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Abstract. We study the general mathematical structure of unitary rational
conformal field theories in two dimensions, starting from the Euclidean Green
functions of the scaling fields. We show that, under certain assumptions, the
scaling fields of such theories can be written as sums of products of chiral
fields. The chiral fields satisfy an algebra whose structure constants are the
matrix elements of Yang-Baxter- or braid-matrices whose properties we
analyze. The upshot of our analysis is that two-dimensional conformal field
theories of the type considered in this paper appear to be constructible from
the representation theory of a pair of chiral algebras.

1. Introduction

In this paper we study the general structure of unitary rational conformal field
theories in two dimensions. The starting point of our analysis is motivated by
concepts of two-dimensional statistical mechanics: The basic properties of a
statistical system are coded into its thermodynamic and correlation functions.
The correlation functions are expectations of products of local order- and disorder
variables in a Gibbs equilibrium state. If the system is at a critical point its
correlation functions tend to exhibit asymptotic Euclidean- and scale invariance,
as one learns from the study of exactly solved models and the renormalization
group. Scaling limits of the correlation functions then exist. They turn out to be
the Euclidean Green functions of some Euclidean field theory. If the underlying
statistical system has a self-adjoint transfer matrix, the scaling limits of its
correlation functions satisfy reflection positivity. A variant of Osterwalder-
Schrader reconstruction then permits us to associate with the sequence of scaling
limits of correlation functions of such a system a unitary relativistic quantum field
theory. At a critical point the scaling limits of correlation functions of scaling
operators are Mobius-invariant. This invariance property, combined with reflection
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positivity, permits us to associate a quantum field theory with every parametrized
disk on the Riemann sphere. Our construction proves, in particular, that standard
Osterwalder-Schrader quantization and radial quantization provide equivalent
descriptions of the quantum field theory. See Sect. 2.

Points in the two-dimensional Euclidean domain are conveniently parametrized
by complex numbers z = t + ix, z* = t — DC, where t is the time- and x the space
component of a point x = (f,x)eE2. The variables z and z* are the Euclidean
versions of the standard light cone variables.

One of the objectives of our paper is to analytically continue the Euclidean
Green functions of two-dimensional conformal field theory in the light cone
variables z, z to a maximal domain of holomorphy. A point (z, z) belongs to the
Euclidean domain if z = z* = complex conjugate of z. This process of analytic
continuation of the Green functions is started in Sect. 2.

Let L0 and L0 be the generators of the transformations (z,z)κ->(eθz,z),
(Z,Z)H^(Z,^Z), respectively. We show that, in a unitary conformal field theory, L0

and L0 are positive operators on the Hubert space of radial quantization, under
natural regularity assumptions on the Euclidean Green functions.

In Sect. 3, we consider unitary conformal field theories with a symmetric,
conserved energy-momentum tensor of dimension 2. We recall the Lίischer-Mack
theorem which shows that, in such theories, the energy-momentum tensor has only
two independent components T(z) (independent of z) and Γ(z) (independent of z)
which generate two commuting, unitary representations of Virasoro algebras, Vir

and Vir, on the Hubert space, J f, of radial quantization. We show that these
representations are completely reducible into direct sums (or -integrals) of
irreducible, unitary highest-weight representations.

We then proceed to study the notion of chiral algebras: Given some unitary
conformal field theory, we consider all those scaling fields which are independent
of z (independent of z). Among these fields are of course Γ(z) (T(z), respectively).
They generate algebras j/, (j/, respectively) which we call chira algebras. We
define the symmetry algebra, 91, of the conformal field theory to consist of all local
operators in j f ® jtf.

An important aspect of the notion of rational conformal field theory, as used
in this paper, is that the Hubert space, 3£, of the theory splits into finitely many
irreducible subspaces for 91. This assumption is made more precise in Sect. 3. There
we also formulate the Ward identities which describe how the symmetry algebra
91 acts on the scaling fields, φα(z, z), of the theory. The main result of Sect. 3 is the
existence of chiral intertwiner fields: We show that under natural assumptions on
the structure of the symmetry algebra 91 and the algebra of scaling fields (0α(z,z)}
of the theory, every field φΛ(z, z) can be written as a sum of products of chiral
intertwiner fields φa(z) (independent of z) and φά(z) (independent of z).

In Sect. 4, we study the vacuum expectation values of products of chiral
intertwiner fields φa(z) (or of products of fields φά(z)) which we call conformal
blocks. We then determine the envelope of holomorphy of the conformal blocks.
For an π-point conformal block this is the domain

Mn = {(z l 5...,zn): zt. / z;, for i
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whose fundamental group is the pure braid group, Pn. The conformal blocks are
multi-valued analytic functions on Mπ. The different branches of these functions
are connected to one another by matrix representations of the braid group Bn

generated by a Yang-Baxter (or braid-) matrix R = (R°a

d

b). This matrix can be viewed
as a matrix of structure constants for the algebra generated by the chiral intertwiner
fields: A product, φa(z)φb(w\ of two such fields is well defined, a priori, only if (for
example) Re z < Re w. But it has a multivalued analytic continuation to the space
M2. If φa(w)φb(z) is defined by analytic continuation of φa(z')φb(w') in z' from z to
w and in w' from w to z along paths shown in the following figure:

rz\
^̂ ^_ r̂*w

then

Φ«(w)φfc(z) = Rc

a

d

bφc(z)φd(w). (1)

This equation captures the basic structure of the algebra of chiral intertwiner fields.
In Sect. 4, we specify a class of unitary conformal field theories which we call
rational theories for which Eq. (1) can be proven. We also derive some of the
simplest properties of those ^-matrices which can appear as structure constants
in Eq. (1). A more systematic study of the properties of R will appear in a separate
paper.

As a consequence of our analysis we are able to determine the envelopes of
holomorphy of the Euclidean Green functions of rational, unitary conformal field
theories and to calculate their monodromy in terms of the braid-matrices R and
R, where R is the matrix of structure constants for the algebra generated by the
fields φα-(w), i.e.

(2)

In the final section (Sect. 5) of this paper, we extract the basic mathematical
structure of rational, unitary conformal field theory from the results in Sects. 2, 3
and 4. We show that in a sense to be made more precise in future work on the
subject, two-dimensional conformal field theory can be viewed as the representation
theory of a pair of abstract chiral algebras j/, sJ. Examples of such algebras are
the Virasoro algebra, current algebra, algebras of higher-spin currents, or of
parafermions. The chiral intertwiner fields are then viewed as "tensor operators"
for a chiral algebra si. Products of such fields are sections of bundles whose base
spaces are the spaces M n and whose fibres consist of tensor operators for si which
intertwine different representations of si. These bundles carry flat connections
whose holonomy generates a representation of the braid group Bn. Under suitable
hypotheses (which will require further study) these representations are generated



420 G. Felder, J. Frohlich and G. Keller

by Yang-Baxter matrices, R, which appear as structure constants in a quadratic
relation between chiral intertwiner fields, φa, of the form (1). Finally, we show how
one can reconstruct local fields φα(z, z) out of the chiral intertwiner fields φa(z\
φά(z) associated with the algebras stf, stf.

In separate publications the structure described in Sect. 5 will be investigated
in more detail and an application to minimal models will be given.

2. Quantum Field Theory on the Riemann Sphere

2.1. In this section we review some fundamental properties of two-dimensional,
unitary conformal field theory in a mathematically precise form. In view of the
basic significance of conformal field theory for the theory of two-dimensional
critical phenomena and string theory, the Euclidean formulation of conformal field
theory [1] is an appropriate formalism. It is based on work in [2,3] which develops
the Euclidean description of relativistic quantum field theory. Our analysis will
show that, given Euclidean Green functions of a two-dimensional conformal field
theory satisfying reflection positivity [2], one can associate with each parametrized
disk on the Riemann sphere a conformal quantum theory, or "quantization."
Different quantizations are intertwined by isometries which form a representation
of the Mόbius group, PSL(2, C). Special cases are Osterwalder-Schrader quantiza-
tion [2,3] corresponding to the right half plane {z = t + ix:t >0}, and radial
quantization [1] corresponding to the unit disk {z:\z\ < 1).

In two dimensions, quantum field theory has peculiar features intimately
connected with the fact that the complement of the closure of the light cone is
disconnected: The statistics of fields is not limited to Bose- or Fermi statistics—as
it was in higher-dimensions. This is related to the property of Euclidean Green
functions to be, in general, multi-valued functions on the space

Aί f i = {x = (xι,...,xπ):ϊ ίeE2,x i^x J.,foπ>j} (2.1)

corresponding to single-valued functions on the universal cover, Mπ, of MM. [The
fundamental group of Mn is the pure braid group on n strings [4].] Different
branches of a Green function are connected to each other by a matrix representation
of the braid group on n strings, [4]. In statistical mechanics, multi-valued Green
functions appear as order-disorder and parafermion correlation functions. These
features are discussed in some detailed in [5]. In the following, we shall assume
that Euclidean Green functions are single-valued functions on MΛ, symmetric under
permutations of their arguments. This will merely simplify text and notations. The
general case will be discussed elsewhere; see also [5].

It will be convenient to write points, x = (t,x)eE2, as complex numbers,
z = t -f ix, z* = t — ix = complex conjugate of z. Here x is the space component of
x and t its (imaginary-) time component. Both parametrizations will be used.

Next, we describe some basic properties of Euclidean Green functions of unitary
conformal field theory. These properties are variants of the Osterwalder-Schrader
axioms [2]. In order to describe them, we require some notation and definitions: Let

^ίf - Rez; > 0, for i = 1,.. .,n}. (2.2)
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We set

<S+ = C,

and

<?: = {/e^(E2"):supp/CMn+}. (2.3)

Here ^(E2n) is the Schwartz test function space over E2n. We also introduce some
transformations of E2:

0(f,x) = (-ί,x), i.e. 0z=-z*, (2.4)

(time reflection)

π(ί, x) = (ί, - x), i.e. πz = z*. (2.5)

(space reflection)

Mόbius transformations are denoted by

,
cz- fα c a

with z*h->w(z)*. Special cases are

ίf l:zh->z + 0, αeC, (2.7)

(space-time translations)

rφ:z\-*eiφz9 0^φ<2π, (2.8)

(rotations = Euclidean boosts)

and

.dτ:z^e'τz. (2.9)

(dilatations)

We shall study theories given in terms of a sequence, {Gαι...αn(x1,...,xn)}"=0,
of Euclidean Green functions of scaling fields with the following properties which
are motivated by the analysis of models, like the two-dimensional Ising-, Potts-
or six-vertex models , at a critical point.

(PI) G(0)= 1; Gα ι...α n(x 1,...,xn) is a well defined, continuous, polynomially
bounded function on MM, for arbitrary a,ί9...9(x.n and all rc=l,2, 3, . . . . [The
subscripts α x , . . . , αΛ label different scaling fields and range over a finite or countably
infinite index set A0J] It is also assumed that

Gαι. ..«„(* i , - . , x«) = G

απ(1)...απ(Π)fe(i)? , x«(»)), (2.10)

for arbitrary permutations, π, of n elements.
In statistical mechanics, (PI) expresses the property that the scaling limits of

order- or disorder correlation functions of a statistical system at a critical point
exist and are well defined, symmetric functions on Mn. [Mixed order-disorder
correlation functions are discussed in [5].]

(P2) There are real numbers /z(α) and /z(α), αe/l0, called conformal weights, such
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that, under a Mόbius transformation w, see (2.6),

(2.11)

where wt = w(zj), ht = hfa) and ht = hfa).
Assumption (P2) expresses the property of scaling limits or correlation functions

of critical statistical systems to be Mόbius-invariant. Actually, full Mόbius
invariance pre-supposes that one works with order parameters which, in the scaling
limit, transform tensorially under Mόbius transformations. This is more than what
is needed in many parts of our analysis. Often it would be enough to assume

(P2fl) Euclidean Green functions are translation-invariant
(P2b) Rotation invariance:

where st = s(αf) = Λ(α f) — /z(oii), i = 1, . . . , n; s(α) is called "spin."
(P2C) Dilatation invariance:

)( (2.12)

...^x1,...,xπ), (2.13)

where dt = d(αt ) = h(af) + Λ(a f) is the so-called "scaling dimension," i = 1, . . . , n.
Next, we formulate a property, reflection positivity [2, 3], which is somewhat

unnatural from the point of view of statistical mechanics, but plays an important
role in our analysis of conformal field theory; see also [1]. By ̂  + we denote the
space of finite sequences of test functions,

{/αr αn(^ι i ^M)e^+,αl 6>l 0,i=l,.. .,n}π = 0 > 1 > 2 ).... (2.14)

["Finite" means that /α ι...β n(xι,...,x l l) = 0, except for finitely many choices of
(o^,..., απ) and finitely many n.]

(P3) We assume that there is an involution, *:A0ι— >y40,αι->α*, such that

Gα*...αί(θxM,...,fe1) = Gαι...αn(x1,...,xn)*, (2.15)

and, for arbitrary sequences /e«$f 4",

Σ Σ ί G«ί-«T^ι-/ϊm^»' > θ*lφ» » >!m)
π,m α,/?

•/.l...*,(ϊ1,. .,ϊ,,)*//,1...flM(j:ι,...,3:m)d2"xd2"y^O. (2.16)

Reflection positivity (P3) can be derived from the selfadjointness of the transfer
matrix of an underlying statistical system. This is a frequent, but not a fundamental
property of lattice systems. [It fails e.g. in the theory of selfavoiding walks.] But
without assumption (P3), it is more difficult to undertake a general analysis of
conformal field theory; but see [6].

2.2. Next, we review some important consequences of assumptions (P1)-(P3),
(i.e. we sketch Osterwalder-Schrader reconstruction, [2,3]).

Assumption (P3) permits us to define an inner product, <v> y + , on ^+: For
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/ and g in ̂ +, we define

faι..«n(xί, ,Xn)*9βί βJyι, ,yJ<l2nxd2my. (2.17)

Here y + denotes the right half-plane {z:Rez > 0}. Let Λ^+ be the kernel of < v> y +

in ά? + . An equivalence class of a sequence /6^ + , mod,^"*", is denoted by
ί(/)"=iy+(/).Then

^γ+={iy+(f)'f^ + Γ, (2.18)

where the closure is taken in the norm induced by < , > y + , is a separable Hubert
space. We let Ω=Ωy+ denote the image under iy+ of the sequence / with
/(0)= 1 and /αι...<xn(*ι> >:*n) = 0> for all n^ l Ω is called vacuum.

Assuming (PI), (P2α) and (P3), Jf y + can be shown to carry a representation of
space- time translations, constructed as follows: Given /e^+, let -f be given
by the sequence

If a° ^ 0 then */e5?+, for fe&+, and we define

e-
a°H-iapi(f) = i(<!f), α°^0. (2.20)

A standard result of Osterwalder-Schrader reconstruction says that (2.20) defines
a semigroup on Jf v + generated by selfadjoint operators H and P, and

#^0; (2.21)

see [2]. If, in addition, (P2b) holds we may define an operator M by setting

e*Mi(f) = im (2.22)

where φf is given by the sequence

Clearly, for /e^f+, φ/ is contained in ^+, provided |φ| is small enough. A
theorem in [3] then says that (2.22) defines a selfadjoint operator M. It is the
generator of boosts. It is easy to conclude now that

H ± P ̂  0, (2.23)

which is the relativistic spectrum condition, [2, 3]. Assuming also property (P2C),
the equation

e i τ D i ( f ) = i(n (2.24)

where /ι— >τ/ represents dilatations on ^+, defines a selfadjoint operator D
generating a unitary representation of dilatations on JΊfy+.

By construction, Ω is invariant under the operators e-
a°H-iap^ev

M

 an(} e

iτD^

1 If (P2C) holds Ω is the unique invariant state in Jf y +
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Since {e~a°H~iap:a° ^0} is a contraction semigroup on ^fy +, and since i(<9? + ) is
dense in ^fy +, by construction, the subspace ί(q^ + ) is dense in J f^, for
all α°^ O.Here

and, by (2.20),

i(*¥+) = e-a°H-iapi(¥+). (2.25)

Let / be a test function with

supp/c={χ:0<x 0<α 0},

for some a° < oo. Let /e-<5f +, and define fa x fe^+ to be the sequence

{f(Xl}δ*ίJ«2. .Λn+ί(X2, ,Xn+l)}n = 0,l,2,... (2-26)

We define an operator φΛ(f) by the equation

i ( f * * f ) , fεq¥ + (2.27)

Since ί(-5f + ) is dense in J4?y+,φΛ(f) is densely defined. Since the Green functions
Gαr..otn(x1,...,xn) are continuous on Mπ, we may let / approach a ^-function at
some point x = (x°, x), x° > 0, and obtain a densely defined operator

This is the Euclidean field operator.
We define

(2.28)

P), K = $(H-P). (2.29)

By (2.19) and (2.20), e~ζ*,Re( ̂  0, represents the transformation ZH-*Z -f ζ,z*h-^z*
on «^y+, and by (2.23) the operator norm of e~^κ is bounded by 1, for Reζ^O.
Similarly, e~^* represents the transformation z\-*z, z*\-+z* -ff on J^y+ and is
bounded in norm by 1, for Ref^O.

We define some subspaces of C2":

^ = {z,f:z-. = z f , /=l , . . . ,n} , (2.30)

Mn

> = {z:Rez B >...>Rez 1 },

MZ-*={i:Rez1c-l(n}>.:>RezK-nl}}9 (2.31)

where π is a permutation of {1, . . . , n}9

M^'π = MM

> 'πxMΠ

> 'π, (2.32)

and

MJ'π(w) = M^ 'π(w) x M> 'π(w*), (2.33)

where

ΛC'π(w) = {zrίwίzO, - - , w(zJ)eM>'π}, (2.34)

with w zh- ̂ w(z) a Mδbius transformation.
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Proposition 2.1. Let {GΛί...(χn(x1,...,xn)}™=0 be a sequence of Euclidean Green
functions satisfying properties (PI), (P2α), (P2b) and (P3). Then Gαι :..Λn(zί9 z? , . . . , zπ, z*)
is ί/ιe restriction of a function

holomorphίc in(zl9...9 zn) and (zl9..., zn) on the domain

U U MΓ(w) (2-35)
πeSn w: Euclidean

motion

to the Euclidean domain $n. If the Green functions are Mobius invariant, see (2.77),
then w in (2.35) can be an arbitrary Mobius transformation.

Sketch of Proof . A complete proof of Proposition 2.1 can easily be inferred from
[2]. Here we sketch the heuristic ideas on which the proof is based. From (2.27),
(2.28) and translation invariance, (P2fl), we conclude that if RezM > ••• > Rez 1 ?

(2.36)

From (2.19), (2.20), (2.27), (2.28) and (2.29), i.e. K ^ 0, K ^ 0, it follows that

φa(z + ε,z- + ε) = e-zK-^φΛ(ε)ezK+^ (2.37)

for Re z ̂  0, Re z ̂  0, ε > 0, as an operator equation on the dense domain i(-5f + ),
where α° > max (Re z, Rez) + ε. We have set φα(ε,ε) = φΛ(ε). Hence, using (P2α),

(2.38)

if Rez n > ••• >Re/1. By (2.23) the norm of e~zK~*κis bounded by 1, for Rez^O,
Rez^O. Hence, formally, the right-hand side of (2.38) extends to a function

Haί...Λzl9zl9...9zΛ9zΛ) = <Ω,φΛ^

(2.39)

holomorphic in (z, z) on M^ x M^. Due to difficulties with domains of definition
of the unbounded operators φΛ.(ε)9 the formal arguments leading to (2.39) are
untenable. But the considerations in [2] show that (2.39) is correct anyway. [Our
formal arguments would be correct if the operators φΛ(ε)e~~ε'H9 ε > 0, ε' > 0, were
bounded operators. This would follow from a sharper version of property (PI)
sketched in [7].]

In order to complete the proof of Proposition 2.1, we note that, by (P2fl) and
(P2fc), the domain of definition of /fα(z,z) extends to

w

where w is an arbitrary Euclidean motion. But ( (J M^α(w) Jnί (J \J M*'π(w') J
\ w / \π* 1 w' /

is non-empty. Since Gα ι...β n(z 1,zJ,...,zΠ,z*) is symmetric under arbitrary permu-

tations of {!,...,«}, HΛί...Λn(zί9zί9...,zn,zn) is symmetric on ί |J Mϊl(w) )n
\ w /



426 G. Felder, J. Frohlich and G. Keller

(J (J MJ>π(w') J. By a little geometrical argument (see also Sect. 4) it then follows
rr* 1 w' /

that H?(z, z) extends to a function that is holomorphic in (z, z)e 1J [J M*'π(w), where
w π

the w's are Euclidean motions.

Our goal will be to extend H?(z,z) to a multi-valued holomorphic function on
the domain Mn x MΠ, corresponding to a single-valued holomorphic function on
Mn x Mn. [Recall that Mn = (z:zf φ zj9 for i Φ j } 9 and MΠ is the universal cover of
MΠ.] This will require further assumptions on the Green functions Gα(z,z*) and
a considerable amount of additional work.

Let Mn be a non-empty open subset of MΠ

+ = {zeMn:ReZi>0}, n = 1,2,3,...,
and let M = {Mn}^°=ι be a sequence of such subsets. We define a subspace £f + (M)
of 5f + to consist of all sequences fe^+ with the property that supp/αι...βn c MΠ,
for all n ̂  1. It is an elementary consequence of Proposition 2.1 (see e.g. [18]) that

i& + (M)) is rf^n5^ m ̂ v + , (2.40)

for arbitrary sequences M with the properties specified above.
We may now exploit consequences of full Mδbius invariance, Eq. (2.11),

assumption (P2). [This was irrelevant for Proposition 2.1 which required only
translation- and rotation invariance.] Because of (2.11), it is natural to view test
functions, /£1...βn(z !,..., zj, as the components of a tensor with conformal weights
(1 — hh 1 — ha ht = /ι(αf), /tf = h(&i). For a Mδbius transformation w, we define

ί=ι \αz
(2.41)

Given a Mδbius transformation w close to the identity, let M be a sequence of
non-empty subsets, Mn, of Mn

+ with the property that

is contained in Mn

+ , for all n = 1, 2, 3, ....
For fey f (M), we define

i(w-1/). (2.42)

Thanks to property (2.40), this determines a densely defined operator l/(w) on J f y + .
If W i and w2 are two Mδbius transformations close to the identity, then it

follows directly from (2.42) and (2.41) that

l/(w1)l^[w2J=l/(w1ow2), (2.43)

as an equation between densely defined operators on «^y+. Thus U defines what
in [3] is called a virtual representation of the universal cover of the Mδbius group,
SL(2,C). The^ generators of infinitesimal Mδbius transformations are denoted by
L-^LO^ZL^LO,!!. We define

Returning to the definition (2.17) of the scalar product < , > v + , changing variables
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and using (2.11) we easily verify that

</,^>v+=Γθ/^>y+ (2-44)

This identity and (2.42) show that

l/(w)* = I/K) (2.45)

on some domain dense in ̂ y+. One can choose the generators L.^L^L^L.^L^Lj
in such a way that (2.45) and Proposition 2.1 imply that

(-) (-) (-) (-) (-) (-)
L g = LO, L J = L _ i , and L* 1 = Lλ.

This will be discussed in more detail below.
Equations (2.20), (2.22) and (2.24) are special cases of (2.42), (2.43). Obviously,

the vacuum Ω is invariant under U. It follows from results in [3] and [9] that U
can be analytically continued to a unitary representation of the group of
pseudo-Mobius transformations on J^y+.

2.3. We now show how to associate a quantization consisting of a Hubert space
J^y, a vacuum ΩyeJjfy, a virtual representation Uy of SL(2,C) on jjf y leaving Ωy

invariant, and Euclidean field operators (/>£,αe/40, with every parametrized disk,
y, on the Riemann sphere. Let y be the image of y + = { z : R e z > 0 } under a
Mobius transformation w^ 1 = w"1. Let /V->w/ be given by (2.41). We define a
reflection θy at the boundary, dy, of y by setting

θw(z) = w(0yz), i.e.

0yZ = w- 1(θw(z)) = w- *( - w(z)*); (2.46)

see (2.4) for the definition of θ ΞΞ θy+.
We define

5fy

+ = {/:w/eίf+}. (2.47)

The space 5fy

+ carries an inner product defined by

</. £>v = Σ Σ ί ̂ ..,̂ ...,.,(0*, (̂ *, , 4,0

Here rf2z = d2x = dtdx. By a careful change of variables, w = w(z), and by using
that w is a Mobius transformation, one finds that

</,£>, = <Ύ>w£>v. (2.49)

Since the image of ^T under w is ^+, see (2.47), <7,7>y+10, by (2.17)
and (2.16). Hence <•,•>, is positive semi-definite on 5fy

+. A Hubert space Jfy can
now be constructed by the same reasoning that gave Jf y +. The injection of if*
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into Jf y is denoted by iτ The map Iyy + defined by

/yyj(/) = fyr'/), (2.50)

where w is the Mόbius transformation mapping 7 to y+9 defines an isomorphism
from 3fy+ onto J^y which by (2.49) preserves scalar products. We set

Then Ωy is the image under iy of the sequence fe^y given by /(0)=1,
/αr..αrι(z1,...,zn) = 0, for all n^ 1. We also define

h(a)

(2.51)

This definition is consistent with Eqs. (2.27), (definition of φΛ on J"fy + ), (2.41),
(definition of/ϊ-»w/), and (2.50), (definition of I y y + ) .

Every Hubert space Jf y carries a virtual representation, t/y, of the universal
cover of the Mόbius group, given by

Uy(w)iy([) = iyr-lf), (2.52)

for / in a subspace of Sf y whose image under w is still contained in £f* . Let wy

be the Mόbius transformation taking y to 7 + . Combining (2.50) and (2.52), we find

= Iyy+ if* °wo^ /) = Iyy+ Uy+ (wy

Hence

C/y(w)/yy+ = / y y + Uy+ (wy- ̂ wow,) (2.53)

as an operator equation on a dense domain in ̂ y+ .
We conclude this section by discussing a special example: y = y0 = {z:|z| < 1}.

In this example, which corresponds to radial quantization [1], the transformation
wyo = w0 is given by

w 0 ( z ) = - , (2.54)

mapping the unit disk to the half plane {Re vv0 > 0} with z=lh->w0 = 0,z= — li— >w =
ioo. The space ^yo is given by sequences of test functions, /βl...βr,(zι,...,zj, with
support in Mn r\ {z:\Zi \ < 1, i = 1, . . . , n}, n = 0, 1, 2, . . . , and the scalar product < v >yo

is

> 0 >vo = Σ Σ ί G& 'tiβΓ βJfrlί ~l>Znl> ',Zm,z'*)

_
*\~2hi7~2hi f (7 7 \*/αr • α n V z l» »2;n;

^Π^, (2.55)
t = l j = l

The Hubert space Jfyo carries a virtual representation, £/yo of SL(2,C). The
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generators LLVL^Lf ,/Λ0!,!^ and L[° of Uyo are chosen as follows; (we drop
the superscript y0):

eτLo represents zκ-»eτz, z*ι— >z*, (2.56)

e*L- 1 represents z>— >z -f τ, z*ι— >z*, (2.57)

eτLί represents zi— >- -- , z*ι— >z*. (2.58)
1 — τz

The action of the generators L _ l 5 L 0 and L t is obtained by exchanging z and z*
in the above formulas. Using the analyticity properties of the Green functions
established in Proposition 2.1, one verifies that the operators eτL°, eτL~l and eτLl

are densely defined operators on Jf yo, for |τ| small enough. Using (2.55), one shows
that

L* = L0, Li = L_! , L* I = L!, (2.59)

and similarly for L-ι,L0,Lι. From the definition of the generators and (2.59) one
may conclude that

[LfnLw] = 0, n , m = - 1,0,1 (2.60)

in the sense that the spectral projections of the selfadjoint generators L0,L1 4- L _ l 5

i(Lr — L_ J, commute with those of L0, L! + L_ t , /(L! — L_ t). It also follows easily
from (2.56)-(2.58) and Proposition 2. 1 that on some natural domain 2 dense in J f yo,

L^ωLo-^ω(Lo+/J)Ln, Imω^O. (2.61)

See [3] for techniques useful to prove these claims.
Note that, by (2.56), <rτ(Lo+Io) represents the dilatation zκ-»e~τz, z*ι-»e~τz* on

f̂ yo. It is shown in [10] that

LO + LO ̂  0. (2.62)

This can also be proven by using arguments of [2]. First one notices that the
scaling dimensions, d(α),αe,40, are all positive. This follows from the fact that, by
assumptions (P2) and (P3),

Gα,α(z, z*, 0, 0) ~ I z Γ 2d(α)e " 2ίargzs(α)

must tend to 0, as |z|-»oo. It is then consistent to sharpen assumption (PI) by
requiring the bounds

IG.r.Uίl. .ίj^'Vl .*"'*^
i*j

(2.63)

uniformly in τ^O, provided \x1\ > \x2\ > ~ > \xn\, n= 1,2,3,...; (here C(α) and
N(α) are some finite constants). Using (2.52) and the Schwartz inequality with
respect to <v>y o repeatedly, as in [2], one shows that (2.63) implies (2.62).

Since L0 and L0 commute, the joint spectrum of (L0,L0) is a subset of (R2, and
by (2.62)

spec(L0, LO) £ {(ft, h)\h + h ̂  0}.
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Let {E0(Δ)} denote the joint spectral projections of (L0,L0). It follows from (2.61)
by Fourier transformation that, on the dense domain ®,

LnE0(Δ) = E0(4(n, 0))Ln, LnE0(&) = £0(Δ(0, n))I*9 (2.64)

for n = — 1,0, 1, where

4(n,m) = {(h,h):(h + nji + m)eΔ}. (2.65)

We now prove the following general result.

Proposition 2.2. Let 3? be a separable Hilbert space carrying two commuting
representations [Ln}l= _ 15 {Ln}^= _ ! o/ί/ze Mobίus algebra s/(2, C) w/ί/i the following
properties:

(a) LO =L0, L! =L_ 1 , L0 =L0, LI =L_ 1 ?

(b) Eg. (2.64) Λo/ds on some domain 3) dense in J^,
(c) LO + LO^O.
T/ien LO ̂  0 and L0 ̂  0.

Proof. Let Λ_be the^ joint spectrum of (L0,L0). By hypothesis (c), A is contained
in the set {(h, h): h + h ̂  0}. Hence we may find a non-empty subset Δ o f Λ such that

0. (2.66)

Let ψ be an arbitrary vector in 2 with E0(Δ)ψ = ψ. We claim that

L!^ = O. (2.67)

To prove (2.67), we note that

by hypothesis (b). But by (2.66), 4(l,0)n/l = 0, so £0(4(1,0))!̂  = 0.

Next, let Λmβx = max (Λ:(Λ, Λ) c 4}. Then

Og<L-1^L.1^> = <^L1L.1^>, by (a)

= <^,[L1,L_1]^>, by (2.67)

Hence /ιmax ̂  0. Clearly, given any ε > 0, we can find a set A with all the properties
stated above such that min {ft:(Λ, A)e/4} ̂  Amax - ε ̂  -ε. Since ε > 0 can be chosen
arbitrarily small, it follows that

The same arguments apply to Lθ9Lί. Thus

A^{(h,h):h^O,h^Q}.

Remarks. 1. The properties of the representation Uyo of SL(2, C) established above
can be transferred to quantizations associated with arbitrary parametrized disks,
7, on the Riemann sphere. Let wyyo be a Mobius transformation mapping y to y0,
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and let /yyo be the corresponding isomorphism from Jjfγo to 3? y. As in (2.53) one finds

It is compatible with this equation to define the generators Ly

n,L
y

n,n= — 1,0, 1, by
setting

r y r _ / r yo τ~yr _ r Fyo (9 fic\
•^Λ1 yyo ~ L yγo^n 9 ^n1 γγo ~ A γγo^n » {ί.ΌQ)

for n= -1,0,1.

2. Using Proposition 2.2, one can prove an analogue of Proposition 2.1 in radial
quantization by working with the semigroups zLo and ZL<> which are contractions
for |z| ^ 1 and |z| ̂  1. One notices that by (2.56) and property (P2), Eq. (2.11),

φjtz, z) = zLozLo</>α(l, i)z-L0-fcw^E0-ί(«)> α6y40, (2.69)

provided — π < arg z < π, — π < arg z < π. As in (2.39), one then finds that Gα(z, z*)
is the restriction of a function Hα(z, z) holomorphic and single-valued in z and z
on X^ x X^, where

K n

> =(z: |z 1 |>. . >|zΠ |, -π<argz ί<π, ί=l,.. .,n}. (2.70)

The function H4(z,z) can obviously be extended to the domain K* x K^, where

But since K* is not contractible, /f^(z,z) may and does have non-trivial monodromy
on Kn x K> see Sect. 4. Its monodromy can be removed by passing to the covering
space K> x K> , where

^n = {i \zι I > > \zn l > ~ °o < arg z£ < oo, i = 1, . . . , n},

and extending the definition of φΛ(z, z) to the domain {z, z: — oo < arg z, arg z < oo}.
These features were a source of confusion in the early days of conformal field
theory which was resolved e.g. in [9].

3. The Chiral Structure of Conformal Field Theory

The goal of this section is to show that, under certain additional assumptions
concerning the existence of a conserved energy-momentum tensor and possibly
further conserved "currents," every field </>α(z, z) has a holomorphic factorization

φα(z, z) = Σ /αμv-φμ(z) ® φ .(z) (3.1)

for some complex coefficients /α/liF and chiral fields φμ(z\φ-(z). The sum in (3.1)
extends over multi-indices μ and v. If the theory is a so-called rational conformal
field theory that sum is finite, for all αe.40, and Eq. (3.1) becomes an extremely
powerful tool in the study of conformal field theory.

The derivation of (3.1) rests on first finding all chiral fields already contained
in the operator algebra generated by {φΛ(z,z)}ΛeAo. The most prominent example
of such a field is the energy-momentum tensor which we now study. Its existence
is guaranteed by the following additional assumption typically made in conformal
field theory [10]:
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(P4) In the operator algebra generated by the fields {φΛ(x)}Λ€Ao there are local
fields Tμv(x),μ, v = 0,1, with the following properties:

Tμv(x) = 7y x), T*v(ί, x) = Tμv( - ί, x), (3.2)

d0Tμ0 - 81 Tμl = 0, (i.e. Tμv is conserved), (3.3)

d(Tμv) = 2, s(T00 - Tu ± 2iΓ01) = ±2, (3.4)

where d is the scaling dimension and s the spin.
It is assumed, moreover, that the generators LΠ,LW, n =—1,0,1, can be

expressed in terms of Γμv, in particular, in Osterwalder-Schrader quantization,

(0,x), and

(0,x). (3.5)

Finally, it is assumed (temporarily) that the Green functions (vacuum expectation
values) of Tμv are parity-invariant.

Remarks. 1. Eqations (3.2), (3.3) and (3.5) hold in the sense of densely defined
sesqui-linear forms on Jtif x Jjf.

2. Assumption (P4) can be rewritten as an assumption on Green functions
G«r• •<*„ (*ι, •>*«), H = 0,1,2,..., in the Euclidean domain. But such a formulation
is more cumbersome; (see also [1]).

It follows from assumptions (P1)-(P3), Sect. 2, and (P4) that Tμv is traceless, i.e.

T{| = 0, (3.6)

and hence, using in addition (3.3), that Tμv has only two independent components,

T = TOO + ϊT01, only depending on z = t + /x,

T = T00 — iT01, only depending on z* = t — ix. (3.7)

In Osterwalder-Schrader quantization (γ = y+), we define operators

Ln = ~^J</x(x - i)1 ~w(x + ί)1 +MT(0, x). (3.8)

Then {Lπ}neZ and {Ln}neZ satisfy two commuting Virasoro algebras

[Lw,Lm] = (n - m)Ln+m + — (n3 - n)δn+m^

(3.9)

[£n? IJ = (W ~ "04, + m + γ^(n3 - n^H + m.0,

for some central charge c ̂  \.
Results (3.6)-(3.9) form the contents of a general theorem due to Luscher and
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Mack [11]; see also [12] for some earlier partial result. It is easy to show, using
(3.4) and (3.7), that

Lπί2=0, for n^- l. (3.10)

The vacuum expectation values <ί2, Lnι - LΠkί2> can be computed recursively from
(3.9) and (3.10); see [11, 1]. We now extend the intertwining relations (2.68) from
n = - 1,0, 1 to all neZ. For example,

Un+Iγ+γo = Iy+γoUn», neZ, (3.11)

where {Ly

n

+ }neZ are the generators introduced in (3.8); (similar relations are required
for Ly

n

 + ,Lyo, neZ). Using that, by (3.4), (3.7) and (3.9), T(z) transforms tensorially
under Mδbius transformations with conformal weights h(T) = 2, h(T) = 0, we
conclude from (3.11) that

Ly0= j zn+lT(z)dz, neZ, (3.12)
|z| = l

in radial quantization, and similarly for Ly

n°.
More generally, if

is an infinitesimal conformal transformation and γ is a disk on the Riemann sphere,
we set

Ty(ε) = $ε(w)T(w)dw.
dγ

If w y / y is a Mόbius transformation mapping a disk γ' to y then

Ί\(w'YyΓ
l\ (3.13)

This can be derived from (3.1 1) or, more simply, from the transformation law of T,

Γ(w)= — (zMwmzMwΓ1 (3-14)
\az J

under Mόbius transformations. [If ε is an infinitesimal Mόbius transformation
then (3.13) is consistent with (2.53) (with γ+ replaced by /) and with (2.68)!].

From now on we shall drop the superscripts, y, from Ly

n9L
y

n9 T
y, ̂ Ί,..., whenever

they are clear from the context.

We now study the representation theory of the Lie algebra Vir φ Vir with
generators {Ln,Ln}nel on the Hubert space 3f of some conformal field theory
satisfying assumptions (P1)-(P4). In the following discussion it may be convenient
to think of radial quantization (γ = γ0 = {z:\z\ < 1}). The generators Ln9 Ln are then
given by Eq. (3.12). Using the facts that T(z) and T(z) are local fields and using
the analyticity properties of the Green functions HΛί...Λn(zl9zΐ9...9zn9zn) (trans-
ferred to radial quantization; with α = 1 being the index for T and α = T being the

index for T), one can easily prove that Vir and Vir have a common invariant
domain, 29 dense in #f on which all the generators, Ln,Lπ, are defined, satisfy the
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unitarity condition

Ln* = L_ n, Ln* = L_ n , neZ, (3.15)

and the Virasoro algebra (3.9).
By (2.56) and assumption (P4), eτLo represents the transformation z-*eτz,z-+z,

and eτl° represents z->z, z-*eτz. From this and Proposition 2.2 one derives that
the domain Q) can be chosen to be invariant under eίo)L° and, using the Virasoro
algebra (3.9), that

Lne
ίωLo = eίω(Lo+n)Ln, (3.16)

for Im ω ̂  0, as an operator equation on 3). Similar observations hold for the

generators Ln of Vir. [Detailed proofs of these claims are somewhat lengthy, but
follow from Proposition 2.1 and the contour integral techniques in [1].]

Proposition 3.1. Let J^ be a separable Hilbert space, and let Vir and Vir be two
commuting Virasoro algebras with central charge c, defined on a common invariant
domain, @, dense in 2/f. Suppose that L0 and L0 are positive operators and that (3.15)
and (3.16) hold on 9.

Then the representation of Vir © Vir on tf is completely reducible, i.e. 3F is a
direct sum or integral of spaces 3fh®tf-h, where Jjfh is the completion of an irreducible,
unitary highest-weight module.

Proof. Let Δλ be a non-empty open subset of Λ = spec(L0,L0) such that

Δ,(n,m) = {(h,h):(h + n,h + m)GΔ, } n/1 = 0, (3.17)

for all n ̂  1 or m ̂  1. Since L0 and L0 are positive operators, by Proposition 2.2,
such a set Δ1 exists. Let 3)^ = E0(Δί)^ c®, where £0( ) are the joint spectral
projections of (L0,L0). Let if/Gί&i and n>0. Then, by (3.16) and (3.17),

= 0, (3.18)

for all n ̂  1. Similarly, Lnψ = 0, for all n ̂  1. Hence ψ is a direct sum or integral

of highest-weight vectors for Vir ® Vir, (labelled by points (h, h) in the support of
the measure d(ψ, E0(h,h)ψy). Let Jtf 1 be the closure of the linear span of

for arbitrary positive nΐ,...,nk,mi,...,ml, and arbitrary φe^^. Clearly, J f j is

invariant under Vir ® Vir. We note that since the scalar product on Jjf is positive
definite and by (3.15), a singular vector contained in Jίf^ is necessarily the zero
vector. Thus jjf l is a direct sum or integral of (completions of) irreducible, unitary
highest weight modules.

Now, consider the orthogonal complement, J t f Q J t f l 9 of tf i. Let Λ2 £ /l\4j
be the joint spectrum of (L0,L0) on j^Qjfί. Let Δ2 be a non-empty open subset
of Λ 2 such that

Δ2(n,m)r\Λ2 = 0, for all n^ΐ or m ^ l .

Again, such a set Δ 2 exists, unless Jtf 1 = Jtf . We define @2 = EΌ(Δ2)(J#'Qjfi)c:@.
The construction described above can now be repeated, and we obtain a closed

subspace, J^f2, of j^Qj(fi9 invariant under Vir 0 Vir, . . . . This process can be
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continued inductively at most countably many times. This completes the proof of
the proposition.

Remarks. 1. If the spectrum of (L0,L0) is discrete, then the arguments used in the
proof of Proposition 3.1 yield a direct sum decomposition

(3.19)

where W^ is isomorphic to the completion of an irreducible, unitary highest-weight
module for Vir.

2. Unitary, irreducible highest- weight Virasoro modules, Mh >c, have been classified
in [13,14,15]. They are uniquely specified, up to isomorphism, by the central
charge, c, and the highest weight, /z, (the smallest eigenvalue of L0 on Mhc). If c> 1
MhtC is isomorphic to the Verma module with highest weight h and central charge
c. If c < I only a discrete series of values of c,

c = 1 - - — , p = 3, 4, . . . ,
p(p + i)

and of values of /ι, depending on c, is possible [14], and MhtC is a quotient of the
corresponding Verma module by a maximal submodule generated by two singular
vectors.

3. The unitarity assumption (3.15) is essential for complete reducibility. Non-
unitary Fock space representations which are not completely reducible are
known [13].

4. It is natural to ask whether the representation of Vir 0 Vir on jff can be
integrated to a virtual representation of Γ (x) Γ, where Γ is a central extension of
the group of conformal transformations, z -> w(z), which can be continued to a
projective, unitary representation of DiffS^DiffS1. The answer is affirmative,
see [16]. By Proposition 3.1, it is enough to study the integrability problem on

irreducible subspaces for Vir 0 Vir.
One may now ask whether the fields {φΛ(z9z)}ΛeAo transform tensorially under

Γ®Γ, i.e.

, , (3.20)

if w and w are conformal transformations close to the identity in a neighborhood
of z, z, respectively. This does not follow automatically from assumptions (P1)-(P4).
It is customary to make the additional assumption [1] that {φΛ(z,z)}aeAo contains
a subset of so-called primary fields {φΛ(z9z)}ΛeAl, Al ^ A0 for which (3.20) holds.
[Note that T and T are not primary, since the central charge c is non-zero [1, 14].]
The infinitesimal version of (3.20) is [1]

Λ, φΛ(z, z-)] = zn+ 1 - φΛ(z, z) + (n + l)z"/z(α)</>α(z, z),

[Lπ, φΛ(z, z-)] = zn + > — φa(z, z) + (n + l)z-ΛΛ(α)φα(z, z),
(3.21)
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for all OLeAl9 neZ. Note that if φ Λ ( z 9 z ) is primary the vector

φβ(λ,λ)β, (3.22)

λ < 1, is a highest-weight state for Vir©Vir, with

as follows from (3.21). For aeAt, we define Jfα to be the closure of

for arbitrary positive integers nί9...9ml.
One may now ask whether

Jf =0Λ*β. (3.23)
αeΛi

A theory is called (Vir 0 Vir) — minimal if (3.23) holds, with A^ a finite set. The

minimal models analyzed in [1] are (Vir© Vir) — minimal theories. Unfortunately,

most theories are not (Vir ©Vir) — minimal, Aί will be infinite. For example, the

Wess-Zumino-Witten models are not (Vir ©Vir) — minimal theories [17].

Structure analysis of conformal field theory is simple for (Vir© Vir) — minimal
theories. However, we do not wish to confine our analysis to this class. Our strategy

is to look for a larger "symmetry algebra," 21, containing Vir ©Vir, with the
property that Jjf splits into a finite direct sum of irreducible subspace for 21.
Accordingly, such a theory is called ^-minimal. The construction and classification
of appropriate symmetry algebras will be the subject of another publication. Here
we just describe some basic features of 21 relevant for our purpose.

Let 3F be the operator algebra generated by {φΛ(z,z)}aeAo. By assumption (P4),

3F contains Vir φ Vir. Let J2/0 be the subalgebra of all fields in 3F commuting with

Vir, and let jtf0 be the subalgebra of fields commuting with Vir. More precisely,
we define «a/0 to be that subalgebra of ̂  generated by fields, Jl(z), which are
independent of z; s/0 is defined similarly. Clearly j/0 contains Vir. Depending on
the theory we study, j/0 may contain further currents, Ja(z), of spin s= 1 [17]
(current algebra) and/or of higher spin s = 3,4,. . . [18]. A simple lemma says that
if j/o contains a primary current, J(z), of spin 2 then the theory is reducible, in the
sense that the Virasoro generators, Lπ, can be decomposed,

/c^2, (3.24)

where {L^}neZ, i= l , . . . ,/c, are commuting Virasoro algebras with central charges
ch i = 1, . . . , /c, and the central charge, c, of {Ln}nel is given by

c=Σci (3 25)
i = 1

We may limit our study to irreducible theories. Then T(z) is the only current of
spin 2.

Our first candidate for 21 is «β/0®«β/"0. However, it may happen that
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Q is too small a symmetry algebra for our purposes. It can be further
enlarged by a construction that we briefly sketch here; (details will appear
elsewhere): In radial quantization, the algebra j/0 carries a representation, {αt}τeR,
of rotations which, for \z\ = 1, reduce to light-cone-translations. They are defined
on the generators of j/0 by

^03Jl(z)^^(Jl(z)) = ehhJl(e^zl (3.26)

where h = h(Jl(z)). It is easily seen that {ατ} is an abelian group of *-automorphisms.
A representation of J3/0 on a Hubert space $ is called a positive-energy
representation [19] if ατ is unitarily implemented on $ by operators eiτL°, i.e.

θLτ(A) = eiτL°Ae-iτLo, for all Λe^0> (3-27)

where L0 is a positive operator on jfi.
We then study the representation of e£/0 on the total Hubert space

(3-28)

where /0 is the set of all inequivalent irreducible positive-energy representations
of J2/0. It is assumed that there is exactly one representation, jΊfl9 which contains
the vacuum Ω. Clearly, ^f1 has a natural embedding in the physical Hubert space,
J f , of the conformal field theory. According to the analysis in [5], one attempts
to construct intertwiner fields, χj(z\ mapping a dense domain in Jf x to a dense
domain in Jf _,-. These fields are, in general, non-local, i.e. the conformal weight hj
( = spin Sj) of χj need neither be an integer nor a half-integer, [5]. We define a
chiral algebra stf to be a maximal extension of the algebra £/0 by intertwiner fields
χj(z)9 J€/o(<^} — /o> such that the vacuum Ω is a separating vector for <s/, i.e. if
,4 is an arbitrary polynomial in the fields Ji(z)e^0 and χj(z), je/0(jtf\ then

= 0 z'mpfes A = 0 on Jf L. (3.29)

This turns out to be a very powerful constraint that permits one to essentially
classify all possible chiral algebras s/. They turn out to be slight generalizations
of algebras consisting of fields of integer spin [17, 18], half-integer spin [20] and
parafermions [21]. This will be discussed in more detail elsewhere.

We denote the generating fields of si by {^m(z)|we/}; they may be taken to
be T(z), Jl(z), χj(z\ J£/o(<$#). Implicitly it is assumed that they are quasi-primary,
which in turn guarantees that the algebraic structure which is developed is
Mδbius-covariant. Instead of working with the fields φm(z), we may consider their
Fourier-Laurent coefficients, ^mα,0e(R. In radial quantization, t^mfl is given by

ψm,a= f za+h"-^m(z)dz, (3.30)
|z| = ι

where hm equals the spin of ψm(z)9 and the real number a in general depends both
on ψm(z) and on v, where v is some vector in the domain of definition of ψm(z),
\z\ = 1. We assume that there is an involution * on the index set I such that, in
radial quantization,
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Consequently one deduces from (3.30) that

Wm.«)* = ̂ .-«. (3-31)

Concerning the algebraic relations obeyed by sf, we assume that the set of
generators of j/, {ι/^mα}, can be written as the disjoint union of sets g>,g0,g<:g>

is the set of those generators which strictly raise the spectral value, /z, of L0, the
generators in q< strictly lower Λ, and g0 does not alter the conformal dimension.

With regard to the representation theory, it is supposed that a non-empty set,
/, is the index set for all inequivalent, irreducible positive-energy representations
of si on spaces Jjfj,Je/. In addition, if Jε/, then Jf j should contain at most
a countably infinite number of si-invariant vectors vv, 7 , i.e. of vectors which obey
0<wjj = 0.

The same analysis can be repeated for s/0 and s/. The symmetry algebra
91 is defined by

«:=[Λ/®<!IOC, (3.32)

i.e. 9ί is generated by monomials A® A, At si, Aestf, which must have the
following commutation relations with L0 — L0:

[Lo-L0,A®A] = n A®A, neZ. (3.33)

Therefore, 9ί is a subalgebra of si®sϊ containing VirφVir. We should
emphasize that the generators of 91, or those of s/, do, in general, not form a Lie
algebra. The examples discussed in [18,21] are not Lie algebras.

The Hubert space, J f, of the conformal field theory is supposed to split into
a finite direct sum

(3.34)

of subspaces, J^σ, each carrying an irreducible positive-energy representation of
91. The conditions imposed on J^fσ are:

1. There exists a pair of indices (J,J)e/ x / such that J^fσ = Jίfσjjc:jjfj®^fj.

2. In the finite-dimensional linear space of 9l-invariant vectors in Jjfjj we
can choose as a basis a set of factorized vectors (vjj®Vj-) = Vjj,VjjEJ>Fj,
Djj-eJf j. Furthermore, Vjtj(vjj) is an eigenvector of L0(L0) such that Ό*J has
integer spin; Δ°jis the corresponding index set {(7,7)}.

The above hypotheses on the structure of the Hubert space are supplemented
by the completeness assumption concerning the field algebra 3F. We require that
for each vJTEJ^ff there exists an ^-invariant (scaling) field φ°j(z,z) defined on
some domain dense in 2tf obeying φJτ(Q,Q)Ω= v°τ._It follows that φ«τ is a
primary field having conformal dimensions /zj and hj. And finally, {φ°j\σeΣ,
(jJ}£A°j}, and their 91-descendants should form a set of mutually local fields.

Next, we must specify what we mean by saying that 91 is a symmetry algebra
of the theory. This is conveniently expressed in terms of Ward identities. Let A
and B be polynomials in the generators {ψm,a} of si and A and B be polynomials
in the generators {^<J °f ^ such ^at A®Ae^ B®BeW. Consider the
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amplitude

- - (3.35)

We say that 91 is a symmetry algebra for the field algebra 3F if (3.35) satisfies the
Ward indentity

< f[ φJrl(zr,zr)

(3.36)

Here P^β(σ', σ, σ", z, (fl/3z))|j is a polynomial in Zi , . . . , ZN, (d/dzj, . . . , (3/δzN) with
coefficients depending on the choices of σ', σ = (σx , . . . , σN), σ", /, m = (M! , . . . , mN),
π, i, j = ( jί , . . . J N)9 fc, ̂ , β, but independent of T, m, ή, i,j, fe, A, S, and similarly for P^s.
We^also assume that

PAB and PJB are symmetric under |

arbitrary permutations o/{ l , . . . , JV} , j

for arbitrary choices of A, B, A, B, σ and for all σ;, ί, i and σ", /c, k. Using representa-
tion (3.30), it is straightforward to verify (3.36) and (3.37) for theories where j/ is
the Virasoro or a spin-1 current algebra. [For higher spin currents and para-
fermions, the proofs of (3.36) and (3.37) are slightly more involved.]

The Ward identity (3.36), (3.37) has important consequences. By the conformal
algebra (3.21)

</£(z,z-) = z^oφ^l 1)2-**-*° r1*-1?, (3.38)

and since i ίfand ^are eigenvectors of L0 and L0 (3.38) yields

(3.39)

for some structure constants /5| j*(σ', σ, σ"). We assume that these structure constants
have the factorized form

(σ', σ, σ") = D(σ', σ, σ") C0>', σ, σ") %(σ', σ, σ"), (3.40)

where C and C are generalizations of Clebsch-Gordan coefficients. [Equation
(3.40) is easily established for the examples of the Virasoro- and current algebras,
and, in the latter case, C and C are Clebsch-Gordan coefficients.] A general analysis
of symmetry algebras and Eqs. (3.36), (3.37) and (3.40) must be deferred to another
publication.

Let Pσ denote the orthogonal projection onto JΊf σ, σεΣ. The main result of
Sect. 3 is the following lemma.

Lemma 3.2. Under the hypotheses on 91 and Jjf specified above, the operators
Pσ> φβ (z, z}Pσ» factorize as follows:

Pσ.φ°j(z,z)Pa., = Caaφa(z)®ψs(zl (3.41)
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where a = (σ'J, σ, σ"), α = (σ'J, σ, σ"\ Caά = Caά(σ) is some complex number, and φa(z\
φά(z) are operators on the enlarged space ffl .

Proof. For purposes of an unambiguous interpretation of (3.41), it is convenient
to assume that the operators

are bounded operators, for / < min ( | z |, | z| ) ̂  max ( | z |, | z | ) < 1 .2 Since Pa,, commutes

with Vir © Vir, the operator

Pσ,φJj(z,z)Pσ,,λ
L°+i« (3.42)

is bounded, too, under the same assumptions on /, z and z. Hence it is uniquely
determined by its matrix elements in some bases of Jfσ<

 and <&<,"• It is there-
fore enough to calculate the matrix elements of (3.42) between states of the form
ΛOlttfand B®Bυσ

kl with A® A and B®B in «. By (3.36), (3.39) and (3.40),
these matrix elements are given by

Z)(σ',σ,σ")Γ Σ PA β σ ' , σ , σ " , z , z -*?-« Cίmπ(σ',σ,σ") (3.43)',σ,σ")Γ Σ PA β/σ',σ,σ",z,
LJ'"1'" \

\ Σ ̂ /^^^^|:)/MV?1

Lu« \ dzJw

where Bλ = λl°B, Bλ = λl°B. Hence these matrix elements factorize into a function
only depending on z and a function only depending on z.

For αeΣ, let J f α L be the Hubert space^ which is obtained by taking the closure
of span {Avjj\VAe<s/ such that 3 A(A)es/ obeying A® AeW; V / such that 3/with
(jJ)eΔajj}, the closure being taken in the norm of Jfj. The Hubert space tf α,R is
defined similarly. We get the inclusions ^jj^^α,L®^fα>Λ d^fy® jf 7. Define
now

(3.44)

The two factors in parentheses in (3.43) can now consistently be interpreted as the
matrix elements,

(3.45)

(3.46)

of densely defined operators φa(z)' ^σ",L-+^σ',L an(i
finally set Caά(σ) = D(σ', σ, σ"), and the proof of Lemma 3.2 is complete.

We conclude this section by exemplifying (3.36), (3.39) and Lemma 3.2 for

91-minimal theories, with 31 = Vir 0 Vir. Let φiΊ(z, z) be a primary field (as usual

2 Alternatively, one could use the assumption proposed in the proof of Proposition 2.1
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in the sense of Eqs. (3.21)) with conformal weights h{ and hτ. Let

Jf = 0Jf;7 (3.47)
jJeΣ

be the direct sum decomposition of Jjf into irreducible sub-spaces for 31. In our
example ^7= #Pj®3?j> where tf'j is the completion of an irreducible highest
weight module for Vir, and similarly for jfj. Let / = {j:jJeΣ} and T= {pjJeΣ}.
We define

jf = 0 .̂® -̂. (3.48)
7-e/rye/

Let t^-be the highest-weight vector in JIP-. A general matrix element of PlΓφy-(z,
is of the form

(3.49)

The generators L*nf = Lnf can be commuted through φ.j using Eq. (3.21), and
through Π^-m 5 using the Virasoro algebra (3.9). We then use that Lnυkι = 0, for

n > 0. The surviving L_m's acting on vk-k are then commuted back through fusing
(3.21), and the ones left over kill v-. The same procedure is applied to the L_M-'s
with the result that

for some polynomials P, depending on ί,y, fc, π and m, and P, depending on ij, fe, n
and m. Hence (3.49) factorizes, and this provides an abinitio proof of Lemma 3.2,

for 51 = Vir 0 Vir. Very similar arguments can be used for current algebra. In more
general cases, it is advantageous to use the contour integral techniques of [1], see
(3.30), to prove (3.36)-(3.40).

Remark. Since 91 contains Vir® Vir, the Ln's commute with the projections
Pσ. Hence if φjj-is a primary field, the chiral fields φa and φά are primary, too:

[Ln, φa(z)-] = z" + l^z φa(z) + Λw + l)Λ«Φα(4 (3.50)

where \ιa — \f r

4. Existence and Monodromy of Conformal Blocks

In Sect. 3, we have discussed the Virasoro algebra Vir 0 Vir and then enlarged
it to a symmetry algebra, 9ί — [jtf®jf]\oc, characterized by properties (3.29) [Ω
is separating for 91], (3.33) [locality], (3.36), (3.37) and (3.40) [Ward identities].
The chiral algebras j/ and j/act on an enlarged Hubert space, ,̂ containing the
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physical Hubert space, J f , as a subspace; see (3.44). The fields \l/j in si need not
be local fields, in general. 3F is the operator algebra generated by the local fields
{φjj(z,z)} and their ^-descendants. For the purposes which we have in mind it is
convenient to change some notation at this point. Therefore, we summarize those
properties of (2? , 21, Jf , « )̂ which are used in this section:

(Rl) 3f splits into a finite direct sum,

^ = 0^fσ, (4.1)
σeΣ

of subspaces, Jf σ, which carry irreducible representations of 2ί.

(R2) The algebra 21 is a symmetry algebra for the conformal field theory, i.e.
the Ward identities (3.36), (3.37), (3.39) and (3.40) hold for the invariant fields
φfj(z,z)=:φjj(z,z), oiεΣ. (Here we have introduced the notation J = (y,α),

J=αα).)

(R3) Given σeΣ, let J f σ>L and Jf σ,Λ be defined as in the paragraph preceding
(3.44). We abbreviate (σ, L) by i and (σ, /?) by i, where i ranges over a finite set Zl
and i over a finite set A We define now

jr/Γ= j r σ , (4.2)
with iieΣc: zl x A By construction

jf/Γc=j^.(x)jf- (4.3)

Let PίΓ denote the orthogonal projection onto j^iT. Then

PlTφjj(z, z)Pj7= C%φuj(z) ® φ-jj(z\ (4.4)

where C^j are complex numbers. We also abbreviate ( i , J J ) by a, (̂  JJ) by a and
CJjj by Ca-a, as in Lemma 3.2. The field ψu^z) is a densely defined operator from
Jίfj to Jfl?h iJeΔi φjjj(z) is a densely defined operator from jfV to « r̂. By
construction,

<ϋ,^Jχφ/> = 0, (4.5)

unless t eJf ί? i 'e^fj, and similarly for φ-j;-(z).

(R3) forms the contents of Lemma 3.2.
Vacuum expectation values of chiral fields, φa(z\ are called conformal blocks:

For zeM^, where

M,>-{z = (z 1,...,zJ:Re^>.. >Rez 1}, (4.6)

we tentatively define

(4.7)

where α£ = (Ji-\>>Ji,Ji), withy 0 = l , y w = 1, as follows from (4.5); \Jtf ± is the vacuum
sector containing the vacuum ίλ]

In (4.6), (4.7) we suppose that we are working in Osterwalder-Schrader
quantization, (y = y+ = (z Rez > 0}). It is not entirely a trivial matter to show that
the definition of conformal blocks, Eq. (4.7), makes sense, since the operators φa.(z^
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are unbounded. A similar problem was encountered already in the proofs of
Proposition 2.1 and Lemma 3.2. It was pointed out there that difficulties with
domains of unbounded operators can be avoided if one assumes e.g. that

φjj(ε,ε)e-*'H (4.8)

is a bounded operator, for arbitrary ε > 0, ε' > 0. Clearly, the Hamiltonian H

belongs to VirφVir and hence to 91. It therefore commutes with the projections
P-9 and hence

P-φJJ(ε9ε)PjJe-ε'H (4.9)

is a bounded operator, as well. Standard arguments sketched in the proof of
Proposition 2.1 then show that the Green functions

are holomorphic in (z,z) on M^ x M^ . Since P^commutes with arbitrary Mδbius
transformations, t/(w), and Ω is invariant under (7, one can, as in the proof of
Proposition 2.1, continue the functions Hgg-(z,z) to the domain (J^α(w),

w

where

'̂» = AC(vv) x ΛC(w*), (4.11)

and MH(W) is the image of M^ under a Mόbius transformation w. From Lemma
3.2 it now follows that, for (z9z)eM* x M^ ,

n

tf^Y-α^l > Z l > ' >Zn>Zn)=H Caiai

 Faί-aπ(
Zl » ' ' ' » ̂ a.-a^l » > Zn)9 (4.12)

i= 1

with Fβ(z) as in (4.8), and

(̂1) = <β,φβ.ι(z1). .φd|i(zll)β>. (4.13)

By (4.11), Fg(z) extends to a holomorphic function on (J M^(w), and F-(z) extends
w

to the domain (jM^w). Note, however, that Fgfe) need not be single- valued on
w

IjMjf (w), since y M,f (w) is not simply connected.
w w

Thus, we have proven the following result.

Proposition 4.1. The conformal blocks Fg(z) and Fg(z) are holomorphic functions in
ze(jM*(w)9 ze\J M*(w)9 respectively, provided (4.8) is assumed.

w w

Remark. In radial quantization, it would be more convenient to use assumption
(3.42) and work with the domains K> , K> (w), where

Xn

>-{z: |z 1 |> . .> |zJ,-π<argz ί .<π,/-l , . . . ,n} . (4.14)

Which quantization one uses is a matter of convenience. Assumptions (3.42) and
(4.8) have equivalent consequences.
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Next, we recall that the Green functions

-^(zl9zl9...9znyz^ (4.15)

are given in terms of the conformal blocks F~ and Fj9 with

F^;1(z1,...,zJ = Fβι...βιι(z1,...,zll), (4.16)

"i^Ui-i'JiJi)* ϊ = !,...,«, JQ = Jn= 1, by

/4(z,z) = ̂ (z)F{(z), (4.17)

where

Here cJ:;JJΞ Cβ|d|, α^O^^J,.,;,); see (4.4) and (4.12).
Using that

Σ JV=ι> (4 19)

on Jf, we see that the full Green functions, studied in Proposition 2.1 of Sect. 2,
are given by

HjιJι~jnJn(
zι>Zι9 ..,zn9zn)= 2^ ^7r~

JlJl' 'Jn-\Jn-l

= Σ gJjjF~j(z)FJj(z)' (4.20)

The functions (F~(z)} form a vector space, ,̂, which, by assumption (Rl), is

finite-dimensional; see Eq. (4.1). Similarly, the functions

form a finite-dimensional vector space SSj.
We introduce a basis, {FA(z)}A = 1, in ̂ 7; (each F^(z) is a linear combination

of {Fy}) and a basis, {^(z)}* = 1, in #, such that

H,z(2,z)= Σ /x(2)^(D (4 21)

for some J V j ^min(X,M). It is a simple exercise in tensor algebra to convince
oneself that representation (4.21) can always be achieved, the point being
that F ί ( z ) 9 . . . 9 F N ί ( z ) are linearly independent functions, and F 1 ( z ) 9 . . . 9 F N l ( z ) are
linearly independent functions. By construction of the functions (FA(z)}, they are
holomorphic in z on (J M^ (w), as follows from Proposition 4.1. A similar statement

holds for { F A ( z } } .
We define

where π is an arbitrary permutation of {!,...,n}.
By Proposition 2.1, HJj(z,z) is defined and holomorphic on (J (J MM

>57r (w) x



Unitary Conformal Field Theory 445

Mn

>>π '(w*), where

MΠ

> 'π(w)^{z:Rew(zπ- 1J>.. >Rew(zπ- 1 1)}, (4.23)

see also (2.31), (2.34). For (z,z)e(J M^(w) x M^w*), we find, by repeating the
w

arguments leading to (4.21),

H*jj(z9z)= Σ ^ω^(I), (4.24)
A = \

for some linearly independent functions F"(z),...,F£ (z) holomorphic on

(J M^ (w) and linearly independent functions F\ (z), . . . , F π

N (z) holomorphic on
w

(J M^ (w). Here Nπ is some finite integer.
w

Representations (4.21) and (4.24), together with locality

HJj(πz, πz) = tf £(π'z, π'z) (4.25)

for arbitrary permutations π and π', with

TU(Z! , . . . , zj = (zπ- 1 !,..., zπ- ij, (4.26)

are the key ingredients to extend the conformal blocks {FA(z)} to multi-valued
functions on the space

Mn = (z1? . . . , zn:z; Φ Zj, for i ± j}

corresponding to single-valued holomorphic functions on the covering space, MΠ,
of MΠ. In the process of analytic continuation of the conformal blocks, FA, we
need some simple facts on braid groups. The group, SΠ, of permutations of n elements
acts on Mn as described in (4.26). The braid group Bn can be defined as the
fundamental group, π1(MΠ/SΛ), of MJSn. For alternative definitions see [4,5].

Proposition 4.2. The braid group Bn acts freely on Mn. A fundamental domain for
this action is Δ^= M^ 3 Let Δb be the image of Δ^ under bεBn. Then Abr^Ab. = 0
ifbϊb'.

Proof. Fix a point PeMn. The covering space Mn can be described as the set of
pairs (z, [γ]) where zeMn, and [γ] is a homotopy class of paths from P to z.
Similarly, Bn can be described as the set of pairs (π, [y]), where πeSΠ and [y] is a
homotopy class of paths, 7, from P to π(P). The multiplication law in Bn is given by

One verifies that

defines a free action of Bn on Mn. Let (z, [y]) be some point in Mn, and let πeSn

More precisely, z l j is the lift of M^ in MΠ
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be such that Rezπ ( 1 )< ••• <Rezπ ( Π ). Choose P to be (1,2,..., w — l,n). Then

(

where beBn is given by

and [y0] is the unique homotopy class of paths, joining P to π~ 1(z) without leaving
M^ Thus the set of pairs (z, [y0])> where Re z1 < < Re zn and y0 does not leave
Mjf , is a fundamental domain, denoted by Δ^ for the action of Bn on Mn. To prove
the second part of the proposition, it is enough to consider the case where b' = 1.
Then if &(2, [y0]) = (z', [y'0]), with (z, [y0]) and (z', [/0]) in Δl9 it follows that z = z'
and [y0] = [/0], by the uniqueness of [y0]. Thus b — 1.

From now on we denote a point, (z,[y]), in Mn by Z, and identify a
function /(z) defined on M^ with the function /(Z) defined on Z^ by setting
/(Z) = /(z, [y0] ) = /(z). We also note that Mόbius transformations, w, (in particular
rotations), act on Mn in the obvious way w:(z, [y])^(w(z), [w(y)]). The image of
Δb under w is denoted by Δb(w).

We now return to representations (4.21), (4.24) of the Green functions

ι Z \ (4.27)

for Zezl^w), ZG^^VV*). The right-hand side of (4.27) can be viewed as a parametric
representation of an n-dimensional surface, S, with surface parameters Z, in the
N! -dimensional vector space, ̂ , spanned by {FA(Z)}*1= 1 . The linear independence
of {FA(Z)}A = ι implies that this surface is not contained in any hyperplane of &
of positive co-dimension. To prove this claim, represent a function F(Z)e^ as a

NI

vector (A l 5 . . . , A N l )eE N l , given by F(Z) = £ λAFA(Z). If our claim were false, there
~ A=l ~ _ _ _ _ _

would exist a vector (λ?,...,λJ1)^0 orthogonal to ( F i ( Z ) , . . . , F N l ( Z ) ) , for all Z.
Hence

Σ ^Fx(Z) = 0, for all Z.
A=l

This contradicts the linear independence of {FA(Z)}A

ί

=1. By analyticity, our claim
is true whenever Z ranges over an arbitrarily small, non-empty open subset, K, of

_ _

We conclude that, given any such X, we can find points Z 1 , . . . ,Z j V l in K and
complex numbers μ^ ^c1 suc^

FC(Z)= Σ A*? Σ PA(®FA(ZB)= Σ tfHjjiZ.^), (4-28)

for every Ceίl,...,^}. [Here Hjj(Z,Z) = Hjfe9z)9 for Z
Similarly, given some non-empty, open subset, Xπ, of (J ^(w), one can find points
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Z !,..., ZN in Kπ and complex numbers /4, . . . , κ^n such that

F*c(Z) = Σ K? Σ F*A(Z)F*A(ZB) = Σ $Hκjj(Z,ZB)9 (4.29)
5=1

for every Ce{l,.. .,Nπ}.
Suppose that, for some ί> = (π, [y])e£n and a Mδbius transformation w,

Δb-ιnΔί(\v)^ 0, and 4 ( fc* rin41(w*)/0, where fe* = (π, [7*]), and 7* is the
path complex conjugate to γ. Choosing suitable points Z l 5 . . . ,ZNl in 4(i>*r i n^vv*)
and complex numbers μέ,...,/^1, we have from (4.28), locality (see (4.25)) and
(4.24) that

FC(Z)= Σ /^yj(Z,Zβ) = Σ μB

cH«j(bZ,b*ZB)= Σ R£(b}F«A(bZ} (4.30)
B = l ~'~ B = l ~'~ X = l

for Ze/4 f t-ι nzi^w), where

Λί(*)= Σ &FW>%t\ (4.31)
β=l

Similarly, using (4.29) and locality we find

*S(£)= Σ ^(fc-^F^fc^Z), (4.32)
A= 1

for 6~ ̂ €4^- 1 nΔ1 (w), and a suitable choice of Z1 , . . . , Z^ in A(b*Γ \ r\Δ1(w*\ with

Rtib-1)^ Σ κ?fχ(lB) (4-33)
β=l

Comparison of (4.30) and (4.32) shows that

Nί = NK9 and R(6~1) = Λ(6)-1. (4.34)

Next, observe that the right-hand side of (4.30) is holomorphic in Ze(J 4fc- ι(w),
w

i.e. fcZelJ/i^w). Hence FC(Z) extends to a function holomorphic on (J Zl t(w)u
w >v

(J ̂ b - 1 ( w'), provided 4b - 1 n 4 ! (w) / 0, for some w. This procedure can be repeated
w' ^

and will yield an extension of FA(Z) to a holomorphic function on MΠ, thanks to
the following fact.

Proposition 4.3. For each beBn, there exists a finite sequence 1 = b0, ί? l5 . . . , bk = b
of elements of Bn and angles φ l 5 . . . ,φ k _ 1 ? — π < φ^ < π, 7 = 1,. . . ,/c — 1, 5wc/z that

contains a non-empty open set. [Here rφ denotes a rotation through an angle φ around
z = 0.]

Proof. We introduce the standard generators τ !,...,!„_! of the braid group
Bn:rt = (th [yj), where tt denotes the transposition of i with ί -f 1 and y f is the path
leaving l , . . . , ί — l , i -f 2, . . . , n constant and exchanging ί with i+\ along a
positively oriented path; see Fig. 1; (we have set P = ( l , . . . ,
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Im z

1 2 i i+1 n

Fig. 1

Every beBn can be written as a word in the generators τ l 5 . . . , τ w _ ! :

L _ Tει ~εjc
0-Tiι " τ ik»

with Sj = ± 1, 7 = 1, . . . , fe, fe = 1, 2, . . . . We define

To complete the proof of the proposition, it is enough to show that, for all / and
ε = ± 1 there exists an angle φ, with —π<φ<π, such that Δ^r^nΔ^ contains
a non-empty open subset. This is obvious geometrically.

Equations (4.30), (4.32), (4.34) and Proposition 4.3 show that the conformal blocks
FA(Z) extend to holomorphic functions on Mn, with

FA(b-lZ) = £ RB

A(b)F*B(Z) (4.35)
B=l

for some representation R of Bn; (N = Nl = Nπ9 for all πeSn,b = (π, [y])e^). A
similar^analysis can be performed for the functions FA(Z\ with the result that
every FA(Z) extends to a function holomorphic on Mn, with

^(fe"1Z)= Σ R*A(b)F*B(Z). (4.36)
B = l

From locality (4.25) it then follows that

, ,

(4.37)

for arbitrary Z,Z and all beBn. Using the linear independence of the functions
{FA} and {FA}, we conclude that

= , .e.

b*)-1, for all beBn. (4.38)

We summarize our findings in the following theorem.

Theorem 44. Let {GJiTi . ̂ (z^zf, . . . ,zn,z*)}*=0 ̂  ίΛ^ Euclidean Green functions
of a two-dimensional conformal βe Id theory satisfying properties (Rl), (R2), (R3) and
assumption (4.8). Then these Green functions are the restrictions of functions Hjj(Z,Z)

holomorphic in Z = (z1,...,zn,[y]) and Z = ( z ί 9 . . . , z n , [ y ] ) on the space MnxMn

to the Euclidean domain {Z:Z = (zί,...,z*,[y*])}. Moreover, Hjj(Z,Z) is a sum of
products of conformal blocks only depending on Z, Z, respectively, which transform
according to matrix representations of the braid group Bn under the action ofBn on Mn.
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The next problem we propose to tackle is to describe the representations R
and R of the braid groups Bn appearing in (4.35) and (4.36) more explicitly. Progress
in this direction can be made under an additional assumption that we shall
formulate, now. The key idea is to study the monodromy of four-point conformal
blocks. More precisely, we consider the following expectation values:

(4.39)

where t;frand i^are invariant states for 'ϋl =

where
[L0-L0,>4®l] = nΛ®yϊ, neZ, (4.41)

and

Ψj,a= § za + h>-^j(z)dz. (4.42)
M = ι

The generators ψ-b are defined similarly, and Be j/, &es/ have the same properties,
(4.40), (4.41), as A and ^respectively. See also (3.30)-(3.33). We recall that υ*-
is an eigenvector of (L0,L0) with eigenvalues (/ι/,/ι/-), where hj = hf, hτ=h~, for
/ = (i, α), T= (i, α). Next, we recall that

φjj(z,z) = z^z^φjjd l)z-L^z'L^ (4.43)

see (3.38). For A, A as in (4.40), (4.41),_/4®4ι;fr is an_ entire vector for L0 and
for L0. The same is true for B®Bv^ V(ta}A®Av^ U(ta)B®Bvf7, where
ta is translation by αeE2. Since P^ commutes with zL°fL°, we now conclude, using
(3.42), that the function Kjkj y j (z1,z1,z2,z2) extends to a holomorphic function
on (JKJ (a) x KZ(a*\ where

a

K2 -{z 1 ,z 2 : | z 1 |> |z 2 | , -π<argz l <π, i= 1,2},

and K2 (a) is the image of K2 under ία.
Next, we note that, by locality of the fields φjj£^, the function

^7,^(21^1 ̂ 2^2) = Σ ^7,727,^1^1^2^2) (4-44)
U eΣ

is symmetric under interchanging 1 and 2. Hence K7 j 7 j (z1,z1,z2,z2) extends
to a holomorphic function on

(JKΪ(a) x K$(a*) |u| (JK<(a) x K<(α*) |, (4.45)

where

K2 = (z 1,z 2 : |z 1 | < |z2 |, — π < argz t-< π, i = 1,2).

By (4.4), (see also Lemma 3.2, (3.41)),

κ?J j J (z^zί,z2,z2) = gki:F
kj j (z1?z2)FΪ- 7 (z^z^, (4.46)
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where (jf^ = Jfβ, *„- = *%),

(4-47)

(4.48)

and Fj j is defined similarly.
From (4.43)-(4.46) we conclude that Theorem 4.4 applies to the functions

Kj j j j (z1,f1,z2,z2). Our purpose is then to analyze the properties of the
representations, R and R, of B2 determined by the conformal blocks {F$lJ2,
Fj j :kkeΣ}. In order to avoid too much empty generality, we require some
additional assumptions typical of what might be called "rational" conformal field
theories, [22].

Definition 4.5. A conformal field theory on Jf is called of order (p9p)9 if there exist
positive integers p ̂  1, p ^ 1 such that

spec (L0P,7) £ {Hj + p ~ 1 Z] n (0, oo),

spec(L0P,7)£ {Hj + p-lZ}n(0, oo). (4.49)

[The fact that spec (L0Pjj) g (0, oo) follows from the positivity of L0; see Proposition
2.1]

Given mrheΣ, nneΣ and J \J \, J2 ^2» w^tn Φj j ^0» Φj j ^0> we define an
index set

ί9J29n) = {k:φmJlk(zί)φkj2n(z2)φQ}

and a complex vector space

I(m9Jl9J2,n) and V^(m, J1 ? J2,n) are defined similarly. Then the numbers gkk9

defined in (4.47), can be interpreted as the matrix elements of a linear map

/ ι γ-<(4^ Σ
kel(m, Jί,J2,ή)

We are now prepared to state a key assumption.

(R4) Non-Degeneracy Condition: We assume that the conformal field theory on the
Hilbert^ space ̂  is of orderjp, p). If the distance dist (spec (LQPkk)9 spec(L0P^)) =
d(kk,k'k'\ for /cfceΓ and k'k'eΣ, kk * k'k, obeys

'fc') = 0, (4.51)

and if φkjn(z) ̂  0, for some π and J, then

Φ*vπW = 0. (4.52)

An analogous assumption is made for the fields φ-kj-(z\ φ-k>jή(z) if d(kk, k'k') = 0.
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Finally, we assume that the matrix g defined in (4.50) is a regular matrix, for
arbitrary mm and nn in Σ and arbitrary J ^ J1? J2J2. *

Definition 4.6 A conformal field theory, consisting of (J*,9I, Jtf, 3&\ is called
rational if it has properties (R1)-(R4).

The simplest rational theories are the minimal models; see (3.23), [1]. Other
examples are provided by theories for which 91 = d (x) j/~, with j/ and j/~ some
spin-1 current algebras, such as the Wess-Zumino-Witten models [17]. These
models are examples of theories of order (1,1). However, theories with parafermions
[21] are of order (p ̂  1, p ̂  1), with (p,p) / (1, 1).

Our non-degeneracy condition has the following important consequence.

Lemma 4.7. We assume that ( 2F , 9ί, J f, tf ) has properties (R1)-(R4). Then, for
fixed J !,..., Jw, the conformal blocks,

FΪ::Jϊn->(zί,...,zn) = Faι...an(zί,...,zn), (4.53)

defined in (4.7), (4.16), are linearly independent functions. Furthermore, for fixed
m,Jl,J2 and n, the functions Fj1</2(z1?z2), kεI(m,Ji,J2,n), defined in (4.48), are
linearly independent.

Proof. We claim that, for all k = 1, . . . , n — 1,

/ k \
exp τ £ hJr \Fj

J\\ :j

ΐ^(eτzl,...,e%,zk+l,...,zn)
V r = l /

- exp (-τH(k)) [const. + 0(e~(τ/p))l (4.54)

where /ij is the conformal weight of φjjk(z\ see (3.50), for some fί(/e)espec(L0P^).
Equation (4.54) follows from (4.49), since intermediate states contributing to F~
between the fcth and the k + 1st argument of F^ are in the range of the projection
P^-; (see (4.10), (4.12)). By (4.54), a conformal block, F^ can be a linear
combination of non-zero conformal blocks, F~, l=l,...,N, with non-zero

coefficients λ 1 ? . . . ,/ ί N , for some N ^ 1, only if d(jkjk,j
l

kj
l

k) = 0, for all fc = l , . . . , n — 1,
for some /. Clearly j n =fn = 1, hence, by the non-degeneracy assumption (4.51),
(4.52), jn_l =7'i_ι Using (4.51) and (4.52) again, we then conclude that7 π _ 2 =y'ί,-2>

and so on. Thus j= jl, and hence F~ = F~ , for some /. This proves the first

part of Lemma 4.7. To prove the linear independence of the functions F k

J l J 2 ( z 1 , z2),
we note that by (4.48), (4.43) and (4.40), (4.42),

exp [τί/i^ - H A ( m ) ) - ] F k

J l J 2 ( e τ z , , z 2 } = exp (-τtf(fc)) [const. + 0(e~(τlp))l (4.55)

for some HA(m) (independent of fc), and some H(k). The remaining part of the proof
is similar to the one before.

Equations (4.35), (4.36), Lemma 3.7 and the regularity of the matrix g = (gkk),
see (R4), have an important consequence: For b = (t,

1)Jt(2)(Z1,Z2), (4.56)
k'

where R(b) = R(A,m, Jl, J2,B,n;b) is a regular matrix on the vector space
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W(m9Ji9J2,n). Similarly,

J-(Z1,Z2). (4.57)

[Taking into account Lemma 3.7 and the regularity of g, one sees that the details
of the proofs of (4.56) and (4.57) are very similar to the arguments (4.27)-(4.34)
used to prove (4.35) and (4.36).] Equations (4.56), (4.57) together with locality imply
that

R(b)τgR(b*) = g. (4.58)

The proof of (4.58) is analogous to the one of (4.38).
Next, we note that B2 is generated by a single element τ t = τ; see Fig. 1. We

define a matrix R by setting

R = R(τ). (4.59)

Then, for b = τme£2, meZ,

R(b) = Rm. (4.60)

Hence, the representations of B2 determined by the conformal blocks

{^JιJ2}fcej<m,jι,j2,π)> ί^J"^} are completely described by two matrices, R and R.
Since τ* = τ"1, (4.58) is equivalent to

RTgR~l=g. (4.61)

We now claim that, under reasonable assumptions on the chiral algebras stf
and stf discussed below,

1 ,J 2 ,w) (4.62)

is independent of A and £, and

R = R(A, m, Jj , J2 , B, n) = K(m, J : , J2 , n) (4.63)

is independent of A and 5.
This has remarkable consequences: It says that the representation of B2

determined by

(see (4.48)) under interchanging 1 and 2 and exchanging z t and z2 along the path
τ shown in Fig. 2 is independent of admissible operators Λ, j

Hence (4.62) says that

>Jl>J2>n)kφmJ2k'(Z2)φk'Jln(Zl\ (4.64)

for |z 2 |> |z 1 | , where the left-hand side of (4.64) is interpreted as the analytic
continuation of φmjlk(z)φkj2n(z'} from z = z2, z' = z1 to z = z 1 ? z' = z2 along a path
τ as in Fig. 2 noί enclosing any other operators. Equation (4.64) permits us to
describe the monodromy of an arbitrary conformal block, Fjj\'.'.'.jj~l(Z)9 (see (4.16)
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Fig. 2

and (4.7)) in terms of the matrix R introduced in (4.59), (4.62): Let

Let V be the complex vector space given by

{(λaeC):a = (iJj)eI}. (4.65)

We define an endomorphism, R = (Rc

a

d

b), from V® V to V® V by setting

Όcd _ Ό(iJ'k')(k'Jj) _ n/: r j r \k'
Kab — K(iJk)(kJ'j) = *Ml, J, J ,J)k ,

and > (4.66)
Rcά = 0, otherwise.

Let K! , . . . , Vn be isomorphic copies of V and define

*vl + l®ϊ\Vi + 2® ®ϊ\Vn. (4-67)

The associativity of the algebra generated by the chiral fields φijk(z) and Eqs. (4.64),
(4.65) imply [5] that

RiRi + ιRi = Ri + ιRiRi+ι (4.68)

and, by definition (4.67),

\j-i\^2. (4.69)

Equation (4.68) is a special case of the Yang-Baxter equation [23]. We claim that
the matrices Rt define a representation

R(n):Bn^>End(V®n). (4.70)

To see this, write an element beBn as a word in the generators r t , ί = 1, . . . , n — 1,
as in the proof of Proposition 4.3:

One then defines

Λ ( Λ ) ( & ) = Π Λ f ; . (4.71)
j = ι

Equations (4.68) and (4.69) ensure that (4.71) defines a representation of the braid
group, Bn, on the plane. Because of (4.64), this representation describes the
transformation properties of the conformal blocks, Fαι... f ln(Z), under the action of
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Bn on Mn:

ί βl......l+,....B(tr1?)= Σ «ί;:;ί βl....χ+1...β.(z) (4.72)
α X+l

This follows from (4.64) by rewriting this equation as

), (4.73)
cd

with a = (Uj\ . . . . More generally,

(4.74)

where R(b) is given by_(4.71). Analogous results hold for the conformal blocks
Fg-(Z) and the matrix R.

It remains to discuss the basic properties (4.62) and (4.63) from which the results
derived above follow. In order to "derive" (4.62) and (4.63), we return to definitions
(4.39) and (4.48) of the functions ^j lJ2j2(z1,z1,z2,z2), F$ lJ2(z1?z2). We introduce
so-called ^-descendant fields φjf* (zlz}\2

Π Idzfa-zf'+^ψfflφjfaz), (4.75)
Ck

N9 M = 0, 1, 2, . . . . Here Ck is a circle of radius ε//c, centered at z, Ck is a circle of
radius ε/fe, centered at z, and (4.75) holds if both sides are inserted into a Green
function, and ε>0, έ>0 are chosen to be so small that the contours C± and Cl

do not enclose any fields not appearing on the right-hand side of (4.75). Using
(4.40)-(4.42) and the fact that t>fr, vfj are invariant states, one now shows that

K^^Z!^
= Σ %ι, 22)1(6!, fe2) (4.76)

for some complex coefficients /I(αι,fl 2) an<l >Uih>ih) completely determined by the
algebraic relations in j/, j/ respectively. In (4.76) we have used that A® A and
B®B commute with Pkk.

From (4.76) and (4.46)-(4.48) we conclude that

- Σ %ι,β2)<ιί>^J^ι)φfei(^X (4-77)
Sl'22

where φ^β]fc is defined as in (4.75) but with M = 0. An equation similar to (4.77)
holds for the functions F\ j ( z ί 9 z 2 ) .

The point is now that using Ward identities, (see (3.36), (3.37), (3.40)) one can
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usually prove that the representation of B2 determined by

2)f?> (4-78)

is independent of [αj, [a2], [i.e. Eq. (4.56) also holds for the function (4.78), with
the same matrix #*'(&)].

In the arguments outlined above, Eq. (4.76) and (4.78) have not been derived
from our basic assumptions. It will be studied elsewhere how to derive these
statements from a general definition of chiral algebras. The reader familiar with
refs. [1,17,18,20 and 21] may, however, verify without too much trouble the
following result.

Theorem 4.8. //J/, $ί are Virasoro-, or current algebras then (4.76)-(4.78) and hence
(4.62)-(4.64) hold. For Neveu-Schwarz [20] and parafermion [27] algebras (4.62)-
(4.64) hold.

Remark. Theorem 4.8 and the analysis preceding it show that, for rational
conformal field theories based on chiral algebras «*/, j/ which are algebras of
currents and parafermions, the monodromy of the "four-point functions"

is completely described by a Yang-Baxter matrix, R, and determines the
monodromy of arbitrary conformal blocks, Fi1

1V.'Jj l

n~1(z1,...,zM). These results can
be coded into the commutation relations (4.64) for the chiral fields φijk(z).

5. Conformal Field Theory as Representation Theory of Chiral Algebras

The purpose of this last section is to describe the general mathematical structure
of two-dimensional conformal field theory that has emerged from our analysis in
Sects. 2-4. It will be the subject of our next paper to initiate a systematic analysis
of that structure. The upshot of our analysis is that two-dimensional conformal
field theory is, in essence, a chapter in the representation theory of an infinite
dimensional "symmetry algebra" 91 = [^®^]loc , where s0 and sJ are chiral
algebras. Here we shall attempt to make this statement more precise. For the sake
of simplicity we shall limit our analysis to the case where the algebras j/ and j/
are generated by local currents, so that 21 = stf (x) jtf. But the general case is not
substantially more complicated.

Let us first clarify what is meant by the notion of a (local) chiral algebra. An
abstract chiral algebra, s/, is an algebra generated by (unbounded) operator-
valued distributions I/Ί (X), xeIR, and i ranges over a finite or countably infinite
index set /. There is an involution *, ie/-H*e/, on / such that, for all ie/,

ψι(x)* = ψi+(x) is a generator of j*/. (5.1)

General elements of 3$ are polynomials in the generators ι//t (x), ie/, smeared out
with arbitrary test functions of compact support.

The generators ^f(x), ϊ'e/, satisfy quadratic relations of the form

), (5.2)
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where R = (RjJ) is a matrix on C l / ! (xjC 1 7 1 which is a solution of the Yang-Baxter
equation (with spectral parameter -MOO). Furthermore,

ε = sig(x-x') = ±1. (5.3)

One assumes that there are no further quadratic relations between the generators
of s/, for x Φ x'.

It is assumed, furthermore, that <$/ carries a representation of the subgroup,
=" PSL(2, R), of the Mobius group, = PSL(2, C), which leaves the real axis invariant
as a group of *automorphisms of ja/: For wePSL(2, (R), there exists a linear
operator, τw, on j/ such that τw°τw' = τwow,, and

τw(A B) = τw(A) τw(B), τw(A*) = τw(A)*9

for all Λ,# in s/\ moreover

for some /ι felR, called conformal weight of I/',. We assume that the generators ^t (x)
are "analytic vectors" for τw, in the sense that (5.4) has an analytic continuation
in w to a complex neighborhood of SL(2, R) in SL(2, C). Clearly, it must be assumed
that (5.2) and (5.4) are compatible which puts restrictions on the possible
Yang-Baxter matrices, R, appearing in (5.2): E.g.

RV = 0, unless ht = hh and hj = hk. (5.5)

See [5] for more details.
We shall assume that, among the generators ι/^(x), ίe/, there is an identity

operator, φ0(x) =1 = 1*, independent of x, (i.e. h0 = 0). We do not exclude further
polynomial relations between the generators ι/^(x) of j/ — in addition to (5.2) — of
degree higher than two.

A state, ω, on «$/ is a linear functional on s/ with the property that

ω(/4*A)^0, for all AeJ. (5.6)

Every state, ω, on s/ determines a representation, πω, of s/ on some Hubert
space. This is the contents of the so-called GeΓfand-Naimark-Segal construction.
We assume that («s/,τw) is such that there is precisely one state ω0 on <$/
such that

ωo(>l), (5.7)

for all Aεs/ and all wePSL(2, (R), i.e. ω0 is P5L(2, (R)-invariant; and

2. ω0C4M) = 0 implies A = 0, (5.8)

for all

Remark. One might envisage requiring that there be a representation, τ, of a central
extension of DiίΐXS1) as a *automorphism group of j/, where Diff^1) is the
group of diffeomorphisms of the real line conjugated to diffeomorphisms of the
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circle which is the image of R under the Mόbius transformation

x ->-—.. (5.9)
x + 1

In that case one might require that (5.4) holds for all diffeomorphisms, w, of the kind
just introduced, i.e. that the generators ^(x), ίel, are primary fields. However, it
is inconsistent to assume that (5.7) hold for all weΌiffβ1). In this paper, we do
not pursue this line of thought.

It will be discussed in a separate publication how to classify general chiral
algebras (<*/, τ J characterized by properties (5.1), (5.2), (5.4), (5.7) and (5.8). It turns
out that such algebras are algebras of currents of arbitrary spin s=l,2, 3,...
and of fields representing a slight generalization of parafermions. One simple
consequence of a general classification is that if

R$ = δ\#j9 (5.10)

for all /, 7, k and / in /, then

MZ + , for all ίe/, (5.11)

i.e. £/ is an algebra of local currents of spin st = h( — 1, 2, 3, . . . , iel.
Henceforth we shall focus our attention on chiral algebras («£/,τw) satisfying

(5.10). More general algebras will be studied elsewhere. Most of the concepts
discussed below can be introduced in the general case, but the analysis and notations
would become more cumbersome.

If si is an algebra of local currents we can, alternatively, work with generators,
Ψi(eiσ\ — π < σ ^ π, ie/, defined on the unit circle in C. This follows from (5.4),
using the Mobius transformation (5.9). In that case we can trade the generators
ψj(eiσ\ e/, for their Fourier-Laurent coefficients,

Ψj,n = ] Φj(eίσ)e^+h^dσ. (5.12)
-π

By (5.4), (5.9), (5.1) we have that

see also (3.30), (3.31). The algebra generated by (i/^ je/, rceZ) is denoted by si.
Let wσ be a rotation of the unit circle through an angle σ. Then it follows from

(5.4) and (5.12) that

We define sin to be the linear subspace of si of all elements A€<S& for which

τWσ(A) = e-in*A.

Then si is Z-graded, with

(5.14)

We also define si < = 0 j / Λ 9 <$#> = 0 sίn.
n > 0 n < 0
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If I / I = card/ < oo, then <$#0 is often a finite-dimensional algebra. We shall
assume this henceforth.

For the purpose of constructing two-dimensional conformal field theories, one
must study the representation theory of (Λ/,TW). Since we are interested in unitary
theories, we are only interested in representations, π, of (j/,τw) with the following
properties:

(a) π is a representation of («s/,τw) on a separable Hubert space, Jfπ, which is
unitary, i.e.

π(A*) = π(A)*9 for all Aes/, (5.15)

where A* is defined through (5.1); and π is covariant, i.e. there exists a unitary
representation, t/π, of SL(2, R) (now defined as those Mδbius transformations which
map the unit circle onto itself) on J^π such that, for all AEΛ? and weSL(2, (R),

π(τw(A))=Uπ(w)π(A)Uπ(wΓ\ (5.16)

as an operator equation on a dense domain, ^π, in Jjfπ which is invariant under

(b) We assume that Q)n can be chosen such that it consists of analytic vectors for
l/π(w), i.e., for Φe^π, Uπ(w)Φ has an analytic continuation in w to some complex
neighborhood of SL(2, R) in SL(2, C).

(c) Let wσ denote the rotation of the unit circle through an angle σ. Then

Uπ(wσ) = eiσL\ (5.17)

for some selfadjoint operator LJ on 34? π. We require that

LJ^O, (5.18)

and that hπ = inf spec(LJJ) is an eigenvalue of LJ of finite multiplicity.
Note that by (5.15), π(j/0) commutes with L($. For the last part of assumption

(c) to hold it is therefore commonly necessary that j/0 be finite-dimensional.
Representations, π, of (j/,τw) satisfying properties (a)-(c) are called "positive-

energy representations," [19]. Let L be a list of all positive-energy representations
of (^/,TW). By assumption (5.7), L contains precisely one representation, π^ = πωo,
(leL), on a Hubert space Jf ^ = Jfπι containing a vector Ωe@πι that is invariant
under C/! ΞΞ C/π ι, with L^Ω = 0. By (5.8), ί2 is separating for j/, i.e.

i f π l ( A ) Ω = Q then >1=0, (5.19)

for all Aej/. [Note that this does not imply that β is separating for j/.]
By assumption (b), every positive-energy representation, π, of (ĵ , τw) determines

operators L± 1 such that

(Lΐ)* = L π _ 1 ? and [L^LIJ = 2LJ. (5.20)

Moreover, L^ generates Mόbius transformations of the form z-+z/l +τz,Lπ_l

generates translations z -> z + τ. Vectors in ^π are analytic vectors for L,Q9L*±i.

Remarks. (1) Note that the fact that Ljί2 = 0 follows from the invariance
under C/! and from (5.20).
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(2) If si were a C* algebra then (5.18) would imply that the spectral projections
of L0 are contained in π(jtf)"9 the weak closure of π(j/). When working with
unbounded operators — as we do — one might assume that there is a generator
T(eiσ)e<2/, with conformal weight hτ = 2, such that, for n = — 1,0, 1,

L;= } dσei(n + 2)σπ(T(eiσ)\ (5.21)
— π

in every positive-energy representation π of («a/,τ). Then a variant of the
Lϋscher-Mack theorem would imply that (5.21) defines Virasoro generators, for
rceZ, so that j/ contains Vir.

We define a linear deformation map, δz, depending on a complex number
z, with 0< |z |<oo, on the linear space, G(J/), spanned by the generators

ιM= Σ "
fc= -Λj

where I ) is the usual binomial coefficient defined to vanish, for m > n > 0, with
\mj

1=1. (Our definition of δz is motivated by the contour integral formalism of

[1]). Note that δz is not a * endomorphism of j/, and that

5z(l) = 0, (5.23)

(so that δz 'kills" the central charge).
Next, we intςoduce an analogue of the notion of tensor operators in group

theory: Let / ! , . . . ,/„, 7 and k be positive-energy representations of (j/,τw). Let vl

be a vector in Jfίr A generalized vertex Vjk(vl9...9vn;Zl9...,Zn) is an operator-
valued function of (Z1,...,Z/J)eM/J, (with |z f | < 1, for i= l , . . . ,n) mapping a dense
domain in ̂ fc to a dense domain in J^J9 with the following properties:

(a) Vjk(vl9...9υn;Zl9...,Zn) is multi-linear in the arguments vl9...,vn;

/ = !

(5.24)

π

for every generator A = J ei(n + hj)σφj(σ)dσ of j/; and
— π

(c) If fy is a highest- weight vector for Vir then, for all meZ,

= ̂ ( , , . . . , I&zfo, ...,»„; Z, ,..., Z,, .... Z,), (5.25)

where
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A special case of (5.25) is

= K>1,...,L ίI1f; I,...,!; l l;Z1,...,Z I,...,Z I I). (5.26)

This defines a flat connection on the space of generalized vertices. The holonomy
matrices of this connection associated with paths corresponding to elements of the
braid group Bn determine a representation, R(n\ of Bn.

A special example of a generalized vertex is

φjvk(z)=Vjk(v,z\ (5.27)

for i eJ f ί? |z| < 1. The operators φjvk(z) correspond to the ones constructed in
Lemma 3.2 from a sequence of Green functions of a two-dimensional conformal
field theory.

In principle, the notion of generalized vertices is purely representation theoretic.
One might hope that, given some («s/,τw) for which all positive-energy represent-
ations are known, one could construct all generalized vertices satisfying (a)-(c),
above, in particular, one could construct the operators φjυk(z)9 on the basis of
purely representation theoretic arguments. This hope has materialized for the case
where $/ is the Virasoro algebra with central charge c= I — 6/p(p + l),p ̂  3; see
[24]. In this case, a basis of generalized vertices is obtained from the operators

V i i ~ ' J n - i ( » i , . . ; V n ' , Z i , - . , Z n ) = f l ΦΛ-I»,;,(*/)> (5-28)

with jo = , ;„ = fc, and (z1? . . . , zJe/C , where

K> ={z: |z 1 |> - - > |Z Λ | , -π<argz ί <π,i=l , . . . ,n} ,

by analytic continuation in (zl9...9zn) to Mn. We now assume that this property
holds for all chiral algebras considered henceforth. In this case, the representation
R(n) of Bn can be determined from the representation R of B2 obtained from the
generalized vertices V t

j k ( υ ί 9 v 2 ' 9 Z ί 9 Z 2 ) which are analytic continuations of the
product φjVίi(zl)φiV2k(z2).

We assume that the representation of B2 determined by the operators
{Vijk(vi^2m9Zl9Z2)}i€L only depends on J 9 i ί 9 i 2 and fc, but not on the choice of
t^eJf^, v2€Jj?i29 and has the form

F}k(ι;1,t;2;Z1,Z2) = ΣR(Λι\,/2,fctK5(ι;2,ι;1;τ(Z1,Z2^ (5.29)
m

where the matrix R(j9 iί9 i2, fc) is a solution of the Yang-Baxter equation; see (4.62),
(4.64); τ is the generator of B2. [Part of this assumption follows from (5.25)-(5.26).]
In more informal notation, (5.29) says that

^ί2^)inφjV2m(z2)φmvlk(z1\ (5.30)

if Z j and z2 are exchanged along a positively oriented path. If the vertices introduced
in (5.28) form a basis of generalized vertices then (5.29) determines the representations
R(n)otBn9 for all n.
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How much of the structure described here can be derived from the representation
theory of («s/,τw) remains to be investigated. The only example that is essentially
completely understood is the example of the Virasoro algebra with central charge
c = 1 — 6/p(p -hi), p ̂  3; see [24]. In more general cases, we have succeeded in
deriving a list of constraints on the matrices R ( j , i l , i 2 , k ) that follow from the
structure described above and to derive the chiral fusion rules [25]. The fusion
rules permit us, in principle, to calculate matrices R(j, / I 5 z 2 , f c ) from a few basic
K-matrices. These results will be presented in paper II [26] of this series. Assuming
that the matrices R ( j , i 1 , i 2 , k ) are all given, the construction of generalized
vertices V j k ( υ l 9 . . . 9 υ n 9 Z l 9 . . . 9 Z n ) satisfying properties (a)-(c) can be viewed as a
generalization of the Riemann-Hilbert problem. We have essentially no results to
report on its solution, but the subject is under investigation.

_Let us now suppose that we are given a pair of chiral algebras (j/,τw),
(«β/,τw) with all the properties described above. We propose to sketch how one
may reconstruct a local, unitary conformal field theory from these data. More
details will appear in papers II and III of this series.

With («s/,τw) we associate chiral operators φjvk(z) having all the properties
described above. Similarly, the operators φjϋk(z) correspond to (j/,τw). We define
an index set

Δ = {jik:φjvk(z)^Q, for some t eJ f f}

and a complex vector space

V={(λjikeC):jikeΔ}. (5.31)

The objects Δ9 V are defined similarly. Let R:V®V-+V®V zndR:V®V-^V®V
be the Yang-Baxter matrices generating the representations R(n) of Bn on the space
of generalized vertices Vjk9 the representations R(n) on Vj-k, respectively; see
(4.66)-(4.71).

We now look for coefficients, C^f, such that the fields

Φ,*,(z>z)= Σ C^φjvk(z)®φ^(z) (5.32)

with vEJ^i.veJ^γ, are local fields, (in particular, their vacuum expectation values

are all symmetric). We may interpret the coefficients Cj

 ik as the matrix elements
of a linear map C from V to V. It is easy to show that the fields φv(^ϋ(z,z) defined
in (5.32) are local iff

Λ(τ)Γ[C®C]R(τ-1) = C®C. (5.33)

This is an overdetermined system of equations for the matrix elements C^;
see [27] and papers II and III. These equations have solutions, provided the
matrices R and R satisfy certain polynomial constraints derived and analyzed
in Papers II and III. These constraints have been vertified for the example
where d and jf are isomorphic to the Virasoro algebra with central charge
c = c = 1 — 6/p(p -h \\p ^ 3. This leads to the minimal models.

For more general classes of models, the basic problem is to construct the chiral
fields φjvk(z\ φjδk(z) and to calculate their vacuum expectation values. The problem
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of solving (5.33) is then comparatively easy. Paper II is intended to represent a first
step towards a general theory of chiral fields φjvk(z). We analyze the properties of
the set of matrices {^i}ieL> where (Ai)jk is the number of chiral fields φjvk(z) φQ,
where v is an invariant vector in Jjf f. We also analyze chiral fusion, i.e. we derive
equations for the coefficients in the operator product expansions of products of
chiral fields. These results are similar to some recent results of Moore and
Seiberg [25].

Our results, in particular the notion of generalized vertices and their properties,
chiral fusion, etc., provide a convenient starting point for constructing local,
conformal field theories on Riemann surfaces of arbitrary genus. We hope to present
results on this problem in a future publication.

Ideas somewhat related to the ones developed in this paper have recently
appeared in [28] and in [25]. We thank the authors of these papers for sending
us their preprints prior to publication.
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