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In the proof of Lemma 3.2, [1], we proved that if for all l/e<^> of the form
U=Σλ*Uί> ^ G < * > we have £ ^ = 1 , then tφC*{W-i). This proof is wrong

e
because not all positive elements AeC*(W)+ can be written as A=B*B with
B=Σ λjUs, though the set of such elements is of course dense in C*(^) + . Hence
the proven inequality ω(B*B)έiO is not sufficient to ensure that ω is positive, so it
does not follow that ω extends from the *-algebra generated by °U to C*(%). In fact
we know that in general this part of Lemma 3.2 is wrong:
Assertion. There is no general condition on the *-algebra generated by a set of
constraints % which is equivalent to \eC*{°U — i).

Proof. We exhibit a ̂ -algebra Jf containing a group of unitaries °U, and complete it
in two different C*-norms. In one of the resulting C*-algebras we will have
i e C * ( Φ - t ) , and in the other iφC*(*lί-t).

Let G be a discrete group acting on a unital C*-algebra #~ with the action
α: G h-» Aut#\ Construct # : = M(Ga x ίF) which contains J^ and a faithful unitary
representation (7:Gh^#w of G which implements α, i.e. ag = AdUg. So UG is a
group.

Lemma ί. UGC& is a linearly independent set.

Proof {Ugf){r): = u.g{f(g-λr))\l&reG, Ίfee\G,<F\ where {\G^)\ =

l <°oj. Assume UG is linearly dependent, i.e.
j

3/?keC\0, gkeG all different and N<oo such that X βkUgk = 0. Hence

V / G / ^ G , ^ ) we have £ βkocgk(f{gΰ ιr)) = 0. Choose /(r): = t<5(r,e). Then

1r,e) = 0 VreG, so for r = gk this implies βk = 0, which contradicts our
fc= 1

assumption.

Take ^^ΌQ for the chosen constraint set, let the *-algebra Jf be generated by
C/G, hence it is the linear space generated by UG. Let the C*-algebra stf be the C*-
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closure of JΓ in # , then we give below a choice of J^, G, and α for which
t G C*(L/G - i) in j / . First note that if i £ C*(t/G - i), then 3ω e S(#) (= the set of
states on # ) , for which ω(UG) = 1, and since t e J^, ω fJ^ is a nontrivial G-invariant
state on #". Choose #" = C(§1), and G the discrete group generated in Aut#~ by
an irrational rotation of S1, and by a non-Lebesgue measure preserving
homeomorphism of S\ which always exists.

Lemma 2. There are no G-invariant states on #", and hence 1ίeC*(UG — ί).

By the Riesz representation theorem, to each ωeS(J^) corresponds a
unique Borel measure on S1. By [2, Theorem 5, p. 82], for an irrational rotation
the Lebesgue measure is the only invariant Borel measure. Since the other
generating element of G does not preserve the Lebesgue measure, there are no
invariant measures for G, and hence no G-invariant states on C(Sί). •

We now construct another C*-closure $ of JΓ such that iφ C*(UG — i) in J*.
Since by Lemma 1, UG is linearly independent, each AeJf has a unique expression

^ = Σ λkC/gkϊAfc6€\0,gkΦgJ.iffcΦ;ίN<cx).Sodefinea*-normM!|1:= Σ \h\
k = 1 fc= I

on X and complete it to a Banach *-algebra Jfv Then let JΓ2 be the enveloping C*-
algebraof JflJwithC*-norm || || 2, and J* is the || ||2-closureof Jf in JΓ2. Since l/G

is linearly independent and generates JΓ, a linear functional on Jf is uniquely
specified by its values on UG. Specify ω by ω(UG) = \. Consider the set

ίβ : = {B e J^\B = Λ^Λ, ΛE J^}, thQnϊov B e ^, B = Λ^A with A= Σ λkUgk,wc find

so ω is positive on 9, and

ω
k

hence ω is continuous with relation to || || 1? hence can be extended as a continuous
linear functional to Jfj. Now & is dense in

because iϊAeJΓ^ is the limit of {An} C JΓ, then A*A is the limit of {A*An} C ̂  in the
norm || || 1? by simple manipulations. Hence since ω is positive on ^ , its extension
is positive on (JΓJ + , so ω is a state on the Banach *-algebra X l 5 hence by Dixmier
[3] 2.7.5 has an extension as a state to the enveloping algebra C/f2. But ω(UG) = 1,
hence 11 ^C*(C7G-H) in Ĵ . Π

Noίe. Hence the question of whether a constraint set is first or second class in
general depends on the C*-norm of the field algebra. Clearly there are some
algebraic conditions which are sufficient for i e C * ( ^ — i), e.g. the first part of
Lemma 3.2 [1].

The subsequent material in [1] is unaffected by the error in Lemma 3.2 pointed
out in this erratum.
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