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Abstract. For a large class of semi-dispersed billiards an exponential estimate
from above is found for the number of periodic points of the billiard ball map.

1. Introduction and Main Results

Let Q be a domain (bounded or unbounded) in Ud, d^2, with the boundary

where each Γt is a compact convex C2-smooth (d - l)-dimensional submanifold
of Ud with piecewise smooth boundary dΓh and

whenever / Φj. Each dΓ{ is the union of a finite number of compact (d — 2)-
dimensional submanifolds of Ud. If δΓt Φ 0 , then clearly Γt is the boundary of a
compact convex domain in Ud.

Main Assumption. In the sequel we assume that each Γt is contained in the
boundary of a convex domain in Ud. Therefore if Kt is the convex hull of Γh then

The points of

will be called regular points of JΓ. For qef we denote by N(q) the normal unit
vector to Γ at q directed to the interior of Q. With respect to this framing the
second fundamental form of Γ is non-negative definite at each qeΓ.

We consider the billiard in g, that is the dynamical system generated by the
motion of material point in Q (see [4, 13]). The point is moving with constant
velocity in the interior of Q with reflections at dQ according to the rule "the angle
of incidence is equal to the angle of reflection."
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Fig. 1

Fig. 2

Denote by <.,. > the scalar product in Ud and by LqΓ the tangent hyperplane
to Γ at q. Then LqΓ=q + L'qΓ, where L'qΓ is a linear subspace of Rd, and
T /̂"1 = {q} x L^/" is the tangent space to /" at q.

A point x = (q,v)eΓ x Sd~x will be called admissible if it satisfies the following
two conditions:

(i) q is regular and (N(q)9 v} ^ 0;
(ii) if (N{q% v) = 0, then there exists in Γ a neighbourhood U of q such that
UnLqΓ={q}.

Set

M' = {(q9v)eΓ x , ^ 0 } .

Denote by M the set of x = (q9υ)eM' such that if y(x) is the billiard semi-trajectory
in Q starting at q in the direction v, then y(x) nΓczf, y(x) intersects Γ, and whenever
y(x) is passing through a point peΓ1 with reflected direction w, then (p,w) is an
admissible point of Γ x S d - 1 . For xeM let p be the first point of reflection of γ(x),
that is pey(x)nΓand the open segment (g,p) is contained in the interior of Q. Set

where w = v — 2(N(p), v}N(p). Thus we obtain a map

which is called the billiard ball map related to Q. In fact, it is more natural to



Periodic Orbits for Semi-Dispersed Billiards 219

consider T as a map

T:M0^M0,

00

where M o = f] T~m(M). Note that if Q is bounded, then M'\M has a Lebesgue
m = 0

measure zero (cf. [4]).
If Q is a bounded and Γ is strictly convex (convex) at each qeΓ, then the

billiard in Q is called dispersed (respectively semi-dispersed). Dispersed billiards
were introduced by Sinai [15]. Various properties of dispersed and semi-dispersed
billiards were studied by many authors in connection with some problems in
statistical mechanics and mathematical physics (cf. [4, 2, 3, 5, 6, 9-18] and the
references given there).

For each integer k^2 denote by sfk the set of those fc-tuples a = (ix,....ik)
such that ij = 1,2,...,s for allj,i3Φί j + 1 for j = l,...,k—l and ikφi\. Let

be the natural projection. A point x = (q,v)eM0 is called a periodic point of type
α for T if Tk(x) = x and

for any j = 1,2,..., fe. If the segment [#,., gJ + x ] is tangent to Γ at qj9 then ^ will
be called a tangent reflection point of y(x), otherwise it will be called a proper
reflection point of y(x).

The main result in this paper is the following

Theorem 1.1. Let Q satisfy the above assumptions and let (xestfk. Let there exist
two different periodic points (q, v) and (p, w) of type a for T and let qj = π° Tj~ x(q, v),
Pj = π° T 7'" 1(p, w)J = 1 , 2 , . . . . Then v = w, and for every j ^ 1 the segments [qj9 qj+ J
and [Pj,Pj+{] are parallel. If q5 is a proper reflection point, then tq^ + (1 — t)p^r{.
for all ίe(0,1) sufficiently close to 1. If all qs are proper reflection points, then for
every £e(0,1) sufficiently close to 1 the points (tq + (1 — t)p9v) are periodic points of
type α for T generating periodic billiard trajectories in Q of the same length, and
these trajectories have parallel corresponding segments.

In other words, for every αej/ f c there are three possibilities: (a) there are no
periodic points of type α; (b) there exists exactly one periodic point of type α; (c)
the periodic points of type α generate a family (which might be discrete, see Fig.
3 (a)) of parallel periodic billiard trajectories in Q of the same period (length). The
assumption that qj is a proper reflection point is essential for the second part of
the theorem (cf. again Fig. 3 (a)).

Since every periodic billiard trajectory has at least two proper reflection points,
the following is an immediate consequence of the above theorem.

Corollary 1.2. // α = (iί,..., ik)estfk and Γt is strictly convex for some j = 1,..., k,
then there exists at most one periodic point of type afar T.

We should mention that Theorem 1.1 and Corollary 1.2 fail if we drop our
main assumption (cf. Fig. 3 (b)). They fail also if one considers domains Q in an
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arbitrary Riemannian manifold. It is easy to construct counterexamples with
Q c Tor2 or Q c S2.

If (q, v) and (p, w) are periodic points of period k for T, we will say that (q, v)
and (p, w) are equivalent if they are of the same type and generate parallel periodic
billiard trajectories of equal lengths. Denote by Pk = Pk(Q) the number of equivalent
classes of periodic points of period k for T.

Counting the cardinality of stfk and applying Theorem 1.1 one gets immediately
the following.

Corollary 1.3. Let Q satisfy the assumptions at the beginning of this section. Then
for every integer fc^3 we have

PkSs(s- l)k~2(s-2)<(s- l)k.

In particular, lim sup (log Pk/k) ^ s — 1.

There is a large class of unbounded domains Q for which Pk = s(s — l) f e" 2(s — 2)
for all fc ̂  3. One may take for example all domains Q which are exteriors of several
disjoint strictly convex compact domains in Ud and satisfy the condition (H) below
(cf. [5]). Note that if Γt is strictly convex for every i, then Pk is exactly the number
of all periodic points of period k for T.

The growth rate of the number P(t) of closed geodesies of length ^ ί on
Riemannian manifolds, as well as that of the number Pk(f) of periodic points of
period k for diffeomorphisms / on compact manifolds, have been studied by many
authors and in different contexts (cf. Katok [7, 8] for more details and some
historical remarks). For example, for manifolds of negative curvature lim P(t)/t

t-»OO

exists and equals the topological entropy of the geodesic flow (Margulis [12]). If
/ is an Axiom A diffeomorphisms, then lim sup (log Pk(f)/k) equals the topological

entropy h{f) of /(Bowen [1]). Katok [7] proved that if / is a C 1 + ε (ε>0)
diffeomorphism of a compact manifold and μ is a Borel probability /-invariant
measure with non-zero Lyapunov exponents, then lim sup (log Pk(f)/k is not less

fc->oo

than the metric entropy hμ(f). Concerning the billiard ball map T we do not know
any estimates of Pk{T) by means of the (metric) entropy of T.

As N. Chernov pointed out, Theorem 1.1 has some consequences in the case
when Γι are cylinders, which may have some applications to the study of systems
of elastic hard spheres (cf. [17, 11]).

Let Q a U2 and dQ = Γικj~\jΓs. Every Γt is a smooth curve in U2 which
may have one or two endpoints. If i φj and j φ 0 , then j consists of
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Fig. 4

one or two points. Let qeΓiΠΓj. We will say that the pair (ΓhΓj) is singular at
q if there is a common tangent line t to Γt and Γj at q such that JΓf and Γj lie in
different halfplanes with respect to t. Note that there could be two different common
tangents to Γt and Γj at q (cf. Fig. 4).

Corollary 1.4. Let Q be bounded, Q c IR2, and let Γt be strictly convex for every
i= l,...,s. Suppose moreover that for all iφj with Γir\Γjφ0 the pair (Γi9Γj) is
non-singular at any point qeΓi n Γj. Then there exists constants c> 0, b > 0 such that

where Pt denotes the number of those (q9v)sM0 which generate periodic billiard
trajectories in Q with lengths ^t.

An exponential estimate from below of Pk for semi-dispersed billiards in R2 is
found by Bunimovich et al. [3]. It is also shown in [3] that the periodic points of
the billiard map T are dense in the phase space M o . These results are obtained as
consequences of the existence of Markov partitions for such billiards established
in [3].

Note that Theorem 1.1 works also in the case when Q is a polyhedron in ίRd,
however in this case much better estimates for Pk and Pt were found by Katok [9].

s

Finally, consider the case when Q = Ud [j Kh where Kt are disjoint strictly

convex compact domains in lRd with C2-smooth boundaries dKt = Γ(. In this case
Ikawa [5] proved Theorem 1.1 under the following additional assumption:

{ For ί je{l, ...,s}9i φj, the convex hull of

KtKjKj contains no points of the set

u{Km:mφiJ}.

Using this fact and the technique of [5], Ikawa [6] proved that in the latter case
there exists ε > 0 such that the domain {zeC: 0 < Im z < ε} contains infinitely many
poles of the scattering matrix S(z) related to the wave equation in Q with Neumann
boundary conditions on dQ. On the other hand, it follows by [14] that for generic
Q in IRd (see [14] for the precise definition of "generic") all periodic billiard
trajectories in Q have only proper reflection points. It seems that using this fact,
Theorem 1.1 and the technique of Ikawa [5, 6] one can derive that for generic Q
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in Ud (but without assuming (H)) there always exists ε > 0 such that the scattering
matrix S(z) related to Q has infinitely many poles z with 0 < Im z < ε.

The proofs of Theorem 1.1 and Corollary 1.4 are given in Sect. 3 of this paper.

2. Periodic Points and Local Minima of Length Functions

In this section we assume that Q satisfies the assumptions at the beginning of Sect. 1.
Denote by Kt the convex hull of Γt in Ud. Then Kt is a compact convex subset of
Ud and Γt a dKt by the main assumption (cf. Sect. 1). It may occur that Kt and Kj
have common interior points for some i Φj, but this will not interfere with our
considerations.

Fix a n oc = (ίl9...,ik)ejtfk. F o r convenience we set qk + ι=qχ a n d qo = qk.
Consider the length function

F = Fa:Ka = Kiιχ.. xKik->U (1)

defined by

f( ί i , . . . ,*)= Σ H-ij+il (2)
I

Clearly, if (q,v) is a periodic point of type α for T, then for q3 = π°Tj~1(q,v) we
have that F(q, ...,qk)is the length of the corresponding periodic billiard trajectory.

Set Γ(X = Γiί x ••• x ΓikczKa (this is not the boundary of Ka in (Ud)k). It is
well-known that if the restriction F{Γ of F to Γa has a local minimum at some
point q = (qί9..., qk)eΓΛ and if for every j = 1,..., k the open segment (qj9 qj+1) is
contained in the interior of β, then ql9...,qkare the consecutive reflection points
of a periodic billiard trajectory in Q. Our aim in this section is to prove the converse.

Lemma 2.1. Let (q, v) be a periodic point of type a for T and let q-3 = π° Tj~ λ(q, v),
j = 1 , . . . , k. Then F has a local minimum at <? = (#i ,...,<?*) as a function on Ka.

Proof Clearly, F is smooth in a neighbourhood of q. Since the case k = 2 is clear,
we will assume k ^ 3.

Every q^ is a regular point of Γ, therefore there is a C2-smooth cart

such that (pj(O) = qj. Then {dφj/duf^iO^Zl is a basis in the tangent space Tq.Γ
to Γ at qΓ Hence uj = (uγ\...9uf~1)) belongs to IR^"1. Consider the function

defined by

G{u1,..., uk) = FίφiίMi),..., φk(uk)).

First, we are going to prove that G has a local minimum at 0. This would
imply that F | Γ has a local minimum at q.

Let φj(uj) = (φf\u )9..., φf\uj))9 and let u = (u±,..., uk)e(Ud~1)k. In what follows
we will use the following notation: Ij = {j — 1J? + 1},

*/i = VII ij - Qi I vji = ϊij
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Clearly, aβ > 0 and v^eS0'1. Moreover, atj = ajt and vtj = — Vβ.
For all j = 1,...,k, n = l,...,d—l and u sufficiently close to 0 we have

dG ( \ v / <PAuj)-<Pi(ui) d(Pj (

^a ) =S\ii^)-^)ir^ (

Since vjj^1 + u# + 1 is collinear with N(qj), one gets

Therefore 0 is a critical point of G.
Next, we will show that the second fundamental form of G at 0 is non-negative

definite. First, we have to compute (d2G/δuf)du({n))(0) for all j9i = l,...,fc and
n,m=l,...,d—l. Given j there are three possibilities for i.

Case 1. iφljv{j}. Then (d2G/8uf)dw[m))(0) = 0.

Case 2. ielj. Now (3) implies

<32G _

Case 3. i=j. Then

Fix an arbitrary vector ξ = {ξf)^^^^ in (R4"1)*. We have to show that

k d-1 β2Q

j

Set zj = *Σ ξf ipφjdufm, where ξj = (#>,..., ^ " 1 ) ) . Note that for Nj = JV(̂ )
M = 1

we have vjj^1 + ϋ .̂ + x = — A7 iV7 for some Λ̂  > 0.
Since Uj = (Pj(Md~x) c f is convex at qj9 the choice of the normal vector Nj

shows that the second fundamental form Bj of Uj at q} is non-positive definite.
That is

d-l / f)2 \
N • j (0) ) £ W m > <

n,m= j

for every ξj€Ud 1.
According to the above formulas for the second derivatives of G at 0 we find:
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k d-i fta

σ- y y
j = 1 n,m = 1 ^ ^ j ^ w j

fc d - 1

, y y y
Γ fc d-1 / f)2

-\ y 2 V / N 3

- Σ Σ Σ • J # « » i

•Σ Σ . Σ «Λ^w(θλ^

7=1 j=lielj j=ίielj

k k

- Σ Σ αjt<zj>2i> + Σ Σ aji(zpυji>(znυji>'
7=1 ie/j 7=1 ielj

Since I'G/J is equivalent tojelh according to ajt = α^ and i;Jf = —vφ one can rewrite
the last expression for σ as follows:

°= - Σ λ j β j ( ^ ^ ) + Σ

= - Σ hHti>t})+ Σ β^

By definition || ϋ j j + x || = 1, therefore (zj -zj+u vjj+1 >2 ^ || Zj ~ z j + 1 1 | 2 , which yields

In this way we have shown that G has a local minimum at 0, thus the restriction
of F to Γa has a local minimum at q. Then there exist neighbourhoods Vj of g7- in
Kt. such that F(q)^F(p) for every peVnΓa, where F = F 1 X " x F t , Since
T 7'"1^,!;) are admissible points for all j ^ 1, we may choose the neighbourhoods
Vj in such a way that for every pe F and every j = 1,..., k the segment [p7 , p J + x ]
intersects Γ1 .̂ and Γij + ι at points belonging to Vj and 1/

/ + 1 , respectively. Indeed,
if qj is a tangent reflection point, we may define Vj by

Vj={pJeKij:<j>J-qj,N{qj)>> -ej}
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for some Sj > 0. If qj is a proper reflection point, we take an open ball Dj with
center qj and a sufficiently small radius ε,- > 0 and set Vj = Kt nDj.

Consider an arbitrary p = (p1,...,pk)eV. Denote by p\ the intersection point
of Γh and the segment [p x , p 2 ] . Then p\ e Vί, and it follows by the triangle inequality
that

Next, denoting by p'2 the intersection point of Γh and the segment [p x , p 2 ] we obtain

and so on. Thus we find for each j,pfjeΓi nVj such that F(p)^F(p'\ where
p' = (pi,.. ., Pfe)eΓα n F. It follows from above that F{p') ^ F(§), therefore F(p) ̂  F(g).
This proves the assertion.

Remark. If Γt is strictly convex at qj for every j , then clearly F has a strict local
minimum at q.

3. Proofs of the Main Results

Let Q be as at the beginning of Sect. 1 and let ocejtfk be given. In what follows we
will use the function (1) defined by (2). Note that F is convex, that is

for all q,peKa and ίe[0,1].

Proof of Theorem 1.1. Assume there exist two different periodic points (q,υ) and
(p, w) of type α for T. Set q = (^, . . . , gfc) and p = (Pi,..., pfc). Then q,peKa and by
Lemma 2.1 i7 has local minima at q and p. For ίe[0,1] set #jf) = tqj + (1 — ήpj and
qU = (qψ,..., g^). Clearly, <?(ί) = ί? + (1 - ί)peKα.

We will show that F(q) = F(p). Assume F(g) > F(p). Then for every ίe(0,1) we
have

F(qV) = F(tq + (1 - t)p) ̂  tF(q) + (1 - t)F(β) < F(q).

Since q{t)-^q as £->l, we get a contradiction with the fact that F has a local
minimum at q. Thus F(§) ̂  F{p). Similarly one gets F(p) ^ F{q\ therefore F(q) = F(p).
Moreover, by F{q{t)) = F(tq + (1 - t)p) ̂  F(q) = F(p) we find that F(q{t)) = F(q) = F(p)
for all ίe(0,1) sufficiently close to 0 or 1. It then follows that F(q{t)) = F(q) = F(p)
for all ίe[0,1], Note that for ίe(0,1) the equality

holds if and only if the segments [g, q'~] and [p, p'] are parallel (we assume q Φ qr

and pφp'). Then it follows from above that the segments [#_,-,#/+1] and [p7 ,p7 + i]
are parallel for each j = 1,2,... . In particular, v = w.

Take neighbourhoods Vj of qj in Ktj as at the end of Sect. 2. There exists
ίoe(0,1) such that qfsV5 for all ίe(ί0,1].'Set V = F x x ••• x Kfc. Clearly, F has a
minimum at § ( ί ) in V for every ίe(ί 0 ,1]. Let q} be a proper reflection point for
some; ^ k, and suppose ^ f ^ r f j for some te(t0,1). Set f = ( ^ . . . , qf. x, ^ , ̂ i t , . . . ,
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q^X where q'j is the point of intersection of Γtj and the segment [qfiq
(j+ι']. Since

qj is a proper reflection point, if t0 is sufficiently close to 1, then the segments
\_qf-\Af~\ and [_qf,qf+{\ would be not collinear, so

and therefore F(q(t)) > F(r) in contradiction with the minimality of F(q(t)). Hence
qfeΓi. for all te(t0,1] providing t0 is sufficiently close to 1.

Finally, if all qγ,..., qk are proper reflection points, then it follows from above
that for every ίe(0,1) sufficiently close to 1 the points (tq + (1 — ί)p, v) are periodic
points of type α for T which generate periodic billiard trajectories in Q of length
F(q) = F(β) and parallel corresponding segments.

Proof of Corollary 1.4. Let i Φj be such that Γ{ nΓjφ 0 and let qeΓi n Γj. Denote
by (ύijfa) the minimal angle between two different tangents to Γ{ and Γj at q. Put

ω = min {ωl7(g):i φ

if the set on the right-hand side is non-empty, and ω = π otherwise. For
n — [π/2ω] + 1 a simple geometrical argument shows that if y(x)9 xeM0, is a billiard
semi-trajectory in Q and if Γt n Γj φ 0 , then there are no more than In consecutive
reflection points of y(x) belonging to ΓIKJΓJ.

Further, divide each Γt which has endpoints into two curves Γ[ and Γ" by an
arbitrary point ^eΓ; (Γ—ΓJuΓJ' and Γ^nΓ; = {qt) if Γ f has two different
endpoints, Γ'inΓΊ = {q^κjdΓi otherwise). If dΓ{ = 0, i.e. rt has no endpoints,
set Γ'i = Γ'l = rt. Define the numbers

m'i = min {dist (Γ'i9 Γj): Γj n Γ\ = 0},

nil = min{dist(Γl Γjj'.ΓjnΓ; = 0 } ,

m = min {m\,..., ιήs9 m\,..., m"s}.

Clearly, m > 0 . Moreover, it follows from above that if pk,Pk + ι>- >Pk + 2n a r e

consecutive reflection points of a billiard semi-trajectory y(x) in β, x e M 0 , then at
least one of the segments [p, , pj+1]J=l9...9k + 2n — 1, has a length not less than m.

Take an arbitrary ί > 0, and let y = γ(x\ xeM0, be an arbitrary periodic billiard
trajectory in Q with length ly ^ t. If k is the number of reflections of y, then

+ 1)] ̂  m(fe - 2n)/(2n + 1),

so k rg (2n + l)ί/m + 2n. Therefore for i = [(In + l)ί/m], according to Corollary 1.3,
we find

ptύΣ Pj<ιΣ{s- ly < ( s - i y + 2 n ^ ( s - if+&,
J=2 j=2

where c = (2n + l)/m and fe = In + 1. This proves the assertion.
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