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Abstract. An extension of the formalism of quantum mechanics to the case
where the canonical variables are valued in a field of p-adic numbers is
considered. In particular the free particle and the harmonic oscillator are
considered. In classical p-adic mechanics we consider time as a p-adic variable
and coordinates and momentum or p-adic or real. For the case of p-adic
coordinates and momentum quantum mechanics with complex amplitudes is
constructed. It is shown that the Weyl representation is an adequate
formulation in this case. For harmonic oscillator the evolution operator is
constructed in an explicit form. For primes p of the form 4/ +1 generalized
vacuum states are constructed. The spectra of the evolution operator have been
investigated. The p-adic quantum mechanics is also formulated by means of
probability measures over the space of generalized functions. This theory obeys
an unusual property: the propagator of a massive particle has power decay at
infinity, but no exponential one.
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1. Introduction

In modern theoretical and mathematical physics up to now only real and
complex numbers were used. The reason is that the space-time coordinates have a
good description in terms of real numbers. However there exists a more general
point of view. In the paper [I] which was devoted to superanalysis we proposed to
consider the superanalysis and corresponding supersymmetric field theories not
only over the field of real numbers but also over the field of p-adic numbers and
other locally-compact fields. In [2-4] the hypothesis on the non-Archimedean
geometry of the space-time on very small distances, the so-called Planck length
(10~33 cm), was suggested and the corresponding string theory over the field of
p-adic numbers and the Galois field was initiated. Then a number of papers
appeared in which possible physical applications of p-adic numbers approach has
been discussed [5-17].

We are only in the beginning of p-adic mathematical physics. To answer many
physical questions it is necessary to conduct a detailed investigation of suitable
mathematical theory. It seems that the p-adic numbers will find applications not
only in mathematical physics, in particular in string theory and field theory, but
also in other natural sciences in which there are complicated fractal behaviours
and hierarchical structures, for example in turbulence theory, dynamical systems,
statistical physics, biology etc. Perhaps p-adic numbers, in particular 2-adic
numbers, will be useful for computer construction.

Usual string theory is closely connected with quantum field theory and is its
generalization. In the same way p-adic string theory has to be connected with
p-adic quantum field theory. The aim of this paper is to start construction of
quantum mechanics and further quantum field theory over the field of p-adic
numbers. It seems to us that an extension of the formalism of quantum theory to
the field of p-adic numbers is of great interest even independent of possible new
physical applications because it can lead to better understanding of the formalism
of usual quantum theory. We hope also that investigation of p-adic quantum
mechanics and field theory will be useful in pure mathematical researches in
number theory, representation theory and p-adic analysis. Let us recall here that
the quantum-mechanical Weyl representation (see below) has wide applications in
number theory and representation theory. However from the point of view of field
theory it corresponds only to the simplest model of the free noninteracting system.
No doubt investigations of p-adic nonlinear interacting systems will provide new
deep pure mathematical results.

Let K be an arbitrary field, in particular the field of p-adic numbers or the
Galois field. In considering mathematical and physical theories the following two
natural possibilities appear: either to consider functions f.K^K or functions
/:K->1R (or (C).1 Both these possibilities were suggested in [2-4], in particular
p-adic valued string amplitudes and complex-valued ones (convolution of
characters) were proposed. Then the case of complex-valued amplitudes was
discussed in [6,7,13]. In this paper we propose various most natural formulations
of p-adic quantum and classical mechanics. The question of which formulation is

1 It is interesting also to consider functions
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the most acceptable from the physical point of view will be solved after suitable
development of the formalism, see also the conclusion.

The usual Schrόdinger representation cannot be used for construction of
p-adic quantum mechanics with complex wave functions. We propose to use a
generalization of the Weyl representation and we develop the corresponding
formalism of p-adic quantum mechanics with complex wave functions in the
Hubert space L2(Qp). It is quite remarkable that the Weyl representation can be
used not only in usual quantum mechanics but also in the p-adic case, p-adic
quantum mechanics does not possess a Hamiltonian and we propose to work
directly with a unitary group of time translations. Such a group is constructed for
the free particle and for the harmonic oscillator. The existence of the vacuum state
is nontrivial even for the harmonic oscillator. We introduce a notion of a
generalized vacuum state and we show the existence of a vacuum state for prime
numbers p of the form 4/+1. It is very interesting to note that in contrast to the
usual quantum mechanics here there exist at least two vacuum states.

We suggest also a formulation of the p-adic quantum mechanics in terms of the
probability measures on the space of distributions. This formulation is formally
similar to the Euclidean one of usual quantum mechanics but qualitative
properties of these theories are different. In particular the propagator for a massive
particle has no exponential decay at infinity but a power type one. It seems that the
p-adic approach can be useful for the calculation of the critical exponents in the
models of field theory and statistical physics.

In Sect. 2 some necessary results on p-adic mathematics are presented. In
Sect. 3 the p-adic classical mechanics is described in which time coordinates and
momentum are p-adic. We give a formula for solutions of the dynamical equations
for the harmonic oscillator.

In Sect. 4 we consider a formulation of p-adic quantum mechanics with
complex-valued wave functions which is based on the Weyl representation. A
quantization procedure of p-adic classical mechanics, in particular a functional
integral approach over the p-adic numbers, is discussed. The evolution operators
for the free particle and for the harmonic oscillator are constructed. The existence
of at least two generalized vacuum states for prime p of the form 4/ +1 is proved.
An approach to study spectral properties of p-adic quantum mechanical systems is
proposed. In Sect. 5 another version of the p-adic quantum mechanics analogous
to the Euclidean formulation of the usual (real) one is described. In particular, it is
shown that the propagator for a massive particle has power decay at infinity,
namely |ί|~3, but no exponential one as in the real case.

2. Some Results on /?-Adic Mathematics

Let Q be the field of rational numbers. It is known, see for example [18], that any
norm on Q is equivalent to the usual absolute value or to a p-adic norm. The p-adic
norm is defined in the following way. Let p be a prime number, p = 2,3,5,.... Any
non-zero rational number x can be represented in the form x = pvm/n, where m and
n are integers which are not divisible by p and v is an integer. Then the p-adic norm
is \x\p = p~v. This norm satisfies inequality |x + ̂ |p^max(|x|p, \y\p), i.e. is a non-
Archimedean one. The completion of Q with respect to the p-adic norm defines the
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p-adic field Qp. Any p-adic number can be uniquely represented in the canonical
series oo

x = f Σ «nV\ (2.1)
n = 0

where an are integers, 0 S an rg p — 1, a0 φ 0. The series (2.1) converges in the p-adic
norm because

\anP\=p-n.

The p-aάic exponential is defined by the series

eX=lxi> ***' (2 2)

which converges for |x |p<l if p>2 and for \x\2<l/2.
The complex valued p-adic exponential is given by

χ(x) = exp(2πφc}), xeQp, (2.3)

where {x} is the rational part of x which is defined by the expansion (2.1)

{*}=PV Σ α^. (2.4)
0^«^max{- 1, -v-l}

The function (2.3) is an additive character on Qp

χ(χ + y) = χ(χ)χ(y).

On Qp there is a translationally invariant Haar measure dx with the properties

d(αx) = \α\pdx, α + 0; J dx = ί. (2.5)

Since the value |x|p is discrete and takes the countable set of numbers \x\p = p~v,
VEΈ, then the space Qp can be represented as a disjoint union of spheres \x\p = p ~v,
xeQp. So, for any complex valued function feL^Qp) we have

ί f(x)dx= £ j f{x)dx. (2.6)
QP v= - c o | x | p = p v

We shall use the following integrals, see for example [19,20]:

(2.7)

J χ(ξx)dx=\ -p*-\ | ί | p = p " v + 1 , (2.8)

.0,

\np

\ χ{εx2)dx=ί, J
QP QP

(2.10)
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ίε \where ε = ε 0 + £!/?+..., — the Legendre symbol. For calculation of the integrals

(2.10) we use the equalities [18,23]

V

if m is not divisible by p.

λM

where2

λJa) =

if v is even,

if v is odd, p =

if v is odd, p = 3(mod4),

The proof of formula (2.11) is carried out as in the real case by means of
reduction to the integrals (2.10) because any aeQ is: or c2, or pc2, εc2 or pεc2,

where ceQp and | ε | p = 1, I — I = —1 The detailed calculations are contained in

paper [20].
In the Hubert space L2(Qp) which is the space of complex valued square

integrable functions on Qp we introduce the standard inner product and the norm

(ψ, φ) = J ψ(x)φ(x)dx, ||ψ | |2 = (ψ, ψ).

The Fourier transform for a function ψ e L2(QP) is defined by the formula

ψ(ξ) = jψ(x)χ(ξx)dx.

The Fourier inversion formula and the Parsevale-Steklov formula hold

ψ(x)=ίψ(ξ)χ(-ξx)dξ9 | |φ | | = ||v5||.
QP

Some useful results from the theory of generalized functions of type <2p->(C can be
found in [19,20] and of type Qp-^QP in [18, 21, 22].

2 The following properties of λp(a) are obvious:

\λp(a)\ = 1, λp(a)λp(-a)=l, λp(c2a) = λp{a) cφ0, pΦ2
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Let S){Qp) be a space of complex valued functions φ(x) with compact support
on Qp such that φ(x) = φ(x + a), xeQp, \a\p^pN for some integer N = N(φ). The
space @(QP) provides a natural topology. Let @'(QP) be the dual space to the space
2f{Qp) - the space of generalized functions.

Equation x 2 = α, where a = p2N{a0 + aγp +...), αo + 0, Q-^a^p— 1, p φ 2 , has a
solution in Qp if and only if a0 is a square residue modp, i.e. α 0 = XQ (mod/?). In this
case there exist two solutions of the form x= ±pN(x0 + xιp + ...)• In particular
whenα = —1 the equation x2 = — 1 =p— 1 + (p —l)p + (p—I)p2 + ... has a solution
if and only if the Legendre symbol

- 1 p-l

is equal to 1 (see [23]), i.e. when the prime number p has the form p =
example for p = 5,13,17,....

1, for

3. Classical p-Adic Mechanics

Let us start with consideration of the classical p-adic Hamiltonian equations

Pi=--*-[> dqι

dH

(3.1)

where all variables: coordinates q = q(t% momentum p = p(t), the Hamiltonian
H = H(p,q) and time t take values in Qp.

3 We understand here the notion of
derivation in the following sense [1]:

x{t + At)-x{t)
-x(t)

It is known that there is a theorem on the local analytical solvability of the
ordinary analytical differential equation over Qp [22].

We consider first the simplest case of a free particle with the Hamiltonian

(3.2)

here m e Qp, m φ 0.
Hamilton's equations

~ q(0) =

have a unique analytical solution4 for t e Q ,

(3.3)

3 We use the same symbol p for the notation of a prime number and for a momentum. We hope
that it does not lead to misunderstanding
4 We don't consider here a more exotic solution. It is known that the equation x = 0 in Qp has not
only the solution x = const but also other solutions
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Let us also present a solution for the harmonic oscillator with the Hamiltonian

H=^np
2+l-mω2q2, (3.4)

where m,ωeQp, m + 0.
The equations of motion

p=-mω2q, q=-p; p(0) = p, q{0) = q

have an analytical solution which is analogous to the solution over the field of real
numbers

/ psinωt + q cosωt
tf) I mω
p(t)J \ p cos ωt — qmω sin ωt

= τ

where

1 .
cosωί sinωί

mω
— mω sinωί cosωί

(3.6)

It is clear that the matrix TteSO(2, Qp). In Eqs. (3.5), (3.6) according to Eq. (2.2),
p)

) 2 n ~ 1 °° (mt)2n

ψ
(cΩt) (mt)

sinωt= Σ ( - 1 ) " " 1 S τ - n T ' cosωt= Σ (-^ψ^- (3.7)
n = i (In —1)1 n = o (2n)\

The series (3.7) are convergent for \ωt\p < 1, p > 2 and for \ωt\2 < 1/2. We will denote
this region by Q)r

We note that if t, t' e 2)p then t + t' e Θp and $)p is an additive group. For such t
and t' the matrices Tt satisfy the group relation

TtT, = Tt + t,. (3.8)

On the phase space V— Qp x Qp we define a skew-symmetric bilinear form
B:Vx V^Qp of the form

B(z,z')=-pq' + pfq, (3.9)

where z = (q,p)eV, z' = (q',p')e V. The pair (V,B) defines a symplectic space.
We have then

Ttz') = B(z,zf), (3.10)

i.e. the dynamics of the oscillator defines a one-parametric group of symplectic
automorphisms of the space (V, B). It is also true for the dynamics of a free particle.

4. /7-Adic Quantum Mechanics

4.1. The Weyl Representation

In this section we construct the p-adic quantum mechanics in which states are
described by complex-valued wave functions ψ e L2(Qp).
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The standard quantum mechanics starts with a representation of the well-
known Heisenberg commutation relation

in the space L2(R). In the Schrδdinger representation the operators q and p are
realised by multiplication and differentiation respectively. However in the p-adic
quantum mechanics we have x e Qp and xp(x) e (C, and therefore the operator xp(x)
->xψ(x) of multiplciation by x has no meaning. Fortunately in this situation there
is a possibility to use the Weyl representation. Recall that in the Weyl
representation in the space L2(1R) a pair of unitary operators is considered

eipq: ψ{x) -• ψ(x + q), e*p: ψ(x) -» eίxpψ(x).

In this form it is possible to construct the following generalization to the p-adic
case. We consider in the space L2(QP) the unitary operators

Uq: ψ(x)-+\p(x + q)9 Vp: xp(x)->χ(2px)ψ(x),

where q,p,xe Qp and χ is the additive character on Qp (see Sect. 2).
A family of unitary operators

W(z) = χ(-qp)UqVp, z = (q,p)eQ2

p (4.1)

satisfies the Weyl relation

W(z) W(z') = χ(B(z, z')) W(z + z'),

where B(z, z') is the symplectic form (3.9). The operator W(z) acts by the following
way

W(z)xp(x) = χ{pq + 2px)ψ{x + q),

i.e.

W{z)ψ(x)=i W(z χ,y)ψ(y)dy,
QP

where the kernel is

W(z;x9y) = χ(pq + 2px)δ(x-y + q). (4.2)

In the standard quantum mechanics the utilization of the Weyl representation is
technically convenient, and it is widely used in mathematics see [24-26]. As we saw
from the above discussion in p-adic quantum mechanics the use of the Weyl
representation is the most appropriate way for the construction canonical
commutation relations.

We consider now a question on the description of dynamics in the p-adic
quantum mechanics. In the standard quantum mechanics one starts with the
quantum Hamiltonian and then one constructs an operator of evolution [/(£).
From our discussion it is clear that in the p-adic quantum mechanics one needs to
construct directly a unitary group U(t). It is understood we shall use a classical
p-adic Hamiltonian for heuristic arguments. As is known the usual quantization
procedure is the following. For each function / from some class, defined on the
phase space, one associates a corresponding operator / in L2(1R). This quantiza-
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tion map /-»/ has to satisfy some natural conditions, see [24,25]. In general, the
quantization procedure is ambiguous and different quantizations exist.

If the function /(p, q) is the Fourier transform of a function φ(oί, β\

f(p, q) = j 2 ei{«p + *«ty(α, β)dadβ = φ{p, q), (4.3)

then the Weyl quantization is the construction of the operator

f= j ei(cίί) + β^φ(ocj)docdβ,
ΊR2

where p and q are the momentum and position operators. Such quantization
theory is closely connected to the theory of pseudo-differential operators. This
quantization procedure can be generalized to the p-adic case. Let /(p, q) be a
complex-valued function on the p-adic phase space V= Q2

P and from @{Q2

P). It can
be represented as the Fourier transform (see Sect. 2)

f(p, q) = ί X ( O Φ + β q ) φ & β)d(χdβ=φ(P, q)9

In analogy with (4.3) to any such function one corresponds an operator in L2(QP)

/ = f W(otJ)φ(aJ)dotdβ,
Qi

where W(ac, β)=W(z) is the unitary operator (4.1), z = (α, β). The function f(p, q) is
called the symbol of the operator f. Note an essential difference of such
quantization of the p-adic theory from the standard real theory. In the p-adic
theory we cannot quantize polynomial functions /(p, q) since such functions take
values in Qp but not in (C.

In standard quantum mechanics usually one starts with the construction of the
Hamiltonian operator and then one proves its selfadjointness. Then one con-
structs the operator of evolution. In the p-adic quantum mechanics we can proceed
in the following way. Let H(p, q) be a classical p-adic Hamiltonian.

We put
t/ 0(ί)= ί W(o>J)χ(tH((xJ))dotdβ.

Q2

P

It is natural to define the operator of evolution which corresponds to the classical
Hamiltonian H(p, q) as

if this limit does exist in L2(QP).
In standard quantum mechanics such a construction gives in fact the operator

of evolution. It would be very interesting to prove the existence of U(t) for some
class of p-adic Hamiltonians H(p, q). Perhaps this limit will depend on a choice of
subsequence N.

As is known in standard quantum mechanics the symbol U(t) can be given in
terms of the Feynman functional integral. It is natural to suspect that in the p-adic
quantum mechanics the corresponding kernel will be expressed as the functional
integral ;

Kt(x,y) = \x(τ\Uq,q)dt f\dq(t), (4.4)
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where integration is performed over classical p-adic trajectories with the boundary
conditions q(0) = y, q(t) = x. Here L(q, q) is a classical p-adic Lagrangian, L(q, q) e Qp

t

and h e Qp. The integral f Ldt = S(t) in the formula (4.4) is understood as a function
0 d

which is inverse to the operation of differentiation, i.e. — S(t) = L, S(0) = 0, S(t) e Qp.
It would be interesting to give an intrinsic definition of such integral. Here the
theory of integration from [27] may be useful.

Here we are not going to analyze a general case but instead we consider
rigorously the simplest cases of the free particle and harmonic oscillator. In these
cases it will be shown that as in the standard quantum mechanics the kernel
Kt(x, y) ~ χ{Sd(t)), where Scl is the action calculated on the classical p-adic
trajectory (compare [28]).

4.2. Free Particle

We construct the dynamics of the free quantum particle which corresponds to the
classical Hamiltonian (3.2) by means of the Fourier transformation. Let ψ be from
L2(QP) and ψ(k) is its Fourier-transformation. As is known (see Sect. 3) the Fourier
transformation F :ψ^>ψ is an unitary operator in L2{QP). The evolution operator
in momentum representation is given by the formula

(4-5)

Let us calculate the kernel of the evolution operator in x-representation. Using the
theorem on the Fourier transformation of the convolution (justification see [20])
from (4.5) we have

U(t)ψ(x) = F~1\_U(t)Fψ(xK = F~ι [χ(¥-ί)Fψ

i \H-rn / i
where

4m'"- ( 4 7 )

Note that the formulas (4.5) and (4.6) give a group of unitary operators U(t) for any
t E Qp and the relation is fulfilled

f)=U(t)U(f). (4.8)

From (4.7) we have

( ) (4.9)
QP

Taking into account the equality (2.11) we have

m

m
1/2

m

t
χl-'iξ2), ί φ O . (4.10)
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U(t)W(z)U(t)-1 = (4.11)

where Ttz = (q(t), p(t)) = I q-\—t,p ) is the classical trajectory. The formula (4.11)
m

has the form as in the standard quantum mechanics.
From Eqs. (4.8) and (4.10) such a property of λp(a) follows:

= λp(a + b), p * 2 .λp(a)λp(b)λp ( - (4.11')

However the evolution of the Gaussian packet which is given by the formula

It{x)=

is radically different. Calculations show that, see [20], p + 2,

/,(*) = exp| - -Ilx-<]

t

m

t

m

Λ
P PJ
1/2 ^ ^

x — α y
P Λ 1

2 <
P =

t

m

m ,
(X

(4.12)

(4.13a)

m

Here we suppose that = c2, c e β p . The function S is

S(u,q)=

(4.13b)

,ττ^= Σ

Asymptotics of the function 7f(x) for \x\p^>oo has the form

m

5/2

m (4.14)

and for |ί| ->oo,
ι\l12

.11/2

i

1

e ]/2lnp m P UP J \ Pj\]/e ]/2lnp/

(4.15)

Recall the expression for the Gaussian packet in the usual quantum mechanics

ψ(x9t) =
1

m

1/2 exp —

2 1 + i
ftί

m

(4.16)
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The function (4.16) has exponential decay for |x|->oo in contrast to (4.14). The
behaviour of (4.16) for |ί|->oo is similar to (4.15).

4.3. Harmonic Oscillator

We construct to describe the dynamics of the harmonic oscillator a group of

unitary operators U{t) in L2(Qp) which satisfies the condition [cf. (4.11)]

where the classical evolution Ttz9 z = (q,p) is given by the formula (3.5). The
expression for the kernel of the operator of evolution in the case of real numbers is
well known, see for example [29]. We propose the following kernel of the operator
of evolution for case of p-adic numbers:

U(t)ψ(x)=\ Kt(x,y)ψ(y)dy,
QP

where K0{x9 y) = δ(x -y) = lim Kt(x, y);

m

m
1/2

I mω -(
\ tgωt

i 2
isinωt

(4.18)

ϊoτte@p\{0},pΦ2.
The expression (4.18) has no sense when sinωί = 0. Note here that sinωί for

|ωί | p <l vanishes only for ί = 0. It follows from the equalities |sinx
|cosx|p=l; |x | p <l which can be easily checked.

Let us prove the group property (4.8)

J Kt(x,y)Kt.(y,x')dy = Kt + t{x9x'), -{0}. (4.19)

Indeed we have
1/2

c ( ί *2+y2 Ί
x f χ [mωi — + .

d \ \ tgωt sinωί

1/2

2yx'

tgωί' ' sinωί'
dy

m m

1/2
X" X-

χ\mω\ --—--•

x ί X\ mω[y
1 1

tgωί tgωt'J

tgωt tgωt'

x
\ sinωί sinωί'

m m

mω

tgωί tgωί'

xχ mω - • + • + •

1/2

mω

dy

\tgωt ' tgωί'/
1 -1/2

tgωί tgωί' ' Vsinωί ' sinωί'7 \tgωί ' tgωί'
1

= λr

mω mω

m

ί + ί'

1/2 2xx'ί x2 + x'2

\ tgω(ί + ί') sinω(ί + ί';
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Here we have used the formulas (2.11), (4.1 Γ) and usual trigonometric formulas
which take place over the field of /?-adic numbers and also

, , — ( t g ω ί + tgωί')) =λpl—tg(ωt + ωt')(ί-- tgωί tgωί')

-.U-L
m

For proving Eq. (4.17) we calculate the integral

J2 Kt(x, u)W(z; u, υ)K-t(υ9y)dudv= W(Ttz; x,y), (4.20)

where W(z\u,v) is the kernel (4.2). Here we have used the formulas

δiμx) = r^ δ(x), a φ 0 J χ(uξ)du = ϊ = δ(ξ).
\a\ π
I ID SJLp

4.4. Generalized Vacuum and Spectrum

An important question is the existence of a vacuum state, i.e. a function from

L2(QP) which satisfies the condition U(t)ψo = ψo. As is known for the quantum

harmonic oscillator in the case of real numbers ip 0 M = exp[—^|x | 2 ] . In p-adic

quantum mechanics after performing calculations for ψo(x) = exp [—i|x|2] analog-

ously to the integral (4.12) one gets (for = c 2 , ceQp ),

U(t)ψo(x) = j Klx, y) exp ^ - ~ \y\ — J - ) / mωx 2 sin2ωί

™PP) \ 2
(4.21)

for |x|p ̂  |ί/m|p/2. For other x the answer will be given by the formula analogous to
(4.13b). So we have just seen that the function exp[—^|x| 2] is not a vacuum state.
Nevertheless we have a generalized vacuum state

ψo(x) = χ(τmωx2). (4.22)

Here τeQp, τ2= — 1. The function (4.22) satisfies the equation U(t)ψo = ψo for
arbitrary ί, | ω ί | p < l because

U(t)ψo(x)= j Kt(x,y)χ(τmωy2)dy
QP

1 / 2 / / χ2+y2

f y mω h 2 ^ \-τyz )dy
L \ \ tgωί sinωί //

) λp ( " " ) X(τmωχ2) = Ψo(χ)mj p\mJ

This function does not belong to the space L2(Qp), since \ψo(x)\ = 1, but it can be
considered as an element from a corresponding nested Hubert space. In formula
(4.22) τ is a solution of the equation τ 2 = - 1 in Q . This equation has exactly two
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solutions for the prime p of the form p = 4l+ί and only for such a prime p, see
Sect. 2. Therefore for such a prime p we have at least two vacuum states
(degeneration of vacuum).5

We discuss now the question on the spectrum of the p-adic harmonic oscillator.
As is known the quantum harmonic oscillator in the case of real numbers has the
discrete spectrum and the corresponding eigenfunctions are expressed in terms of
the Hermitian polynomials. In p-adic quantum mechanics according to this
approach we have to express the spectral properties in terms of the group U(t). To
this end we describe the spectral theory of the harmonic oscillator in the case of real
numbers as follows: We have as is known (for ω = m= 1),

j KJtx, y)Hn(y)e " ^dy = eiMHn(x)e ~**2, (4.23)

where Hn(x) are the Hermite polynomials and Kt(x, y) is the kernel of the evolution
operator. We multiply the equality (4.23) by ξn/n\ and sum up over n. Then we find

i Kt(x,y) exp[_2ξy- ξ2 -\y2~\dy = exp\_2ξeux-(ξeu)2 - ^ x 2 ] (4.24)
R

because the generating function for the Hermitian polynomials has the form

f 2] = Σ -.Hn{y).
« = o n\

Now we consider the case of p-adic numbers. In this case the Hermitian
polynomials Hn(x) of the p-adic variable x e Qp take values in Qp and formula (4.23)
has no meaning in L2(Qp). However the formula (4.24) can be extended to the
p-adic case because the character χ is analogous to the real exponent and one can
prove the equality

J Kt(x, y)χ(τmω(4ξy -2ξ2- y2))dy = χ(τmω(4ξe~τωίx - 2(ξe'τωί)2 - * 2 ) ) .
QP

(4.25)

Indeed we have

f K£x, y)χ(τmω(4ξy -2ξ2- y2))dy = λΛ-
QP \ m

1/2 / / χ2

x j χi mω( — y2(τ + Qϊgωt))J

Γ2mωy[ — \-2τξ]]dy
Qp \ \ l I l ( X

p

X

\ tgωί

= λp[-)λJ- mω(2τ + c tgωί))m
1/2

t P

\mω(ctgωt + 2τ 1-1/2

ί X2 ( X V
mωί 2τζ2+(zπrτ^+2τξ) sinωίβ"τ£Oί

- χ(τmω(4ξe ~ τωtx - 2(ξe ~ τωtf - x2))

5 Recently it was shown that there exists a vacuum state belonging to L2(Qp) [31,32]. Note also
that Zelenov [33] extended all these results for the case p = 2
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as A j I ( -

Here ξ,τeQp and τ2 = — 1.
In fact it seems to us that such an approach corresponds to the expansion of a

representation of the group U(t) on irreducible ones. Note also that the presented
theory of the /?-adic quantum harmonic oscillator is closely related to the theory of
representations of the group SL2(Qp) [19,26].

5. Probability Theory (Euclidean) Formulation of the p-Adic Quantum Mechanics

We consider now a formulation of the p-adic quantum mechanics which
corresponds to the classical p-adic mechanics with real-valued coordinates and a
p-adic time, i.e. a classical coordinate x(ί) is a function x:Qp->IR. Let dμ be a
Gaussian probability measure on the space of real distributions @'r{Qp) with mean
zero and covariance

<x(/)x(g)> = J x(f)x(g)dμ(x) = J2 f(t)G(t - τ)g(τ)dtdτ,

where

Ah

Qp

This measure is defined on Borel cylinder sets in 3>'r{Qp)

UB,fu_j-n = {φe2)'r(Qp):(φ(fί),...,φ(fn

in the following way:

Here /,, ...,/„e9r{Qp), B is a Borel set in R",

<x,G"1x>= Σ xfiΓj'xj,

Gtj = I Ut)G(t - τ)fj(τ)dtdτ, fj = 1,..., n.

The characteristic functional of dμ is

where

G{fJ)= ί f(t)G{t-τ)f(τ)dtdτ.

The measure dμ corresponds to the quantum harmonic oscillator. The an-
harmonic oscillator is described by the measure

-A J :x4(ί):^]rfμ(x). (5.2)
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Here λ ^ 0. The classical equation of motion in this approach is derived from the
action

S = J (\k\2

p + m2)\x(k)\2dk + λ J x\t)dt, (5.3)
QP QP

where x(k) is the Fourier transform of x(ί), see Sect. 2. Note that this action takes
values in the field of real numbers in contrast to the case considered above in which
the Lagrangian and the action were p-adic valued.

The expressions (5.1)—(5.3) formally look like the corresponding ones for the
case of real numbers, see [30], and the corresponding Feynman diagram
techniques in perturbation theory can be constructed in an analogous way.
However the properties of the p-adic theory are essentially different. Let us
consider in particular the behaviour of the propagator (5.1) when |ί|p—> oo. We have
(see [20])

X(tk)dk / 1\ \t\

l\k\2 + m2 V )

and for \t\p—>oo one gets

χ(tk)dk
ί p2 + p+\m4\t\3

p'

i.e. power decay at infinity. Recall that in the real case one has an exponential decay

=«β-.ι.ι
m

for |ί|->oo.
This formulation can be generalized to the field theory as follows. Instead of

the propagator (5.1) we consider the propagator

dk

where (x, k) = Σ xi^ie QP Such a theory has O(ή) symmetry. For n = 2 there is also
i = 1

a generalization which is related to a quadratic extension of the field Qp, i.e. instead
of (k, k) one considers

(Kk)τ = k2-τkl τeQp.

Another important case is related to the propagator l/||/cj|2 + m 2 .

6. Conclusion

In this paper we have suggested a mathematical approach to p-adic quantum
mechanics. Of course there are many open questions; some of them were pointed
out in the text, some of them are subject to further investigations. In particular it
would be very interesting to construct the operator of evolution U(t) for other
quantum-mechanical systems and to investigate the scattering theory.
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We now say a few words on a physical interpretation of the formalism
proposed. The p-adic quantum mechanics with complex-valued wave functions is
closer to traditional quantum mechanics than it would seem but its physical
interpretation is essentially different. In standard quantum mechanics the
expression \ψ(x)\2 is considered as a probability density of location of a particle at a
point x eR. It seems that in p-adic quantum mechanics one has to interpret \ψ(x)\2

as a probability density of location of a "particle" at a point x e Qp. Note here that a
point x e Qp generally speaking does not belong to the usual real line R? in spite of
the fact that the dense set of rational numbers belongs to both fields. Therefore here
the question is in fact on a probability of location of the "particle" outside the
standard Euclidean real space. Of course it means that we fall outside the frames of
standard understanding of reality in the usual quantum theory. In fact it happens
even in classical p-adic mechanics in which we deal with p-adic time and
coordinates.

Note here that these strange and unusual ideas which appear in p-adic
quantum theory probably are inevitable if we are going to understand physics at
the Planck length, for a discussion see [4]. A further development of the
mathematical formalism of p-adic quantum theory will give us, we hope, a deeper
understanding of the new physics at the Planck length.
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