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Abstract. We show existence and uniqueness of asymptotically flat solutions to
the stationary Einstein equations in §=R3— B,, where B, is a ball of radious
r>0, when a small enough continuous complex function # on dS is given.
Regularity and decay estimates imply that these solutions are analytic in the
interior of § and also at infinity, when suitably conformally rescaled.

Introduction

After a considerable effort a rather clear picture describing the set of stationary,
and asymptotically flat vacuum solutions to Einstein equations it is now available.
Solutions are represented by a complex scalar field 4, and a positive definite metric
2. On a three dimensional manifold S [1-3]. From the four dimensional point of
view this manifold is the quotient of space-time with the set of orbits of the killing
vector field defining stationarity, the metric is conformally related to the one
induced by the space-time metric on S, and u is a given functional of the norm, and
the twist of the killing vector field. The equations they satisfy are,

(4,—2Ru=0, )
G op— 2Vt Viyu* — (1 +4u®) ™ 2V [ul> Vylul?)
— ga(VuVeu* — (14 4ul®) ™2V |ul*V|u|*) =0, )

where G, is the three dimensional Finstein tensor corresponding to g, We
consider the following asymptotic boundary conditions u—0, g, — e, —0, as r—0,
where e, is any flat metric on S, and r is the distance function with respect to it.
Given a solution (u,g,,) of the above equations it is possible to reconstruct a
unique, stationary, asymptotically flat, maximally extended vacuum space-time.

From local elliptic theory [4, 5] we know that sufficiently smooth solutions (if
they exist) are in fact analytic. Furthermore assuming a stronger asymptotic decay
than the one above, one can show there exists a conformal factor such that the
conformally rescaled fields are also sufficiently smooth and satisfy regular elliptic
equations; thus they are also analytic, even at the point representing infinity



616 O. Reula

[3,6,7]. It makes sense then to characterize these solutions by their Taylor
expansion at infinity, that is by a set of multipole moments [1, 2, 8, 9]. It turns out
that to characterize these solutions it is enough to define multipole moments only
for the conformally rescaled field corresponding to u, that is there are no degrees of
freedom associated to the three-metric g,, [10, 11].

Unfortunately only a small set of solutions to the above equations, all of them
possessing extra symmetries, are explicitly known and so until now we did not
know if the asymptotic conditions assumed to obtain the above picture were
generic enough so as to allow for the existence of a sufficiently large class of
solutions.’ In other words we did not know how generic was this picture. In
order to add weight to the above picture we shall show here the existence of a
large class of solutions to the stationary Einstein equations when S={R3-a
smooth ball}. These solutions, which one would like to interpret as the exterior
field of stationary compact bodies, are analytic in the interior of S, (even at
infinity when suitably conformally transformed) and are uniquely characterized
by a continuous complex function # on 08, the value of u at 45, and thus by a
harmonic expansion of u at 0S. To each member of this harmonic expansion
there corresponds a unique linearized multipole moment at infinity.

Main Theorem

Existence Theorem. Fix on 0S a positive definite metric, hy, of constant scalar
curvature. Then there exists a neighborhood of zero, V, in the Sobolev space* H,(0S),
such that for each 4V there exists a unique, analytic on intS, and asymptotically
flat solution to the stationary vacuum Einstein equations, (u, g,;), with u|,s=14. The
solutions, when suitably conformally transformed are analytic even at infinity, and so
each of them determines a unique multipole expansion at the point at infinity.

We partition the proof in a series of lemmata. In the first we show that the
stationary equations are equivalent to a reduced elliptic system. This procedure is
similar to the one used to reduce the full Einstein equations to a hyperbolic one
[12-14].

Reduction Lemma. Fix a flat metric, e, in S in such a way that it induces hy, on 0S.
Then the stationary vacuum Einstein equations, Egs. (1,2), with the boundary
condition, ulss=1, for (u,g,—en)€Hs)y, —34(S)°, e Hy(0S), small enough, are
equivalent to the following reduced system for (u, ¢*):

E(u, ™) = Au+(terms in V,¢%, ¢%, Vu,u)=0,
E®(u, ¢™): = g“F Vy™ + (terms in V¢, ¢*, Vu,u)=0,
Ups—14=0, Ploas=0, oplos=0,

Plos=0, 17”7|as =0,

! For a sufficiently large class of solutions we mean one containing all solutions corresponding to
physical bodies in equilibrium occupying acompact region of space

2 Proper definitions of all the spaces we are using, as well as a list of their properties can be found
in [15]

3 The differentiability and decay indices used for the weighted Sobolev spaces are not necessarily
the sharpest ones, but rather are taken for definiteness and convenience
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where ¢ : = ]/ég"" —e" with ]/é given by €,.48es) = Vgsa,,cd(ee ), E® is obtained by
setting, in the expression for G* in terms of ¢ the combination v°: =V,$* to zero,
V. is the covariant derivative associated to e,

Pi=enpd”,  Ouwlas: =Pachpad® —3hapheadlss
Plos: =(n* Va(”blpbmas >
where n° is the exterior normal to 3S, and °|,5:=(Wh,0)s.*

Proof. First we show that any small enough solution to the reduced system is also a
solution to the stationary Einstein equations. Let (1, ¢*°) be a solution to the
reduced system and consider,

V.E™(u, ) =0.

It is easy to see that this is an elliptic linear second order equation for y?,
L, 4ep"=0, which is continuous as a map from (u,¢*)eHs), —34(S),
weH;, 1/4(S), to H_y); 9,4(S), and which reduces to the flat Laplacian when
u=¢*=0. But injectivity is a continuous property for elliptic operators, and since
the flat Laplacian is injective for the boundary conditions considered
(Plas =0, 1’|, =0), there exists &> 0 such that if [|(u, ¢*)|s2, - 34 <&, then p?=0.
Thus for these solutions both systems are identical and so they also solve the
stationary Finstein equations.

Second we show that for any metric g,, close enough to some flat metric, e,
there exists another flat metric &, with respect to which y%(g.) = @lss = 0 aplas =0.
Thus, if (u,g,,) satisfies the stationary Einstein equations it also satisfies the
reduced ones. Instead of looking for é,,, which is related by a diffeomorphism to e,
we diffcomorphically transform g, keeping e,, fixed. Such diffecomorphism, d,
must satisfy,

[ Vg™
0 = G(da gab) = *d’las s

% .ab
D¥o

where *¢: =[/§* g"? — e, with *g® the diffeomorphically transformed g®, and
D, is the covariant derivative on S associated to h,,.* We now use a corollary of
the implicit function theorem on Banach spaces [18, 19] to assert, given any g, ina
small enough neighborhood of e, the existence of diffcomorphisms, d, satisfying
G(da gab) =0.

Corollary. Let X, Y, Z be Banach spaces, U, V open sets of X, and Y respectively, and
G:VxU-Z a C' function. Assume there exist x,€ U, and y,€Y, such that

* Where needed we have extended n“, and therefore h,;, into a neighborhood of 85 on S using the
geodesic equation

5 See Appendix and [15]

5 This is equivalent to the existence of a unique, up to translations and rotations, harmonic
coordinate system, once dS is given. See also [6,16,17]
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G(¥g, X0)=0, and D,G(y, x,): Y—>Z, the differential of G with respect to the first
argument is surjective and has complemented kernel. Then there exist neighborhoods
Vo CV,and U, CU around x,, and y, respectively such that for any xe U, there
exists at least an yeV, satisfying G(x, y)=0.

Proof. 1t follows from Corollary 2.5.8 and the proof of the implicit function
theorem in [18].

We consider G(d, g,,) as a function from Y x X to Z, where Y=H;, _,4(S),
X =Hs) —3(8), and

Z=Hyj), 1,4(S) x Hy(0S) x{H}(0S)/infinitesimal conformal isometries of hg,} .

Vis chosen, using that H, , _,,(S)C C} 5(S), to be a small enough neighborhood of
the identity map in order to guarantee that all its elements have differentiable
inverses. This function satisfies G(i, e,;) =0, where i is the identity diffeomorphism,
is a differentiable function of both arguments, and its differential with respect to the
first argument at (d, g,,) =(i, e,) i,

4.8
DIG(i,eab)'5d= £+ké+Da€a )
D(2D“E" D &)

where we have identified 6d with the vector field it generates, £, and &=mn,% s,
E=(nVE)los) k="V,nss, and &= hE0 5.

Thus to complete the proof we need only to show that the above linear map has
complemented kernel and is surjective. This map satisfies the hypothesis of the
Main Elliptic Theorem of the Appendix. Since its kernel and the one of its adjoint,
DGy, .., : Y= X', consist of C* functions, it is easy to see that in the first case it
consists only of the infinitesimal isometries of e,, since this space is finite-
dimensional it is complemented, and in the second only of the infinitesimal
conformal isometries of h,, which have been factored out, but then
Range DGy .., =Y, and so surjectivity is also asserted.

Finally we show that if 6,, € H,(0S) is trace and divergence free, then ¢,,=0. To

. 2
see this, conformally transform h,, = Q*f,,, 6*=Q "~ *¢, using Q= 13,250 that

fop is a flat metric in IR?. Since ¢ is trace free its divergence is invariant under the
above conformal transformation, therefore ¢ is also trace and divergence free.
But then in a cartesian (with respect to f,,) coordinate system the components of
o satisfy the Laplacian equation, 4 ;0""=0, and so they are constant or grow
asymptotically. In any case they always give rise to singular tensors when
conformally transformed back to 8S. Thus 6°° must vanish. []

Strictly speaking the diffeomorphism we have used on the second part of the
above proof can move the sphere around, therefore one should take S to be
contained in a open region where the stationary solution exists.

Note that although the tensor density ¢ is background (e,,) dependent, the
metric tensor it generates, g,;, is not. The background metric is only an artifact to
render the equations elliptic and thus to establish existence.
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We now use the fact that the reduced system is elliptic in the sense of
Hoérmander, [20,21]7 which includes the Lopatinskii-Sapiro conditions [22,23]
for the boundary equations, to establish existence of solutions to the reduced
system.

Existence Lemma. There exists ¢>0, such that for each complex function i with
l4ll,,0s<e there exists a unique (u,¢p®)eHsy , _5,4(S) solution to the reduced
system, Egs. (1,2).

Proof. Consider the reduced system as an implicit function, F((u, ), #)=0, for
(u, ¢) in terms of 4. As a function from

Yx X :=(Hspp, -3/4(8) X Hs5, - 3,4(S)) X H,(0S)
to
Z:=Hy 5;4(8)x Hi5,5,4(S) X H,(0S) x Hy(0S) x H3(0S) x H(S) x H(0S)

it is differentiable and furthermore F(0,0),0)=0. Thus if we could show that
Dy Fo.0).0): (0u,6¢™) € Y- Z, the differential of F with respect to the first entry, is
an isomorphism then the 1mphclt function theorem [18,19] would assert the
existence of >0, and of a unique, continuously differentiable function (u(%), ¢*(22))
defined for all ||41],,,s <& such that F((u(%), ¢°*(1)), 4)=0. This would complete the
proof.

We first show injectivity, namely D, F o) o)(0u, 6¢**)=0 = (5u 8¢™)=0.

Decomposing 3¢ at the boundary as §¢* = tn®n® +2n“¢? 4+ — ﬁ“" + 6, with

=¢°n,= 6*n,=6"h,,, we obtain

A,0u
Ae5¢ab
Oul,s
T+0

aab

O=D1F«o,0),0) - (Su, 5¢ab)= o

PNV  SA AL
D(H—z) 2(1 2>+2a

¢*+ 3kd® + 4Dba

7 Hoérmander ellipticity of the system for points not at the boundary follows from usual ellipticity.
That is one considers for each one of these points the constant coefficients differential system on
R? obtained by defining its coefficients as the value of those of the principal part of the system at
that point. One then shows that there is no bounded solution to the constant coefficients system of
the form u,(x)= C,exp(ik;x’) with some k;=0. For points at the boundary one considers for each
one of them the constant coefficients differential system on *IR3, obtained by defining its
coefficients as the value of those of the principal part of the operators at that point (now taking into
account the boundary operators!). One then shows that there is no bounded solution to it of the
form u;=C, exp(ik}ﬁ’)w(t), with some Ej=c=0, where 1 is the coordinate defining *R3 as 1 <0, and
the %/ are normal coordinates to ©
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Using the first and third lines of the above equation we get

0= dud oudV,=|VouVoudv,.
5 5

Therefore ou = cte, but the constant functions are notin Hs, _ 3,,(S) and so éu=0.
Similarly the trace of the second line, and the fourth line imply e,,6¢*® =0, and so
6+1=0. Thus the last two lines become,

1

3 k A 3 01
ip2._ 22 R._ by 2 A pb_
2D’C 4k7: 5t 0, ¢>+2kd) 2D‘C 0.

Using these two equations we now obtain,

0= 060,00 dV.= [ V.50aV 3¢ dV, + (3 kb e 1 DaDee '—‘12) v,
s 5 ss\2 k 4
Since k>0 the right-hand side is positive definite, and so we conclude 6¢*®=0
which asserts injectivity.

Second we prove surjectivity. Note that D, Fq o) o) (0u, 6¢™) satisfies the
hypothesis of the Main Elliptic Theorem of the Appendix, (in particular
Hormander ellipticity), thus it has an index, and it only depends on the principal
parts of the operators. We now prove that this index vanishes. This together with
the above injectivity result implies that the co-dimension of the range is zero, and
so surjectivity. To find the index we consider a family of nested spheres (with
respect to the flat metric e,,) and decompose as before 4,5¢* into equations for 7,
o, §°, and 6°°, now defined for the whole family of spheres. Since the index is an
invariant — it only depends on the principal part of the equations — one can
continuously distort the equations without changing it. We distort them by setting
to zero k, the value of the scalar curvature of the spheres, in several places where it
appears in such a way as to decouple the equations.® It is easy to show then that the
resulting map, which consists of several decoupled Laplacians is an isomorphism,
and therefore the vanishing of its index. []

We now study regularity for the solutions whose existence has been asserted.

Regularity Lemma. Let S’ be strictly contained in S. Then (u, $**)e C“(S’), and
therefore (u, g,,) € C°(S’). Furthermore there exists an analytic conformal factor, Q
approaching zero asymptotically as r* such that (i, §,;)=(Q~ ?u, Q*g,,) can be
extended analytically to the conformally completed space, that is when the point at
infinity is added to S'.

Proof. By considering some of the u’s and ¢°®’s in the expressions for the operators
E(u, ¢°%), and E*®(u, ¢*) as coefficients we arrive to a coupled, linear elliptic system
for the remaining u’s and ¢s. If (u, ¢**) € H, _3,4(S’) then such system approaches
A, with differentiability s, and rate — 1. Furthermore since Ci =0 we can apply the
Regularity Theorem of the Appendix to conclude that (u, ¢™)e H,, y _3/4(S).
Starting with s =3 and iterating the procedure we conclude (u, ¢**) € Hy, _5,4(S") for

8 One is not deforming the spheres into planes, which would result in a discontinuous distortion of
the Laplacian, but rather setting to zero some terms not in the principal parts of the differential
operators
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any s, and so (u, ") e H, _ 3, CC34—(S"), £>0. Local analyticity follows now
from this result and Morrey’s theorem [4, 5]. Analyticity at infinity follows from
the above results and the work of Beig and Simon [10]. Although Beig and Simon
assumed a faster decay at infinity than the one we have so far obtained here it is not
difficult to see that their results are still valid assuming this slower decay.
Alternatively one can, by writing the reduced equations as,

A= F(u, Vu, §, V.9, V.V,0%),
Ae¢ab=Fab(u’ ch5 ¢ef’ ‘7c¢2fa Vch(j)ef) >

by using the decay estimates obtained see that (F, F**)e C%),_,, and by applying
the Asymptotic Behaviour Theorem of the Appendix, conclude that (1, $**) do in
fact decay as it was assumed by Beig and Simon. [

This completes the proof of the Main Theorem.

Discussion

We have asserted the existence and uniqueness of solutions to the stationary
vacuum Einstein equations, when a sufficiently small — with respect to a Sobolev
norm — complex function, #, on a sphere is given. Thus the freedom on the
boundary data is the same as the one available from a multipole moment
expansion at infinity. It is clear that each 4 giving rise to a solution determines a
unique multipole set. Does there exist a norm on the multipole set such that each
small enough multipole set gives rise to a unique solution to the stationary
equations and thus determines a unique 47

One would expect that it would be possible to assert existence not only for
solutions close to Minkowski space-time but also for those close to Schwarzschild
space-times of arbitrary mass. This is indeed the case, since by applying a constant
conformal transformation to any of our solutions with nonvanishing mass we
obtain solutions with arbitrarily large mass®. This corresponds to letting the
sphere 0S get bigger and bigger, i.e. having smaller and smaller constant curvature,
while keeping the same 4.

Along the same line as above it should be possible to establish existence for the
interior problem, namely when S is taken to be a ball, or the space within two
concentric spheres. This should be relevant in order to perform an analysis similar
to the one in [14], but for quantum cosmologies.

Acknowledgement. 1 thank Bernd Schmidt for calling my attention to the problem here treated,
and for several discussions and ideas, and the referee for pointing out several places of the
manuscript needing clarification or correction.

Appendix

Here we list several definitions and theorems used in this work, which although
known are very difficult to find in the literature.

° I thank Bernd Schmidt for this argument
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Definition (Bartnik [17])'°. A linear elliptic operator in an n dimensional

g, and to be

. . ny ...
asymptotic to, 4,, for some flat metric e, <at rate t> — §>, if it can be expressed as,

asymptotically flat manifold is said to have differentiability, s>

P(u)= AV, V,u;+ BIVu;+ Clu;,

with V, the covariant derivative associated to e,,, and 4/*°, B, and C! tensor fields
satisfying,

A4 —He™|s, 4+ I BPlls—1,r41+ [ Cllls= 2,042 < 00.

Note that the Sobolev imbedding theorems imply that 4% is Holder

continuous, and | 4% — [e*®| = o(r 7) [15]. For this work it is enough to consider
the case 7= —1.

Main Elliptic Theorem. Let u;— Plu;,i,j, =1, ..., N be an operator and asymptotic to
A,, at rate —1, on S=R*—B, and let u;»B®u, i,jk=1,...,N be boundary
operators on 0S. Then if the coefficients of the whole system are smooth and the
whole system is elliptic in the sense of Hormander [20,21] we have;

i) The map

N N N
(P, B): 1] H,ol8)= [ Hy-2,6+28) % 11 Hs-2-m(05),

j=
fors>2,6+p+1, peZ,and where my denotes the order of B®, is Fredholm. That is,
dim Kernel < oo, co-dim Range < 0, and i = dim Ker(P, B) —co-dim Range(P, B) is
an invariant.

ii) For any ue H 48),

N
”“"KCI'(P’B)“s,a,séC{Ilp(u)||s—2,a+2,s+kzl HB”"(u)||s-1/z—mk,as},

where C depends only on (P, B), and
||u——Ker(P, B)||s,6,S= lnf{ ||u— w”s,(S,S: WE KCI'(P, B)} .
iii) Range(P, B)* CC*(S).
Sketch of Proof. To prove the above theorem we follow Bartnik’s proof of
Proposition 1.11 in [17] which establishes a similar result but for manifolds
without boundaries. We depart from that proof in the following two points:
i) To prove the analog to Proposition 1.6 in [17] instead of starting with the

usual local Girding estimate, we start with the following one which reaches the
boundary: There exists C >0 such that for all ue H(S), dSCSCS, compact,

N
llulls,s=C { ||P(u)“s—2,.§+k;1 IBO@W)s-1/2 -mk,as} :

10 Note the different convention for the Sobolev indices in [17]
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This estimate can be deduced following the steps on the proof of Lemma 10.5.1 in
[21] where the above inequality is proven for the case N=1.

ii) To prove the analog to Theorem 1.10 in [17] we take the patch function
equal to 1 in a compact neighborhood of S containing 4S. [

Remark. Partial proofs of the above theorem can be found in [15, 24-27]. We
suspect that the theorem still remains valid if the smoothness condition on the

coefficients is relaxed, that is if only certain differentiability, s’ > > where n=dimS§,
is required for P, and that

B =D, + 7, + F,

. k)jab K)jb K)j k)jab
with D{e €Hy _y)3,05 E®/ €Hy 112,08 F§ )JeHs'—mk—uz,as, and D{iep,
=E(k)jbnb=0

: .

Regularity Theorem (Choquet-Bruhat and Christodoulou [15]). Let P be an elliptic
operator of differentiability s>3, asymptotic to 4, at rate —1, and with Ci=0,
defined in S=IR*— B,. Then for any S'CS, S'ndS =0, there exists C >0 such that if
ueH, 48), and P(u)e Hy _, 5. ,(S), s'<s+1, then,

lully 55 < CUIPW@ly - 2,542,5 + ltllo, 5,5} -

The proof of the above theorem is an immediate consequence of the local
elliptic theory, see for example [28], and Theorem 6.1 in [15].

Asymptotic Behaviour Theorem (Meyers [29], Beig and Simon [9]). Let
ue CP(R?), >0, such that Au:=feC> (R>), geN, q=3. Then,

q—3

L oF
u=7y ) erl Y;m(S o)+,

1=0 m=—

where ve C, , (IR).

Proof. Using Green’s function we have,

/&)
" x—x?
To estimate v one uses the following inequality valid for all pe N [30, 31],
1 p_1 2p+1
Y 0P(E) S o,

V1t —20E 150 = V/1+ 02 —20¢

and the fact that the n'® derivative of u satisfies the Poisson equation with a source
decaying as r 47 "7% [
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