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Abstract. In this second paper the technical part of the results about the
Supersymmetric N =1 massless Sine-Gordon field theory, at finite (space)
volume, is given. The proof that the theory exists and is analytic in the
coupling constant A and that, at finite (space) volume, its Witten index is 1, is,
therefore, completed.
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Introduction

This paper completes the previous one [hereafter called (I)] giving a reasonably
detailed version of the proof of Theorem 1. We have chosen not to squeeze this
proof in the appendix of (I) because it is another example (after those given in
Gallavotti, Gallavotti and Nicolo [1] and Benfatto, Gallavotti and Nicolo [2]) of
how the tree expansion allows us to use the Renormalization Group to provide
very good estimates of the perturbative expansion of the field theories.
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1. The Definition of the Effective Potential
As discussed in Sect. (4)(I) the effective potential is defined by the equation

N N
SV — fKI;[’f P(do™) KI;I'{ (dyp®)eV$. (1.4)(T)

Remark. All symbols we do not define here have been defined in (I) and their
definition is unchanged.
The original Euclidean interaction V®™(p!=M y[=M) defined in (3.3),(I) is
rewritten in a slightly different way for technical purposes:
2

-1 o o s A
V(N)= ‘2_“2{—1.1120- J;dzxj'dZH:e:amp[:N](X)::ete-w[:N](x):+ T Z 0,0,

G102

% J’ ngdZ}j:eia(owﬂ§N1(i)+dz¢[§"”(i’)): e—a2d1azC[5”’(55,5’)D[§N](§’ y)}

1

=VM4yM, (1.1)

where we used that p@ - pD = — 2Dy, the fact that ;™ ¥ =M@ = 0 v =7 54
SEN0) = (p=M(x)pl=M(x)> =0, and finally the well known relation:

:eiadlw(i) .- eiaam@) C= eia(cw(i) +020(7) ce” a20162C(%,3) . (1 _2)

Remarks. i) The reintroduction of Grassmann variables 0’s to write

p@ . pM=—2i[d?*§e? v (1.3)
is a useful technical device. It has nothing to do with the notion of superfield which
we will not use anymore. TT L L

ii) With 4 we will always mean the space-time volume [ — 5 5] X [ - 5],

where T can be finite or infinite.

2. The Tree Expansion

We will not give here the details of the tree expansion but we refer to Gallavotti et
al. [1], and Pordt [3]; we just recall that one gets it starting from (1.4), (I) with the
following recipes:

a) Integrate one frequency scale after the other,

b) At each frequency perform a cumulant expansion (in A),

¢) Collect this multiple expansion together.

A tree is just a graphical way of individuating a specific term of this expansion,
which is made of truncated expectations of truncated expectations of ... on
different scales. The point is that we can get a very good estimate for each of these
terms which takes care of the natural length scales of the various factors.

Tree expansion allows us to incorporate pretty well the renormalization
counterterms and this is its more relavant aspect so that one is also able to use it to
study the flow of the running coupling constant.

In the present case, nevertheless the theory is relatively simple and does not
need counterterms as discussed in the next section. Tree expansion is, here, just a
reorganizing device apt to get best estimates.
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3. The Counterterms

As discussed in Sect.9 of (I) in the scalar Sine-Gordon theory the only

counterterms are constant counterterms (field independent):= C,(A, N), k<n if

a? e [a?_,,2) which are divergent as N — co0. No field dependent counterterms are

needed up to a?=8n, where the theory is not anymore superrenormalizable.
An analogous situation is present here with the difference that now

1 1
2 _—] — = —_——
oy =87 <1 2n> 4n=4n <1 n) . (3.1

Nevertheless it is well known that the supersymmetry, has the effect of
“smoothing” the divergences. This is what, of course, happens also here. In fact if
the theory is regularized in the ultraviolet and in the infrared in such a way to be
still supersymmetric in the sense discussed in Sect. 2 of (I) then it follows from the
results of Sect. 6 that all the counterterms are equal to zero:

C{A,N)=0 VkN,A. (32)

For technical reasons this has been proven up to «? =27, but we conjecture that it
is true at least up to a?=4mn.

Moreover also if we would choose a regularization of the theory which does
not preserve the supersymmetry, the original supersymmetry still leaves its mark in
the sense that now the counterterms, one would introduce in analogy with the
scalar case, are not zero, but remain finite as N —oo.

4. The Recursive Construction of the Effective Potential

As discussed in Sect. 2, see the references therein, a tree is a graphical object
corresponding to different truncated expectations. At any bifurcation of a tree is
associated a frequency h corresponding to the scale length y ~* of the correspond-
ing truncated expectation. Therefore in a tree expansion there will be a sum over
the trees and a sum over the frequencies of the trees.

Starting from the definition (1.1) of the interaction it is possible to write the
general structure of the expansion of the effective potential on scale k:

@ n
VO=Y, ¥, ATy (&0 | &x [ dPxd*
1 q1+22=n ag,01;02 Ad1 A242 N

| @@l =K(x, 0) + 9l 2KU(F, 01) + 9l 2K, 22)) . . vl TKI(x, 0). a;’:)ql(/l’ N;x,ga, Q), (4.1)

where

b
(P[ ék](ZCs 0)= Z;,i 0i<p[ = k](xi) s
(4.2)

b
YENx, 0) = ;i (0;- p'=H(x)),
d*0=d*0,d*0, ... 61219‘11 ,
x=(x,%,7), 4.3)
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and the Wick product is defined as usual.
The crucial part of the tree expansion is still hidden in the 2, (4, N;x, g, 0).
Its explicit expression is:

£Ak)q;(A Nix,g,0)= Y. Y,l0:0,] H,D“N](x,,ﬁ,) V('ﬁv(T h;x,a,0),

v1(t)=4q1 ho>k

v2(t) =q2 (44)

where Y, is the sum over the topological trees, Y, is the sum over the frequencies of
the tree bifurcations. v,(t) and v,(7) fix the number of final lines associated
respectively to V; and V,, h,, is the frequency of the lowest bifurcation, [g,;0,]is a
product of ¢’s due to the decomposition of the sina¢ functions appearing in ¥, and
the D'=M also are associated to the final lines of V, type.

The whole problem to control the «{), is, of course, to have an explicit
expression of V{\(z, h; x, g, 0). Before starting the construction of ¥ X(z, k; x, g, 6)
with a recursive techmque we rephrase the estimate of Theorem 1 of (I) in terms of
the & (4,N;x,¢g,0) in the following way (we leave the transcription to the

n;qy
reader):

Estimates of Theorem 1. We define
oy (A N;x,8,00,1=%, | d°xd(x,)|[d*00,4%,(4,N;x,¢0), (4.5

nq1
Aql+2

where we excluded one integration using the translation invariance, and

Or=Tljer0; j=(2i) o,€(1,2) ie{l,...,q}. (4.6)
Estimate (3.5) of (I) is equivalent to:
|y (4, N5 x,¢,0)0,] < C4 24, (4.7)

where for k=0 C depends on o but not on k, A, N.
For k= —1 (in this case V(™! =logZ)

25 (4, N; x, 8, 0)0; ]| (C(L))“ * 242 (4.8)
and C(L) diverges as L— oo, but is still N independent.

Remark. The factor 0, tells which and how many y!=¥(x) are present in the
estimate of that part of the effective potential.

4.1. Recursive Expression for V%,

We assume that 7 has s, subtrees 7,,..., 7, merging in its lowest bifurcation of
frequency h,. Graphically:




Supersymmetric Sine-Gordon Model. 1T 127

We consider the tree before integrating over the x’s and summing over the ¢’s.
Therefore any final line has a label (x, o, r), where r € {1, 2} tells which potential V, is
associated to that final branch. Fixed (x, g,r) we have the following relation:

il = K], il S k1
- pla® (x.9). . ol 2Fl(x. ). V/Y;‘)N(T, hQ X, d, _9)

1 o L
h . 4 T
= s‘ ; | Ii V,(l;‘}}(‘f('), b(l)’ )=C“), Q'“), @('))5[»]5[;.0]
o- 1

iagol Shol(x(1) g(1) iwl Shol(x(1)_ g(1)
X (@0 2PN pivl 2RO, 0

. (: eia(p[ Shol(x(s0), g(so)): . eitp[ =hol(x(s0), g(s0)) )) , (49)
where
P59, 0= 9'H(x,0) + pLFHE, 0,) + 9N, ),

Esig()=E g1 ) >4 -) and the truncated expectation is defined with respect
to the joint measure | P(do™) u(dyp") ().
Extracting from the right-hand side of (4.9) the dependence on the fields ¢!=*,
wt=M with standard techmques we obtain the following recursion relation:

(k)( h i X,

uq

_9) = S—‘ Hi VAth\?)(r(i), h(i); >=c(i’, g(i), _g(i))
0: 1

2 R
x [CXP— (%[Ui,f "ol(x, g) — ;01- ULl x®, g“’)D

S0 -1
0 il <hol(x, il <hol(x(D), (D))
X (gw[<h0](ew = e)) <r1[z éaw[ < ho](e“p o )) } >

i SROIx(D, g(1). . il £Rol(x(D), g).
Ehole D -

. (:eiaq;[ Shol(x(s0), g(sm): :ei"’[ £ hol(x(s0), Q(SO)):)) (4 1 0)

where:
U([p< ho](f) = U£P< ho]()=c’ g) = Z o-iajc[ < ho](xi’ xj) ,
L
Rjér
and x;, x; can be now x, %, J and the same for o,(c)).
From Eq. (4.10) one can write an explicit expression for V{*y but we will in fact

look for a global estimate for this expression. To do that we have first to find an
appropriate way of writing the factor

T (. ia@ho)(x(D), (1), . jylhol(x(1), g(1)),
(et 2 oI, 0)

. (:eia¢lhol(§<so),g<so)): :eitp["ol()_c“o),e(bo)):)) (41 1)

of (4.10). This will be discussed in the next section.

5. The Factorization Theorem
The results of this paper are mainly based on the possibility of obtaining an

1
expression for — @@[ho]( ) such that one can apply separately on it the bosonic and
So!
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the fermionic estimates. To discuss this result, which does not strictly depend on
this field theory model, we introduce some simplified notations.
We define

o)) = oo™ x?, %), (i) =iy (x?,0?). (5.1)
Then
o)) = — Ci, j)= o> Uz, 7)), 52)
Cplinp()y = — (i, j) = U, 1), '
where
Ugto](f(i)’ W)= (; . DGO Chol(x(D 5y
. ' betset . . ‘ ' (53)
UEphO](T(l), 1:(J)) — Z gg)ggj) S[ho](xg)’ ng’) .
betWset)
We are interested to find an appropriate expression of
1 T¢. i(e(1)+y(1)). . Li(@(s) +y(s)).
3(5’ (et etDTwi). et e el (5.4

where &7 is with respect to the product measure [ P(do)u(dp) ().
Equation (5.4) can be expressed as a sum of Mayer graphs using only the
algebraic structure of the truncated expectation, namely:

(4= ¥ 1 @0y, 59)

*geGs {i;jleg
where G is the set of all the connected Mayer graph with vertices {1,2,...,s}. The
factorization theorem is the following (its proof is in Appendix A):

Theorem 1.

1 ! ; .

(5_4)=_ Z Hb[g(etw(Pb)) H g(eup(n)—l}
shipgy 1 jePy
t
X ]:[b ET(e:|p,) ET (WP, L eV PI iVl evs))
1 t ) ) . . o
— g{zb} [11” gT(:ew:|Pb) é"T(elw(Pl), e etw(Pc)’ elw(u)’ e elw(Js))
X [Hi @@(e"*““’)‘l], (5.6)
1
where
S S
2 =2m 2a Xt X Yien XU Py=2) (5.7)
{Pp} 0 {1..s})DZ 1 (S1y.-.s st) |Pu|=sp
|Z|=m XpSsp=m

and

{jl...j§}={1...s}—g),,Pb. (58)



Supersymmetric Sine-Gordon Model. IT 129

Remarks. 1) Fixed m, Y, is the sum over all the possible groups of m vertices
e{l,...,s} and

1
= 59
ok mi—m)! (59)
Rl=m
and we define §=s—m
if) For any fixed # and ¢ we remark that
Z, 1=Cy, (5.10)

(S15em0s );ZpSsp=m
1

where C, is a constant independent from Z and t. ' ,p,, is the sum over all the

[Py] =sp
partitions of the vertices € #Z in t groups of s,,...,s, elements respectively.
Moreover
m! 1
iii) p(Py)= 3% (), (5.12)
JePy
ET(:e:]p,)=ET(00:, L el ?0)), (5.13)

where 2D P,={ay, ..., a,,}.
iv) Finally we remark that, due to the definition of (i) in Eq. (5.1), it is clear
that

(O@(eiw(i)) -1_ éf’(e— iw(i)) . (514)

To understand how the estimates will be performed we rewrite (5.6) in the following
way

13 s Lo (thshous) L
(5= Ta N T Ny mls!
SI0T (1..552 T (s1vns) |Pol=5p m:
[.@l =m Lpsp=m UP,=2
S
{l—lb__éﬂ( ip. IPb) ( W(Pl) “’e“ﬁ(Pr), etw(m, e ezw(;g)) l:[i g(e—zw(t))}.

(5.15)

The claim is that, after integrating over the 6’s, we are able to give a good bound to
the { } independent on the choice of P,.

Once we pull the estimate of the { } part out of the multiple sum, from
Egs. (5.7)...(5.11) it follows:

1 s s 5
WD NP D VEED) Yy (thsyl s )S1=CY, (5.16)
S10 (1..5}0% 1 (51,....5) |Pul=5sp

|R| =m Tpsp=m

where C, is a fixed number >0.
We insert (5.6) written as in (5.15) in (4.10) and we obtain a recursive expression
for V{¥,. We are able to manage because we can provide appropriate estimates for
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all its parts,

S0
(k) (‘C h A L) _Q_' Q Zm Z.@ Zt Z Z{Pb}vo '
{(1...50})2Z 1 (S1,.--» 5¢) |Py|=sp
|%|=m SpSp=m

SO . - . . .
X(th 511, st (nf VR0, hO; 9, g, 00)
1

2 s
o 0 N
X {@m— <7[U5fh°](>=c, g)— Y UL mI(x, g“’)])])
i
[<hol(x,0 ~ [ <hol(x(1), (D) -t
iyl <ho iwl <ho 1), U
X | & pr<nof€” (= 0) 1:[1' € pr<no€” « ))
! ,q,(ho) 1 up(ho)(pl)
x Hb (ho)( 1e)| 77 | = Einoe
1 Sy t!s
. . . . .. So . .
WP Qv i) I C w(ho)(n):l) , (5.17)
1

and the v, means that we are referring to the v, bifurcation.

In the next section we prove the bosonic and the fermionic estimates which
allow us to get an estimate for the coefficients of V{*} thought of as a polynomial in
the 8’s variables.

6. The Bosonic Estimates

The bosonic estimate is an estimate for

‘M(Tw bw {Pb}w Xop» gv)
o? A I
= [CXP— <2 I:U[< M, 0)— Z UL, ‘7(1))})] l;[b:g_,éa(hv)(:eup:|Pb;v)-
b.

We have introduced the subscript , because this estimate will appear in many
factors associated to different frequencies in the estimate of V{*y. Essentially, given
a tree 7, each of its bifurcations has a factor like (6.1). For the estlmate being a useful
one it must give:

a) a non-factorial dependence on the number n, of final lines merging in that
bifurcation,

b) a good locality factor saying that this function is essentially local on the
scale y ",

¢) a good h, dependence which would make the final sum over the frequencies

convergent as N—oo. We denote:
1 1

(hv)( e IPb v)"_ ;F(h‘))(ru Pba IPb> vIPb) (62)

(6.1)

where 7, is the tree whose lowest bifurcation is v and P, means the restrictions only
to the subtrees associated to P,. We estimate (6.2) using the Battle, Federbush
technique [4], (see also Glimm et al. [5] and Gopfert and Mack [6]).
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The final result for a generic frequency h, and a generic tree t is

1
[ FOu s Sl )
N

2

t
(e T, [exp ("‘7 Y, U, g%) exp(— 07" d(z,|p)

iePp

] (P w0 (63)

iePy
where C,(y) is a function of y which can be bounded by Clogy,

t
m=|?|:=Y,|P; (remember that {P,} is fixed),
1

t

t
UAPED Y ”u|g’b= b UMOP
1 T iePy

and n,, is the number of final lines which merge in the bifurcation v which is one
of the s, bifurcations immediately before v.
¥ is the subtree of t which has v\ as lowest bifurcation.

UD(x®,g®)=UMNcl)  [see Eq. (4.10)].
d is a number €(0, 1),
d(TU]Pb) = d(Tu(tl)a Tu(tz)a ey ‘Cu(tsb)) )

where {t,t,,...,t,} =P, and d(t4, ..., 7,) is defined as the distance between the k
cluster associated to the subtrees 7y, ..., ;. (y"|x,»|) is a slightly symbolic notation
to indicate a first order zero appearing when all the points in " shrink to a point.
This zero turns out to be crucial in the estimates only when the subtrees t{ has only
two final lines and it is neutral. In that case (y"|x,p[)=("[x* —x|).

Therefore we have for the bosonic part the following bound:

I&{(Tva hw {Pb}w Xo» gv)l

0(2 - Sy - X X .
Sexp [ - T[UE, M) — X (U@ + U (i Ube))]]

ty
X (C3p)ymrvermloe [Tpexp(— oy"d(t,|p,)

X TT (gl ~ 9o 2000:0 (6.4)

ie Py
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7. The Fermionic Estimates
From Eq. (5.17) we define:
'@(‘Cw hm {Pl}v’ Xw gva Q(U))

Sv -1
il <hul(x, ipl <hul(x(), g()
= [g’w[qv](etw x E)) (l:[z gw[<hul(elw (x(M, 9 ))) }

1 (hy). . . . . . Sv . .
I v(P (ho)(P, (hy) (ho)(js — ip(hv)
TS éa(h.,)( eiw( 1) ...,ew ( :)’ etV (Jx)) ..., eV U )) Hl i(a@(hv)(e iy (1))
( '1)

where 0 are the 0’s associated to the final lines of type V, [see Eq. (1.1)] which
merge into the bifurcation v.

If 7 has ¢, final lines in its bifurcation v, the number of 6’s which are present is at
most 2(q,],) <2n,, where q,], is the number of lines of type 1 which merge in v.
Therefore §* is a 2q,|,-components vector.

To get the fermionic estimates we have to expand 4%,

‘@(Tw hw {Pb}w xw v Y )) = ZIU e(li)Blu(Tw hw {Pb}w )_Cw Uu) s (72)
{1...2q}> 1
where
6= 11 0;. (7.3)
jel,
Remark. Looking at(7.1)itis clear that fixed 6{”, B, is just the sum of the different
terms in the expansion of (7.1) which produce a factor 6{” in front. The number of
these terms is bounded.

In fact looking at (7.1) it is clear that there are CI*! terms, with C,>0

independent from the other parameters. Moreover the following relation is trivial:
Y, 1=scialv< e, (7.3)

{1...2q03(,>1,
|Iv| my

Once that we know that B, of Eq. (7.2) is the sum of a controllable number of
terms we look for an estimate of the generic of them. The generic addend of B, has
exactly the form (7.1) with the only difference that each term e’ has to be replaced
by a product of y’s. It is on these expectation or truncated expectation of products
of fermionic fields that we apply the Gawedzki-Kupiainen estimates they used to
study the Gross-Neveu model [7].

Therefore we have

B, =Y,B¥?, (7.4)

where Y, 1=CY*l, and B{ satisfies the following g-independent estimate:

BO(t,, by, { Py} X, 7)) < CHole =074 dP1 Py iy , (7.5)
where d(P,...P,;j,...J;) is the distance between the subgroups of clusters
hy
Tolps -+ Tolp, [s€€ EQ. (6.3)] and the clusters 7,|; , ..., 7,|;. The factor y“"l 2 appears
hy

[<h

as each p® or p!=" brings a factor y2
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8. The Final Estimates of the Effective Potential (I)
From the definition (6.1), (7.1), and Eq. (5.17) we have:

= 1_[ { i ‘Q{(Tw hw {Pb}w 2.=Cw Qv) '%(Tw hw {Pb}v’ Xv’ Q',,, _6(0))} (81)

and

'@(tw bw {Pb}w Xps Tps O(IL:,)) = ZI., G(IU.))BI,,(Tv’ bw {Pb}v’ Xy gv) .

{1...2q:}[u2 1y

VR bx,a,0)= Y, 0Kt b x0), (8.2)

where fixed 7, {1 ... 2q,} are the indices associated to the 0’s appearing on the final
branches.
We observe now that we have the following identity:

241

I, = 2L i I,
vet {1...2q1}|v2 1, 0 {1...2¢1}>1 (Ay...R4) veet IN{1...2q1}v,D1uy,
[I|=L X,A;,=L [Tyl ="p

, (8.3)

where 7 is fixed and has in its final lines 2g, 6’s. Lis just the number of the 8’s which
are extracted: the order of the generic term of the polynomial (8.2).
D sum over all the possible choice of L §’s between the 2g, which are

g

(1...2g1}>1

11]=L

present. Moreover
2491
)IAEDY R S &L (8.4)
0 ({1..2q1}>1
=L

# 1s the number of bifurcation of t which can have ’s in their associated truncated
expectations,

Y. chooses how many 6’s one picks from each of these bifurcations,

Y 1s=65s03, (8.6)
G2t
and finally D1, decides which 6’s have to be chosen at each bifurcation.

In{1...2q1}p, 2 1u,
,Iy | =h1 . . .
Remark that a fixed 6 can be chosen from many different bifurcations. Then
1=Cgmm<Cyn, 8.7)

Iy,
In{l...2q4}y; 21y,
|1v1|=ﬁ1
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where n,, are the final lines of type 1 which merge in the bifurcation v,. Therefore
we have

Y (H Y, ) (8.8)

I =
ver (1..2q1)lwoly  (1..2q0>1\vetr UgTy=1

and from the previous inequalities

1 35, sCIICy. (8.9)

ver Uyl,=1 vET

Therefore we can rewrite (8.2) in the following way:

Wb g. )= Y, 0,(11 Sy, (Ucréu>-1)

{1...2q1}01 veT {Pply Uplp=1I

x |:H CSZUC'SW'M(‘EU’ bv’ {Pb} v’ %Cw Qv) BIU(Tvs hv’ {Pb}vs Xv» gv):| . (810)

VET

This is the appropriate expression to estimate. In fact we estimate the [ ] part
independently from {P,}, and I, and then, using (8.9), (5.16) and the definition

Y o= Y 8NN s s, VO, (8.11)

{Pb}v {Pb}v

one realizes that

(H MDY (lvTC'é")“)éL 8.12)

veT {Pply Uplp=1I

We conclude this section writing the explicit expression of the
a®, (4,N; x,g,0) as an expression in the §’s variables in terms of the quantities we
will be able to estimate

a® (A,N;x,a,0)

"‘11

= S 0, { e h [o::0,]
{1...2q1}21 vi(t)=q1 ho>k
v2(1)=q2

X

(1L % 2 (gczv)”){ﬁleé”l(w,-)

vet {Pply Uuly=1

x H C?C’évd(Tw hva {Pb}va P gv) BIU(Tw hw {Pb}w Xps Q'v)

VET

= Y 0148, {4,N;x,0), (8.13)

(1. 241051
and immediately:
Ity (4, N3 x, .00,
=Y, [ @x | d2d*Jo(xy)lafy AN x, Ol =lagy el . (8.14)

Ad1 A24q2

The study of the right-hand side of (8.14) is now accessible and it will be discussed
in the next section.
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9. The Final Estimate of the Effective Potential (II)

From Eq. (8.13) of the previous section, it is clear that we need an explicit
expression and an explicit estimate of

I (b, {Py}o}s {1} 5, 9)

= [ﬁ] DléN](gj’ yj H CSVC"V&{(Tw v {Pb} Bl (Tw hw {Pb}w X @ ]
9.1)
and of
fdxo(x,) IT(z, {h}, {{Ps}o}> {1}, %, 0. ©.2)

We start considering the case in which g, =0; this means that all the final
branches of the tree t bring the part V{™ of the interaction [see Eq. (1.1)]. In this
case n=u(t)=¢q,. From the estimates (7.5) and (6.4) we have:

IF(T’ {bv}a {{Pb}v}7 {Iv}7 X, Q)I
< <H exp— (XTZ (UL "(e,) = UL (z,) — UG (z,) xlve %)])

(‘”n"w ) [T (C) e

VET

x n( [T TT @b 9% 2000 CyCye

vet \Ppe{Pp}y i€Pyp
hy
. |I‘,|—
Xﬂbe( oyt d(z,|p,) " exp— 8y d(Py ... Py sy sy 2 > (9.3)

We remark that

q1=n %

h; .
i) The frequencies h; in the factor H y4 " are the frequencies of the first
a2

bifurcations the final lines meet. ya=" is, essentlally, ez ;s "o,

ii) Zb d(t,|p,) +d(Py ... Py jy - Js )= d¥(z,), 6-4)

where d*(t,) is the distance between the s, clusters merging in 7, = length of the
shortest path connecting all the clusters 7 T

vy o0 bog

iii) m,—t,<s, [for the definition of m, see Sect. 6, following Eq. (6.3)] (9.5)

We observe that for a generic choice {I,} with the constraint Z [I,|=L<2n, we
have:

(ho— )%

<1y 2 (6.6)

with g,<2n,, 11, is the number of the §’s which are chosen at v. As a 6 cannot be
chosen more than once g, =#,+ 71, < the number of ’s which are in u,I, and
merge in v'.



136 M. Cassandro, F. Nicolo, and B. Scoppola

We can rewrite (9.3) as

|F(T’ {hv}» {{Pb}v}’ {Iv}’ )=Ca g)l
2 q1=n ﬁ .
< (n exp — - (U} e, = Uy e, = Ul e, o %)]) ( I v)
vet 1

x 11 <(C3(V))SUC3" [T TT O™ fxgpl)t ~0me 200200

vet Pye{Pp}, i€Pp

Xexp(— ). 0.

In Appendix B we prove the following estimate for the first factor of (9.7),

VET

q1=n ihl o(z < <
( l:[i y4n > H <exp_ 7 [UE/I hv](‘cv)—— UEp hv,](‘[v) - UE:U,](TU) X(U € yv’)]

X eXp(—5*/"”d*(rv))> <(CM, ) (W_"k)"

a?
_‘ ny(hy —hy

VET

’ exp(—gvhvd(n»)v"EQ““""‘””’*“’, 9.8)

where M is a fixed number defined in Appendix B.
Plugging this estimate in (9.7) we get:

|F(T7 {hv}’ {{Pb}v}’ {IU}’ X, g)l

nl.ak) “—;nvm—hm R .
<(C(M,y)) (v“ ) H(v‘* P TR (Cy(y)) Cy

x 1 11 (v"”lxtg)l)“‘e"’"fif"z"‘?f‘»‘""eXp(—Sy”vd(r,,))>. (9.9)

Ppe(Po)y icPs
Remark. The 6, , is introduced just because we will not make any use of these
zeroes when n, > 2. This will be discussed later on. Using the obvious inequality:
exp(— 07" d(x;, X,))7"[x; — x| < (const)y ™" ") exp(— 5y d(x,, x,)) (9.10)
with &' <5, we easily get (see Gallavotti [8, Appendix A]),

jdéé(xl) H ( H l_[ (y""lx,g)l)“ T8)0nc(, 200:0), 0

vet \Ppe{Pp}y i€Pp

X exp(—gyh"d(r,,))> <Ky~ 260 Dho

% —(hv—hv:))(l ~a)6,.r&un ,26Qt(u-) ,0
Pye{Pp}y iePyp
= using Eq. (8b)
=Kn(,y—2k)n—1 l—[ v—(2nu_2)(hu_hu')
VET

% H l—[ (y—(hv—hu'))(l-s)émg),26gr<y,0 (9.11)
Ppe{Pp}y icPp
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with K >0; therefore
Mt {Pagoh (L.l KOO (o) 3o

TN

2
(o =ho) |5~ 2) Nyt ny+ 2= (1= €)0nel , 25020, 0]

x ]l [(Cs(Y))s" )

VET

12 N
———Q3%(hy— (hy + 1)) x(ny =M
% 1 8hy —( ) x( ) ) (9'12)

We have now the following result:

2%, _ (A, N;x,0,00,<Y, Y. (H ) z,)

vi(t)=n \vet {P1}y, UyI,=1I
va(7)=0

2 Z(hv} Hr[ (Cs()Cy

n

x (KC(M, )" (F)

2 2
) [(%; - 1) M+ 2= (1= 0)0nc) , 20020 ,0} y—j—ngahu—(h,,wL D) xmy <M

’] . (9.13)

Let us consider now all the 7’s with v,(t)>2. It is clear that if «* <2n:

(’:(Z_z _1>nv+2_(1 —8)5,.,g>a25QrU”0] - _QvX(nu—M)> =- Q(O(
s 9.14)

with
o? —2n(1 —¢)

0< 47

<o(e?)
(the worst situation is when n,=2, Q,=0). Therefore

(9.13)< (CB(},))SU Chy~ 0(a?) (hy = hyr)ny <y~ (e(@?) =) (hy —hy/)ny , (9.15)
choosing y enough large so that

P2 (C30) Cy, (9.16)
remembering that C,(y) depends on y logarithmically, it follows that:

Z(h} ny (0(a2) — &) (hy — hyr )""<D" (917)
ho>k vet
We remember now (8.12), that ), <(const)" and finally that
Y o 1=4Z2% (9.18)
vi(t)=n

(Benfatto et al. [2]).
From all that we easily get

la® _ (A,N;x, g 0)0,] <D} (y<4” 2)">n <D (9.19)

n;qy=n =

which is Eq. (4.7) in the case g, =0.
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Remarks. The result we have produced is still incomplete because

a) We have not shown how to manage the case g, +0.

b) We have not considered how to treat the case of © with v,(t)=2, v,(1)=

c) We have not kept explicitly trace of the volume dependence which we
expect to be present in D, when k= —1.

Nevertheless once one has all the steps explicitly done for a class of trees it is
easier to recognize that it is not hard to extend our result to the whole class of
possible trees.

Extension to the Terms with v,(t1)=q,>0. It is not difficult to envisage the
modiﬁcations to the estimate of (9.1) when g, 0.

q1=n .
a) ( [Tiv o ) is substituted by

a2

q1 a_h 2 —_p q2 < o
(TL- yan ‘) <1—L 21" 5+ a20,10,2C0 <M, 5)) nje—azdjlﬂjo[=N‘(xwYJ) . (9.19)
1 {

where the second factor has exactly the same origin of the first but refers to the lines
of type 2. The third factor is already present in ViV [see Eq. (1.1)].
h; is, as h;, the frequency of the first bifurcation where the /" final line merge.
b) Each final line of type 2 neutral, that is with ¢;,0;,,= —1 brings a field
dependence
T i) pLEMN(E) — 0,50l SME;) .

and this produces a “first order” zero in (X;— ;) (the truncated expectation at
level h; has it).

Also in the next bifurcations where only type 2 parts merge and the total
charge of the bifurcation (cluster) is zero then a zero is produced when all the
coordinates coincide. With these remarks the estimate (9.7) has to be substituted
by:

L, (B} A{Ps} o} {1}, %, 0)
§ <n D[ N](xj’y )e_a2011¢J2(C[<N](5‘J 17 I C[<hll(-"1 YJ))>
B\ (B S o <h [<hy]
X rll I:Ly H CXp— 7 [Uw (TU)— U(p— (Tu)]

X < )Svcnv (hy = hy )nf,vl)

VET

xexp(—0d* ) T] T] (Pl 2000e0
Pye{Pp}y icPy v

X(thlxrg)l)(l 20,1, 08,2, 250, 0>’ (9.20)

where in the definition of d*(z,) the points %; and j; have to be thought of as
connected. This point will be discussed later on. nt and n{? are, respectively, the
number of lines of type 1 and 2 which merge in v;

A
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The next step is, as before, to integrate over the x. At this point we use the
properties of DI=N(%, 7). From the definition
2

¢ )= -p —p
DLEN - eiPE=y 1
(x9y) L2 peZ%LZZ eXp ,})ZN eXp ,y
p1¥0
__1 PUE) -p? _P1
o pe2;_LZz xp p2N exp
p1=0
1 ) —p2
+ (PPH;LZZQP( Yexp 72N exp yZNl
1
— . ip(X—Y) D[<N] 9.21
Py P e 621
and
lim DI=N(R, §)=4(%, §), (9.22)
N—- o
IDEEN(R, )| < p?Ne” IR (9.23)

Then the right-hand side of (9.20) can be decomposed in 29> terms, each one with at

1
each j or the factor — —
J ? pe ZELZ2
We will consider first the two extreme cases: a) at each j there is the factor
DI, )

1
b) at each j there is — —
) J I? pe 22’622
From this examination we w1ll infer easily the estimates for all the intermediate
situations.

2

_p.

€59 exp

Remark. The absence of the p, =0 term in the definition of D'=M looks useless. In
fact all the results discussed here are valid with D!=M instead of D'=M, In this case,
nevertheless, the supersymmetry of the regularized theory is destroyed.

Case a. Substituting DI=M instead of D'=M in Eq. (9.20) and performing the
same estimates which produce inequality (9.12) we get:

e (R 1w secon (6247 (24
X('V_k)qz_)’_;_:‘Nq+y<27‘ ) a2 2")“[ ) C™]
< Tl [ywv—hw)[(% —2>n$,1)+n5,”x(n{,”> 1)+2}

VET

2
« (hy=hy) [—(1 ~£)0n(; 20023 050,30 + (“7 - 2> g+ =g —(1-8)8n1; 050, 0]
Y

. - 2 Qi +1))X(”v<M)] (9.24)

E
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where ¢P* =q5n,...q; and q; corresponds to those final lines associate
respectively to ¢;,0;, = + 1 respectively. Of course g; +¢; =g,. Performing again
the sum over all the frequenmes for a given tree, one immediately realizes that

ety ¥ 2 1) Ng
due to the factor vy Rt y'2n ) > these contributions tend to zero as N— 0.

Case b. Here the estimate is done integrating again over all the coordinates
except the z;=(%;—J,). Then the estimate becomes:

lF(T’ {hv}9 {{Pb}u}7 {IU}’ X, Q)'
e ¢ 26,10 ,2(CIEN)(z ) — CL<hj)(z,))
< f fafle
GNP PAY S A A )
x (KC(M,y))" (y(‘“‘ > ) (y(z" ) > 2k ]—[[ (Cs(y) Chy
% y(hv —hy) [(% - 2>"$z‘)+"9)x(nt” > 1)]

o2
(hy —hy) [2 —(1=8)dn,26,?,080,,0+ <— - 2) n(? = (1 -)5,0,03g,, 0]
Xy A . (9.25)

N
Calling C™"M=y, C™® and using the decomposition

N-1
—a20j10;2Chji NI _ Zh e—azﬂ'jlﬂ'jzclhj;h](e_aldjldjzc(h+l)__1)+e_a20']1(7J2C(h})’ (926)
h.l

e

one easily realizes that the first factor is bounded by %742, with # > 0. The second
factor is easier to control and it gives also a term which can be bounded by %> with
% > 0. Finally it is an easy task to realize that everytime there is at least a factor
DL=M for some j the corresponding contribution is =0 in the limit N— co.

Remark. The case n=g,=1 has to be treated separately and together with the
case n=q, =2. This is done now:

The O(A?) Contribution to V). We have to discuss this contribution separately
because if we try to use the prev1ous estimates we will get a divergent result as
N—o0. The O(4?) contributions can be graphically described by the following
trees:

N U1
k
V/(l;)IVIO(}.z): k v, + kz+h1 k h
Uy
Fig. 2

If we apply to the first tree the estimate (9.13) we get a divergent result as the
factor (1—¢)d,, ,90,, 0 is missing due to the lack of subsequent bifurcations after
the first one at the frequency h=h,,.

Similarly the second contribution is unbounded in N if ¢,0,= —1, again for
the impossibility of producing a zero. In the scalar Sine-Gordon (for o > 4r) the
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analogous problem is cured adding an appropriate constant counterterm. Here
the problem is similar. The needed counterterm is, as discussed in [1]:

BN =36T(V3Y;2). (9.27)

It is a long but straightforward task to show that, if the theory is supersymmetric
and regularized in a supersymmetric way, the following relation holds:

)»ZC(ZN)(A)= AZC(zN)(A)/_*_/{zC(ZN)(A)u =0, (928)

where the two counterterms on the right-hand side are such that

v
N 1

2 (N) / 2 (N) "
@fﬁ +22CPA) and Uz+z CM(A)

v
! Fig. 3

have the appropriate bounds uniform in N (see B. Scoppola [thesis]).
If we choose a non-supersymmetric regularization the total counterterm is
not =0 but it is, nevertheless, finite.

The Volume Dependence. In the main result (4.7), (4.8) of this paper there is [in
(4.8)] a bad volume dependence of |2\, (4, N; x, g, 0)0,|. This is unavoidable as it
is due to the fact that our theory is massless and therefore the covariances of
bosons and fermions do not decay exponentially.

Here we want only to justify why in (4.7) the norm does not depend on A while
it does in (4.8). Intuitively it is very clear: due to the renormalization group
decomposition the covariances used integrating over all the frequency fields
except on the last ones ¢, @ are all massive with a mass depending on the
frequency ~ 7" if we stay on scale h. This is not anymore true if we integrate over
the whole field.

The only technical point is the following one: in our estimates we always write

2 ci=r1(0) N y%m 1
while, choosing for simplicity, the regularized covariance of Eq. (2.15), (I) we have:
C240)= Ltog (1) = o Qo+ (g
21 2n

Therefore

2 2
%cléhl(m a? a? +1)

— (L)47t /411

a2 a2
The factors (L)** have been omitted but they produce a factor <L4“> , at order n,
which has to be reinserted in the Wick product, for any k; the remaining volume
dependences cancel between themselves if k=0. The same result holds with the
regularized covariances which are effectively used.
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10. Conclusions

In this paper we proved that for a?<2n the massless supersymmetric Sine-
Gordon theory exists for weak coupling and finite volume. Moreover the theory
is analytic in the sense that its Schwinger functions are analytic in A. This result is
valid both if we break the supersymmetry with the choice of the ultraviolet
regularization and of the boundary conditions or if we keep the theory
supersymmetric during all the regularizing steps. In this second case, as discussed
in (I), we are able to compute the Witten index of the theory and to prove itis =1.

Appendix A
Proof of the “Factorization” Theorem. We start from Eq. (5.5) which we rewrite
(A={i.j}),

sIS.5)]= [(€“P —1)5P 4+ (5P —1)]

geG§ Aeg

>.

> c(a S(
9eG {gw{gb}n H(e()—i @

pnys=9 Aeyp

X Ypo 1L 11 @@ =1)

g\{7p}27s deys
PsnFe=
[v.]2[7s1forsomei

X Yoo 1l n(esm 1)%({yb}u{’)7s}u{}7t}:g)}' (A1)

a\(yp}u{Fs)O T leF
[72[F:: Vi

(7o}, {95}, {7.} are sets of connected Mayer graphs. [7] is the set of vertices of the
Mayer graph y. y can be thought as a set of bonds {1} sometimes denoted by
[[7]1]. Therefore it is obvious the meaning of gd7 or g\{y,} D7

We interchange in (A.1) the order of the sums:

A= Y, (Hb [T (e“P—1) [] &?

PbNYs= Aeyp AE€YD

X Yog s H (P~

FsnFe= Aevys
[7i]>[ys]forsomei

x  Yao I T1 (eS@’—i))

[7.J?[F]foranyi et
x(Uy, U7, is connected) y([uy, Uy )= {1,...,s}). (A2)
The sets {y,}, {7,}, {7,} define, with the previous conditions, a graph g uniquely. We
write
Yo ()= Ty [l Y (), (A3)
o Ys=() PynPs=9 eGPy

where {P,} is a family of subsets of {1,...,s} {1,...,s} D P,, Vb{1,...,s}2U,P,.
One has to fix the obvious rules to avoid the terms in the sum which are
meaningless (for instance if |[P,|=1 Y s absent).

75€G D,
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Similarly we have:

Z(m )= g [ 2 ()

Psn7 =9 PsnP,=0 7s€Gpg
[vi12[%s] P> P,
=1l Z{P‘b)} I X ¢) (A4)
Py,3 P(b) Js€GHY
PPIAP® =0

where G$% is the set of connected Mayer graphs whose vertices € P.
We rewrite (A.2) in the following way:

(A1)= Z{Pw{nb[( Y] (P —1)

PynPs=0( €GPh) A€Vp

A€y Py> PP ¥s€GpP) leys
PEAPH =0

X ﬂesw[ Yoy [ Y T1E@P=1)

PO (3] Aede
forsomei

XX([[%]]H[[?S]]=®)H Yo 11 T (€8P —

x x(U7, is connected if the P; are thought of as points)} (A.5)

It is easy to recognize that

I eS‘“[ Yoo [, Y I1(P-1)

Aevp Py P Ys€ GpP) deFs
PP AP =0
XX([[%]]H[[%]FQ))} =1,=¢ (I}I} e ) (A.6)
JELDY
In fact
[] &%= [] [ ~1)+1]
AEVD A€V
= Yo [l X 1171, (A7)
Py PH) Y5 €Gp D) N ey

Pab =0
(7112 (951}

Plugging it in to (A.6) we get
L= e [ Y I]E@P-1

. Pp2P® FseGhP) deds
PO APP)=0
= Yy [LETCe"pp)= ( [] eV > (A8)
Py P JjePy
PP APE) =0
where we used the well known relation:
E(A;y ... A,)= Z{Y,} [ (D@T(Alyj) (A9)
U, Y, ={1..n}

and the convention &”(:¢":[; )=1 if P, is made by only a point.
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We can write also:

I,=&(e>err w(j))< 1 éa(eiw(j))) r (A.10)

JePy
Equation (A.5) becomes:
(AD= | Yy {(nb 1) T, €7 p,)

x [ Yoo [T 1T ¥ —1)
P b5 Aee
forsomei

x (U7, is connected if the P, are thought of as points)}}. (A.11)

We now look at the [ ] part of (A.11). Equation (A.11) is just the sum over all
the possible Mayer graphs (connected) between the following ¢+ § vertices:

t
P, ..., P, and the remaining {1, .‘.,s}\Ub P, vertices.
1
<§=S— Zi|Pi|=s—|§”|>.
1

To each of these vertices is associated :e'**):, where

Y(Py) = _ZP v(j). (A.12)
JE€LFD
Therefore
(A1) =ET (P, eI iy pivlis);) (A.13)
and

TTo Ly (A1) =ET(eWP), ... oWP) givin oW ], 8 WD),  (A.14)
1

Appendix B

We collect the estimates needed to prove the inequality (9.7); more details can be
found in Gallavotti and Nicolo [9] and Benfatto et al. [2],

U= <<Z ai<p<>(xi>>2> >0. (B.1)
Therefore
UL (e,) = UL z)= ¥ 0,0 (CU"(x;, x))— CT="(x;, x )
i jety

hy—1
= 2 [ Y 0.0, [(CM(x;, x;)— CP(0))+ C""(O)]}

hyr+1 | isjety
< (h,—(h, +1) C™0)Q2 + K nZy(y"d(z,) ~*, (B.2)

where K, is a constant >0, ¢>0, and d(t,) is the length of the shortest path
connecting all the points of 7,.
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We used the easy estimate
|CP(x;, x;) = CPO) < K y(")x;— x,0)' 7, (B.3)

then we use the following estimate:

2
eXp ( - % [U5p<hv](rv) - U£p< hvl](Tv)] é 1>a if n, g M

2
€Xp < - % [U£p< hV](Tv) - U£p< hv,](rv)]>

2 03y (hyr + 1)
A @3y~ (4 1)

= exp(K,M*(y™d(x,)' %), if n,<M, (B4)

and M will be appropriately chosen.
In Gallavotti and Nicolo [9] the following inequality is proven:

> ytdH(e)z(1—y7 1) Y yMd(r). (B.5)

veT VET

Therefore

[T exp(K M?y(y"d(z,))! ~* x(n, < M) —yy" d*(z,))

= [ﬂ exp(K M*y(y"d(x,)" ~* x(n, < M))— %(1 —7")“/"”01(%))}

a?
- 4_nQv(hu_(hv’ +1))

[T exp(Fy"™d(z,) <(C(M, )" [T exp(7y"d(t,))

<v~: Ta—y l)>. (B6)
The following equations will be used next:
Sih= ¥ mi(h,—h,)+nk, (B.7)
1 v2vg
Z (Su_I)hvz Z (hv_hv’)(nv-l)—'_k(n_l) (B8)

(kis the “root” of the tree). Their proofiis trivial (see for instance Benfatto et al. [2]).
Therefore

2 2 2
no o, oo —h) \ [ k)"
[y = (H Al ><V4” ) . (B.9)
We will use also the following expression:
H y—Z(sv— l)hv:(,y—lk)n—l H y(—2nv+2)(hv~h.,r) (B10)

which follows from (B.8).
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