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Abstract. We construct the phase diagram of any system which admits a
low-temperature polymer or cluster expansion. Such an expansion turns the
system into a hard-core interacting contour model with small, but not necessarily
positive, activities. The method uses some of Zahradnik's ideas [Zl], but applies
equally well to systems with complex interactions. We give two applications.
First, to low-temperature P(φ)2 models with complex couplings; and second,
to a computation of asymptotics of partition functions in periodic volumes. If
the index of a supersymmetric field theory is known, the second application
would help determine the number of phases in infinite volume.

1. Introduction

In many systems in statistical mechanics and quantum field theory, the problem
of competing ground states arises, even when the parameters of the model permit
weak- or strong-coupling expansions. The standard example of such a system is
the JV-state Ising model at low temperatures (at or near first-order phase transitions.)
In the absence of a symmetry between the states, one is faced with the problem
of determining which states are thermodynamically stable. The successful theory
of Pirogov and Sinai [PS] was developed to determine the stable phases of systems
such as the N-state Ising model.

Subsequent authors developed the method for applications in more complicated
systems. Quantum field theory models involving continuous space-time and
continuous spins were handled by [I]. Statistical mechanics models with nontrivial
structure within each phase were treated by [BKL, DZ], and others. In these
studies, the need to use certain probability arguments from [PS] was a heavy burden.
Especially in field theory, the combined requirements of decoupling and positive
probability measures necessitated a very complicated procedure. Complex inter-
actions were not accessible at all.
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Another important development of the theory was Zahradnik's method [Zl]
which was conceptually much simpler than that of Pirogov and Sinai. The method
was extended to systems with unbounded, continuous spins in [BW]. But the need
for probability arguments still imposed unwanted restrictions on its applicability,
and only very small complex parts could be permitted in the interactions (not
uniform in the volume)—see [Z3]. Complex interactions were however permitted
in the coarse-graining method of [GKK].

In the present work we extend Zahradnik's idea with a procedure that avoids
the probability arguments, and hence applies equally well to complex interactions.
A nice byproduct of the analysis is that signed contour-activities are allowed, and
hence the generalizations involving interacting contours (quantum field theory,
etc.) now fit under the same umbrella. Furthermore, complex couplings and
nonpositive measures can now be permitted in the field theory models. In Sect. 4
we show how complex P(φ)2 models fit into the scheme, resulting in an approach
which is at the same time more powerful and considerably simpler than that of [I].

Our starting point is a standard polymer system which arises any time one has
a cluster expansion in a multiple phase model. We assume the usual estimates on
such an expansion (small, exponentially decaying activities). The construction then
produces a set of stable phases. If the model depends on some auxiliary parameters
{μ^...,μN_l}, then the usual phase diagram emerges, with hypersurfaces of
codimension k on which k + 1 phases coexist.

Our procedure begins as in [Zl] by dropping all dangerous polymers/contours.
These are ones for which the bounds needed to formulate a convergent cluster
expansion fail (due to the formation of bubbles of the wrong phase). There are N
such truncated models (one for each possible boundary condition). One simply
selects the phases for which the truncated free energy is minimal (i.e., it is less than
or equal to all other truncated free energies). One can show that for these phases,
the truncated model is the same as the original one, and hence its thermodynamic
stability carries over to the original model.

To be specific, let Zm(V) denote the partition function in region V with boundary
condition me{l, . . . ,JV}. Let ge{l,.. .,N} be a state whose truncated free energy
is minimal. Then we show that for any V and any m,

Zm(V)

Zq(V)
(1.1)

This condition of thermodynamic stability is well known as a sufficient condition
for the convergence of a cluster expansion for correlation functions in the qth phase
[I]. In the course of proving (1.1), we obtain a similar estimate for states with
non-minimal free energy, but then only for volumes V with diameter less than a
certain critical length (see Theorem 3.1 below).

A nice feature of this method is the fact that one can immediately decide which
are the stable phases. In contrast, the older methods determine the stable phases
by a fixed point argument. The present method succeeds because the closer one
gets to a coexistence of phases, the closer the truncated model comes to the true
model. Hence it is sufficient to minimize the approximate free energies. To actually
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prove that the proposed set of stable phases is correct takes more work, and care
must be taken in the complex case.

The paper is organized as follows. After defining the contour models in Sect.
2, we construct the stable phases and prove (1.1) in Sect. 3. Applications to P(φ)2

models and to periodic partition functions are given in the next two sections. The
construction of the phase diagram is done in Sect. 6. In the complex case some
difficulties arise because singularities can appear in the truncated free energies even
though the initial model depends smoothly on all parameters. Nevertheless, we
obtain differentiable phase coexistence hypersurfaces.

Super symmetric models. One of our motivations for developing this procedure
was a desire to understand the phase structure of supersymmetric field theory
models—specifically the Wess-Zumino models studied by [JLW]. In the N = 1
model the measure is signed, and so the method of [I] could not be used. We
devote Sect. 5 to a study of the behavior of partition functions in periodic boxes.
The asymptotics we obtain are especially interesting in the context of the index
theorems proven by [JLW]. We assume a mean field expansion along the lines of
[BG] has been constructed for these models. We then prove that the resulting
polymer partition function on the torus T has the following behavior for a large
volume \T\:

lim Zp(7Vm = w, (1.2)
m-+oo

where n is the number of stable phases, and where / is the free energy of the stable
phases. We compare this with the index theorem proven in [JLW]:

Zp(Γ) = degF-l. (1.3)

Here V is the (polynomial) superpotential, and we consider for simplicity the N = 2
case. Comparing (1.2) and (1.3), one sees immediately that /= 0 (indicating no
spontaneous supersymmetry breaking) and that n = deg V —I (which computes
the number of stable phases).

We thus have a technique for demonstrating nonperturbatively the vanishing
of the vacuum energy in each phase of the theory. Furthermore, coexistence of the
n phases is shown to be a consequence of supersymmetry (and an index theorem).
This could be compared with using ordinary φ -» — φ symmetry to prove
coexistence of phases.

We consider also polymer models mimicking the signed N = 1 measure—see
Corollary 5.2. Then the right-hand side of (1.1) is replaced by a difference,
with some stable phases contributing positively and some negatively. The sign
corresponds to the effect we expect from the sign of the fermion mass. The index
theorem is different in the N = 1 case but some information on the number of
stable phases can still be obtained.

We emphasize that these ideas will not come to fruition until the hard analysis
on the Wess-Zumino models has been carried out. Also, we are necessarily limited
to cases with deep, well separated minima. Still, (1.2) is interesting even in statistical
mechanics, as it shows that each stable phase contributes equally to the periodic
partition function (up to terms which vanish in the limit of large volume).
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2. The Contour Models

In this section we introduce the models for our phase structure analysis. These
models are formulated slightly differently from the usual ones in order to nicely
accommodate the case of Euclidean quantum field theory. The field theory models
can be put into this form after development in a mean field cluster expansion, see
Sect. 4.

We define the partition function in region V with boundary condition
qeQ = {1, 2, . . . , N}. The index q labels the "states" of the system, so that each of
these N possible boundary conditions has a chance of leading to a different
thermodynamic pure state. The region V is a finite union of unit cubes in Ud, with
d ̂  2. The presence of boundary condition q on V will be indicated by Vq.

A configuration in Vq will consist of a collection of contours (polymers, clusters)
yα, so we begin by defining these objects. A contour is a pair (Γ, <?(•)), where Y is
a connected union of unit cubes (connectedness in the sense of sharing (d — 1)-
dimensional faces). The function q( ) is an assignment q(F)εQ (where F indexes
the faces in the boundary of 7) which, for any component C of Yc = [Rd\ 7, is
constant on dC. The value of q( ) on the external boundary component of Y plays
a special role, and we sometimes emphasize this with a superscript q on Y and
call Y a ^-contour. To simplify formulae, we let the symbols Y or Ym denote the
pair (Y9q( )) as well as the region 7. The finite components of Yc can be grouped
according to boundary condition. We let Intm Y denote the union of all finite

N

components C of Yc for which q( ) takes the value m on dC, and write Int Y = (J
m = l

Intm y. Finally, each contour Y has a (possibly complex) translation-invariant
activity p(Y) satisfying the following bound for some large τ:

Here | Y\ denotes the volume of Y.
An allowed configuration of our system is a collection of nonoverlapping

contours (no common cubes) with boundary condition compatibility. Compatibility

is determined by the requirement that any connected component of V\[j Ya shall
α

have constant boundary conditions. In addition, there is agreement on common
boundaries, including dVq. If the complement Vc of V is not connected, we do not
allow contours whose interior intersects Vc. With a given collection of contours,
the final element of the construction is an association of an energy density to

regions in each of the phases of the model. A connected component of V\(J Ya

α

that has boundary condition m is considered to be part of Rm, the region "in the
mth phase." Also, each m-contour is part of ,Rm. Thus we have partitioned V as

(J Rm. We associate an energy density em (which also may be complex) inRm. We associate an energy density em (which also may be co
m

the region Rm, and this yields the expression for the partition function:

(2.2)
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The connection between this partition function and the Peierls contour picture
of spin systems is clear — we have just replaced sites with cubes and thickened
contours to include neighboring cubes. The connection with field theory may be
less clear, but we show how to put P(φ}2 models into this form in Sect. 4. In brief,
the cluster expansion converts the field theory partition into a polymer model like
(2.2) with the multiphase structure reflected in the boundary conditions and the
variable energy densities in (2.2). For field theory applications, it is important that
the method be insensitive to the phase of p(Y), since the cluster expansion inevitably
produces nonpositive activities.

We introduce additional real parameters (μj on which the activities p and the
energies eq may depend. There should be at least N — 1 such parameters, and we
need a degeneracy-breaking condition that the matrix

(2.3)
q,ί=ι,...,N-i

be nonsingular. We assume that p and eq are C1 functions of μ = (μ 1 , . . . ,μ Λ Γ _ 1 )
with bounds

^ 1, (2.4)

^<Γτ |y |. (2.5)

The first condition sets a scale for the μ£, which play the role of generalized magnetic
fields.

It is worth noting that the construction of the stable phases at a given set of
parameter values {μj does not require adjustments of the μt 's. Adjustments are
needed only to locate those hypersurfaces at which various subsets of Q are stable
(see Sect. 6).

For many purposes we will need a second expression for Zq(V) which eliminates
the compatibility of boundary conditions on contours. We resum (2.9) inside
Intm(Yq), where Yq is an external contour of the set {7α} (i.e., it is not contained
in Int Ya for any α). The resummation produces a factor Zm(Intm Yq). (An external
contour in Vq must of course have boundary condition q.) This yields the expression

where the sum goes over sets {Γ£}ext of mutually external contours, i.e., 7αulnt Yα

and YΛ, u Int ΎΛ, do not overlap for α' φ α.
Also, we have denoted Int = (J Intm Yq. We devide each Zm by the corres-

m,α

ponding Zq and multiply it back again in the form (2.6). Continuing this process,
we obtain
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The only conditions on these {Yfy are that the contours do not overlap, and that
they all have outer boundary q. The expression (2.7) is useful for stable q (defined
in the next section) while (2.6) is better for unstable q due to the possibility of zeros
ofZβ(Intmy«).

3. Determination of the Stable Phases

In this section we will determine the stable phases of our model and show that
for each stable phase q (and for τ large enough)

\K(Yq)\^e~(τ-*dπ\ (3.1)

which implies the convergence of cluster-expansions in the phase q. Since K(Yq)
contains also partition functions with possibly unstable boundary conditions, we
need a tool to deal with unstable partition functions. It is convenient and in fact
much simpler than the original Pirogov-Sinai approach [PS] to use the notion
of truncated contour models introduced by Zahradnik [Zl]. The idea is to truncate
the sum (2.7) in such a way that it can be controlled by convergent cluster
expansions. One then calculates the corresponding free energies hq9 and defines
those boundary conditions q to be stable, for which the real part of hq is minimal.
In the last step one then shows that for stable boundary conditions the truncated
partition function agrees with the untruncated one.

To motivate the following definitions we recall that K(Yq) is of the form

(3.2)
m

with

Zm(Intmy*)
Jm(ϊ J~z,(intmyr (' 'j

and that \ρ(Y)\ ^e~τlγ( We call a contour Yq stable, if

(3.4)

for ail meg. We define the truncated partition function Z'q(V) as the partition
function obtained from Zq(V) by leaving out the unstable contours:

Here the sum Σ' goes over sets {Yq} of nonoverlapping, stable contours with outer
boundary condition q.
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Definition 3.1. Let hq be the free energy of the truncated partition functions Z' Put

— min Re hn
meQ

(3.6)

(we will sometimes write aq = aq(μ) to denote its dependence on the parameters
μ{}. If aq = 0, then the boundary condition q is said to be stable.

From now on, we will use the letters q, q' for stable boundary conditions only,
whereas m,m' may be arbitrary (stable or unstable) boundary conditions. Note
that for an arbitrary contour Y

(3.7)

which shows that all stable contours obey the bound (3.1). Therefore, for τ large
enough, the thermodynamic limit of |V\~ l logZ^(F) can be controlled by a
convergent cluster expansion. We conclude the existence of hm9 together with the
bounds

-\ogZm(V)-hm\V\\^0(ε\dV\), (3.8)

where we put ε = e~τ. Here, and elsewhere, we use 0(ε) for a bound const ε, with
a constant that depends only on the number N of possible q and on the dimension d.

We now prove the following theorem, which implies that for aq = 0 all
^-contours are stable. Thus Zq and Z'q agree for stable boundary conditions.

Theorem 3.1. Assume that \p(Y)\ ^ £~ τ | y | for all possible contours Y. Then, for τ > τ0,
where τ0 depends only on d and N, the following statements hold:

i) // am diam V ̂  1 and aq — 0, then

Zq(V)

Zn(V)

ii) Ifaq = 0, then Zq(V) / 0 and

Zm(V)

Zq(V)

iii) If am diam V g 1, then Zm(V) φ 0 and

Zm(V)

<

<e

(3.10)

(3.11)

(3.12)

for all meQ = {!,..., N}.

Proof. To prove the theorem, we introduce the notion of small and large contours.
We say that a contour Ym is small if αmdiam 7m fΠ; it is large if αmdiam Ym > 1.
We also define the partition function Z*mall(F) which is obtained from Z'q(V) by
replacing the sum over stable contours in (3.5) by a sum over small contours. If
we sum, instead, only over contours which are at the time small and stable, we
denote the resulting partition function by Z^sma11.
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We prove the theorem by induction on the diameter of V. So we assume that
diam V = k and that i)-iii) have already been proven for all volumes W with
diam W < k.

Proof of \] for diam V = k. For any contour Y in K, and any me{l,. . . , m}, we have
diamlnt^ Y^k—l. We therefore can use the inductive assumptions ii) and iii)
that all ^-contours and all m-contours in V are stable. Therefore

Zq(V) Z'(V]

Using the convergence of the cluster expansion for log Z'A one immediately gets i).

Proof of ii) for diam V = k. By the inductive assumption all ^-contours in V are
stable. Therefore Zq(V] can be controlled by a convergent expansion (in particular
Zq(V) φ 0). To control Zm(V) we rewrite it using the relation (2.6). Write a set {Y™}
of external m-contours in V as {X™} u {Z™}, where {Z™} denotes the small contours
in {Y™} and {X™} the large contours in {Γ™}. Note that for fixed AΓJ's,
the sum over {Z™} goes over all sets of mutually external small contours in

Ext= V\\J(XΛvIntXJ9 see Fig. 3.1. We therefore obtain, resuming the small
α

contours and using the relation (2.6) a second time (this time for Zs™aU),

1Zm(V) =

Zq(V) Z,(V), m\
α Jext

Dividing by f] Z4(Intm- X™) and multiplying it back again we obtain

Zn(V)

(3.13)

where the sum goes over sets of mutually external large contours in V and

®<
Ext

Fig. 3.1 Large and small external contours
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Note that all g-contours in V and all small m-countours in V are stable by the
inductive assumptions i) and in), respectively. Therefore the various partition
functions in the first factor on the right-hand side of (3.13) are equal to the
corresponding truncated partition functions, which can be controlled by convergent
cluster expansions. Extracting the volume dependence and bounding the boundary
terms, we find

Se
Zq(V)

where /Cal1 is the free energy obtained from Z^sma11. Using the fact that | /4ma11 - em

0(ε) and using (3.7) to bound |5Ext| + |3Int| by \dV\ + 2d^\X^\9 we find that

rκ«!
Combining this bound with (3.13), the a priori estimate on p and the inductive
assumption (3.11) we get

Zq(V)
* «}eχt

At this point we need a technical lemma proved in [Zl] (for the convenience of
the reader, we give the proof below).

Lemma 3.2. Consider an arbitrary contour functional K(Ym) ^ 0, and let Z be the
partition function

Let s be the corresponding free energy and assume that K(Ym) ^ $γ ', where ε is small
(depending on N and d). Then for any ά^ —s the following bound is true

(3.16)

where the sum goes over sets of mutually external m-contours in V.
To apply this lemma we put

a = Re(/Ca11 ~ hq) = am + Re(/ιs

w

ma11 -

and

ε | y m | if Ym is large

0 if Ym is small.

For τ large enough (depending on d and N) the Mayer expansion for logZ(K) is
convergent. Using the fact that it only contains large polymers (which implies
I Ym ^ l/am for each polymer contributing to log Z(V)) one obtains that, for τ large
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(depending on N and d) 0 :g — s ̂  e~
τ/2arn. On the other hand, again for τ large,

|/Call-^l^~τ/2"w,

which together with the above bound, implies that

a + s^am-2e~τ/2a™.

Bounding

~-x/2am<2am

c, __ ,

we find that a + s ̂  0 provided τ is large enough. This concludes the proof of ii).

Proof of iii) for diam V = fc. By the inductive assumption all m-contours in V are
stable. Therefore Zm(F) = Z'J(V) ^0. The inequality (3.12) follows immediately
from (3.10), (3.11), and the fact that

Proof of Lemma 3.2. Z is the partition function of a polymer model with activities
K*(Ym) = K(Ym)e2dlγm( For ε small enough (depending only on d and N), Z can be
controlled by a convergent expansion and

\logZ(W) + s\ W\\ ̂  0(ε)\dW\ ^ \dW\.

Putting W = Int 7α and using (3.7) together with the assumption a ̂  — s, we get

Assume now that for μ — μ(0) all the energies eq have the same real part. Our
goal is to show that for some μ* near μ(0) all aq are zero, i.e., all b.c. are stable;
more generally we will construct curves μq(t) going out of μ*, on which only q is
unstable, surfaces μqq(t,s) on which q,q are unstable, etc. In order for this
construction to work, some control on how quantities change with μ is needed.
Our starting point is the following.

Theorem 3.3. Assume that in some open set ^(0) c: [R^"1, em and p(Y) are continu-
ously differ entiable functions of μ, and that \p(Y}\ ^ e ~ τ l Y l , \ d p ( Y ) / d μ i \ ^<?~ τ | y |, and
\dem/dμt\ ^ 1 for μei^(0\ Then, for μ0eΊ^(0) and τ ̂  τ0, where τ0 is some constant
depending only on d and ΛΓ, the following statements hold.

i) Ifaq(μ0) = 0 and αm(μ0) diam 7^1, then

dμtZa(V)μ=μo-

ii) For aq(μ0) = 0 and all meQ = {ί,...,N},

I Zm(V)

utZ,(V)μ-
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iii) For am(μ0) diam V ̂  1 and Vmeg,

315

J\dV\

Proof. We again proceed by induction. So we assume that diam V = k and that
i), ii) and iii) have already been proven for all W with diamW ^k— 1. In a
preliminary step we show that for some open neighborhood ̂  = i^(V) of μ0, all
meβ = { ! , . . . ,ΛΓ} and all contours Ym in F, the condition

implies that

α) ym is stable if μef (F),
/?) X(7m) is continuously differentiate in i^(V\

y) For μef^(F), the following bounds holds:

- (τ- \6d)\ Ym

(3.18)

Proof of (a)-(y). We use the fact that ZA(W) is defined as a finite sum of C1 functions
(see Equ. (2.2)). Therefore Z^WOeC1^0*) for all meg and all finite W Using
Theorem 3.1 iii), the inductive assumption (3.17) implies that

Vmeβ (3.19)

at μ = μ0. By continuity (3.19) is true in an open neighborhood i^1 = Ϋ\(Ym} of
μ0. Therefore,

Z
(3.20)

for all meβ, which shows in particular that X(Γm) is continuously differentiable

in Ϋv(Ym\
By Theorem 3.1 iii),

at μ — μ0. By continuity 7m is stable in a neighborhood )> i e

By the inductive assumption, and the continuity of 5fjdμ{

in an open neighborhood i^3(Ym) of μ0. For μei^(Ym) = i^1

Ύ-K(Ym]

(3.21)

(3.22)

we obtain
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Using (3.7) and the inequality

1 + 8 |Int Ym £ 1 + 8|5Int Ym\2 £ exp Sd\ Ym\,

we obtain (3.18) for μei^(Ym). Since V contains only finitely many contours, (α)
to (y) are proven for

m Y m i n F

After these preliminaries, the proof of i) to iii) is essentially the same as that of
Theorem 3.1. We start with the

Proof of i) for diam V = k. We rewrite

d Zq(V) =Zq(V) d

dμίZm(V) Zm(V)dμί

[logZ?(F)-logZm(F)]

and use Theorem 3.1 to bound ZJZm. To bound d\ogZm(V)/dμί, we note that
Zm(V) = Z'm(V) for μe f(V). Therefore the derivative of logZm can be bounded
using the Mayer expansion for logZra — | V\em together with the bound (3.18). One
obtains

-logZπ

den

dμ,

Since trivially αβ(μ0)diam V = 0 5Ξ 1, the same argument applies for the derivative
of log Zq(V). Therefore,

Zq(V)

< Zm(V)

Z9(V)

Zm(V) Zm(V)
4\V\

if τ is large enough. This bound, together with Theorem 3.1, implies i).

Proof Of 'ii) for diam V = k. We use Eq. (3.13). By the inductive assumption, Theorem
3.1 and the a priori bound on the derivative of ρ(Y),

where we used (3.7) in the last step. The derivative of the first factor in (3.13) is
bounded as in the proof of i). The relevant estimates are

ά
logZΓall(Ext) 0(e)]|Ext|,
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loc
&

and (3.14). Putting everything together we obtain

fi 7 (V\ smallu ^m\y ) ^ 0(ε]\dV\ ^ Λ-Re(A« -ΛJinintlT-r H

t Zq(V)

Bounding the curly bracket by 4| V\ (use that |Ext| +£|.Y™ = F\Int|) and using
α

Lemma 3.2 as in the proof of Theorem 3.1 we get ii).

Proof of in) for diam V = k. iii) is an immediate consequence of i), ii), Theorem 3.1
and the fact that for any q with aq(μ0) = 0,

d d

dμiZm(V) dμZq(V)Zm(V)

(use that 2\dV\ + am(μ0)\ V\ ̂  3\dV\ if am(μ0) diam 7^

Corollary 3.4. Let i^ be an open set V c (
dίfferentίable functions of μ in V , ana such that \p(Y)\ ^ β~τ|r |,
\dem/dμi\ ^ 1 for μei^. Assume that for a given meβ,

Then K(Ym) is in C1^) and

such that em and p( Y) are continuously

^ e

~τlYl

-K(Ym) c± e -(τ- I6d)\ Ym\

Proof. Fix Ym and μ in such a way that

am(μ)diam F»^l.

(3.23)

(3.24)

(3.25)

As shown in the preliminary step of the proof of Theorem 3.3, this implies that
K(Ym) is continuously differentiable in a neighborhood of μ, together with the
bounds (3.23) and (3.24). Since the assumption (3.25) is fulfilled in all of τT5 the
corollary is proven.

4. Application to P(φ)2 Models

We show here how P(φ)2 models with multiple minima can be put into the
framework of this paper. We work with the models considered in [I]; a polynomial
& is chosen which has any number of minima but which has positive curvature,
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or mass-squared, at each minimum. The polynomial is scaled into λ~2£P(λφ\ with
λ small, which leads to a weak coupling, mean field regime with large barriers
between the minima. The coefficients in & depend smoothly on parameters μ, and
we fix λ when mapping out the phase diagram in μ-space. A detailed description
of the setup can be found in Sect. 2.1 of [I]. A degeneracy-removing condition is
assumed for the values of 0> at its minima.

This paper provides a considerably simpler method of analyzing the phase
structure of these models. In addition, it allows us to work with complex
polynomials—the method is insensitive to the phases of the polymer activities. Thus
starting with a real interaction λ ~ 2&(λφ) as above, we add an imaginary one iΆ(λφ),
where Ά is any real polynomial. We omit the prefactor λ~2 because we wish to
treat linear and quadratic terms perturbatively. In this case there are no new issues
in the cluster expansion estimates (which we borrow from [I]. More generally one
could imagine "rotating the contours of (^-integration" to follow the critical points
of the interaction as they move off the real axis. We do not pursue this possibility
here.

We recall a few notations from [I]. Let us define P(φ) = λ~20>(λφ) + iΆ(λφ\
The basic vacuum energy estimates in the vicinity of each minimum are governed
by Re P. In particular, we use masses mq computed from the curvature of Re P at
its minima ξq. We use the approximation P (ξq + φ)« \m2 φ2 near each minimum
and expand in terms of the corresponding Gaussian measure. We put Eq

c — P(ξq),
which is the dominant term in the vacuum energy estimates, with real part
proportional to λ~2. The complex part can be preserved in the estimates since it
is a constant independent of φ. After Eq

c there is an 0(1) contribution to the vacuum
energies arising from the differing values of mq. The shifted energy is denoted E J,.

The P(φ)2 expectation in a volume Λ with boundary condition q is defined as

where dμm2 is the Gaussian measure with covariance ( — Δ + m2) 1. We prove the
following theorem describing the phase diagram of this system.

Theorem 4.1. Given real polynomials &,Ά as above, depending on {μ 1,...,μ j v_ 1},
let P(φ) = λ~2&(λφ) + i£(λφ) and let λ be sufficiently small. There exists a continuous
map from a neighborhood of the origin in the boundary of the positive octant in RN

onto a neighborhood of the origin in parameter space UN~1. The map is differentiable
on each j-dίmensional face, 1 ̂  j ^ N — 1. If μ is the image of a point whose qih

coordinate is zero, then the qth phase is stable. At μ, the infinite volume limit of the
Schwinger functions (φ(xι)-'φ(xn)yΛ,q exists with exponential clustering and

' n
asymptotically of the perturbation theory in λ around φ = ξq. There are .

\
hyper surf aces of codίmension k— \ in parameter space at which k distinct phase
coexist.

The cluster expansion of [I] used squares of side length /» 1 in the decoupling,
so that each polymer is a union of such square. The larger / is, the stronger the
decay in the number of squares in a polymer. Each /-square is a unit square for
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the purposes of Sects. 2,3,5. The coupling λ has to be chosen small enough,
depending on /. The partition function for the qth phase in one of these squares is
denoted ZΛq. Here the field is encouraged to lie near ξq by factors inserted by
hand into the measure. (These factors are a part of a partition of unity employed
throughout the expansion.) We have a bound

IZ^/^I*1^'2, (4.1)

see Proposition 2.5.2 of [I]. Also, μ-derivative of log(ZΔqe
l EW) are of order λl/2

or so, so each logZ^g follows closely the behavior of E^l2.
It is simplest to describe the expansion in the form where powers of ZΔq have

been factored out of the clusters making up the expansion. Consider the partition
function ZIf l(K)( = Z(V), with V = (V9m) in the notation of [I]). Let Σ be an
association of a phase q to each unit square of V9 and let Rq be the union of the
squares in the phase m. We denote by \Rq\ the area of this region, in units of I2.
The expansion is

zm(v) = Σ Σ Π/HYΛΠ* (4 2)
Σ {γfc) compatible with Σ k 4

Here Y specifies a region Y as well as Σ \ Y, so the clusters of [I] contain more
structure than is needed for our present analysis. We will sum over the unnecessary
structure shortly. The cluster functional p(Ύ) is taken directly from [I] and obeys
a bound

|p(Y)| g tf/2e-
sWWe-**~2W, (4.3)

where τ 1 } τ 2 are positive constants, | Y| is the area of Y in units of /2, and \ΣΎ\ is
the length of the "contour" separating subsets of Y with constant phase [see [I],
(2.5.11)]. Also, p(Ύ) = 1 if |Y| = 1, since the entire contribution from such Y is in
the ZΔq factors. Thus the regions Y k fill all of K The expansion (4.2) follows, with
a little bookkeeping, from [I], (2.4.22) and (2.5.12).

To put (4.2) into a form like (2.2), we need to sum over all Y's compatible with
a given region Y and with some assignment q( ) of phases for each boundary
component of Y. This will not lead to exponentially decaying activities as in (2.1)
unless we take care of the very high energy phases properly. Define

eq=-logZΔ9. (4.4)

By (4.1) and the discussion there, we see that eq is close to l2Eq

c (also the μ-derivatives
are close). Therefore for small λ the degeneracy-removing condition (2.3) holds for
{eq} if it holds for Eq

c. (To normalize the matrix deqjdμi properly for (2.4) we would
rescale {μt } by a factor O(λ~2l2).) Let us assume the energies eq are increasing in
q, i.e. e1 rg <?2 ^ ••• ^eM Then any phase p with e^e^ -\-^τJ is clearly out of
contention for stability. (We shall see that corrections to the approximate free
energies em are e~0(τιl\) Let el9...,eN be the low energies, and eN+l,...,eM be the
higher energies, with N chosen so that eN+ 1^e1-\-jτ1l, eN^el

Jrτll, and
eN+ι = eN + (^βM)τ1L (To simplify the subsequent analysis we make the division
at a point where a gap occurs.)

Now let Y be a contour as in Sects. 2,3 (that is, a region, together with an
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assignment of boundary conditions m e { l , . . . , N } to boundary components). We
sum over all ways of paving Y with collections of clusters {Yα} which could have
arisen in the expansion (4.2) and which agree with the given boundary condition
assignments. We restrict the sum to collections such that any part of a dYα not
already present in dY has a high-energy boundary condition pe{N + 1,...}. The
point is to make all high-energy phases internal to the contour 7, so that they are
not seen in subsequent analysis. Any loss of exponential decay in p(Yα), say
from a single-square cluster |Y α = 1, is made up by the smallness of ZΔg,
since

\ZΔP ^e-eN~τίl/2M (4.5)

for p ̂  N + 1. Thus we define

P(Y)=ΣU P(V.) Π Z'ί Π eeM (4.6)
|γα} α q m

We use a convention that q runs over all phases (low or high energy), while m runs
from 1 to TV and p ̂  N + 1 labels the high energy phases. The regions R% and Rm

are what appear in expansions (4.2), (2.2), respectively, although they are restricted
to the set Y. It should be evident that the desired form of the expansion (2.2) holds
now with this prescription for p(Y). We drop any Y with Y\ = 1 since in that case
p(Y)=l.

We verify that p(Y) decays exponentially as in (2.1). The decay of p(Ύ) specified
by (4.3) permits us to sum over Σ in 7. The remaining combinatorics, including
the sum over pavings of 7 by clusters Yα, produce a factor c | r | in the estimate on
p(Y\ The other large factors arise from factors ZΔm'e~em, which can be as large as
eτι1. Both of these effects are controlled by e-

5/2τι™ wherever | Y | > 1. If | Y | = 1,
then ΣΎ = p ̂  N + 1 and by (4.5) we have ZΛPe~ern ^ e~τι'/2M, and we still have a
good decay in 7|. Thus (2.1) holds with τ = τJ/2M, which can be made as large
as desired by increasing / (and decreasing λ). The corresponding bound on dp(Y)/dμi

follows in a similar fashion. The needed bound on dp/dμt is the same as (4.3) and
is also proven in [I].

Having put the expansion in the form (2.2), the constructions of Sect. 3 lead
to a determination of the stable phases and to a proof of ratio of the partition
function bound

Zm(V) »\dv\

(see (3.11). The phase diagram is obtained by adjusting the parameters μ for
coexistence—see Sect. 6. The intricate iteration of Chap. 3 of [I] is avoided. Also
the "bounded-spin approximation" estimate is no longer needed—differentiability
of the contour activities is sufficient for our analysis.

To obtain the infinite volume Schwinger functions for the stable phases and
prove Theorem 4.1, it is necessary to have estimates on ratios of "constrained
partition functions" in V. Here we mean that interiors of contours may not intersect
Vc. Such estimates were used in Sect. 4.3 of [I] to control the cluster expansion
for the Schwinger functions. (A similar procedure is used in [BW].) These
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constraints were built into the partition functions defined in Sect. 2. Thus the
estimates of Sect. 3 apply already to the constrained case, and no additional
arguments (cf. Sect. 4.2 of [I]) are needed.

5. Periodic Partition Functions

We apply the theory developed so far to partition functions on the ^-dimensional
torus T. We expect that these results will be useful in supersymmetric field theory
models, especially the two-dimensional Wess-Zumino models considered in [JLW].
There an index theorem was proven which computes the value of the partition
function in a periodic box (equivalently, the supertrace of e~βH). The value is an
integer index which is independent of the dimensions of the torus. When the integer
is nonzero, the phase structure analysis developed here should imply that the
vacuum energy of the model vanishes, and hence the usual criterion for absence
of spontaneous supersymmetry breaking holds. Furthermore, when the vacuum
energy is zero, some information on the number of stable phases can be extracted
from the index—see Corollary 5.2 below. At present, these statements must be
made contingent on a construction of a mean field expansion for the Wess-Zumino
models (analogous to the one considered in Sect. 4 for P(φ)2)- In view of the
two-phase expansion for Yukawa [BG] and the single-phase expansion for the
N = 1 model [W], we believe that this is an accessible problem.

We define the periodic partition functions with additional factors σ(w)eC
multiplying the "measure" for configurations predominantly in the mth phase. These
factors seem artificial from the point of view of the contour models but in fact
arise naturally in the TV — 1 Wess-Zumino models. There we expect σ(m) = ± 1,
depending on the sign of the fermion mass. Here we assume only that |σ(m)| ̂  1.

For simplicity, we let T be a torus with length LeZ in each direction. We seek
upper and lower bounds of the form e~fLd(A + e~BτL\ where the free energy / and
the constants A, B are independent of L, and where L is sufficiently large, depending
on τ and on

α — min am. (5.1)
m:αm^0

We define ZF(T), the periodic partition function, by grouping together
configurations which we wish to treat together in the estimates. This way we avoid
having to introduce unneeded definitions. If the partition function so constructed
seems unnatural, the reader should think about an example such as the Peierls
expansion for the Ising model on a torus. It should be clear that the type of object
we define is exactly what arises in that context.

Let V be a subset of T, as usual built of unit cubes. We define restricted partition
functions Z™S(V) by considering only contours Y in V with diam7<L/2. For
such contours it is clear which component of V\ Y is the exterior, and which ones
are interior. Thus we can unambiguously say which are the external contours, and
we require all of these to be m-contours. If F ̂  T, then dV Φ 0 and we are assuming
d V is at boundary condition m. The regions Rm, in (2.2) are defined as before, with
the exterior region considered as part of Rm. It may happen that {Y} = 0, in which
case Rm — V. As always we assume Yulnt Y CΞ V. With these definitions we have
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as in (2.2),

{yα}.diamyα<L/2 « w'

These contour activities are assumed to be equal to the corresponding ones in Rd.
Of course the alternative representations (2.6), (2.7) hold for Z^es(F) as well, and
for any Y that appears, the diameter restriction is irrelevant in Int 7.

There remain the configurations where at least one contour is large, for example
there may be contours wrapping around the torus. In this case, interior and
exterior are ill-defined, so we slightly modify the construction in (2.2). We only
need the full partition function Zp for the entire torus, so we restrict attention to
this case. The remaining configurations are grouped into Zbig(T). We join all large
contours into a single contour ybig, each connected component of which has
diameter at least L/2. As usual each component of T\7big\(J Ya has a constant

α

boundary condition. Each such component contributes to the appropriate Rm.
Also, the small m-contours Y™ are part of Rm, as before. But 7big is not assigned
to any Rm; any free energy associated to it is built into p(Ybig). With these definitions
we put

z b I«(Γ)=Σp(r b i β) Σ Π /»(*.) ΓKβ" | J lml (5 3>
ybίε {yα}.diamyα<L/2 « m

Finally, we define

σ(m)Z-s(T). (5.4)
m = l

The absence of factors σ(m) in Zbig(T) means only that they are built into the
activities there. Likewise, any departures from a simple factor σ(m) in Z™S(T) are
built into the activities in that partition function. To state our main result on ZP(T)
we let

eQ = min Re em.
m

Theorem 5.1. Assume that \p(Y)\ ^e~ τ | y | for all Y with diamF<L/2 and that

|p(rbl«)|ββ°l ι rb"lge-τ |1"" |/or all Ybίg. Then, forτ>τ0(d,N) and L^L0(τ,α), the
following bound holds:

Zp(T)-Σσ( ,-M d

Here f = min Re/2m and B > 0 is a fixed constant. Then sum in (5.5) goes only over
m

stable q, i.e. q such that Re hq = f.
The theorem can be written concisely in the case of real (not necessarily positive)

activities and energies.

Corollary 5.2. Under the assumptions of Theorem 5.1, let us suppose that p(Y),
p(7big), and em are all real, and that σ(m) = ± 1. Then

lim
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where n+ is the number of stable phases with σ(m)= 1 and n_ is the number with
σ(m)= -1.

The physical content of these estimates is that each stable phase contributes
equally to ZP(T\ while the unstable phases are negligible for large L. Corrections
to thermodynamic behavior are exponentially small in diam T = L. Note that we
had to assume a different bound on |p(Ύbig)| because the free energy associated
to 7bίg was built into ρ(7big).

Theorem 5.1 follows from the following three lemmas, which are proven in the
remaining part of this section.

Lemma 5.3. There are constants bv > 0, τl < oo such that the following statements
hold for τ ̂  τί and q stable:

i)
\V\hq\^

Lemma 5.4. There are constants b2 > 0, τ2 < oo, and K2 < oo, such that for τ ̂  τ2

the following statements hold:

i)

where b1 is the constant from Lemma 3.1,

ϋ)

provided m is unstable and

L^K2τ/am. (5.6)

Lemma 5.5. There are constants b3 > 0, τ3 < oo such that

provided τ ̂  τ3 .

Proof of Lemma 53. Comparing the convergent cluster expansions for hq and
logZ^es(F) or logZ^es(T), respectively, one immediately obtains Lemma 5.3. The
constant b1 can be chosen arbitrarily close to 1 if T! is chosen large enough.

Proof of Lemma 5.4. We proceed as in the proof of Theorem 3.1 ii) in Sect. 3 to
bound

\ e-(τ-2d-\}\X™\

where the sum goes over sets {X%} of mutually external m-contours which are all
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large (i.e. am diamX™ > 1) and obey a bound diamX™ < L/2. Extracting a factor

and continuing as before we obtain, for a suitable choice of τ2 < oo and τ ̂  τ2,

\^ exp { |δK| + e~™} max <r

Bounding the second factor on the right-hand side by 1 we obtain i). To prove ii)
we set V = T and use the isoperimetric inequality to bound

\V\lnt\ =Ld-\lnt\^Ld-K\dlnt\d/(d~1\

Where K is a constant depending only on d. Bounding |<9Int| by 2dΣ\X™ we get

|ZJΪβ(7VLd| ^ exp {e~b^LI2} sup exp ( ̂ *- - max JO, ̂  (Ld - K(2dXYl(d-»)
x ^ O V 2 I 2

The supremum is obtained either for X = 0 or for Ld - K(2dX)dl(ά~l} = 0 which
proves that

with K2 = (2dK{d~l)/dΓ^ This proves ii) with, for example, b2 = K2/4.

Proof of Lemma 5.5. Given a configuration {yblg, 1̂ } contributing to Zblg(T) we
let Vm be the union of those components C of T\7big which have boundary
condition m. Resumming all small contours 7α in the representation (5.3) for Zbig(T)
we obtain

ybig m

Using Lemma 5.3 i) and Lemma 5.4 i) together with the fact that ehq]Vql\ = eflVql

if q is stable, we bound

yb.g

Next we use the bound (3.9) to conclude that for all m — 1, . . . , N,

This shows that

|,9(ybig)|exp [(/ + 2d + e'btτLI2

α

where {^Γα} are the (large) connected subcontours of ybίg. Bounding the sum over
a connected contour X with fixed size \X\ = s by LdKs, where ^ is a constant
depending only on N and d, we get for τ large,

- exp {Lde-τL/4(l - e'^Γ1} - 1
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6. The Phase Diagram

We consider now the question of constructing the phase diagram of the contour
model. First, we wish to find a point μ(0) in parameter space where aq = 0 for all
qeQ. From this point we construct N curves at which all but one aq = 0, and so
on to hypersurfaces of higher dimension at which various subsets of Q satisfy
aq = 0. As we have seen, the vanishing of aq is sufficient for the construction of the
infinite volume state.

While this is a standard question in Pirogov-Sinai theory, the present situation
with complex activities is more sutable because the aq are not necessarily continuous
functions of the parameters. This appears to be an inevitable consequence of the
presence of partition function zeros. Nevertheless, the closer aq is to zero, the better
it can be approximated by a diίferentiable function. This allows us to construct
differentiable curves at which some α^'s are zero. Higher order differentiability
could be obtained with a corresponding strengthening of assumptions on the
activities p.

The setup is as follows. We assume there is a bounded open set tfl a IR^"1 in
which p(Ύ\ em are C1 functions satisfying the bounds

\P(Y)\, δ

dμ,

:β-*m, (6-1)

Se.
1. (6.2)

This assumption allows us to use the basic estimates of Theorems 3.1 and 3.3. In
addition, we assume a degeneracy-removing condition throughout <*U. To be specific,
with f, m = 1, . . . , N — 1, we assume that the matrix d Re (em — eN)/dμt is invertible
and its inverse is bounded (as an operator on /^(l, . . . , N — 1)) by M for some fixed
M<oo. We assume that % contains a point μ(0) = (μ(°\ . . . , μ^L 1 ) at which
Re em = Re em, for all m, m'; <% should even contain a neighborhood of size ^e~τ/2

about μ(0). It will be understood in the following that any statement shall be
restricted to tft.

In order to avoid inessential details in the construction, let us consider the
representative case where N = 3 and we are searching for a curve μ(ί)e[R2 on which
aγ = a2 = 0. Here t ̂  0 and we wish further that 03(μ(0)) = 0 and α3(μ(ί)) > 0 if
ί > 0. Thus μ(0) is the point of maximal coexistence.

We first construct μ(0) as a limit of approximation coexistence points
μ(0),μ(1), — The strategy is to consider neighborhoods

(dj is defined below and | | denotes the maximum norm \-\ao) and to construct
μt/+υ e j/Xj) in sucn a way that j/ O'+i) e; j\rd\ \ye introduce distance scales

A — 1 Λ — pτd0/2 _ ^τ/2 Λ _ pτdj/2α0 — i, "i — v — v , . . . ,θy + 1 — v ,

and contour functional

otherwise v ;
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(Recall from Sect. 2 that K is p times a ratio of partition functions.) Our main
assumption (to be proven inductively) is that

am(μ)dj^l in jr"-» (6.4)

for all m =1,2,3. Then we have good control over the activities Ku\Ym\ by
Corollary 3.4. In particular, all Ym with diam Ym <; dj are stable, K(j)(Ym] is C1 and

— K(j)(Ym)

Here (S = 1/10 is fixed. These bounds imply that the free energies s$ of the contour
functionals K(j)(Ym) are C1 functions of μ in Ji(j~l\ satisfying bounds

-(1-2^, (6.5a)

Isi?-^-1^^1-2^-1, (6 5b)

| S C / ) _ S I <β-(l-2ί)τd^ (6.5C)

Finally, we introduce

> + em). (6.6)

Let μ(0) be the point where Re^ = Ree2 = Ree3, or equivalently /z(

1

0) = /z(

2

0) = /ι(

3

0).
It is unique, by the degeneracy-removing condition. Let t/Γ(0) be the neighborhood
of μ(0) of radius (SdJ'1. In ίyΓ(0) we have by (6.2), (3.9) that

^ - + 0(,-)^ (6.7)
2^ di

Hence a^ά^^l and we can consider /4υ. Note that Resjn

1) = /zjn

υ — Reem is
controlled by (6.5a), so nondegeneracy holds for hί£\ with a constant slightly larger
than M. Note that by (6.5b) \h(»(μM)- h(^(μ(0)) \ = O(e~(^ 2δ)τ)« Radius ̂ (0\
Hence there is a point μ(1) in Λ^(0), where ft^ = ft(

2

1) = ft^. Even the neighborhood
.yΓ(1) of μ(1) of radius (S^)"1 is contained in J^(0).

It is clear now how to proceed to construct the μ0) and the corresponding
neighborhoods ^V(j) of μ(7) of radius (8^+ 1 )~ 1. It is important to check the condition
(6.4) that amdj+l^l in Jf(j}, In yΓ°~1) the free energies /z^} were considered by
truncation at contour diameter dj9 with amd^ 1. Therefore, by (6.5),

αm ίΞ max {|AJ? - ^ί| + |Λm - /4?| + |/Jm,

(6.8)
4dj+1

The first term was estimated from the uniform bound \dh^/dμt\ |̂ and the fact
that h$ = Λi{) at the center of Jfu\ Finally,

)| ̂  ̂ -d-2^- <<c Radius
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so it is possible to find the point μ°'+1) at which /z (/+ 1 ) = h(j+ί) = /z(

3

7>+1) and such

It is clear that the sequence μ0) converges very rapidly and that at the limit
[defined to be μ(0)] we have a1 = a2 = fl3 = 0.

We consider now the curve μ(t). At the beginning we can solve for a curve
μ(0)(0 starting at μ(0) and such that

This is a C1 curve, by the implicit function theorem. We restrict attention to the
strip y(0), neighborhood of the curve of radius (8/J"1, with l± ^ d1 to be chosen
in a moment. In ̂ (0) we can estimate a1 and a2 by l/d1 as in (6.7), but not α3. To
be more precise, we first note that for μ = μ(0}(t)φ^(0\ /ι(

3

0) > /ι(

2

0) + lβMd1 by the
degeneracy-removing condition. Therefore, by (6.2) and for a suitable choice
of /! (e.g. l^lβMd^ we have then /z(

3

0)>/ι(

2

0) + 0(1^) in ^(0)\yΓ(0). Since
Re hm — h(°} = O(e~τ)«l/dl in the whole region ,̂ we conclude that

in

So state 3 is well out of contention for the smallest h in £f(Q)\^(Q\ Thus we restrict
m' in (6.7) to {1,2}.

Since we have no bound on α3 in ^(0), we may not consider ft^; it does not
provide a parametrization for μ(1)(ί) Instead we solve for the curve μ(1)(ί) such that

fcW == f#> = fc§» - /ι(

3

0)(μ(1>) + J# V1}) - ί. (6.10)

When t = Q, this equation is satisfied by μ(1)(0) — μ(1). Note that nondegeneracy
holds for {h(ι\h(2\h(^}9 so we can use the implicit function theorem to solve this
equation, obtaining a differentiable μ(1)(0 We only have to check that μ(0)(0 solves
(6.10) sufficiently accurately so that μ(1)(ί) can be found in ^(0). The errors are
0(e"τ(1~2<5))« Radius ̂ (0), so we have μ(1)(t).

The general step works as in the construction of μ(j+1\ only we solve Eq. (6.10)
with 1 replaced by j + 1. This can be written as

ί, (6.11)

and we look for the solution curve μ° + 1)(£). We first check that

Re Λ 3 > Re h2 + 0(l/dj+l) in ^\Jf^\ (6.12)

where the strip «9?ω is a neighborhood of the curve μ0)(ί) of radius (%lj+ί)~ x, with
lj+ ! = l6Mdj+ 1 . Since (6.12) has been checked in the previous step for j—l instead
of , and ̂ (j}a^-l\ we only have to consider μe^n^^Vr^. As
above we first consider μ = μ^^eΛ^0"1^^0^. We use the degeneracy-removing
condition for (hψ, hψ, /z(

3

0)) and the fact that

if μe«yK(ί'"1). As a consequence we have for μ = μ(j)(t)eJ^(j~l\J^(j} that

16Mdj+l
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Using the uniform bound \dh$/dμi\ ^ 3/2 and the bound (6.5) for Re/zm - h$ we
obtain (6.12) in the region ^°')neyΓα"1)\J^α).

Due to (6.12), aί and a2 can be estimated by restricting m' in (6.8) to {1,2}
[in yΓU), the necessary bound on aί, a2 has already been verified in the construction
of μ(0)]. The curve μ(j\t) solves (6.11) up to errors O(e~(1~2δ}τdj) because
\h(i+1}-h(?\, \h(j+1)-hφ\, Is^V^-^V^)!, and \μ(j+^-μ(j} are all
0(e~(1~2δ)τdj). Thus we can continue inductively, obtaining a sequence of curves
μ(7)(ί), which are C1 uniformly in j. Equation (6.11) tends to a limit, so the curves
converge for each t to a limit μ(ί), which moreover is differentiable. (To get a C1

limit curve, we naturally have to assume uniform continuity of derivatives
throughout.)

On the limit curve, the statement that state 3 is out of contention in each
y>(ί]\Jf(*} translates into a statement that a3 > 0 for t > 0. Of course aγ = a2 = 0
on the curve μ(t). Thus we have produced the desired portion of the phase diagram.
It should be clear now how to proceed to obtain any portion of the diagram for
the N-state problem.
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