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Abstract. We discuss various scattering properties of the classical system oΐn
repelling particles on the real line. In the integrable case, i.e. if the asymptotic
velocities are preserved under the scattering map, the asymptotic phases
behave as if the particles collided pairwise.

1. Introduction and Results

We consider n mass points on the real line interacting through the Hamiltonian

ίί(xj)= Σ y + Σ V(x*-xj) (1-1)

k=l Z l^j<k^n

The equations of motion are

**=Λ; A = - Σ V'(xk-xj)+ Σ V'(xj-xk). (1.2)
j<k j>k

We concentrate in this paper on the question of the asymptotic behaviour of
the solutions of (1.2) as time goes to infinity. We first examine conditions under
which the scattering map exists and is symplectic (Theorems 1 to 3 and Example
1). Our main result concerns integrable systems, i.e. systems for which the
scattering map preserves the asymptotic velocities up to permutation. We find that
in integrable systems the asymptotic phases behave as if the particles were
colliding pairwise (Theorem 4).

It is well known [18] that for repulsive potentials asymptotic velocities
bk = lim xk(t) exist for all k= 1, ...,/?. One can ask a more subtle question: Are

t~> 00

asymptotic velocities pairwise distinct, i.e. bj + bk for ally φ kΊ If they are, then the
particles fly infinitely far apart from each other as time goes to infinity. It is
already known [14] that distinctness of asymptotic velocities holds under decay
properties on V, such as V (x) = O ( | x | ~ 2 " α ) a s \x\ -» GO for some a > 0. We find
here that for a Hamiltonian (1.1) one can give necessary and sufficient conditions
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Fig. 1

that do not involve decay properties of V for the existence of distinct asymptotic
velocities.

Theorem 1. Let V be C1 on an interval (x0, oo) unbounded to the right, where x0 is
some fixed real number or — oo. Then up to normalization, the conditions

(Al) K'<0,
(A2) V> 0 (which means that V is bounded from below),
(A3) V{x) -> oo as x -> x£

are necessary and sufficient for all solutions of (1.2) to exist globally and to have
asymptotic velocities which are pairwise distinct and have the ordering

xι(ao)<x2(oo)< ... <xn(oo). (1.3)

Figure 1 shows the shape of a potential V satisfying (A1)-(A3).
Next we ask for existence of the asymptotic phases ak = lim(xk(t) — txk(oo))

for k = 1, . . . , n. This question has a nice answer due to Galperin [6]: Under the
assumption that the potential is repulsive and that the asymptotic velocities are
pairwise distinct, the condition

00

(A4) j \xV'(x)\dx<oo

is necessary and sufficient for existence of the asymptotic phases. We warn the
reader that for this separation of the conditions (A1)-(A4) (i.e. only (A1)-(A3)
being needed for the asymptotic velocities and only (A4) being needed for the
asymptotic phases), the special form (1.1) of the Hamiltonian is crucial. The
sufficiency statement of Theorem 1 is not valid for a Hamiltonian

H(x,y)= Σ £-+ Σ Vkjfrk-Xj) (1.4)
k = l ^ ^ k k<j

with each Vkj satisfying (A1)-(A3). The following counterexample demonstrates
this.

Example 1. Consider the 3 particle system with Hamiltonian

H(x9y) = Σ ^ + ̂ 1 " X 2 + ̂ 1 ^ 3 + 2 | x 1 - x 2 r 1 / 2 . (1.5)
fc= 1 Z

This system has for any b = (b1,b2,b?))withbi = b2< b3 a solution x(t) = (xχ(t),

x2(t), x3(t)) with i(oo) = b. So the asymptotic velocities are not distinct.

For a Hamiltonian (1.4) we therefore need decay properties on Vkj to insure
distinct asymptotic velocities. We find that it is sufficient to add the very weak
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condition (A4) of Galperin in order to obtain distinct asymptotic velocities; hence
(A1)-(A4) are for a Hamiltonian (1.4) still the best conditions for both
distinctness of asymptotic velocities and existence of asymptotic phases:

Theorem 2. If each Vkj in (1.4) satisfies (A1)-(A4), then the asymptotic velocities
are pair wise (and therefore by Galperin [6] the asymptotic phases also exist).

Let us return to system (1.1). We assume now that Fis C 2 , satisfies (A 1)-(A3)
and for some α > 0 has the decay properties

(B) \V'(x)\^M/x2 + a, \V"(x)\^M/x3+a for all x^R.

Since V is C 2 , the solutions of (1.2) are unique. Therefore, by Theorem 1 and
Galperin [6] we can define the wave operator σ+: (x,y) -• (a, b) which associates
to the point (x,y) of the phase space the asymptotic phases a and the asymptotic
velocities b of the orbit starting at (x,y). By Theorem 1, σ+ maps the phase space
into the set

A+ = {(a,b)elRnχ]Rn\b = (bι, . . . , bn) a n d b1<b2< ... <bn}. (1.6)

By Simon [16], any n particle system (not necessarily repulsive) with interaction
p o t e n t i a l d e c a y i n g l i k e V'(x) = O ( \ x \ ~ 2 ~ % V"(x) = O ( \ x \ ~ 3 ~ a ) a s | x | ^ o o

contains a nonempty open subsystem on which wave operators exist, and are
homeomorphismus to appropriate sets of asymptotic data. By Herbst [8] these
wave operators are even symplectic. Applying the results of Simon [16] and Herbst
[8] to our system (1.1) gives that σ+ is a symplectic diffeomorphism from a
nonempty open subset of the phase space onto A +. By Theorem 1, this subset
equals the whole phase space. Hence the following theorem holds:

Theorem 3. If V satisfies (A1)-(A3) and (B), then σ+ is a symplectic diffeomor-
phism from the phase space onto A + .

From Theorems 1 and 3 we obtain the other wave operator σ~ by time
inversion. σ~ maps the phase space symplectically and diffeomorphically onto
the set

Mn\b = (bl9b29...9bn) and bx >b2> ... >bn) . (1.7)

Thus the scattering map σ = σ+ (σ~)~x. A~ -• A+ exists and is symplectic.
The symplecticity of the wave operator σ+ (respectively σ~) implies that the

asymptotic velocities at plus infinity (respectively at minus infinity) are n
independent integrals of the motion which are in involution. Integrability, in the
sense of existence of n independent integrals in involution for our system is
however not surprising since the flow is globally parallel. Any system with globally
parallel flow is integrable in this sense. But the systems we now consider, which we
will call integrable, have strong additional algebraic properties which lead to the
preservation of the asymptotic velocities in the transition from minus to plus
infinity. Let us give a precise definition:

Definition. We call a system (1.1) integrable if the potential V satisfies (A1)-(A3)
and (B) and if for each n^2 the scattering map σ: A ~ -• A+,
(a~,b~) -• (a + ,b + ) = σ(a~,b~) acts on the asymptotic velocities according to

K-k+ι=bζ f o r * = 1 , . . . , / 2 . (1 .8)
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Examples are the Calogero potential V(x) = ί/x2 [14], the Toda potential
V(x) = e~

x [13], and the potential V(x) = l/sinh2(x) [2]. (To be precise: The
Hamiltonian of the integrable system with Toda potential e~x is not (1.1), but
rather the nearest neighbor Hamiltonian

H{x,y)= Σ 4 + "ΣK(x ) t+1-x ( ().
k = 1 z k = 1

But all results of this paper are obviously valid for a nearest neighbor
Hamiltonian.)

We show that integrability (1.8) and the decay condition (B) are sufficient to
calculate the whole scattering map explicitly. Symplecticity of the scattering map
is the same as

n n

£ daζ A dbζ = X daf A dbf .
k=ί k=l

This combined with (1.8) gives that

Hence, since the domain A " of σ is simply connected one finds

<-k + χ-aζ =dGJdbϊ=δk, (1.9)

where Gn is a function of b~={bγ, b^, ••-, b~) only. The phase shifts
δk = dGJdbk are then independent of the phases a~{, ..., a~ . Because the phase
shifts are translation invariant (i.e. independent of the motion of the center of
mass), Gn is a function of the differences bj — b^ only. But we can even say more:

Theorem 4. Let the potential V satisfy (A1)-(A3) and (B). Assume that the n
particle system is integrable^ i.e. satisfies (1.8) for each n^.2. The symplecticity of
the scattering map means that (1.9) is valid. Moreover

Gn(b-)=YdG2(bJ-bϊ). (1.10)
j<k

Therefore the phase shifts have the form

Σ Σ bj\ (l.ii)

where δ = G'2 is the two particle phase shift.

This means that the phase shifts are entirely determined by the pairwise
interaction. Thus for these special systems the determination of the scattering map
is reduced to the determination of G2 (b~), or equivalently to the computation of
the phase shifts of a two particle system which can be done by explicit integration.
By Moser [15] the two particle phase shifts are given by the Abelian integral
equation

δ(β)=-y-i(E)+ J (~T^— ί)dx, where E = β2/4.
v-HE) \γE— V(x) )
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n th particle

Collision of the
first n-1 particles

Fig. 2

For the Calogeropotential 1/x2 one finds δ = 0 [1]; for the Toda-potential e x one
finds δ(β) = log/?2 [13]. The proof of Theorem 5 is by induction over the number
of particles. For the induction procedure we are motivated by the following
geometrical picture by Moser [15] (see also Kulish [12]): We assume (1.10)
respectively (1.11) to be valid for n — \ particles. To make the induction step from
n — 1 to n, we choose in the n particle system the asymptotic phase a~ of the nth

particle so large that when the nth particle approaches the particles 1 to n — 1, these
first n — ί particles have already undergone their interaction, are moving
asymptotically free and are so far apart from each other, that the "«th particle
collides pairwise with each of them". See Fig. 2.

2. Some Related Literature

Hunziker [9] proved that for potentials with compact support (not necessarily
repulsive) almost all orbits with unbounded distance between the particles collide
finitely often and that these systems are asymptotic complete. Galperin [4] (see
also Sinai [17] and Galperin [5]) proved that finitely many mass points on the real
line interacting by perfectly elastic collisions collide finitely often. Theorems 1 and
2 can be interpreted in the following way: Particles interacting by repulsive
potentials which have an infinite support also "collide" finitely many times.

Moser [15] proved that the Calogero-potential 1/x2 is the only integrable
system with phase shifts identically zero. Khimchenko and Sinai [11] proved that a
potential with compact support never gives rise to an integrable system and that
the Calogero potential 1/x2 is the only potential in the class of potentials decaying
as V(x)~x~a, V'(x)~x~ι~a, V"{x)~x~2~a for some α^2 generating an
integrable system.

The phenomenon described by Theorem 4 is reminiscent of the behaviour of
other integrable systems. For Λf-soliton solutions of the Korteweg de Vries
equation ut -f- u ux + uxxx = 0, the total phase shift is just the sum of the shifts that
would occur in isolated pairwise interaction with every other soliton (Gardner,
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Greene, Kruskal, Miura [7], Theorem 3.7, p. 122). There exist connections
between the KdV equation and one dimensional integrable n particle systems. For
rational solutions u(x, t) = Σ 2/(x — ai (t))2 of KdV, the time evolution of the poles
at{t) is given by the Hamiltonian flow generated by a certain integral of the n
particle system with Calogero potential 1/x2 (see [1 and 3]).

3. Proof of Theorems 1 and 2

For the proof of Theorems 1 and 2 we need the following lemma.
00

Lemma. Let f{r) > 0 be continuous for r ^ 0 and \f{r) dr < oo. Let r(t) _• 0 and
o

* Ό ( 0 = 0 b e c o n t i n u o u s l y differ e n t i a b l e f o r t ^ 0 a n d r o ( f ) — > 0 , r ( t ) - + b > 0 a s
00

/—• oo. Furthermore let j f(ro(t))dt < GO. Then the following holds:
o

(i) J/(r(0)Λ<oo,
0

(ii) r0 (t) -> oo as t -> oo .
00 00

(iii) For any ε > 0 there exists T^O such that j f(r(s))ds :_ ε j f(ro(s))ds for
all t^T. ι r

Proof of the lemma, (i) and (ii) are obvious. Proof of (iii): For any ε > 0 there exists
Γ ^ 0 such that r0 (s) ^ r(5), | r0 (s) \ ̂  εb/2, and r(5) > 6/2 for all s^T. Then we
have for all ί ^ Γ that

]f(ro(s))fo(s)ds
t

^b/2 ]f{r{s))ds.

] f{r)dr^] f{r)dr
ro(t) r(t)

Proof of Theorem 1. Necessity of (A1)-(A3): V has no zeros; otherwise the
system would have equilibrium points, which are not solutions with distinct
asymptotic velocities. Therefore either V > 0 or V < 0. The fixed ordering (1.3)
of the asymptotic velocities forces V < 0, otherwise one could choose initial
conditions, such that this ordering is violated. Fhas to be bounded from below.
Otherwise V < 0 implies V(x)-+— oo as x-^00, and any solution x^O,
x2(0> •• > *«(0 of (1.2) with the property xk(t) — Xj(t) -• 00 as t-> 00 for k >j,
would have unbounded kinetic energy, i.e. Σx2(t) -+ 00 as t-+ 00, contradicting
the existence of asymptotic velocities. Without loss of generality we can assume
V> 0. The infinite repulsivity (A3) is in the case x0 > — 00 necessary for global
existence of the solutions; in the case xo= — 00 it is necessary for the distinctness
of asymptotic velocities. To make this point clearer, look at Fig. 3 which shows
the shape of a potential with x0 = —00 and lim V(x) < 00. For/7 = 2, one easily

χ-> - oc

sees that there exists an orbit with equal asymptotic velocities, namely the orbit
with relative energy lim V{x). The analogue phenomenon occurs for n>2.

Sufficiency of (A1)-(A3): (A1)-(A3) are sufficient for global existence
of the solutions of (1.2). (We do not need uniqueness of the solutions.)
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Fig. 3. Shape of V(x) if x0 = — oo and lim V{x) < oo. The two particle orbit with relative
JC-> - oo

energy lim V(x) has not distinct asymptotic velocities

Let ,y(t) = (yΛt), - . , J'niO) be an orbit of (1.2).
\ j

y\ = £ F' (x, - ^ ) ̂  0 for ally. Therefore £ Λ ( / )V < 0 implies that -j

is monotonously decreasing; because of energy conservation and V> 0 it stays
j

bounded from below as t—>ao, hence lim Σ )Ίfc(O exists. Therefore ^(oo)

= lim Σ,yk(O ~~ ̂ m Σ Jk(O exists for all j .
H O C j t~> OO J

Energy conservation and F(x) -• oo as x -> XQ imply for ally < k boundedness
of xk(t) — Xj(t) from below as t -> oo, from which there follows the ordering

I ^ x 2 ( o o ) ^ ... ^ * Λ ( o o ) . (2.1)

Equations (1.2) imply that Σ ί F ' (χy (s"> ~ x« (s))ds = Σ Λ (0 ~ Σ Λ (°) f o r a 1 1

g| jθ fc = 1 / c = l

ί ^ 0 and for ally = 1,...,«; from which we conclude by (Al) and the existence of
GO

the asymptotic velocities that j | V'(xr(s) — xq(s))\ ds < oc for all q < r. The
o

existence of these integrals, the ordering (2.1), and the strict repulsivity (Al) lead
by statement (ii) of the lemma to xr(t) — xq(t) -> oo as / —• oo, for all q < r. Now we
prove that the asymptotic velocities are distinct: Assume that Xj(oo) — xk(oo) for
some j < k. It is no restriction to assume that

xj_ί(cc)< Xj(oo) (if7 > 1) and xk(oo) < i f c + 1 (oo) (iΐk<n). (2.2)

Observe that from now on we keep7 and k fixed. xk(oo) - ^(00) = 0 implies that
00

xk(t)-Xj(t)= - J xk(s) — Xj(s)ds, from which by inserting Eqs. (1.2) and by
t

using (Al), (2.2) and the statement (iii) of the lemma we obtain that for ε > 0 and
large /,

xk(t)-x,(t)<2$V {xk (ί) - xj (ί)) ds - Σ ί V' (x,. (s) - xk (ί)) ώ

- Σ J κ'(^(ί)-Λr(ί))ώ
r< j t

00

^ (— 2 + £(/7 — k) + ε(j — 1)) J | F ' (xk (s) — Xj (s)) \ ds.
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For ε small and t large, the above inequality implies that xk(t) — Xj(ΐ) < 0, which
implies that xk(t) — Xj(t) stays bounded from above as /->oo, contradicting
xk(t) — Xj(t) -• oo as t -> oo. This proves Theorem 1.

Proof of Theorem 2. The equations of motion of (1.4) are

*k = Λ M ; A = - Σ F ύ (xfc ~ Xj) + Σ FA (*/ - *k) ( 2 3)
J<k j>k

Letx(i) = ( ^ ( ί ) , ••• ? * n (O)be a solution of (2.2). Analogously as in the proof of
Theorem 1 one proves the existence of the asymptotic velocities i fc(oo), of their
ordering (2.1), and also that xk(t) — Xj(t) -> oo as / -> oo, for ally < &. Proceeding
indirectly we assume that Xj(oo) = xk(oo) for some 7 < k. It is no restriction to
assume (2.2). From now on we keep j and k fixed. Existence of the asymptotic

00

velocities and i fc(oo) — Xj(oo) = 0 imply that xk(t) — Xj(t) = — J xfc(^) — Xj(s)ds,
hence, using the repulsivity (Al) for each Vkj we obtain that x

xk(t) - Xj(t) = xk(0) - xj(ΰ) -t]xk(s)- Xj(s)ds - \s(xk(t) ~ xj(ή) ds
t 0

< xk(0) - Xj(0) -t](m^ Σ KΛxΛs) ~ Xj(s)) + mjι £ V]r(xk(s) - Xj(s))\ ds
\ r<j J

j " X V^xk(s)-x}{s)))ds.

The assumption (2.2), the ordering (2.1), the condition (A4), and the statement (i)
t

of the lemma imply that the integral J s (...) ds on the right-hand side of the above
0 oo

inequality converges as /->oo, hence also the limit / J ...ds exists as /->oo.
t

Therefore xk(t) — Xj(t) is bounded from above as t -> oo. But this is a contradic-
tion to xk(t) — Xj(t) -* oo as / -• oo.

4. Discussion of Example 1

Choose b = (b1,b2,b3) = (0,0,1). We construct now an orbit x(t) = (x1 (t), x2 (/),

x3 (t)) for which the distance between the first two particles grows only as yt as

t -> oo and for which x(oo) = b. For T> 0 we define the space

/ /
X2^ — 1/2Γ— 1 ^ W2W~ w iW = '

for all ^ ^

Furthermore we define for ueFτ the norm \\u\\τ = sup
1 + 1^(01 + \u3(t)\

which makes Fτ to a complete metric space. Let us write the Hamiltonian (1.5) as
3 v2

H{x,y)= Σ ^Γ+ w(x)- τ h i s defines W(x).
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(3.1)

where ξ (s) = (0,1+ γΐf9 s + ί+ \/ϊf) and W (x) is the gradient of W. For large
T, Iτ leaves Fτ invariant. Moreover, if we fix an arbitrary 0 < # < 1, then for large
Γ, lτ\ FT^>FT is a contraction with contraction constant θ.

Proof. Existence of Iτ and invariance of Fτ follow from the estimates
xί (s) — x3 (s) ̂  xγ (s) — x2 (s) ̂  — yΐs and sβ S χ3 (s) ~ χi (s) = 2s, which imply
the estimates

\(s-T)eX

T
ds + (t-T) J

T

for k = 2, 3,

The contraction property is implied by the following estimates: Let u,veFτ. Let
x(s) = ξ(s) + u(s), z(s) = ξ(s) + v(s). By application of the mean value theorem
we obtain that

Vs

1-1/2

for all s^T.

Inserting these estimates into (3.1) gives us for large Γthat

t s

and therefore that Σ |(/ τ u)j (ί) - (/τ t ̂  (t) \ g C log t \\ u - v \\ τ as t -> oo, where C
and C" are constants independent on Γ. Hence for large Γ

| Iτ u — Iτ v || τ ^ sup — t; || Γ ^ | w —

The contraction mapping principle implies that Iτ has in Fτ a fixed point for large
T; denote this fixed point by u#. The function / -»x(/)elR3 defined by
Λ:(0 = (^I(0> ^2(0? ̂ 3(0) = ί ( 0 + «*(0 i s a solution of the Hamiltonian
equations x = — W'(x) with x(oo) = (0,0,1). The proof can easily be generalized
to arbitrary b = (bί,b2,b3) with b1=b2< b3.
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5. Proof of Theorem 4

The Two Particle System. In order to carry through the induction step, we need
some properties of the two particle system. The two particle Hamiltonian is

We denote by q = x2 — xι the relative motion. q(t) is a solution of q = — 2V\q)\
by (Al) it is therefore strictly convex. Because of q(— oo) < 0 and
q(oo) = —q{— oo) > 0, there is exactly one t^ such that q(t^) = 0. Time reflection
invariance implies that q is symmetric with respect to t^ where q attains the global
minimum, t^ can be determined from the asymptotic velocities and phases of the
two particle system: t^ is the time t at which the two asymptotic straight lines
aϊ + bl t, a2 +b2 t cross, hence

Induction Step from n—ί to n Particles. Denote the Hamiltonian (1.1) as

n 2

H(x,y)= Σ lj-+V{n)(xl where V{n){x)= £ K ^ - ^ )- (4.2)

We fix asymptotic velocities bϊ > b2 > ... > b~ and asymptotic phases a[,
ci2 , .>>, a~-!. The asymptotic phase α ~ of the «th particle is enlargened when we
need.

We first make a heuristic argument, following the geometrical picture in the
introduction (Sect. 1, see Fig. 2): Assume a~ to be very large. After the collision of
the first n — ί particles, the collision of the nth particle with the yth particle by
induction hypothesis, by (1.9), and by (4.1) place at time

r-an , , - + 0 ( 1 ) a S

bn-j-bn

Therefore at time

;_j+ι-b-

the particley' is halfway between the collisions with particley' + 1 and particley" — 1.
The definition (4.3) holds fory = 2, 3, . . . , n — 1. For convenience we also define

1 n + 1 = &n •>

τ -2κ£κ- <4'4)
Tn is half of the collision time between particles n and n — ί; hence for large a~ , Tn is
much smaller than the time of collision between particles n — 1 and n but also much
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larger than the time of interaction between the first n — 1 particles. Tn+1 is much
smaller than the time of interaction between the first n — ί particles (for large a~ ,
the interaction time of the first n — ί particles is independent of a~). T1 is much
larger than the time of the last collision which takes place between particles 1
and 2.

Let x(t) = {x1 (/), ..., xn(t)) be the /7-particle orbit with asymptotic velocities
b~ = φϊ, ..., b~) and asymptotic phases a~ = {a± , ..., a~).

To proceed according to the geometrical picture in Sect. 1 (see Fig. 2) means
the following: On the time interval Tn+ x ^ / ̂  Tn we will approximate the orbit by
an n — 1 particle orbit and the nth particle moves free. On the intervals
Tj+ι^t^ Tj we will approximate by a two particle orbit for which the particles

j+ 1 andy interact and the other particles move free. On the intervals t ^ Tn+ι and
/ ̂  7\ we will approximate by all particles moving free.

In order to make these approximations, we need the following technical
lemma. It shows that from the distance between the particles we can make
conclusions on how close to the free motion the particles already are.

Lemma 1. Let N^2. Let T be an arbitrary real number. Let α, M, R be the
constants from the condition (B). Let χ = (χl9 ..., xN), y = (y1, . . ., yN) such that

- i/o ^ . . . ^ VM > unu Λi, — X: > R for all 1 ^ / < /c 5-ί TV. Let

β=τ mfyk— y . Let 0 < ε :gβ. Then there exists a constant CN> 0 such that the
ό j<k

following holds: If(xk - x,-)1 + α > CN M/βεfor all 1 ̂ j < k ^ N, then the velocities
of the N particle orbit with initial conditions x(t) = x, andx(T) = y are very close to
yfor all t ^ T, more precisely: | xk (t) — yk \ ^ εfor all t ^ T and for all k = 1, . . . , TV.

Proof of Lemma 1. Define the space

F= {uE C ([T9 oo), JR ) I u(T) = 0; u{i) = 0; | w(ί)l ̂  £ for all t^Tj.

Define f (0 = x + (/ - Γ)y e R N . For M e F define /M by
ί s

(/M) (r) = - j ds \ dτ grad ViN) (ξ (τ) + u (τ)).
T Γ

Define ρ:=min xk —x;-. Let weF. Evidently, ξk(t) — ξj(t)-^uk(t) — uj(t)

^x f c-xj + (/- Γ) ( ^ - y i - 2 ε ) > ρ + (t-T)β for all 11 T, hence

^ f l g r a d ^ )(̂ Cv) + φ ) ) k / ^ Q J {Q+β.{t_ τ))2+» ds

CNM ^

By the Schauder fixed point theorem, / has a fixed point u^ in F. x = ξ + u^ is
the TV particle orbit with the right initial conditions. By construction it has the
claimed properties. This proves Lemma 1.

Remark. By time inversion, an analogous version of Lemma 1 holds as time tends
to minus infinity.
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Denote the asymptotic velocities and phases at plus infinity by b + and a +. The
next lemma will give information how we can approximate the orbit x(t) by the
asymptotic free motions a± +b± t as / -» ±00 before the first collision and after
the last collision.

Lemma 2. There exist constants c and t0 independent on a~ such that for large a~
the following holds:

(i) \x{t)-a~ -b~t\<c\t\-\ \x{t)-b-\<c\t\-ι'a for all t< - r 0 ,
(ii) \x(t)-a+-b+t\<c\t-a;/(b;_1-b;)Γ\and

\x(t)-b+\<c\t-a;i(b;-1-b;)\-1~* far all t>to + a;/(b ^-b;),

where c> 0 is some constant independent of a~ and t0.

Observe that a~' /(b~ —b^^) is according to (4.1) and the induction hypothesis
and the heuristic argument the time of the last collision which takes place between
particles 1 and 2.

Proof of Lemma 2. First we prove (i). The decay properties (B) of V and the
pairwise distinctness of the asymptotic velocities allow us to write

t

x(t) = a-+b~t- j (t-s) grad F w (x(s ) )ώ,
— 00

where the integral converges absolutely. Inspired from this integral equation we
define the space

w(/) |^φΓ α and I«(OI ύc\t\~ι~a for t^-T},

and on it the integral operator Iτ by

t

-s) grad V{n)(a~ +b~s + u(s))ds for t^ -T (ueFτ).

If T is large, then Iτ leaves Fτ invariant and is a contraction with respect to the
norm |] u || τ = sup max {| u (t) |, | ύ (t) ]}.

Proof Fix some contraction constant 0 < 3 < l . Let u,veFτ. Let

x(s) = #~ +/>"15
i + u(s), y(s) = β - +Z?~5" + i;(^). Define 5:= min bj—bk~ .

If 7" is large enough, then for all ^ ̂  — T

Xj(s)-xk(s)^\Bs\^R, yj(s)-yk(s)^\Bs\^R for all k<j for large a~,
(4.6)

and therefore for all / ̂  — T,

\^2YJ ] (t-s)\V'(xj(s)~xk(s))\ds
k<j - oo

t
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I ^ ί \gradV{n)(x(s))\dsSn(n-i)/2 J M/\Bs\2+'ds
— oo — oo

= n(n-\)/2

which implies the invariance of Fτ for c = 2n (n — 1) M/ocB2 +a.
The contraction property is implied by (4.6), (B) and the mean value theorem:

I (Iτ « ) ( / ) - (Iτ v)(t)\z](t-s)\ grad V(x (s)) - grad
ί

00 oc

φ ) | Λ ^ J 2|ιy

I (Iτ u)' (?) - (Iτ i))' (01 ^ j I grad F(x (5)) - grad F(y (ί)) | ds
t

I ^ ] M/\Bs\3+xds • \\u-v\\τ

This proves (i). Proof of (ii): Letτ = a~ /(b~_1 — b~). We define for Γ> 0 the space

τ, oo), R")

τ Γ 1 " " forall / ^

Furthermore we define the operator Iτ by
oo

(Iτu)(t)= - \{s- {) for / ^ (ueF'τ).

If Γis large, then Iτ leaves F^ invariant and is a contraction: In order to prove this,
observe that about a+ = ( α t

+ , . . . , a*) we know by (1.9), since Gn is independent of
a~, that

t for A: = 2, ..., « as α " ̂  oo . (4.7)oo .

Observe furthermore that that τ is (up to 0 (1) as a~ -• oo) the time, where the two
asymptotic straight lines a\ + b\ t, a^ + b^ t cross. Γlarge means that we are far
away from this crossing point. Therefore, by using (1.6) and (4.7), we obtain for
large T that

**(0 - *i (0 = (b~-k + i ~ K) t - a; + 0(1) + uk(t) - uγ (0

i- K) ' (t - a~

0(1),
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where we used that n-_k+1 n > l for k = 2, . . . , n. Furthermore for

xk(t) - Xj(t) = (b^k + 1 - K_j+ι) t + 0(1) + uk{t) - uj(t)

Let B = - inf bj — bf . Then the above estimates imply that
2 j<ί

xk(t)-Xj(t)^B(t-τ) + O(\)^R for all l^j<k^n

for all t^. T+τ, where the 0(1) terms are uniform in cι~ and in t^T. The
remaining estimates to prove invariance of F'T and the contraction property are
analogous to those in the proof of (i). This proves (ii).

We now define the following vectors of IR":

Λn =

Bj = ι

k=l

for j = 1,...,« — 1.

Observe that Bι=b + . We have to prove that /4X = a +. The following lemma
describes the collision of the first n — \ particles.

Lemma 3. The following statements hold: x(Tn+ι) = b~ + O((a~)~1~<x) and
x(Tn+ι) — Tn+ίx(Tn+ι) — a" + O((a~)~Λ) as a~ —> oc. Furthermore there exists a
solution X(t) = {Xx (/), ..., Xn(0) ̂ / ^ ^ ^> r̂βm

such that x — X= 0((α~)~ α ), x — Z = ^ ( ( ^ π " ) " 1 " " ) as α~-> GO, uniformly on
Tn+1^t^Tn. Consequently, by induction hypothesis,

x(Tn) = Bn + 0((a;Γι-al x(Tn)-Tnx(Ttt) = An + o(ί) as a; - ex).

Proof of Lemma 3. Let J(7) = (jfj (ί), . . . , ^ ( 0 ) be the solution of (4.8) with the
s a m e a s y m p t o t i c d a t a a~, b~ a s x(t), i .e. X(t) = a~ + b~ t + O(\t\~*),

X(t) = b~ + O(\t\~1~*) as t ^ - o o . O b s e r v e t h a t Xx(t), . . . , Xn-ι{t) a r e

independent of a~ . So by Lemma 2 (i) there exists t' independent of a~ such that
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for all / ̂  t\

Xj(t)-xk(t)^B; Xj(t)-xk(t)^R + B\t-t'\ for ί^j<k^n-l;

xk(t)-xn(t)^a~+ C + B\t-t'\ for k = 1, . . . , n - 1,
(4.9)

Xj(t)-Xk(t)^B; Xj{t)-Xk(t)^R + B\t-t'\ for \^j<k^n-\\

Xk(t)-Xj(t)^a; + C + B\t-t'\ for fc= 1, . . . , w - 1 ,

and furthermore

where 5 = 1/2 inf έ.~ — Z?Γ , C is some constant independent of <xΓ, and CM_ i

is the constant CN from Lemma 1 with N = n — \. Fix ε > 0 small. Then
furthermore, by using the induction hypothesis, there exists t" independent oΐa~
such that

; Xj{t")-Xk(t")> Bt" for l ^ f c < y ^ « - l

for/€</?. ( 4 1 2 )

We now show that the orbits x(t) and X{t) are close together on — oo < t < t"
t

as a~ is large. Using x(t) - X{t) = J (ί — ί) (X(J) - X(s)) ds, we obtain that
— oo

\x(t)-X(t)\S j (t~s)

(t-s)\V(xk(s)-xH(s))\ds.

Application of (4.9) and the mean value theorem give us

t

\^ j (t~s)f(s)\x(t)-x{t)\ds+

— oo

k= 1 - oo

where

r ^ λ/Γ

for t<t'

where cx and c2 both are constants independent of an (cι depends on the number
of particles and the choice of the norm; c2 is an upper bound on V" which is
determined by energy conservation, (A3), and (B)). By application of the
Gronwall inequality we obtain that

)~α) uniformly on — cc <t^t". (4.13a)
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t

Applying analogous arguments to the equation x(t) — t(t) = j x(s) — F(s)ds
gives ~ *

\x(t)-ϊ(t)\^ \ f(s)\x(s)-X(s)\ds + O((a;y1-η for all t^t".
— oo

Inserting (4.13 a) into this inequality yields

x(t)-ί(t) = O((a~ya) uniformly on - o o < ί ^ ί " . (4.13b)

We now choose X{t) to be the orbit of (4.8) with initial conditions

= x(t'). (4.14)

We have to estimate the differences X—x and ί - i on the time interval
[Tn + U Tn]. For this purpose we write [Tn + 1,Tn] = [Tn+1,f] u [t\ t"] u [t\ Tn], i.e.
we divide [Tn + ι , Tn] into three subintervals. We will make on each subinterval
different estimates.

We first prove that X— x = O((a~)~a), X— x = O((a~)~l~a) uniformly on
[Tn+l9 t']. Equations (4.10) and (4.13) imply that for large a~

for \<;k<j^n — \ .

n

Therefore the assumptions of Lemma 1 are satisfied with ε = — and we conclude

that for all t^t',

Xj(t)-Xk(t)ϊij; XiOXiή^R + for ί£k<j£n-l,

for k=l,...,n-ί,

Xk(t)-Xn(0^γ for k=ί,...,n-i.

Application of the mean value theorem and of (B) give then for all / ̂  t',

\x{t)-X{t)\ =\x{s)-X{s)ds

S ί I grad Vin~ l)(x(s)) - grad V{n~l)(X(s)) | ds
t

+ 2g \\V'(xn(s)-Xj(s))\ds

< f If B ' Y + α

=} l\ 2s J

hence
ί' / / n \ 3 + α

s u p | i — X I ̂  O ( ( α π ) ~ 1 ~ α ) + j I s — t ' \ M ( R + — \ s — ΐ ' \ ) s u p | i — X \ d s .
ιt,n t I \ ϊ J [s,n
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Hence by the Gronwall inequality

s u p \ x - X \ S O ( ( a n ) ~ ' ~ η Q χ p ) \ s - t ' \ M I ( R ^ ^ \ s - t ' \ ) 3 + a d s .

The integral on the right-hand side of this inequality converges as t -> — oo, hence
we obtain x{t)-X{t) = O{{a~)~ι~Λ) uniformly on ~oo < t^ t'. By (4.14) and
t'-Tn = O(a~), we also obtain that x(t)-X(t) = O((a~)~a) uniformly on
Tn^tS t', as a~ -• oo.

We next prove estimates x(t)-X(t) = O((a~)~2~a)9 x(t)-X(t)
= 0((a~)~2~a) on the time interval t' g t rg t"\ By the mean value theorem,

ί t

\x{t) - X{t)\^ J c|x(i) - X(s)\ds + 2 Σ J I *"(*„(*) - X;(V» I A,
ί' j<n t'

where c is an upper bound on the second derivatives of V{n~ υ on an appropriate
subset of the phase space. Since t" — t' = 0(1) as α~-> oo, the upper inequality
yields

sup \x — X\^\ c\s — t'\ sup \x — X\ds + 0 ( ( α ~ ) ~ 2 ~ α ) ,

which implies by Gronwall inequality, since t" — t' is bounded, that
x -X= 0((a~)~2~a). This implies by (4.14) and the boundedness of t" - t\ that
x — X= 0((a~)~2~a) uniformly on t" S t^ t'.

Next we prove the estimates x — X= 0(a~)~a), x — X = 0((a~)~ι~a) on the
time interval t" ^ t^ Tn: By (4.11), (4.13), and X(t") -x(t") = 0((α n")" 2"α) we
can conclude that X(t") satisfies (4.11) and Xj(t")-Xk(t")^B. Therefore the

assumptions of Lemma 1 are satisfied with a = y and we conclude by Lemma 1
that for all t ^ t\

. . B B

We need an analogous estimate on x (t) in order to apply the Gronwall inequality.
By the following fixed point argument we will obtain such estimates.

We define the space

Fε = {ueC1 ([t", Tnl R») I u(t") = 0, ύ(ϊ") = 0, |ύ(t)\ ^ ε on t" ^ t^ Tn)

w i t h t h e m e t r i c || u — v | | F = s u p \ύ(t) — v(t)\. O n Fε w e def ine t h e o p e r a t o r / b y

[ί", Tn]

t s

(Iu) (0 = -\ds J dτ grad V{n) (ξ (τ) + u (τ)) (M e Fε),
r" f"

where

ξ(τ) = x(t") + (τ - ί") x(t").
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For small ε, /leaves Fε invariant, which follows from the following estimates: Let
ueFε and z = ξ + u. Then for small ε by (4.12),

Zj(t)-zk(t)>Bt for all l^k<j^n-l

zn(t) - zk(t) > a~ + O(\)-B(t-t") for all k<n,

where B = bΐ —b~ — 3ε. Observe that for ε small

zn(t)-zk(t) > a; + 0(1) - BTn > a; ( 1 - -

Therefore
uniformly on t"^t^Tn.

«„(ί) -
2 + α

j<n ί"

hence ^ε if t" has been chosen large enough and an is large, which

means that Fε is invariant under /. Furthermore / is continuous with respect to
|| || Fΐ Fε is a compact and convex subset of a Banach space, hence by the
Schauder fixed point theorem / has in Fε a fixed point u^. ξ + u^ is a solution of
(1.2) with initial condition ξ(t") + Uχ(t") = x(t"\ ξ(t") + ύ^(t") = x(t"). Since
the solutions of (1.2) are unique, we know now that x — ξ = u^eFε. x — ξeFε

implies by (4.12) and (4.13 b) for small e that

xn(t)-xk(t)^a-+O(\)-B(t-t")^R for k=ί,...,n-ί,

hence, by using x(t") - X(t") = 0((a;)-2-χ), x{t") - X(t") = 0((α;)-2"α), and

| x ( 0 - X(t) I ^ Ix(ί") - X(i") I + 2 £ } I F'(xn(^) - Λ ;(s)) | Λ
j ^ it t"

+ j I grad F ("" ]»(x (5)) - grad F<" ~' > (AΓ(ί)) | ώ
ί"

^Σ ί
f M/(B(s - t")f + α

ί"

+ } - f"))3+α (| x(?") - X(t") I + (s - ?") sup ds

sup
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As earlier, we obtain by the Gronwall inequality that
t

sup \x-X\^O((a;)~1-°c) exp J M(s- t")/(B + (s- t")f+«ds.
[t",t] t"

Hence since the integral on the right-hand side of this inequality converges
as /->-oo, x(t)-X(t) = O((a~y1~a) uniformly on t"^t^Tn. Since
x(t") - X(t") and x(t") - X(t") both are <9((α~Γ2~α)? and Tn - t" = O(a~), this
implies that x(t) - X(t) = O((a~ya), uniformly on t"^t^Tn. This proves
Lemma 3.

The next lemma describes the two particle collisions:

Lemma 4. Fix je {2, . . ., n — 1, n}. Then the following holds:

x(Tj) = Bj+O((a;y1-a\x(Tj)-Tjx(Tj) = Aj + o(l) as a; -+ oo . (4.15)

Furthermore, there exists a solution X(t) = (Xγ (t), ..., Xn{t)) of the system

XJ _1, Xj) = -grad V^(Xj.ί9Xj)
Xk = 0 f o r fc=l, . . . , 7 - 2 , 7 + 1 , . . . , n K }

such that x~ X= 0{(a~)~a), x — X=O((a~yι~a) as a~ -> oo, uniformly on
Tj^t^ Tj_ ι. Consequently, by the scattering properties of the two particle system,

(4.17)

Proof of Lemma 4. The proof is by induction j -> j — 1. Fix j <n. As induction
hypothesis, we assume (4.15) to be valid (for/ = n — 1, the validity of (4.15) follows
from Lemma 3).

Define ξ(t) = x(Tj) + (t- 7}) x(7}) to be the tangent to x at time 7}. Let

ί7- is up to 0(1) the time, where heuristically the particles j and/ — 1 interact. Fix
ε > 0 small. We shall prove now that | x(t) - ξ (t) \ ̂  ε and | x (t) - ξ (t) \ ̂  e for
Tj^ttί tj + 0(1). For this purpose we define the space Fε τ and the operator /by

and \ύ(ΐ)\^ε for Tj^t Stj- T}

Claim. There exists Γ̂  independent of <z~ such that Fε Γ is invariant under /for all

Proof Let ueFBtT and z(0

By (4.15), ί ( 0 = ^ + ^ + o(l) as long as t-Tj = O(a;). Therefore

zj(t) - zj_ί (t) = a; - t(b-.j+ 1 -6 f Γ
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For t = tj— Γ, where T> 0, we obtain that

as

Let 1 ̂ k<r^n. Only for r =7 is ξr — ξk< 0; for these k < r is

For all 1 rg k < r ^ n with r +7 is ξr — ξk > 0 and therefore

where B = inf όf — bι . Therefore
Ki

J ίfc f ί/τlF'ίz/Tj-z^tίT))!^ j ώ j dTM/(^(T)-^_!(T)-2e)2

Γj Tj T, T,

and for all k<r with (k, r) φ (/- l,y)

ί s

J ώ J dτ\V'(zr(τ)-zk(τ))\^

Therefore
ί s

| ( / « ) ( 0 l ^ ί ώ ί dτ\gvadVin)(ξ(τ) + u(τ))

By analogous arguments we obtain that

Hence for T> T*, where T% is independent of αn , and large an we have

I (/w) 0) I ^ ε and ^ ε, which means that Fε τ is invariant under /.

Let T> 7^. The smoothness of the potential Fimplies that /is continuous with
r e s p e c t t o t h e m e t r i c d ( u , v) = s u p m a x { \ u ( t ) — v ( t ) \ , \ ύ ( t ) — v ( t ) \ } . B y t h e

Schauder fixed point theorem, we conclude that /has a fixed point u^ in Fε T . By
construction, ξ + ^ is an orbit for the « particle system with initial conditions
ξ(Tj) + uή:(Tj) = x(Tj), ξ(Tj)

Jrύ^(Tj) = x(Tj). By uniqueness of solutions
ζ + w * = ?̂ hence x — ξ e Fε τ .
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Let us fix a T such that x — ξeFEfT and such that

χj(tJ-T)-χj.ι(tj-T)>R9 ( 4 1 8 )

(xj(tj- ^-xj^itj- Γ))1 + α> 1 + C2/ε(b;.j+1 -/>;),

where C 2 is the constant CN occurring in Lemma 1 with N=2. Define

t' = tj-T. (4.19)

We define X(t) to be the solution of (4.15) determined by the initial conditions

X(t') = x(t'\ X(t') = x(t'). (4.20)

Exactly analogously to the proof of Lemma 3 one shows that, as a~ -> oo,

X(t)-x(i) = O((μ-yι-% X(t)-x(t) = O((a;y*) uniformly on Tj=t=ϊ'.
(4.21)

By the symmetry properties of the relative motion of the two particle system there
exists a unique t" > t' such that

Xjin - Xj-1 (n = χj(n - Xj-! to. (4.22)

Claim, t" — t' = 0(1) as a~ ~> oo.

Proof. Let (otj-i OCJ) and (βj_1,βj) be the asymptotic phases and velocities of
(Xj- ί (t), Xj(t)) dfet-^ — oo. There exists a constant c independent oϊa~ such that

KXj-.ΛtlXjity-iβj-^βji^cU-t'Γ1-*,

\(Xj^(t),Xj(t))-(^uaj)-(βj_uβj)t\Sc\t-t'\-\

Let t'j =τh- J-^ be the time where the asymptotic straight lines cross. From

(4.15), (4.21), (4.J23), and tf-Tj = O(a~) it follows that t] - tj = 0((α n ")" α ) as
a~ -> oo. By symmetry of the two particle relative motion, t' = t] - T\ t"= t] + T\
where by (4.19) T = t] - tj+ T= 0((a~)~Λ) + T= 0(1) as a~ -+ao. Therefore
ΐ" -t' = 2Γ = 0(1) as a~ -> oo.

We only sketch the remaining part of the proof of Lemma 4, since from now on
one can proceed exactly analogous to the proof of Lemma 3.

Exactly analogous as in the proof of Lemma 3 one proves that

y2-*) on [t\tf/]. (4.24)

The proof of the estimates x- X= O((«")" 1~") and x-X=0((a~)'a) on
t" = t=Tj_x, is analogous to the proof of Lemma 3. In order to apply the
Gronwall inequality we first have to determine the rough behaviour of x(t). To
this end we define the space Fε and the operator / by

{ι ) I *") = 0, \ύ{t)\^ε on t" <t^T5.x},

(Iu)(t)=-\ (t-s) grad V{n)(ζ(s) + u(s))ds (ueFε),
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where ζ(s) = x(t") + (s - t") x(ΐ").

Exactly as in the proof of Lemma 3 before it can be showed that /possesses in Fε a

fixed point u^, which implies that x — ζ = u^ e Fε. The knowledge about x — ζ e Fε

allows us to apply the Gronwall inequality and to obtain as in the proof of

Lemma 3 the desired estimates.

Proof of the theorem. From Lemmas 2 and 3 it follows that

x(Tt) = a+ + b+ Tγ + O ((7\ - a; /(έ;_ ι-b-)y*) = A1+BιTί+

/φ-b-)Γι-*) B + O(ί-y1-*) as

This implies, since Tx - a~/(6~_ λ - b~) = | α„"/(/>'_ j - Z?~) ^ O(ί/,7 ), B1 - b

cςy1~a), that a+=A{+o(l) as α~ -* cc .

The definition of ^ x implies that

+ X ί(Ak~ — 6j") + o( l ) as α~ ->oc for k= 1, . . . , n.
j>k

But the right-hand side of the above equation is independent of α~ as a

consequence of the symplecticity of the scattering map, hence the o (1) term in the

above equation is identically zero. This proves Theorem 4.

Note Added. With the exception of Theorem 4 the results of this paper are now over five years
old. Since the recent papers [19, 20] are partially based on our results, we decided to publish this
paper as well.

Acknowledgement. This paper is an elaboration of my diploma thesis done with Prof. J. Moser, to
whom I want to express my gratitude for suggesting the problem on the integrable systems and for
many helpful discussions.
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