arguments leading to (2.39) are
untenable. But the considerations in [2] show that (2.39) is correct anyway. [Our
formal arguments would be correct if the operators φΛ(ε)e~~ε'H9 ε > 0, ε' > 0, were
bounded operators. This would follow from a sharper version of property (PI)
sketched in [7].]

In order to complete the proof of Proposition 2.1, we note that, by (P2fl) and
(P2fc), the domain of definition of /fα(z,z) extends to

w

where w is an arbitrary Euclidean motion. But ( (J M^α(w) Jnί (J \J M*'π(w') J
\ w / \π* 1 w' /

is non-empty. Since Gα ι...β n(z 1,zJ,...,zΠ,z*) is symmetric under arbitrary permu-

tations of {!,...,«}, HΛί...Λn(zί9zί9...,zn,zn) is symmetric on ί |J Mϊl(w) )n
\ w /


