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Abstract. A proof is given of Witten's conjectures for the rigidity of the index of
the Dirac-Ramond operator on the loop space of a spin manifold which admits
an S1 symmetry.

1. Introduction

When M is a connected, compact, oriented, even dimensional, spin Riemannian
manifold, one can define the Dirac operator, d, to act on the space of smooth
sections of the bundle of complex spinors, S{T*M)^M. The index of this operator
can be defined by using Clifford multiplication on S(T*M) by (ί)n(n+1)/2 ω, with ω
being the image in the Clifford algebra of the volume form on M and with
77 = dim(M). This defines a covariantly constant involution, y, of S(T*M). As an
involution of C0C(S'(T*M)), y anti-commutes with the Dirac operator. Then,

Ind(3, y) = dim(ker(δ|ker(7 _,})) - dim(ker(d|ker(y +ί))). (1.1)

Now, suppose that M admits an isometric action of S1. Here, the index of d has
a refinement which is the S1 equivariant index. That is, use the S1 action to
decompose CCC(S{T*M)) = ©^(S^M), k) where the double cover of S1 acts on
C°°(S(T*M),/c) as multiplication by λk; λeS1. As d and y commute with the S1

action, they both preserve C^SCΓ^M), k) and with this understood, the S1-
equivariant index of d is, by definition, the set of integers, {Ind(<5, y, fc)}, which is
obtained by replacing keφ±l)nC°°(S(T*M)) in Eq. (1.1) with ker(y±l)

The S ̂ equivariant index can be generalized in the usual way by twisting the
dirac operator with a vector bundle over M. Thus, when V-+M is a complex vector
bundle, one can define the index of the Dirac operator on S{T*M)® V, Ind(<9, V, y),
by replacing ker(y±l)cCQ 0(S(T*M)) with ker(y±l)cC°°(S(T*M)® F). And, if a
finite cover of the S1 action on M has a lift to V, one can consider the Sι equivariant
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index oftheDirac operator on S(T*M)®V. This is a set of integers {Ind(3, Ky,k)}
which is defined by replacing ker{y±ί)cCCG(S{T*M)) in Eq. (1.1) with ker(y±l)

Atiyah and Hirzebruch [A-H] proved that Ind(<5, y,k) = O for all k when Sι acts
non-trivially on a connected spin manifold. Witten [Wl], considering the Rarita-
Sch winger operator, asked whether for fcφO, one could prove that
Ind(δ, T*M, y, fc) = 0. Landweber and Stong [L-S] proved that
Ind(δ, T*M, 7, fc) = 0 for all k when the S^-action is non-trivial and is assumed to be
of odd type and to be semi-free. [Odd type means that the action does not lift to an
action on S(T*M); and being semi-free means that the stabilizer of a point is Sι or
is 1.]

In fact, Landweber and Stong considered the following formal power series in a
variable q with values in Vect(M):

FD(q;T*M)= ® Sym(qm - T*M) ® Λ*(qm T*M), (1.2)
0<meven 0<modd

where Sym(α E)= 1 +a E + a2 Sym2(£) + ..., and where Λ*(a E)=l+a E
+ a2 Λ2(E) + .... Landweber and Stong [L-S] proved that when the S1 action on
M is of odd type and semi-free, then

Ind{d,FD(q;T*M),y,k) = O for fcφO. (1.3)

Later, Ochanine [Ol] proved Eq. (1.3) for all semi-free actions. Ochanine has also
proved Eq. (1.3) for certain kinds of non-semi-free actions [O2].

Witten recognized the power series in Eq. (1.2) as coming from physic's string
theory [W2] (see also [W3]). On the basis of heuristic arguments, Witten proposed
that for any Sι action, lnd(d,FD(q; T*M), γ, k)1 = 0 for kφ0. Furthermore, Witten
suggested that a similar assertion should hold in greater generality. He considered
replacing Γ*M in Eq. (1.3) with a real, oriented vector bundle V^M to which the
S1 action has a lift.

Two additional requirements on V were made; their statement requires a
digression: Introduce the universal Sι bundle, S00, the unit sphere in a complex,
separable Hubert space. The classifying space for S1 is S^/S1 = BS1 = (CP00. If Sι

acts on a manifold M, then one can form the quotient S ° ° x s i M a s a fiber bundle
with fiber M over (DP00.

If V-+M is a vector bundle to which the Sι action lifts, then one can construct
the vector bundle Sa) x^iF-^ .S00 x s i M . The characteristic classes of S °° x s i F i n t h e
cohomology of S^ xsιM are called the S^equivariant characteristic classes of V.
Of particular interest are the 2n d Stiefel-Whitney class, w2, and 1/2 of the 1st

Pontrjagin class, 1/2 pi.
Here, a word of explanation is in order. Let M be a manifold, and let V-+ M be a

real, oriented vector bundle of dimension d>2 with fiber metric. The principal
SO(d) bundle of oriented, orthonormal frames in Fis the pull-back of the universal
SO(d) principal bundle over BSO(d) by a map f:M-+BSO(d). The characteristic
classes w2{V) and pγ{V) are the pull-backs by / of the universal w2EH2(BS0(d);
TLβ Έ) and the universal pγeH\BSO{dγ Z).

For d>2, introduce the Lie group Spin(d). Spin(d) is the simply connected,
double cover of SO(d); for d>2, one has ̂ O(^) = Spin(J)/Center(Spin(ί/)). The
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cohomology of BSpin(d) has H4(BSpin(d);Z)&Z with generator qv The class
p1 e H4{BS0(d); Έ) pulls up to H4(B Spin(d); Έ) as 2 qv

If V-+X is a real, oriented vector bundle with w2(F) = 0, then the classifying
map / lifts to a map / : X-^B Spin(J). For such bundles V, the characteristic class,
l/2 pί(V)eH4(X;Z) is defined to be f*qv The class f*q^ is independent of the
choice of the lift of / (Dan Freed showed the author a proof).

Witten considered real, oriented vector bundles F—>M for which

w2(Scc x (V-T*M)\=0eH2 is*" xM;Z/(2Z)

\-pγ AS00 x {V-T*MJ\ =0eH*(S*' x M Z
sl ) \ sl

And, under these conditions, Witten investigated the following formal power series
in the complex X-theory of M:

FD(q; V)= (x) Sym(qm Γ*M) (x) Λ*(qm V),
0<meven 0<modd

Fs(q; V)~S(Γ*M) ® §ym{qm T*M) ® A\qm F),
0<meven 0 <m even . .

FE(q; V) = (S + (T*M)-S-(T*M)) ® Sym(qM T*M)
0 <τn even

x ® Λ\-qm V),
0 < meven

where S±(Γ*M) = (y±l) S(Γ*M), and the difference, (5 + (T*M)-S_(T*M)), is
defined in the real, oriented K-theory of M. in [W2] and [W3], heuristic
arguments are given to justify the conjecture that when Eq. (1.4) holds,
Inά(d,F^iq; V),y,k) = 0 for all feφO.

In [B-T], Raoul Bott and the author proved Witten's conjectures using ideas
from elliptic function theory. The proof in [B-T] was based on a first proof by the
author which was more closely tied to the original loop space arguments of Witten.
It is the purpose of this article to provide an account of that first proof of Witten's
assertions.

The precise results are stated in Theorem 1.3 below. To state the theorem, a
second digression is required: Since TLj{nΈ) is a subgroup of S1, the universal
bundle for TLjinE) can be taken to be S00; with the classifying space BZ/(nZ)
= S°7(Z/(wZ)). If S1 acts on M, so does TLj(nTL\ and one can construct S00 x z / ( n Z )M.
For a vector bundle V-+M on which S1 acts, one can construct
4 3 X 2/(«Z) V ~ > ι 3 X ΈI{nΈ)1Vi '

If M'CM is fixed under a subgroup ΓQS\ then S00 xΓM' = J3Γx M'.

Definition /./. Let M be a compact, oriented spin manifold on which S1 acts. Let
V-^M be a real, oriented vector bundle to which the S1 action has a lift. Require
that w2(F) = 0. Let ΓQS1 be a subgroup, and let M(Γ)cM denote the fixed point
set of Γ. The vector bundle V will be called Γ-compatible with T*M if the following
is true:

(1) The restriction to H2{BΓxM(Γ); Z/(2Z)) of ^(S™ x Γ ( F - T*M)) van-
ishes. (2) The restriction to H4(BΓ x M(Γ); Έ) of 1/2 p ^ xΓ(V- T*M)) is the
pull back from M(Γ) of 1/2 Pl(V- T*M)eH4(M(Γ); Έ).
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The vector bundle V will be called strongly compatible with T*M if it is
Γ-compatible for all subgroups ΓQS1.

Lemma 1.2. Let Mbea compact, oriented spin manifold on which S1 acts. Let V-^M
be a real, oriented vector bundle to which the S1 action has a lift. Assume that
w2(F) = 0. A sufficient condition for V to be strongly compatible with T*M is for
Eq.(\Λ)tohold.

Proof of Lemma 1.2. There is a natural map π:S°° x ^ ^ M - ^ S 0 0 x s i M , and it is
not hard to check that S00 X z ^ K ^ π * ^ 0 0 x s i V).

The purpose of this article is to prove the following theorem:

Theorem 1.3. Let M be a compact, oriented spin manifold on which S1 acts. Let
V-+M be a real, oriented vector bundle to which the Sι action has a lift. Require that
w2(K) = 0. Require that V be strongly Sι-compatible with T*M in the sense of
Definition 1.1. For * = D,S or E, let F^(q; V) be as defined in Eq. (1.5). Then
lnά(d,F^{q\ V), y,k) = O for all /cφO.

The conditions in the theorem are not necessarily optimal, see
Proposition 10.1.

The proof of Theorem 1.3 is strongly motivated by Witten's heuristic
arguments in [W2, W3]. Indeed, the proof amounts to finding a suitable context
for Witten's ideas. Here, the following observations are in order: Witten's
arguments arise in consideration of a formal "Dirac operator" on the space of free
loops on M, 5£M. And thus, one might conjecture that such an operator must be
constructed to obtain the proof of Theorem 1.3.

However, the manipulations in [W2] take place, for the most part, on the
normal bundle, / M , to the embedding of M into ί£M as the space of constant
loops. And, it turns out that a Dirac operator on the normal bundle to M c £έ*M is
easy to construct, and is all that Theorem 1.3 requires.

The normal bundle to M is isomorphic to the underyling real vector bundle of
the infinite dimensional complex vector bundle

/ M Ξ © T*M®<£. (1.6)

(The topology on JίM is the direct limit topology, see the Appendix.)
The Dirac operator, Dt, on JίM is constructed in Sect. 3. (See also [W3].) It can

be thought of as the usual Dirac operator on M, but twisted with an infinite
dimensional vector bundle over M. Alternately, one can consider it as a countable
set of "standard" Dirac operators,

{d + AJh): C»(S{T*M)®RJh))->Ca>(S(T*M)®RJίh))},

indexed by integers m and h. The vector bundle Rm(h)-+M is a finite dimensional
vector bundle which is constructed out of T*M by taking various tensor products.
Here, Am(h) is a section of Enά(Rm(h)) which is naturally constructed from exterior
and interior product of covectors in T*M.

In Sect. 4, this operator is generalized by twisting with various vector bundles
over the normal bundle to M in S£M. These vector bundles are constructed out of
tensor products of exterior products of V. The end result is still a countable set of
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"standard" Dirac operators. Particular generalizations are used in the proof of
Theorem 1.3; these are discussed in Sect. 5.

The Fredholm properties of Dt are established by considering it as the
countable set of "standard" Dirac operators. This makes the analysis completely
classical. However, when manipulating Dv it is most efficient to consider it as an
honest operator on JίM\ indeed, to do otherwise would waste the great
simplifications obtained from the super string - theoretic formalism. But, it should
be stressed that all of the manipulations are ultimately justified by returning to the
representation of Dt as a countable set of standard operators on a compact
manifold.

The Fredholm properties of the Dirac operator on the normal bundle to M are
derived in a general setting in a separate Appendix. The main conclusions are the
following: There is a canonical circle action on i^M (as opposed to the geometric
circle action which is induced by the S1 action on M) which acts on ifM via
translation of the domain S1. The decomposition in Eq. (1.6) of JίM gives the
character decomposition for this action. The double cover of the canonical S1

action lifts to an action on the domain of Dt which commutes with Dt. The domain
of the Dt decomposes into character subspaces (with integral and half integral
weights) under the canonical S1 action, and the restriction of Dt to each character
subspace is Fredholm.

Given the vector bundle V, there are two relevant choices for Dt which differ in
how they are twisted over JfM. These are unprimed or primed in this article; in the
physics literature, they give the Ramond and the Neveu-Schwarz versions of the
supercharge for the right movers in the underlying string theory. For each Dirac
operator, there are two involutions of the domain with which to define the index.
The four different constructions are described in Sect. 5.

The two versions of Dt each have two indices: Let qeS1. For integer or half
integer ra<0, both versions of Dt and both involutions have zero index on the
character qm subspace of their domain. On the character qm (m ̂  0) subspace of the
domain, the index of Dt equals the q2m component of Ind(3, Fs(q, V), y) or
Ind(<5, FE(q, F), y) for the two unprimed indices. On the character qm (m ̂  0)
subspace of the domain, the index of Dt equals the q2m component of
lnd(3, FD(q, V),y) or Ind(d, FD( — q, V),y) for the two primed indices.

The preceding assertions hold in some generality. In the unprimed case, the
assertions hold on any oriented, compact Riemannian manifold and with any real,
oriented vector bundle V as long as w2(V) =w2(T*M). In the primed case, the
assertions only require that w2(Γ*M) = 0. No conditions on the Pontrjagin classes
of V are required for the constructions, nor for the assertions in the last paragraph
to hold. (See Proposition 5.4.)

When Sι acts on M, the construction, being functorial, yields an Sι equivariant
theory. For a standard Dirac operator with S1 equivariance, the Atiyah-Bott
[A-B] generalizations of the Lefschetz fixed point formula allow for the index to be
calculated from the geometric data at the components of the fixed point set of the
action. Since the operator Dt decomposes into a countable set of standard Dirac
operators, the Atiyah-Bott formula can be applied to Dv

It is convenient to use an interpretation of the Atiyah-Bott formula which is
due to Witten [Wl]. Witten views the contribution from each component of the
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fixed point set as coming from the S1 equivariant index of a suitable Dirac operator
which is defined on the normal bundle to the fixed point set. This construction of
Witten is the finite dimensional analog of the Dirac operator Dt on JrM. Because
the fixed point formula is crucial to the proof of Theorem 1.3, and because Witten's
version gives a model for the later constructions, this version is presented in the
next section as a warm up for the later constructions.

One by one, localize the countable set of operators which make up Dt. Using
Witten's interpretation of the Atiyah-Bott formula, the result is a Dirac operator,
β, defined on the normal bundle, JV'N, in if M to the normal bundle, N C M to each
component, ΣcM, of the fixed point set of the S1 action. Alternately, one may think
of JίN as an infinite dimensional vector bundle over Σ, in which case Q becomes a
countable set of "standard" Dirac operators on Σ. The Atiyah-Bott fixed point
formula for Dt in terms of the operator Q is described in Sect. 6. To summarize: Let
{£[*']} label the connected components of the fixed point set of the S1 action. Each
Σ[ι] has its corresponding operator β[f], and

X index(β[i]) = index(Df) (1.7)
Σ[i]

holds as an equality of S1 x S1 equivariant indices. The first S1 is the canonical S1

action on the loop space, and the second S1 is the geometric S1 action from M.
Since the geometric S1 acts on M by isometries, the normal bundle N to a

component of the fixed point set is naturally a complex vector bundle (this is
described in the next section.) It decomposes as ®0<υN(υ), with each N(Ό)-^Σ a
complex vector bundle on which the geometric Sι acts as multiplication by ξΌ,
ξeS1.

As an isomorphism of real bundles over Σ, one has

JTN*( ® {T*Σ®<£)\® ®N(v). (1.8)

Equation (1.8) gives a decomposition of JίN into character subspaces for the two
commuting S1-actions: The canonical Sι action, sends qeS1 to qn on the nih copy
of N{Ό); and the geometric S1 sends ξ e S1 to ξΌ on the nth copy of N(Ό). Let P and K
denote the respective generators; they define automorphisms of ΛrM.

Equation (1.8) indicates that JίN possesses a non-trivial TL subgroup of bundle
automorphisms. The generator, 4, acts by sending the nιh copy of JV(υ) to the
(tt + i))th copy of N(Ό). The following commutation rules are evident:

tPt-^P + K, ιK^λ=K. (1.9)

The import of this group of automorphisms is suggested by the arguments of
Witten in [W2, W3]. Interpreting Witten, one should ask whether * lifts to define
an automorphism of the domain of the operator Q on JV^N.

The behavior of # vis-a-vis the operator Q is considered in Sect. 7. There is an
obstruction to lifting * to the domain of β, it is a component of 1/2 -p^S00

x s i(F— T*M)). The vanishing of this characteristic class insures the lift. Given a
lift, one computes

(1.10)

where Jf is Clifford multiplication on the domain of Q by K.
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As previously remarked, only upon restriction to an eigenspace of P does Dt

become Fredholm. This consideration makes the lift of commutation relations in
Eq. (1.9) a crucial issue. But, there is an obstruction to the lifting; the second one
lifts automatically, but the first one lifts if and only if a different component of
1/2 ^ ( S 0 0 x s i ( F ~ T*M)) vanishes.

Since an index of Q is the ultimate goal, it is important to consider how i
behaves with respect to an automorphism, /, of the domain of Q which defines the
index. For the automorphisms in question,

ίΛ-^ί-iyV (1.11)

defines μe {0,1}. The value of μ is computable from the geometric data at the fixed
point set.

Equations (1.9-11) allow, in principle, for the comparison of the index of Q on
the P = m eigenspace of its domain with + the index of Q on the P = mJrk
eigenspace. Indeed, were there a Fredholm deformation of Q + Jf to Q, such would
follow automatically.

Each Σ\_ί] has its corresponding operator β[i], and the fixed point formula
equates the index of Dt on the P = m, K = k subspace of its domain with the sum,
over f, of the index of Q[ι] on the P = m, K = k subspace of β[/]'s domain.

Each component Σ[ι] has an "anomaly" (— l)μiί\ with μ[z] defined for Σ\_ί] by
Eq. (1.11). If M is a spin manifold and if w2(V) = 0, then the anomaly is independent
of the label /. With the anomaly independent of i, and with a Fredholm
deformation of Q + Jf to Q, Eq. (1.7) implies an equality up to sign between the
index of Dt on the P = m, K = k subspace of its domain with the index of Dt on the
P = m + /c, K = k subspace.

Such an equality is the crux of Witten's argument in [W2, W3]. With it,
Theorem 1.3 follows automatically: As previously mentioned, the index of Dt

vanishes on the P < 0 subspace of its domain.
Buried under the rug here is the assertion that there exists a Fredholm

deformation of Q + Jf to Q. Technically this assertion is false. Since JΓ is a lower
order term with respect to Q, one might be tempted to consider it as a compact
perturbation to Q. However, it is only on compact manifolds that a lower order
term is automatically irrelevant. On a non-compact manifold (for example JίN\
symbol degeneracy can occur in spatial directions.

As a function of a e [0,1], the operator Q + α Jf fails to be Fredholm at α e Ω
= {re[0,1] :r υeZ for those 0<ΌEΈ which have JV(υ)=t=0}. Given α o eΩ, let no

denote the smallest, positive integer for which α0 noeΈ. The Fredholm failure of
Q + (x0 Jf is due to the "delocalization" of the operator along the submanifold,
M(w0), of M which is fixed by the Έ/(n0Έ) subgroup of S1.

Provided that the conditions in Theorem 1.3 hold, there exists an operator Dnot

on J^M(n0) which localizes under the S1 action on M(n0) to Q -f α0 Jf. This means
that the jump in the index of Q + α Jf as α crosses α0 is compensated by jumps at
the other components of the fixed point set of the S1 action. In particular, the
compensation is due to jumps at those components which are contained in the
same component of M(n0) as Σ. Thus, under Theorem 1.3's assumptions,

+ α X[i]) (1.12)
Σ[i]

is independent of α.
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This last assertion is proved for semi-free Sι actions in Sect. 8, and for general
S1 actions in Sect. 9. The proof of Theorem 1.3 is assembled in Sect. 10.

Sections 2-10 of this paper are devoted to a self-contained proof of
Theorem 1.3.

2. Localization

Part 1. The Dirac Operator

Let M be a compact, oriented, even dimensional Riemannian manifold and
suppose that the group S1 acts on M as a group of isometries. Then, the S1 action is
generated by a vector, K^eC^fTM); a vector field which obeys the Killing
equation. With respect to a local coordinate system on a neighborhood of a point
in M, write KM = Kada, write the metric as g = gβσdxβ(S)dxσ; and then the Killing
equation is

where Va is the Riemannian metric's covariant derivative in the direction of da.
When M is an even dimensional spin manifold, the Dirac operator is defined on

smooth sections of the bundle of spinors, S = S(T*M)-^M. This is a complex vector
bundle over M of complex dimension 2P with p = dim(M)/2. (See [A-B-S].) In local
coordinates, the Dirac operator is

dQ = dx* VΛ. (2.2)

Here, Clifford multiplication by the basis covectors {dxa} in T*M obeys dx* dxβ

+ dxβ 'dxa= — 2 gaβ. Since Clifford multiplication by a covector is an anti-
hermitian endomorphism of S, the formal L2-adjoint of d0, δ§, is equal to <50.

Suppose y is a fiber preserving, covariantly constant involution of S which anti-
commutes with Clifford multiplication by the odd elements of the Clifford algebra.
The involution has eigenvalues ± 1. Define the index of d0 to be

Ind(<30, y) = dim ker(<30|ker(y _ 1}) - dim ker(δo | k e r ( y +1 >). (2.3)

For t elR, Witten [Wl] introduces K as the 1-form which is metrically dual to
the Killing vector K, and he then considers the modified operator

dt = d0 + i t'K, (2.4)

on C°°(5) where K acts by Clifford multiplication. Since y anticommutes with δt,
the index of dt is well defined, and is independent of ί.

Define

i-K=Vκ-i'dK (2.5)

as a first order differential operator on CG0(5). (Here, Vκ is covariant differentiation
along KM and the 2-form dK acts by Clifford multiplication.) When the S1 action
lifts to an Sι action on 5, this first order operator is the generator. In any case, K is
defined, symmetric and

[K,3 f] = 0. (2.6)
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Equation (2.6) implies that the eίgenspaces of dt can be decomposed into
subspaces on which K acts by multiplication. Let CCO(»S5 k) denote the subspace of
the space of smooth sections of S on which K acts with eigenvalue k. Then L2(S)
= ®kL

2{S,k\ where L2(S,k) is the L2-completion of C°°(S,/c).
Since dt commutes with K, it maps C°°(S, k) into itself. Let dtk denote the

restriction of dt to C°°(S,fc). Note that K commutes with the involution y. This
means that the integer

y) (2.7)

is well defined. Standard Fredholm theory implies that the left-hand side of
Eq. (2.7) is independent of t.

The Atiyah-Bott fixed point theorem [A-B] (see also [A-Se]) asserts that
lnd(d0, y, k) can be computed from geometric data at the fixed point set of the
S1-action. Witten observed that the fixed point theorem can be obtained naturally
by considering the large |ί| limit of the right-hand side of Eq. (2.7).

To obtain Witten's proof of the fixed point formula, one should consider the
Weitzenbock formula for df: Restricted to C°°(S,/c),

df = V*V + t2\KM\2-2kt + 0l + t i dK, (2.8)

where V*V is the trace Laplacian, 0ί is a curvature endomorphism and the two
form dK acts again by Clifford multiplication. (This is a calculation for the reader;
see the appendix of [F-U] for help.) As |ί|->oo, one expects that all eigenvalues of
the self-adjoint, non-negative operator df will tend to oo, except for a finite number
of small eigenvalues, whose corresponding eigenvectors will remain localized near
the fixed point set of the S1 action; near where KM = 0. When M is compact, and
finite dimensional, this occurs:

Proposition 2.1. Let M be a compact, oriented, spin Riemannian manifold on which
S1 acts isometrically. Let S->M denote the bundle of spinors on M. Suppose that a
finite cover of the S1 action on M lifts to an action on S. Fix an eigenvalue k of the
differential operator K in Eq. (2.5); and fix a real number t. For J R ^ 1, let N(R, t)
= {xeM:\KM\(x)>R/\t\1/2}. Suppose that φeC*(S,fc) and dtψ = μ ψ,with\μ\<tί/2.
At xeN(R,t),

\ιp\(x)^z(fc) exp(-c( fc) \t\1/2 • K d i s φ c , Σ ) 2 ) ,

where z and c are independent of t, R, and ψ.

Proof of Proposition 2.1. Let β be a cut off function on M which is zero if dist( , Σ)
>R/\t\1/2, and which is identically 1 if Dist( ,Σ)<JR/2 |ί | 1 / 2. Require that \dβ\
< 8 | ί | 1 / 2 / # . Then,

This last equation plus Eq. (2.8) imply that

I ! P ^ α i — y ^ ) - v ^ ) i ί £ - - ^ K l - ^ K ^ - l i ( i — > S ) - v ^ l i έ - ^ ^ - l ^ i ' C i ^ - 1 ^ 1 ) - i t v ^ i l l - - ( 2 . 1 0 )

Equation (2.10) implies that

\\ψ\\2

2. (2.11)
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Now, let f=\ψ\. Then / obeys

d*d(/2/2) + |d/|2 + ί2 - |1C|2 Z 2 - ^ |ί| (1 + |fc |)-/ 2 ^^ - |diS| | P ^ | + |PdiS| - M ,(2.12)

from which the proposition follows with the maximum principle and a suitable
comparison function.

Part 2. The Normal Bundle's Dίrac Operator

Witten's proof of the fixed point formula arises by using the localization assertion
of Proposition 2.1 to compare the operator dt with a suitable operator which is
defined on the normal bundle to the fixed point set of the S1 action.

To define this new operator, some preliminary observations are in order:
Recall that the fixed point set of the S1 action is a smooth submanifold ΣcM. Let
π: NΣ^>Σ denote the normal bundle to Σ. There exists ε > 0 and a diffeomorphism
of the ε-ball in NΣ with a neighborhood, O c M , of Σ. Let v denote a point in NΣ.
Then said diffeomorphism sends the point v to expπ(v)(v), where exp: TM-^M is the
exponential map. The diffeomorphism is equivariant with respect to the iS1 action
on M and on NΣC TM\Σ.

The vector KM vanishes on Σ, so on 0, KM has the following expansion:

2). (2.13)

Note, because KM is a Killing vector, VVKM defines a vector in NΣ. In fact, with
respect to the Riemannian metric, the assignment oίveNΣ to VVKM defines a non-
degenerate, skew-adjoint endomorphism, VKM, of NΣ which is covariantly
constant along Σ.

With this understood, it is natural to use VKM to define a complex structure on
i V ^ C . That is, NΣ®<EπN@N, where N^Σ is the subbundle of NΣ®<E which is
spanned at each point by vectors v for which

VυKM=-i ϋ v with ϋ>0. (2.14)

A priori, the set {υ > 0: — i υ is an eigenvalue of VKM on NΣ} is a set of dim NΣ

integers after counting multiplicity; these integers are called the "exponents" of the
S1-action at Σ. Note that when υ is an exponent at Σ, then Nυ = {veN: VVKM = —i
Ό v) is a well defined subbundle of JV, and N decomposes as

N= Θ NΌ. (2.15)

Since VKM is covariantly constant, the isomorphism NΣ®(E^NξBN and that in
Eq. (2.15) are both preserved by parallel transport.

Note that this complex structure orients the fiber of JV at each point x in Σ.
Together with an orientation of M, this defines an orientation of Σ (if Σ is an
isolated point, an orientation is just a sign, ± 1). This orientation will be implicity
assumed in what follows.

When M is spin, it is convenient to describe the spin bundle of M on the tubular
neighborhood 0 of Σ in the following way: Via the exponential map, pull the spin
bundle S{T*M) back to NΣ; this identifies it with the spin bundle S(T*NΣ).
Parallel transport along the normal geodesies to Σ constructs an isomorphism
between S(T*M)-+NΣ and the spin bundle π*{S(T*M)\Σ), where π:NΣ->Σ is the
projection. This isomorphism will be implicitly assumed.
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Let F r M denote the bundle of positively oriented, orthonormal frames in TM.
If rc = dimM, then FrM is a principal SO(n) bundle over M. Restricted to Σ, FrM\Σ

&FvΣ®PN; where FτΣ-+Σ is the principal SO(n — 2d) bundle of orthonormal
frames in TΣ; and where PN-^Σ is the principal U(d) bundle of unitary frames in
the (complex) vector bundle N-+Σ.

As M is spin, F r M lifts to a principal Spin(rc) bundle, Fr'M->M. The fact that
Fr M\Σ is spin means that the second Stieffel-Whitney class of TΣ(&NΣ is zero. Note
that w2 of a direct sum is the sum of the w2's from each summand when the
summands are oriented. Also, w2(Λ/Σ) = c1(./V) (mod 2). Here, c1 is the first Chern
class. Finally, cί(N) = cι(ΛdN), where AdN-+Σ is the determinant line bundle oϊN.

Thus, Σ inherits a spin structure from M if and only if ΛdN admits a square
root; that is, if and only if cί(AdN) = 0(mod2). In any case, a spinc-structure on Σ is
defined by the line bundle ΛdN*; one can construct the spin^ bundle, SΣ, from
T*Σ®(ΛdN*yK

Here, a digression concerning spinc-structures is in order. Let X be a smooth
manifold and let V-+X be a real, oriented 2r-dimensional vector bundle with fiber
metric. The bundle of positively oriented, orthonormal frames in V, FvV->X is a
principal SO(2 r) bundle over M. The second Stiefel-Whitney class, w2(F), is the
obstruction to the existence of a principal Spin(2 r) bundle, Fx'V-^X with the
property that F r F = F r F ' / { ± l } .

When w2(V) = 0, the spin representation, ρ, of Spin(2 r) on the complex vector
space A = Λ*((C) (see [A-B-S]) defines an associated vector bundle over X, the
bundle of spinors S(V) = Fv'{V) xQA-*X.

Suppose that w2(V) is the mod(2) reduction of an integral class. Then, there
exists a complex line bundle, L-^X whose first Chern class obeys c^L)^^)
= w2{V). When such a line bundle exists, a spinc-bundle from Vξ&L can be
constructed.

This construction starts with the observation that the bundle of positively
oriented, orthonormal frames in V®L which respect the splitting is a principal
SO(2-r)xU(l) bundle, Fr s (F0L)-+M. Introduce the Lie group Spinc(2r)
Ξ Spin(2 r)x{± 1 } Ϊ7(l) as in [A-B-S] and introduce the fibration of groups

{±1}-+Spin(2 r) x U(l)-+SO{2 ήxU(l). (2.16)
{±1}

The condition w2(F) = c 1(L)m o d ( 2 ) is necessary and sufficient for the existence of a
principal Spin(2 r) x { ± 1 } l/( l) bundle Fr's(V®L)^>X with the property that

{}
The spinc bundle constructed from F φ L i s the complex vector bundle S(V; L)

= Ffs(V@L)xρ?)iA-+X. Here, i: l/(l)-*t/(2r) is the center.
In the situation at hand, use T*Σ(&(ΛdN*)~: -*Σ to construct the spin^ bundle,

SΣ = S(T*Σ; {ΛdN*yι). Then, the spin bundle S(T*M)\Σ^>Σ, is isomorphic to the
tensor product bundle SΣ(g)([:Λ*N*.

With this construction understood, let us remark that a similar construction
can be made with N-+Σ, the conjugate bundle to N. Since c1(ΛdN)= —cλ(ΛdN), a
spinc-structure on Σ is also defined by the line bundle AdN. The spin^ bundle from
S(T*Σ; (ΛdN*)~i) is denoted by SΣ and using SΣ, one then constructs the spin
bundle 5 ^ ® ^ * ^ * . However, there exists a natural, (C-linear isomorphism
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SΣ®<cΛ*N*ttSΣ®<cΛ*N* (complex conjugation gives a (C-anti-linear isomor-
phism) as will now be explained.

Indeed, observe that SΣπSΣ<g>ΛdN* and Λ*N*®(ΛdN*y x ^Λ*N*. To con-
struct this last isomorphism, use the fact that ΛdN* A ΛdN* {^Λ2dN%®(£) has a
canonical section to conclude that ΛdN* π(ΛdN*)* ^(ΛdN*)~ \ Then, note that the
Hodge star provides an isomorphism ΛpN*®ΛdN*^(Λd~pN*)*. Finally, use the
hermitian metric to make an isomorphism between (Λd~pN*)* and Λd~pN*.

Since SΣ(χ)cyl*yy* and SΣ(g)(CΛ*N* are conjugate bundles, the (C-linear
isomorphism SΣ(g)(ί:Λ*N*teSΣ®(ί:Λ*N* induces a (C-antilinear involution, τ, of
SΣ®<£Λ*N*. The involution τ defines a real structure on SΣ®€Λ*N*.

Now, through Clifford multiplication, T*NΣ becomes a subbundle of
End(S(T*NΣ))-+NΣ and this is conveniently described using the preceding
identification of the spin bundle as π*(SΣ(g)(ί:Λ*N*)->NΣ. To begin, observe that
the complexified tangent space ofNΣ splits using the Riemannian connection as the
direct sum

*N®π*N, (2.17)

where π*TΣ€ is identified with the horizontal subspace HcTiN^ as defined by
the Riemannian connection on the normal bundle NΣ.

The complexified cotangent bundle of NΣ correspondingly splits as

V, (2.18)

where T*Nππ*N*-+N is dual to π*N in Eq. (2.17) and annihilates the horizontal
space H as well as π*N. The space T*N is likewise dual to π*N.

With this understood, identify T*N with π*N* and identify S(T*NΣ) with
π*SΣ(g)π*Λ*N*. Now exterior multiplication embeds π*N* as a subbundle of
End(π*S2;(χ)π*/ί*iV*) and this is Clifford multiplication when viewed in terms of
T*N and S(T*NΣ).

The Riemannian metric on M induces a hermitian metric on T*NΣ(C for which
the splittings in Eqs. (2.17, 18) are orthogonal, and this same hermitian metric
identifies π*iV* with π*N. Interior multiplication embedds π*iV in
End(π*SI(x)π*/ί:iiΛΓ*) and this is the Clifford multiplication embedding of T*N
into End(S(T*N^)) after π*iV* and T*N are identified. Alternately, use exterior
multiplication to embedd π*N in End(π*SI®cπ*yl*Λ/'*) and then observe that
under the C-linear isomorphism SΣ(g)€Λ*N*~SΣ(g)(ί:Λ*N*, this embedding and
that of π*IV in Έnd(π*SΣ®π*Λ*N*) by interior product are the same.

Complex conjugation defines a (C-anti-linear isomorphism between π*iV* and
π*iV* and hence, with the Riemannian metric, a C-anti-linear isomorphism
between 7i*N* and π*N. With both π*JV* and π*iV in End(π*SI®π*/ίϊiίiV*), this
C-anti-linear isomorphism is induced by the anti-linear automorphism of
End(π*Sf

I®π*/ί*iV:ί;) which sends a matrix to its hermitian adjoint.
Let e be a 1-form in T*NΣ€ which is pulled back by π from T*!^. To define

Clifford multiplication on π*(SΣ®Λ*N*) by e, introduce the degree operator
(Fermion number operator), (— l) F o on Λ*7V*. For ω e Λ*N* a p-form, set (— l)F°co
= (— 1Y - ω. Then, extend this operator to Λ*N* by linearity. Now, define Clifford
multiplication by e on s®ω to yield (e s®(— l)Foω). Then, Clifford multiplication
by e anti-commutes with Clifford multiplication by any elements of π*iV* and
π*N* as required.
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To define the normal bundle Dirac operator, Dt: C00(S(Γ*J/VI))-^C00(S(Γ*JVI)),
it is necessary to take derivatives of spinors. One can distinguish between
directional derivatives which are tangent to the fibers of π: NΣ-^Σ, and then, the
horizontal derivatives. For xeΣ note that the restriction to a fiber NΣ\X of
π*(SΣ®<[:Λ*N*) is naturally isomorphic (up to an action of the unitary group U(d))
to SΣ\x®Λ*(£d* and this has an obvious flat connection which allows differenti-
ation along the fiber NΣ\X.

As x varies, this differentiation along the fiber takes a section over NΣ of
π*(SΣ®cΛ*N*) and gives one of

π*{SΣ®cΛ*N*)®{T*N®T*N)Λπ*{SΣ®(CΛ*N*)®(π*N*®π*N*).

Differentiation followed by the Clifford multiplication map from

to π * ^ ®

defines a first order operator, δ, which restricts to each fiber NΣ\X as the Dirac
operator on NΣ\X.

A derivative V for the horizontal directions is defined as follows: Consider a
decomposable section u = s(g)ω:N->π*(SΣ(g)Λ*N*). Let υeH be a horizontal
vector. Then set

Vv{s(g)ω)ΞΞ(π*Vs)vs(g)ω + s(3(π*Vp)vω, (2.19)

where π*Vs is the covariant derivative on π*(SΣ) which is defined by the pull back
to N of the spin connection on SΣ-+Σ; and π*P p is the covariant derivative on
π*Λ*N* which is defined by pull back to N of the Levi-Civita connection on the
normal bundle to Σ. Thus V takes a section of π*(SΣ®Λ*N*) and gives one of
π*(SΣ®Λ*N*)®π*T*M.

Use V followed by the Clifford multiplication map from

®π*Γ*M to π*(SΣ®Λ*N*)

to define the first order operator DΣ. Then, the normal bundle Dirac operator is

D0 = DΣ + d. (2.20)

Remember that the Dirac operators in Eq. (2.4) are indexed by a parameter t.
There is a corresponding 1-parameter family of normal bundle Dirac operators
and its definition requires a closer look at the S1 -action on NΣ.

Recall that the Sι-action decomposed the complex vector bundle N into a
direct sum of complex bundles according to Eq. (2.15) such that on NΌ, the action
sends λeS1 to multiplication by λ°. The generator of this S1 action on Nυ is the
restriction to NΌ of the vector field, KM; it is clearly vertical with respect to the
projection π:ND^Σ. Identify the vertical subbundle of the total tangent space to
NΌ with π*Nυ@π*Nυ and then KM restricts to NΌ as the section which sends the
point ζto( — i υ J(ζ), i-v- J(ζ))> where J : NΌ-^π*Nυ is the canonical embedding.

The metric dual to KM is the 1-form K; on Nυ, this 1-form annihilates the
horizontal subspace H and so can be identified as a section of π*N*φπ*iV*. This is
the section which sends ζ to (i υ J(ζ\ —i-v- J*(ζ)), where J* : ΛΓ

u-^π*iV* is the
(C-anti-linear embedding which is canonically defined once the metric is used to
provide the (C-anti-linear isomorphism between Nυ and N*. Use Clifford
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multiplication to embed π*7V*©π*Λf* in End(π*SI®cπ*y4*Λ/') so that K can
define a section over NΣ of End(π*SΣ®(Cπ*yl*Λ/').

With these constructions understood, introduce a family of Dirac operators on
NΣ by defining, for each t, the first order operator

D t = D Σ + d + i-t K. (2.21)

This family of operators Dt is of fundamental interest to all that follows.
Before discussing the significance of Dt, some remarks are in order. First, note

that DΣ involves differentiation along horizontal directions in TNΣ, while
ΰ + i-t'K differentiates along the vertical directions. So, it should not be a
complete surprise that the operators DΣ and d + i t K anti-commute. Thus, one
can analyze Dt by first analyzing the operator d + i t-K. Then, one analyzes the
restriction of DΣ to the eigenspaces of the operator (d + i t K)2 with which DΣ

commutes. (This technique is the old physicist's stand-by - separation of variables.)

Now, in practice, the study of d + i-t-K is simplified many-fold by the
observation that, as it differentiates only vertically, d + i t-K is determined
completely by its restriction to each fiber of π:NΣ->Σ.

Each such fiber is a copy of (Cd, canonically up to the action on (Cd of the unitary
group U(d). If one chooses the usual coordinates ( z ^ z 2 , ...,zd) for (Cd, then the Sι

action on the fiber is generated by

KM=-i- Σ Ό(j) (zj d/dz!-z' . d/dzj), (2.22)

where each υ(j) a positive integer. (The fiber of NΌ is {(z) e (Cd: z-7'= 0 if
The restriction of d + i t - K to <£d (as the fiber of NΣ) is the operator

Σ -Ί' t' ϋϋ) ^) + ̂ * j (3/δzJ> + i t - υ(j) ^)), (2.23)
7 = 1

where Γ7 denotes interior multiplication by d/dzj on Λ(Ed*, while Γ*7 denotes
exterior multiplication by dzJ. It is not hard to find an explicit diagonalization of
the operator in Eq. (2.23); this exercise is a useful one which is left to the reader.

As a final remark, the operator K of Eq. (2.5) also involves only vertical
differentiations so it too is determined completely by its restriction to (Cd as the
fiber of NΣ-+Σ. This restriction is

K = - Σ »(/)' (zjdj-zjdj + ±(Γ*j Γj-1)). (2.24)
j

It is straightforward to calculate that the commutator of K with Dt vanishes.

Part 3. The Localization Theorem

As NΣ-+Σ is oriented by its complex structure, there is a differential form, ω, on NΣ

of degree 2 d which is uniquely determined by the following two conditions: First,
d

it restricts to each fiber C d as the canonical volume element γ\ (ί/2 • dzj Λ dzj), and
i = i

second, interior product by horizontal vectors annihilates ω.
Define the L2-inner product, <•, >L2, on the space of compactly supported, C00

sections over N of π*(1SI®/ί*A^*) by integrating, over N, the pointwise inner
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product of two sections; use the top dimensional form π ^ v o l j Λ ω to define this
integration. (Here, d vo\Σ is the Riemannian volume element for Σ. If Σ is an
isolated point, d volΣ = ± 1 with + 1 taken iff the complex orientation on
NRπTM\Σ agrees with the induced orientation from M.)

For fixed integer or half-integer fc, let C™pt(S, k) denote the space of smooth,
compactly supported sections of π*(SΣ®Λ*N*) over TV on which the operator K
acts with eigenvalue k. Let L2(S, k) denote the completion of said space with the L2

norm. Let Hί(S, k) denote the completion C™pt(S, k) using the inner product <Df( ),
Dt( )}L2 + (' , >L2- Automatically, Dt defines a bounded operator from H1(S,k) to
L\S, k).

Furthermore, one has, as a special case of Proposition A.I in the Appendix,

Proposition 2.2. For t + 0, and for fixed integer or half-integer k, the operator
Dt:H\S,k)-^L2(S,k) is Fredholm.

Since M and so NΣ is an even dimensional manifold, one can define a character
valued index of the operator Dt by restricting y. An example is y = (i)σ dvo\M,
where d volM denotes here the image in the Clifford algebra of the volume form on
M, and where σ = n (n +1)/2 with n = dimR(M). Along Σ, the restriction of y has the
following decomposition : Introduce the endomorphism (—l)F o of Λ*N* which
acts on ΛPN* as (— l)p. Next, observe that Clifford multiplication by (i)σ + d -dvolΣ

defines a fiber preserving, covariantly involution, yΣ, of SΣ. Now, the covariantly
constant involution y of Eq. (2.3) restricts to π*(SΣ®Λ*N*\ where it sends s® ω to
π*yΣs(x)(— l)F oω. Remark that y anticommutes with the odd elements of the
Clifford algebra, and so it anticommutes with both D Σ and with d + i-t-K, while it
commutes with the operator K.

Define the index of Dt on H1(S,k) to be

Ind(Df, 7, k) = dim(ker£>f|ker(τ _ υ ) - dim(ker Df | k e r ( y + 1 } ). (2.25)

Proposition 2.3. The number Ind(Dί? y, k) is a locally constant function of t in R\ (0).
For fixed, integer υ>0, let N*-+Σ denote the sub-bundle of N* on which KM acts
with eigenvalue υ, let iVJ denote the complex conjugate bundle and let C X Ξ £

Ό dim^N^. For complex ζ, define a formal power series in ζ with coefficients in
Vect(Σ) by R{ζ) = ®Ό{®m^ίmυ' Symm(N*); and, for fixed k, let Rk^Σ denote the
coefficient of ζk in the expansion of ζι/2'Cl - R(ζ).

(1) Σ is an isolated point: For t > 0 and fork^i/2-cx, the index of Dt on H^S, k)
equals Rk. For t>0, and for k< 1/2 c l 5 the index of Dt is zero.

(2) Σ has positive dimension: For t>0 and for fc^>l/2 c1 ? the index of Dt on
H1(S, k) equals the index of the spin^-Dirac operator on Σ when coupled to Rk. For
/>0, and for fe<l/2 c1, the index of Dt is zero.

(3) In both cases above, the index of Dt for t < 0 is obtained from that of Dt for
t>0 after changing k to —k and after changing N* to N*.

Proof of Proposition 2.3. Here, one need only look at the Weitzenbock formula
for Dt (this appears as a special case of Proposition A.I and Lemma A.2), and then
take t large to reduce the index calculation to an algebraic computation.

It still remains to compare the normal bundle Dirac operator with the Dirac
operator dt. To do this, let {Σj denote the connected components of the fixed point
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set of the S1 action. The comparison yields Witten's [Wl] interpretation of the
Atiyah-Bott-Lefschetz [A-B] formula:

Proposition 2.4. Let M be a compact, oriented, spin manifold which admits an action
of S1. Let Eg. (2.7) define lnd(do,y,k), the character valued index of the Dirac
operator. Now, let {Σj denote the connected components of the fixed point set of the
S1 action. For each Σb construct the normal bundle Dirac operator, Dt(i), as an
operator on sections over the normal bundle to Σt of the pulled back, bundle of spinors.
Then

lnd(do,y,k)=ψnd(Dt(ΐ),y,k).

Proof of Proposition 2.4. For an indirect proof, compute the left-hand side of the
equality using the formulas in [A-B] and [A-Se] and compute the right-hand side
of the equality using the Atiyah-Singer index theorem and compare.

Alternately, one can prove the equality directly using the localization theorem,
Proposition 2.1. Indeed, due to that proposition, lnd(do,γ,k) can be computed
from the left-hand side of Eq. (2.7) for any value off. In particular, for |ί| sufficiently
large, the kernel and cokernel of the dtk are supported almost entirely in the tubular
neighborhoods of the components of the fixed point set. As |ί| gets larger, these
neighborhoods get smaller and smaller. Pulled back to the normal bundle of a
component, Σ, of the fixed point set, the operators Dt and dt agree to leading order
in an expansion in the distance from Σ.

As |f| gets large, the small eigenvalue eigenvectors of Dt on L2(S,k) are also
supported (but for an exponentially small tail) within distance Θ(\t\ι/2) in N of Σ.
The proof of this assertion is obtained by mimicking the proof of Proposition 2.1:
Use the Weitzenbock formula D2 on N, a special case of the Weitzenbock formula
in Eq. (A. 10).

Meanwhile, the gaps in the L2-spectrum of both dtk and of Dt are not shrinking
with increasing t; again, this is a consequence of the Weitzenbock formulas for
these operators. For Dt, the formula is a special case of Eq. (A. 10).

The equality of ϊnd(30, y, k) with Σt lnd(Dt(i), y, k) follows from these last facts;
one can compare the small eigenvalue eigenspaces dl and {Dt\ΐ]2} directly: Use the
fact that the eigenvectors are localized near the Σ{ι\, but for an exponential error.
One can also view this equality as a consequence of the excision property of the
index for elliptic operators (see [A-Si]).

Part 4. Coupling to Vector Bundles

Let V-+M be a complex vector bundle to which the S1 action on M lifts. When M is
a spin manifold, the localization theorem, and the fixed point formula of
Propositions 2.1-2.4 generalize to give a formula for the S1-character valued index
of the Dirac operator on C^iS^V).

More generally, when M is not assumed to be a spin manifold, one can consider
an oriented, real vector bundle Y-^M with w2(Y) = w2(T*M) and the Dirac
operator on the bundle of spinors, S{U), built from the bundle 1 / Ξ Ξ T * M © K
Require of U that a finite cover of the S1 action on M lifts to an action on U. One
can also consider a real, oriented vector bundle Y->M and a complex line bundle
L-+M with the property that the vector bundle [ / Ξ P M ® 7 obeys w2(U)
= c1(L)m o d ( 2 ). Then, the bundle U has a spi%-structure, and one can consider the
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Dirac operator on sections of the spinc bundle S(U; L). Assume that a finite cover
of the Sι action on M lifts to an action on Y and to an action on L. For notational
convenience, set S°(U) = S(U) or S(U; L).

To discuss localization formulae in these more general contexts, endow V, Y, and
L with invariant fiber metrics and invariant, metric-compatible connections. With
these connections, the Dirac operator is defined by Eq. (2.2) using the direct
product connection on S°(U)(g) V to define the covariant derivative. Equation (2.4)
defines the family of Dirac operators dt on C0C(S°(L7)(g)F). More generally, let A
denote a covariantly constant, self-adjoint endomorphism of V. Assume that
Clifford multiplication by T*M on S°(U) has been extended to Clifford
multiplication on S°(U)® V in such a way that the extension of A to S°(l/)® V as
I®v4 anticommutes with multiplication by elements in T*M. (Section 3 provides
examples.) Consider the family of operators

(2.26)

on C0C(S°(L/)®F).
To consider the S1 action, the following observations are necessary: Suppose

that E-+M is a vector bundle to which a finite cover of the S1 action has a lift. Give
E an invariant metric and an invariant metric compatible connection. The action
of the Lie algebra of S1 on E induces an action on C°°(£) whose generator is the first
order differential operator

KE=Vκ-σE. (2.27)

Here, Vκ is covariant differentiation along KM and σ£eC°°(End£) is a skew-
symmetric endomorphism which obeys

VσE = i(KM)-F (2.28)

with ί(KM) F e C°°(T*M®End£) denoting the interior product between KM and
the curvature, F eC°°(/ί2T*M® End£), of the connection on E.

In the present circumstances, E = S°(U)®V. Assume that
Ks°(U)®v a n d ̂  commute as endomorphisms of CCO(S°(U)®V).

To define the S1 equivariant index of dt9 assume that V admits a covariantly
constant involution (denoted by θ) which anticommutes with A and which
commutes with the S1 -action on V. As the dimension of M is even, S°( U) ® V admits
a covariantly constant involution which anti-commutes with Dt; namely ί = y®0.
With £ replacing y5 Eq. (2.3) defines the index of dt.

By virtue of Eq. (2.28), the operators KSO{U)($V and dt commute; and so the
eigenspaces of ΰt can be decomposed into representations of S1. Letting
C°°(S0(f/)(g) K k) denote the subspace of C°°(S0(l/)® V) on which KSO{U)(S)V acts with
eigenvalue fe, the S1 -character valued index of dt (which is independent of t) is then
defined by Eq. (2.7) after replacing y by /.

This S^character valued index can be computed from the local data at the
fixed point set; there is localization to the fixed point set of the eigenfunctions of dt

as t gets large. As before, this fact is made evident with the Weitzenbock formula
for 3t

2. The old Weitzenbock formula, Eq. (2.8) is changed somewhat; by the
addition of curvature terms coming from Y, L, and V; and by the addition of a term
A*A; and by a change in the term which is linear in t involving σSO{V)(S>v. But the
term which is quadratic in t remains the same, so the localization result of
Proposition 2.1 still holds.
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The fixed point formula for the Sι-character valued index can be derived by
comparing dt with the analog of the operator Dt in Eq. (2.21). To state the formula,
the following comments are required: Let E->M be a vector bundle to which a
finite cover of the Sι action lifts. Again, suppose that E has an invariant metric and
metric compatible connection. Upon restriction to a component, Σ, of the fixed
point set, the endomorphism σE of E in Eq. (2.27) is covariantly constant. This
follows from Eq. (2.28).

The eigenvalues of σE on the complexification of any given fiber are a set of
rational numbers {o}; and for fixed eigenvalue υ, the set En = kQγ(σE — Ό)cE®<£\Σ

defines a smooth vector bundle over Σ. If E is real, then the eigenvalues come in +
pairs and complex conjugation identifies EΌ with E_Ό. in particular, Eo always has
a real structure, and the underlying real bundle will be denoted by E0R. Thus, if £ is
real, there is an isomorphism of real bundles E\Σ&E0R@0<ΌEϋ.

If E is complex, then σE is already diagonalizable on E with eigenvalues {D} and
one has E\Σ&®ΌE0.

Let Y—>M be a real, oriented vector bundle to which a finite cover of the Sι

action on M lifts. Suppose that U=T*M® Y is oriented and spin. Restrict to Σ,
and define

LΣ=(® det(iV*) ® detίYj f Γ 1 .
\0<υ 0<D )

Or, suppose that L->M is a complex line bundle to which a finite cover of the S1

action on M lifts. Suppose that U= T*M® Y is spinc using the line bundle L to
define the spinc-structure. Restrict to Σ and define

® det(ΛΓ*) <g

Upon restriction to Z, one has

S°{U)\Σ*S(T*Σ®Y0R\LΣ) <g> Λ*(N*) ® Λ*{Y*). (2.29)
0<v 0<υ

The new Dirac operator is defined initially on the set of smooth, compactly
supported sections of π^(S°(U)®V\Σ) over the normal bundle N->Σ. This new
operator is

(2.30)

In analogy with the case where V is trivial, define C™pt(S°(U)(g) V\N, k) to be the
space of smooth, compactly supported sections of the complexification of
S°(U)®V\N on which Kso{U)ΘV acts with eigenvalue k. Then, define the spaces
L2(S%U)® V\N, k) and Hι(S°(U)(g) V\N, k) as the completions of Qt(S0([7)(g) V\N, k)
with the norms which come from the metrics <•, -\2 and <Df( ), Dt( ) \ 2 + <•, >\2,
respectively. By construction, Dt extends to define a bounded operator from
Hι(S(U)®V\N,k) to the L2(S{U)®V\N,k).

Since the endomorphism A commutes with Kv it preserves the decomposition
V=V(0)R@0<oVo. Since A is covariantly constant, F ^ ^ k e r ^ l F ^ ) defines a
smooth vector bundle over Σ.

The analogs of Propositions 2.2-2.4 in the twisted case follow. They are proved
by generalizing in a straightforward way the proofs of Propositions 2.2-2.4; the
details are left to the reader.
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Proposition 2.5. Let Mbea compact, oriented manifold which admits an isometric S1

action. Let 7—>M be a real, oriented vector bundle and let L-^M be a complex line
bundle. Assume thai the S1 action on M has a finite cover which lifts to Y and to L.
Let U=T*M@Y and assume that w2(U) = 0 or else that w2([/) = c1(L)m o d ( 2 ). Let
S°(U)~>M denote the spin bundle S(U) or the spinc bundle S{U;L). Let Σ be a
connected component of the fixed point set of the S1 action on M, and denote by
N->Σ the complex normal bundle. For ί=j=0, and eigenvalue k of K on
C£t(S°(E/)®7|N,fc), the operator Dt:H\S°(U)®V\N,k)-+L2(S°(U)®V\N,k) in Eq.
(2.30) is Fredholm. Let ί be an involution of S°(U)®V with <f2 = l. Require that (
commute with K, and anti-commute with A and with multiplication by odd elements in
the Clifford algebra. Define the index of Dt on Cco(S°(U)(g)V\N,k) to be

Ind(D ί s /, fe) = dim(kerD f | k e r ( ,_ υ ) - dim(kerD f | k e r ( ? f + υ ) .

This index is a locally constant function on IR\{0}.

The analog of Proposition 2.4 in the present context is the twisted version of
Witten's interpretation of the Atiyah-Bott formula:

Proposition 2.6. Make the same assumptions as in Proposition 2.5. Define the
character valued index of the Dirac operator dt on C00(S°(C/)® V) as in Eq. (2.7) using
the involution ί. Let {Zt} denote the connected components of the fixed point set of
the S1 action. For each Σb construct the normal bundle Dirac operator, Dt(i), as
defined in Eq. (2.30). Then

Ind(δ f, Λ fe) = Σ Ind(Df(Q, /, fe).
i

3. The Dirac Operator on the Normal Bundle to M

Let M be a compact, oriented Riemannian manifold of dimension n and let 5£M
denote the space of loops on M. The constant loops give an embedding of M inside
J&M, and the normal bundle fiber over xe Mis ^?

0TM\xcMaps(S1; TM\X). Dense
inside this space is the total space of a real vector bundle

JrM^ 0 TM^. (3.1)
H > 0

Since JίM has a natural complex structure, consider it as a complex vector bundle
over M. See the Appendix for a description of the topology of / M .

To make this isomorphism explicit, restrict attention to an open set U over
which TM admits an orthonormal basis, e = {ea}a = 1. For j ; in U, a vector in
Se TM\y is some x{t) e(y) with x(t) = {xa(t))n

a = x: S1 ->R". Coordinates for JrM\ v are
obtained using the Fourier components of x( ). That is, a point in JfM\υ is
specified by the data Y = {y, xm}m> 0, where y is a point in U, where xm = (x^)" = λ is a
vector in CC". The point Y={y,xm) has only finitely many {xm} not zero and it
parametrizes the point

Σ (xme-im' + xmeim')-e{y)e^TM\υ. (3.2)
m>0

Here, xm is the complex conjugate of xm. If the orthonormal frame is changed, e(y)
= λ(y) e'(y\ with λ: U^SO(n), then the normal coordinates change as

x'm = λτ{y) xm. (3.3)
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The horizontal subbundle of TJrM is defined via the isomorphism in Eq. (3.1).
Explicitly, this is the kernel of the following set of (Cn-valued differential forms on
ΎJίM\ For m>0, set

θm = dxm + ω xm, θm ΞΞ dxm + ω xm, (3.4)

where ω = {ωb\y)) is the Levi-Civita connection matrix of 1-forms. (Note,
coa

h= —ωb

a) This horizontal bundle is spanned by the vectors i;={i'β} where

»a = ea-ωc

ba Σ «'d/dxc

m + xb

m>d/dtm). (3.5)
m>0

Thus the tangent space to JίM\υ is spanned by the vectors {ι\d/dxym

d/dxm)m>0. These vectors define an orthonormal basis for T,ArM\υ, just as
{e,θm,θm} define an orthonormal basis for T*ΛrM\v.

A convenient space of functions on JVM is parametrized by the infinite
dimensional vector bundle over M,

oj& = Sym(T*M(x)<C), (3.6)
B Φ O

where Sym(T*M(g)(C)Ξ©kSymk(Γ*M®<C). (The topology on $8 is described in
the Appendix.) Indeed, a section of (Bn*oT*M(g)(E defines a function on .JίM
which is linear (n > 0) or anti-linear (n < 0) in the fiber coordinate. More generally, a
section of & defines a function on .JίM which is a polynomial in the fiber
coordinates and the complex conjugate coordinates.

Note that f̂ —>M inherits an obvious connection from its representation in
Eq. (3.6).

To facilitate calculations, it is convenient to introduce a set of differential
operators along the fiber of JΓM. Alternately, when JίM is viewed as a vector
bundle over M, a differential operator along the fiber becomes a subbundle of
End(#). Define, for ra>0, the physicist's "right moving creation and annihilation
operators" on JΓM-+U to be

al = ί(d/cxm-t'tn xm) and am = i(d/dxm + ί m -xJ, (3.7a)

and similarly define the left moving

al = i(d/dxm-t m xj and gm = i(d/dxm +1 m xm). (3.7b)

The commutation rules for these differential operators are

aman -a; am = 2 t m ό dmn,

b a 'a b *b a W'̂ /

and similarly for the left moving operators. The right moving operators all
commute with the left moving operators.

There are additional commutation relations with the horizontal vector fields:

amυb — Vbam — — ωab am , Clm Vb ~ Vbam ~ ~ COab Clm > ,„ g ,

QmVb — VbQm ~ ~ ωab Qm 5 a

m

 Vb~ VbQm ~ ~ 0Jab Gm

To define the correct domain for the Dirac operator on ΛrM, it is necessary to
introduce an additional function on JVM\ this being the "Bosonic" generating
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functional. It sends the point Y = (y,xm) to

( Y (3.10)
m>0 J

This is globally defined on M because of the change of variable rule between open
sets. Note that the set of operators [am, gm} annihilate Φo.

At xeM, the Bosonic Fock space will be #| λ-®Φ 0; it is generated by finite
linear combinations of functions of the form

iί\am{\) •••am{J) ) 11\Gm'(\) ••'Gm'(J') ) ψ 0 \->ΛΪ)

When JY'M is viewed as a vector bundle over M, then the creation and
annihilation operators define a subbundle over M of End(J>(χ)Φ0). Equation (3.8)
describes the commutators between the members of this set of endomorphisms,
and Eq. (3.9) describes the commutators with the covariant derivative on # ® Φ 0 .

Define a metric on # | X ® Φ O by requiring that

<ΦO,ΦO> = 1, (3.12)

and that aa

nf be the adjoint of aa

m and likewise for qa

nf and qa

m. Equivalently, one can
say that the restriction of Φo to each fiber JίM\x defines a Gaussian measure; the
functions in $\x being measurable, and this inner product is the L2 inner product
with respect to the Gaussian measure.

The family of Fock spaces, \β\x\ which are parameterized by M fit together to
form a vector bundle over M; #—>M.

The bundle of spinors over j\rM is defined after introducing the "Fermionic"
Fock space at x e M (see e.g. [W3]). Introduce

.T+ = Finite linear combinations of \θm:m>0},
(3.13)

•T^ = Finite linear combinations of {θm:m>0}.

The Fermionic Fock space is

_ r [ χ Ξ Ξ / ί * ^ + . (3.14)

The topology here is described in the Appendix. The vector spaces {ίF\x: x e M) fit
together to define a vector bundle 3F-±M\ with

# - ^ (x) Λ*(T*M®<£). (3.15)
«>o

The space ,Ψ\X is a Clifford module for the complex Clifford algebra,

Cliff(^+ @ZΓ-)\x. Indeed, for m>0, let Γ* = ]/2 θm act on ,f\x by wedge product

on A*.T+. For m>0, let ]/ 2 θm act as interior product by ]/2 d/dxm; and denote

this endomorphism of 3F\X by Γm. (In physics lingo, these define the creation

operators for the right moving fermions.) The set {Γ, Γ*} generate a subbundle of

d(#l-
The following anti-commutation relations hold:

1 n * m~ * m1 n — ^ u umn ->

pa*pb* = Q (316)
1 m 1 n — v ' W κ '

1 n 1 r n 1 m 1 n
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Define the uFermion number operator", ( —l)F o, on Jp" by declaring it to be
equal to ( - l ) p on ΛPF+. Note that ( - l ) F o anti-commutes with each of {Γ,Γ*}.

A metric on #" is defined by requiring that

<1,1> = 1, (3.17)

and that Γ* be the adjoint of Γ. From Eq. (3.16), <¥ inherits an obvious connection,
which is metric compatible. For computational purposes, it is useful to note that
the resulting covariant derivative enjoys the following commutation relations with
the set {Γ,Γ*}: Over an open set U where TM\V has been trivialized,

yaιm 1mya— LUca1nι^ va1 m ι m va UJca1m \J.iθ)

Let Cliff(T*M)-+M denote the bundle of Clifford algebras over M which is
isomorphic as a vector space to Λ*T*M. Let S->M be a complex vector bundle
and Cliff(T*M) module; that is, there is a bundle map of Cliff(T*M) into End(S)
which gives a representation that is faithful on T*M. For example, if M is a spin
manifold, then S-+M could be taken to be the bundle of spinors, S(T*M) on M.

Assume that S has a metric and a metric compatible connection. Require of the
connection that the bundle map from Cliff( T*M) into End(S) be covariantly
constant.

Let £f = (S®ϊF). The operator ( —1)F° can be used to extend the Clifford
multiplication by allowing covectors ς e T*M\X to act on ff\x according to the rule
ζ(s®ω) = (( s®{ — l)F° ω). With the action defined in this way, the basis co-
vectors {e} anti-commute with each of {Γ,Γ*} and define a Clifford sub-algebra
amongst themselves. Use the same notation e to denote the Clifford element which
is defined by the covector e.

Define a metric on Sf\x by using the metrics on S and on SF.
Define the vector bundles <f ΞΞ J>(x)y\ Note that S®Φ0 inherits a fiber metric;

denote it by <•, •). The space CCO(S®ΦQ) of smooth sections over M of # ® Φ 0 now
has the L2 metric

< , > L ^ ί < , > <*vol. (3.19)
M

Let L2(S>®Φ0) denote the completion of C°°(#® Φo) with the norm which comes
from the metric above.

To define the Dirac-Ramond operator, note that # ® Φ 0 inherits a metric
compatible connection from the connections on S, # ® Φ 0 and 3F. A covariant
derivative, F, is defined on CGC(^®Φ0)from this connection. With respect to a local
trivialization of TM over an open set U in M:

Va—Va + 2 ωca L i m l m
m> 0

- ω £ β Σ {xh

mdldxc

m + xl-dldxcj, (3.20)
m>0

where Vs is the connection on S, and where {coc

ba} are the components of the
connection form with respect to the given frame for TM\V.

The Dirac-Ramond operator on JίM is

= e"-Va+ Σ (Γ* am + Γm-a*). (3.21)
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Here, ea denotes Clifford multiplication by the 1-form which is dual to the
orthonormal vector ea. Thus, ea Va is the Dirac operator on M, but coupled to the
vector bundle (§®8?.

It is an immediate consequence of Eqs. (3.9, 18, 20) that Dt defines an
endomorphism of C°°(<f ®Φ 0).

Define the Hubert space H\$®Φ0) to be the completion of C°°(#®Φ0) in the
norm which comes from the metric

< , - V Ξ < / V , A >L2 + < , >L2 (3 2 2 )

Then, Dt defines a bounded map from HX($®ΦO) to L2(<f ®Φ 0).
Consider now the action of the circle S1 on CGO(#®Φ0). Note that S1 fixes Φo.

The action on M is generated by i P β, with

PB=- Σ m'(xm'd/dxm-xm d/dxm). (3.23)
m>0

The S1 action on 3F is generated by ί PF, with

PF=~ί- Σ m-Γ*-Γm. (3.24)
m>0

This S1 action fixes the spin bundle S. Thus, S1 acts on S® Φo, and on C°°(<f ® Φo)
with generator i P with

= - ί Σ ( « α m - α * gJ + m Γ* Γm). (3.25)
m> 0

It will prove convenient to decompose P as PL — PR, where P Λ , P L are its right
and left moving parts:

PR=i' Σ (aZ'am + m Γm Γ*)9 PL = ̂  Σ Q*m Qm. (3.26)
m>0 m>0

Both P R , P L define covariantly constant endomorphisms of #; and hence of
C°°(#(x)Φ0). The two endomorphisms commute, and as endomorphisms of
C 0 0(#®Φ 0), both commute with Dv

Restricted to a fiber S\x, both PR and PL are symmetric, and negative semi-
definite. Let (2mh\χ denote the subspace of S\x on which PR acts with eigenvalue h ̂  0
and P L acts with eigenvalue m + h^0;m being the eigenvalue of P. This is a finite
dimensional vector space (see Lemma A.2), and the family of vector spaces
{<2mh\x'-xeM} defines a finite dimensional vector bundle, gmh-*M. The bundle
Smh is isomorphic to S®Rm(h\ where Rm(h)-+M is the coefficient oϊzm + hw~h in the
following formal power series with coefficients in Vect(M):

® w~jn' symj{T*M)\
)

x ® (® w~kpΆk(T*M)\. (3.27)
p^O \k^0 )

The decomposition $ = ®h>o,m> -h$mhιs orthogonal, and compatible with the
connection on S. For an eigenvalue m for P on #, let Sm= ®h> -mSmh denote the
eigenspace; an infinite dimensional vector bundle over M.
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Since Dt commutes with both PR and PL, it decomposes as the direct sum Dt

= ®h^o,m^-hDtmh, with each Dtmh:C
co(imh®Φ0)->C*(<imh(g)Φ0) an operator of the

form

d + Am(h), (3.28)

where d is the Dirac operator coupled to Rm(h\ and where Am{h) is a covariantly
constant endomorphism of Rm(h).

Define L2(#w(x)Φ0) and Hι(δm®Φ0) accordingly.
The properties of Dt: H1(im(®Φ0)->L2(£)

m(g)Φ0) are described in the Appendix;
see Propositions A.I and A.3. The following proposition summarizes:

Proposition 3.1. Let M be a compact, oriented Rίemannian manifold, and let S-+M
be a finite dimensional complex vector bundle on which T*M acts faithfully by
Clifford multiplication. Construct the vector bundle <f® Φ0->M, and Dt: C°°(#(x)Φ0)
—>Ccc(<o®Φ0) as described above. Let m be an eigenvalue of P on S. Then
(1) Dt extends to define a Fredholm operator, Dt, from Hι(Sm®Φ0) to L2{£m®Φ0).
(2) coker(D f)c# *(£„); and coker(Df) = ker(Dt).
(3) coker(ί)ί) = ker(i)ί)C//1(ίmo)' ίne eigenspaces of PR with q = 0. In particular,
both vector spaces are empty for m<0.

Suppose that the bundle S decomposes as S + @S_ which are the ± 1
eigenspaces of a covariantly constant bundle involution, 7, which anti-commutes
with the odd elements in the Clifford algebra's action on S. (See Sect. 4 for an
example.) Let ί = y®{ — \)F°. This defines an involution of S>

m®Φ0, and hence, one
of L2(<fm(χ)Φ0). Also, since / anti-commutes with Dt, it defines an involution of

Define the index of Dmt by (see Eq. (A.28))

Ind(D, # m ; ί) = dim ker(Dm r |k e r (, _ 1}) - dim ker(Dm f |k e r (, + 1)). (3.29)

The following proposition is a direct corollary to Proposition 3.1 and
Proposition A.3:

Proposition 3.2. For m < 0, Ind(D, #m, /) = 0; and for m ̂ 0 , Ind(Z), Sm9 /) is equal to
the index of the Dirac operator from C°°(5 + ®Sm) to C°°(5_ ®Sm), where Sm-+M is
the coefficient of qm in the following formal power series with coefficient in VectM:

qnkSk(TM)\.
\0 )

Here S\TM) denotes the kth symmetric power of the tangent bundle to M.

4 Some Twisted Dirac-Ramond Operators

The Dirac-Ramond and Neveu-Schwarz operators are obtained by twisting the
operator Dt from the preceding section with specific vector bundles over the loop
space. It is convenient to introduce the construction in some generality by using
the following generic setting: Let M be a smooth, oriented manifold. Let E, F—>M
be real, oriented, finite dimensional vector bundles. Suppose that

θ £
0 < υ <r
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is a real isomorphism which decomposes E into sub-bundles. Require the
= TM; and that when 0 < υ < r , JE[υ] is intrinsically a complex vector bundle. Let
E[0] and E[r~\ denote the complexifications of E[0~]R and E[r~]R. Suppose that

Θ K
o < ϋ < /•

is a direct sum decomposition of F into real sub-bundles, with F [ D ] naturally
complex for v φ 0, r. An important special case is to let E = £[0] = TM and let V be
the zero dimensional vector bundle, M x {0}. By convention, direct summing with
M x {0} is the identity on Vect(M). Also, tensor product with M x {0} gives
M x {0}. Setting both E = TM and F Ξ M X { 0 } will recover the construction in the
preceding section. Examples of the general construction are provided in the next
two sections.

Choose a metric and a metric compatible connection on E and V which respect
the subbundle decomposition and which will induce real metrics on the Ό — 0, r
subbundles and hermitian metrics on the υ + 0, r subbundles.

For each v e {1,..., r}, choose α(υ) e [0,1). Define the infinite dimensional vector
bundle

JTE= ® TMn(£ 0 £ [ r ] π ® 0 E\β\n-+M. (4.1)
0<neΈ O<neZ + oc(r) 0 <υ<r neZ + x(ιή

Here, the subscript "„" is an indexing label of the bundle in question. This is an
infinite dimensional vector bundle over M; see the Appendix for a discussion of the
topology on JίE.

The physicist's Bosonic Fock space at each x e M is the space of finite, complex-
valued polynomials on the underlying real vector space of ΛrE. This defines a
vector bundle over M which is isomorphic to

# £ Ξ Ξ (x) $ym{TM%€) ® ί <g) Sym(E[υ]*)
OΦneZ 0<u<r}neZ + a(i))

x ® Sym(E[υ]*)l ® Sym(£[r]*). (4.2)
j

Here, the complex conjugate bundle is indicated by underlining. Complex
conjugation is a C-antilinear isomorphism between TM*€ and TM^n€, between
£[r ]* and £[r ]* „, and between E[ϋ]* and E[υ\*.

There is a natural, covariantly constant endomorphism of the vector bundle
,/F£-»M which is generated by

P £ Ξ - X n (xn d/dxn-xn d/dxn)
0<neZ

- Σ Σ n (zMπ 3/^MB-£M» 3/δzM»)

- Σ « (2Wn t
1/^C'-]n-ΞW,, 3/5£[r]n) (4-3)

0<neΈ + <x(r)

Here, xn = {x"} are local coordinates on TMn(C which are defined by the choice of a
local orthonormal frame, {<?}, for TM. Likewise, ^M M = {z[υ]J} are local
coordinates on E[_v]n which are defined by the choice of a local orthonormal frame
for E[Ό]. Note that PE lifts to an endomorphism of <fflE.
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The physicist's Fermionic Fock space bundle over M has left movers and right
movers together. To construct this bundle, begin by defining a vector bundle
j\fV-+M. For this purpose, choose β(o)e(0,1) for each υe{0,...,r). Then,

jrγ= © v[0]n © F [ Γ ] n 0 © V[υ]n. (4.4)
0>neZ+ β(O) 0>neZ + β(r) 0 < v<r neZ + β(v)

Define the physicist's right moving, Fermionic Fock space bundle

Θ £[r]*
O<neZ + oc(r)

Θ E[ι>]* Θ £ M * ^ V (4.5)
Z + a{v) 0<neZ-α(υ) / /

Define the physicist's left moving, Fermionic Fock space bundle

( F[0]* ® 7[r]*
0>«eZ + j5(r)

Θ KMί θ Z M - n ^ (4 6)
JJ

(
Q<o<r\O>neZ+β(υ) 0>neZ-β(υ)

The vector bundle #£®fy is a complex Clifford module for the bundle of
Clifford algebras which is generated by

θ V[0]* θ £[r]* θ F[r]*

θ ( Φ E[υ]* ® £[ϋ]*.n

θ ( θ F[υ]* φ F[υ]*Λ. (4.7)
0<υ<r\0>neZ + β(υ) 0>neZ~ β(υ) )

Introduce an orthonormal frame e = \_ea~\ for ΓM* over a ball in M, and for 0 <

orgr, introduce an orthonormal frame ζ(Ό) = {ζ(υ)j} for £[υ]* over the same ball

For n>0, and for 0<u<r, it is convenient to introduce the notation Γ*, Γ(r)*,

Γ(r)*, Γ(r)* for exterior multiplication on the Fock space ^E®^v by ]/2

• e e TM%€, ]/2 - ζ(v) e E[ϋ]*, |/2 ζ(ϋ) e £[ϋ]* „, j/2 CW e £[r]*, respectively.

Let 7̂ , Γ(υ)π, -Γ(ϋ)n, Γ[rJ^ denote interior multiplication on the Fock space

&E®<Sy with ]/2-eETMtn^ ]/2 C(D)6£[D]*, i/2-C(u)e£[t)]*w>

j/2 ζ(r) e £[r]* „, respectively.

The Γ*'s are the Fock space creation operators, and the Γ's are the Fock space
annihilation operators.

The metric on V->M induces metrics on V[0~]% and F [ r ] | ; and it induces
hermitian metrics on each V[Ό]* for 0<ϋ<r. Choose orthonormal frames o(0)
= {o{0)A}, o{r) = {o{r)A), and O(Ό) = {O(Ό)A} for F [ 0 ] | and F [ r ] * and V[Ό]*,

respectively. For n<0, exterior multiplication on the Fock space #£®fy by
l/2 o(0) E V[O]*9 γ~2 φ ) E K[ϋ]*, |/2-oίϋie F M * „, ]β • o(r) e F[r]* defines the
creation operators 0(0)*, Θ(υ)*, Θ(υ)*, 0(r)*.

For n<0, interior multiplication on the Fock space #£®fV by

]/2 o(0)eV[0-]±n, j/2 o(ϋ)6K[ϋ]*, / 2 φ ) e F [ D ] * n , ^ o(r)εK[r]*B defines
the annihilation operators 0(O)n, Θ(υ)n, Θ{υ)n, Θ(r)n.
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The endomorphism PE has its analog on the Fock space £FE®^V. This is the
endomorphism given by PF + Pv. Here,

^ F = - W Σ n-Γ*'Γn+ Σ n Γ(r)* Γ(r)n
\0<ne% 0<nεZ + α(r)

+ Σ Σ n-Γ(o)*-Γ(o)n
0 < υ < r 0 < n e Z + α(r)

+ Σ £ n ΓOOί Γ^Λ. (4.8)
0 0 Z ( )

And
Pγ=-i ( Σ n-®(O)*-0(O)B+ Σ n-Θ(r)* Θ(r)H

0 Z + β(0) 0 Z + ()

+ Σ Σ n Θ(o)* Θ(o)n
0 < o < r 0 > Z β ( )

+ Σ Σ n Θ()ή*-Θ(y)«) (4-9)
O< ϋ<no/2 0>neZ-β(υ) J

No spin manifold assumption about M has been made yet; but now, a spinor
bundle over M must be constructed. Let Y-+M be an oriented, real vector bundle.
Let L->M be a complex line bundle. Assume that w2{Y) = w2(T*M), or that
w 2 (Γ*M©y) = c1(L)m o d ( 2 ). Give Y and L metrics and metric compatible connec-
tions. Let

UΞETM*®Y. (4.10)

If w2(Y) = w2(Γ*M)5 then 1/ is spin; and if w 2 (T*M0Y) = c1(L)m o d ( 2 ), then t/ has a
spin^ structure which is defined by the line bundle L.

Let S°(U)->M denote the spin bundle S(U) or the spinc-bundle S(U; L) as the
case may be. Note that S°(U) is a Clifford module for the bundle of Clifford
algebras over M which is generated by TM*. Also, S°(U) is a Clifford module for
the bundle of Clifford algebras generated by Y Clifford multiplication by TM*
anti-commutes with that by Y Clifford multiplication by e e TM* © Y will be
denoted by 'V.

The total Fermionic Fock space bundle over M is defined to be

S%U)®&E®<$V. (4.11)

Clifford multiplication by the Γ's, Γ*'s, and <9's and Θ*'s extends to the vector
bundles in Eq. (4.11) directly. To define the Clifford module structure over TM*
and Y*5 introduce the automorphism, (— 1 )F + G: On forms of homogeneous degree
in # £ ® f F , this is (-l) d eg f e e. it extends to an automorphism of fE®Ήv. For
eeTM*@Y, Clifford multiplication on a decomposable element
s®ψ GS 0 {Ό)®^ E ®yv gives e s®{- 1)F + G y,\

An additional necessity for the Dirac-Ramond construction is the density
function on ^VE. This is defined after choosing for each 0 < υ <r and neZ + α(u), a
real number μ[υ, ή] e R\{0}. Assume that sign(μ[υ5 ή]) = sign(n) for all but finitely
many n.

Let
n \xn\

2+ Σ Σ
Z

( Σ Σ Σ
\ \0<neZ 0<o<r neZ + αfu)

x|μ[o,n] | |z(ϋ)B |2+ Σ n WrU2))- (4-12)
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For later applications, let W-+M denote a complex vector bundle with metric
and metric compatible connection.

The domain for the Dirac-Raymond operator will be the space of smooth
sections over M of <$E,γ®ΦE, where

SEiv = ̂ E®S0{U)®^E®<Sv®W. (4.13)

To define inner products on the domain, observe that the bundle S°(U) has a fiber
metric which is induced by the metric on T*M, £, X and on V. Also, ̂ E®rSv has a
natural fiber metric which is induced by the metrics on T*M, E and on V; the
constant 1 is declared to have unit length, and then, the Γ's are declared adjoint to
the respective Γ*'s, and likewise for the <9's and Θ*'s.

The connections on TM* and E and on V induce connections on S(U\ and
•?Έ®^v which are metric compatible.

The Bosonic Fock space # £ ->M has a natural fiber metric which is given by
the Gaussian measure which ΦE defines on each fiber. Alternately, one could
introduce the creation and annihilation operators as in the Appendix. A
connection on # £ which is metric compatible is inherited from the connections on
TM* and on E.

Let <,> denote the induced metric on SE%V, and let V denote the induced
covariant derivative on C^{ξEV®ΦE).

In local coordinates, let ea Va: C
x(iE^v®ΦE)-+Ccc(iEtV®ΦE) denote the

usual Dirac operator. Then, the Dirac-Ramond operator is

Dt = ea Va+TE, (4.14a)

where TE is the following covariantly constant endomorphism oϊ SE V®ΦE:

τE=i-\ Σ (rn• (δ/dxn-fn Xn)+r*-(δ/dxn+1 « *„))

+ Σ Σ (Γ(i
0<υ<r 0<ΞneZ + α(υ)

+ Γ(υ)*n • (ΰβz{Ό)n +1 • μ[υ, ri] • φ)B))

+ Σ Σ (Γ(i))β ( # ( ϋ ) . , - f ί i[i) 1-n] φ ) . l l )
0 < D < Γ 0 < n e Z - α ( υ )

+ Γ(ϋ)* (d/δz(υ) _ „ +1 • μlo, - ri] • z(υ) _ „)

+ Σ (Γ(r)n-(d/3z(r)n-fn-z(r)n)
0<neZ + a(r)

+ Γ(r)ϊ (d/dz(r)n + f n z(r)n))}. (4.14b)

By construction, Dt maps Ccχ($EV®ΦE) into itself.
With these fiber metrics and connections, the endomorphisms PE, PF, and Pv of

$EiV are covariantly constant and symmetric. Furthermore, P = PE + PF + PV

commutes with TE as an endomorphism of $E^V®ΦE. As an operator on
CCO($E V®ΦE\ it commutes with Dt. The endomorphism P can be diagonalized
explicitly on SEiV and P decomposes &EV as the direct sum ®m$E,Vnv where P
acts on SE Vm as multiplication by m. Then, Dt restricts to an operator on

Introduce the L 2 -norm and the i ^ - n o r m on sections oϊSE Vm®ΦE;

< , > L 2 = J < , > and < , > ί / l Ξ < Z ) ( ( ) , D t ( ) > L 2 + < , > L 2 . (4.15)
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Introduce the Hubert spaces L2(#£ Fm(χ)Φ£) and Hι($E Vm®ΦE) as the com-
pletions of C^HE,Vm®Φ]D in the L2 and # ι -norms above, respectively.

The following proposition is a reassertion of Proposition A.I:

Proposition 4.1. In the preceding construction, assume that α(u)>0 for all Ό>0.
Choose μ[υ,ri\=n. Construct SE^V, ΦE and, for t>0, the operator Dv Then Dt

defines a Fredholm operator from H1(SEVm®ΦE) and 1}(SE Vm®ΦE). The kernel
and cokernel of Dt vanish if m < 0, and in general, define the identical vector space of
smooth sections over M of the finite dimensional vector bundle Ker(T£)

The index of Dt on CQC(SEiFm®ΦJ is defined using a covariantly constant
involution /, of S°(U)®^E®^V. The involution / is required to anti-commute
with Dv Define Dtm to be the restriction of Dt to C°°(#£>Vm<g)Φ£). Set

Ind(D SEt Vm, ί) = dim(ker(D ίm |ker(, _,,)) - dim(ker(D J k e r ( , + 1))). (4.16)

Proposition 4.2. Make the same assumptions as in Proposition 4.1. Let £ be a
covariantly constant involution of S°(U)®ϊFE®c3v which anti-commutes with Dt.
Define Ind(D; $E,Vnv £) by Eq. (4.16). Then this index is independent of t; and it
vanishes for m < 0.

Proof of Proposition 4.2. The proposition follows from Propositions 4.1 and A.3.

When M and Y are even dimensional, there are two such involutions, ίe and ίs.
The first, ίe, gives an index of D which is a generalization of the Euler characteristic.
The second, ίs, gives an index of D which is a loop space generalization of the index
of the signature operator or the Dirac operator.

To define ίe, start by defining εQ = dim(TM@Y). Since TM*, 7* are all
oriented, det(TM*©7*) has a covariantly constant, unit norm section, ωe, which
defines the orientation of TM*@Y* along M. The image of ωe in the Clifford
algebra defines an automorphism, ωe, which anti-commutes with the operator eaVa

in Eq. (4.14a). This automorphism has square ω2 = (—iyo{εo+1)/2, so γe

= (j)fio(£o + i)/2 . ω^ defies a n involution of S°(U). Define the automorphism 4 on
S°{U)®^E® c§ v by first considering it on decomposable elements of the type s®ω,
with seS°(U) and with ω of homogeneous degree in ^E®rSv. Require that

) = ye- s ® ( - l ) d e g r e e ( ω ) ω. (4.17)

Then, extend the definition of 4 by linearity. Extend βe to S°(U)®^E®^V® W by
ignoring W.

To define ίs, use the orientation of TM and the metric to define the volume
form. When M is even dimensional, Clifford multiplication by the volume form on
M defines an automorphism, d volM, of S°(U) with d\ol2

M = (-1 ) d i m ( M ) ( d i m ( M ) + 1)/2;
thus, yM = ( ϊ ) d i m ( M ) ( d i m ( M ) + 1 ) / 2 dvolM defines an involution of S°(U). Define the
automorphism (s on S°{U)®^FE®rSv by first considering it on decomposable
elements of the type s®ω®φ, with s e S°(U) and with ω of homogeneous degree in
# £ ; and with φ arbitrary in &v. Require that

Φ®ω®φ) = γM 5 ® ( - l ) d e g r e e ( ω ) ω®φ. (4.18)

Then, extend the definition of ίs by linearity. When tensoring with the auxiliary
bundle W, ignore W.



484 C. H. Taubes

5. A Relevant Example

A geometric example of the constructions in the preceding section arises in the
following way: Suppose that Sι acts as a group of isometries of an oriented
Riemannian manifold, M. For each peM, introduce the subgroup G(p) CS1 which
stabilizes p. The S1 action is called semi-free when the stabilizer of a point in M is
either {1} or else it is S1. Generally, the set of distinct subgroups of S1 which appear
as stabilizers of the points in M is some list from the set {Z/n -Z:ne{ί,2, ...,oo}},
with Z/OO Z Ξ S 1 .

Each ne{l,2,..., oo} defines a (possibly empty) subset M(n)cM as the set of
points p for which Z/n - Z C G(p) i.e., the set of points which are fixed by Z/n Z. For
example, M(1) = M and M(oo) is the fixed point set of the ^-action. Note that if n
divides ή, then Z/n Z is a subgroup of Z/n' Z and M(n') C M(ri).

For n0 >0, the normal bundle, NM(no)-^M(no) inherits a covariantly constant
Z/n0 Z subgroup of its automorphism group. This induces a character decompo-
sition of the complexified bundle,

NM(n)€= ® NM{no;υ). (5.1)
0<υ<no

Complex conjugation provides a (C-anti-linear isomorphism between NM(n0; υ)
and NM(n0; no~Ό). If n is even, this produces a real structure on NM(n0 no/2) this
bundle is the complexification of a real bundle NM(n0; no/2)R^M(no). Thus,
NM(n0) is isomorphic as a real bundle to

NM(n0)«NM(n0 no/2)R ® NM(n0 u). (5.2)
0<υ<n0/2

When n = \, then ] V M ( 1 ) Ξ M X {0} is the special case of the zero dimensional
bundle.

The manifold M(n0) will replace the manifold M in the constructions of the
preceding section. For this to proceed, it is necessary to insure the orientability of

Lemma 5.1. Let Mbea compact, oriented, manifold on which S1 acts. Let V-^M be a
real, oriented vector bundle to which the S1 action lifts. Assume that w2(F) = 0. Let
M(no)cM be the fixed point set of the Z/no-Z subgroup of S1. Let V(no;0)R

-+M(n0) denote the subbundle of V\M{no) on which the induced Z/n0 TL subgroup of
automorphisms acts trivially. Then V(no;0)R is orientable.

This lemma is a corollary to the main theorem in [ £ ] ; another proof is given in
Sect. 10 of [B-T], and a third proof is given at the end of this section.

To motivate the construction of the preceding section, define the fiber bundle
over S1 with fiber NM(n0),

Sι x NM(n0). (5.3)
/no

Witten's discussion in [W2] suggests that one should replace the space of loops
on NM(n0) with the space of sections over S1 of the fiber bundle in Eq. (5.3). This
space is naturally a fiber bundle over ^M(n0) whose fiber at the loop φ e i f M(n0)
is the space of smooth sections over S1 of S1 Xz/Πo.z<p*iVM(n0).
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The constant sections of S1 x z / n o zΛ^M(no) can be identified with the point
loops, M(no)CJS?M(no)CCoo(Sflxz/llo.ziVM(no)). The normal bundle to M(n0)
CCCO(S1 xz/no.zNM(no)) has a dense subbundle which is the underlying real
bundle of

J'NM(no)= θ TM(no)n(C®( ® ® NM(no;υ)n

0<neZ \O<v<nol2 neZ+v/no

x φ NM(no;no/2)n. (5.4)
0<neZ+ 1/2

Here, the last term is understood to be absent when n0 is odd.
The relationship between J^NM(n0) and C 0 0 ^ 1 Xz/no.zNM(wo)) is obtained by

considering Fourier components as in Sect. 3. Indeed, the metric on TM induces a
metric on NM(n0; no/2) and for 0<υ<no/2, a hermitian metric on NM(no\ υ).
Choose an orthonormal frame e = {ea} for TM(n0) a t x e M ; and for 0<υ^τt o /2,
choose an orthonormal frame ζ(v) = {ζ(v)j} for NM(n0; v). Then a point Y = (xn,
z(ϋ)n) in JίNM{n0) as defined in Eq. (5.4) specifies

<KΘ)=( Σ (xn-e-M + xn-eM)-e, £ £
\0<neZ 0<D<n0/2 neZ+D/no

x ( φ ) n e-M • ζ(u) + φ ) B e'"β C(υ)) + £
0<«eZ+ 1/2

x z(πo/2)n e-inθ + z{n0/2)n ^»β) C(no/2)\ (5.5)

as a map from [0,2π] into TM|X. Composing with the exponential map gives a

section over S1 of S1 x ^ o z ^ ^ W
It is natural to make the constructions in the previous section using

E= TM= TM(no)@NM(no/no/2) ® NM(n0; υ);
0<ϋ<«o/2

and using ot(υ) = Ό/no.

Let V-+M be a real, oriented vector bundle to which the S1 action on M lifts.
Endow V with an invariant metric and a metric compatible connection. The vector
bundle V along M(n) inherits a covariantly constant, ΊL/n Z-subgroup of its
automorphism group which decomposes V into its characters under the Έ/n Έ
action on M according to V®(C= ®0<υ<noV(n0; υ). For DφO, complex conjug-
ation gives a (C-anti-linear isomorphism between V(no;v) and F(n o ;n o — v).
Complex conjugation gives a real structure to V(n0; 0) and, when n0 is even, to
V(n0; no/2). As a real bundle,

V\M(n0)*V(n0; 0)R θ K(n0; # % ; no/2)K; (5.6)
0<ϋ<no/2

where the last term is understood to be trivial when n0 is odd.
The construction of JfV in Eq. (4.4) from the vector bundle V in Eq. (5.6) can

be done in two ways, unprimed and primed. In the unprimed case, denote
/ F = f , and in the primed case, denote JfV = 'V'. The two cases correspond to
distinct choices of the data {β{v)}: In the unprimed case, β(v) = Ό/n0; and in the
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primed case, β(υ) = Ό/n0

f«K(no;0)t

+1/2. Thus,

o>

Θ
0>neZ+ 1/2

'xV(no;nJ2)OR

Θ
0>neZ+ 1/2

Θ
0>«e

F(π0

B F(no;0)n®C

V{no;no/2)n,

V(no;no/2)n®(

;0)B.

υ<no/2 n

<Ό<no/2
θ

neZ+u/πo+ 1/2

c.

»)„)

H. Taubes

(5.7)

)

(5.8)

In the physics literature, the unprimed case is called Ramond, and the primed case
is called Neveu-Schwarz.

Distinguish @v and yv depending on whether V or V is used in the
construction in Eq. (4.6).

The constructions of Sect. 4 also require a vector bundle Y-^M and, if
necessary, a complex line bundle L-+M so that the bundle U in Eq. (4.10) is
oriented and spin or spinc. The required bundles are provided in the next lemma.

To state this lemma, recall from Definition 1.1 the notion of V being Z/n 7L
compatible with T*M.

Lemma 5.2. Let Mbea compact, oriented spin manifold on which S1 acts. Let V-+M
be a real, oriented vector bundle to which the S1 action has a lift. Assume that
w2(V) = 0. For integer no> 1, assume that V is Z/n0 Έ compatible with T*M. Let
r = 0 when n0 is odd, and let r = 1 when n0 is even. Then
(1) The line bundle

(x) (det(NM(n0; ϋ)*)®det(F(w0; Όfψ
0<υ<n0/2

has an no

th root.

(2) Let

j 0<ϋ<n0/2

and let

(det(NM(no;ϋ)*)
y

(det(iVM(n0; ϋ)*)®det(F(π0; u)*))~ 2 'Dt / n u,

O<ϋ<«o/2

® Γ ® (det(iVM(n0; ϋ)*)®det(F(π 0 ; U ) * ) ) " 2 < 1 > > / 1 1 0

Let U=TM(no)®V(no;0) and let V = TM(no)®V(no; no/2). Then U and U1 are
oriented; and U with the line bundle L and U' with the line bundle L are spin^.

This lemma is proved as Lemmas 11.3 and 11.4 in [B-T].

To summarize for future reference,

Proposition 5.3. Let M be a compact, oriented spin manifold on which Sι acts. Let
V-*M be a real, oriented vector bundle to which the Sι action has a lift. Assume that
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w2(J/)=r0; and for integer n0^. 1, assume that V is TLjn^ 7L compatible with Γ*M.
The Dirac-Ramond construction in Sect. 4 can be made with the following geometric
data: There are two cases, unprimed and primed. In both, replace the manifold M in
Sect. 4 with the submanifold M(n0) C M which is fixed under the Έ/n0 Έ subgroup of
S1. In Sect. 4, use the vector bundle NM(no)-+ M(n0) for the vector bundle E, and use
OC(Ό) = Ό. Use V\M(tlo)-+M(no) for the vector bundle V; in the unprimed case use β(o) =
υ/n0, and in the primed case, use β(υ) = Ό/no + l/2. In the unprimed case, use the
vector bundles U and L as described in Lemma 53 to define the spin^ structure. In the
primed case, use the vector bundles U' and L in Lemma 5.3 to define the spinc

structure. Finally, choose any auxiliary, complex vector bundle W^>M(n0). This data
defines the vector bundle (oNM(no)fV-^M(n0) ofEq. (4.13). For 0<υ^no/2, set μ[p,ή]
= n + υ/n0 in Eq. (4.12) to define ΦNM{no). Then Dt of Eq. (4.14) maps
^co(^NM(n0),v®<^NM{n0)) t° it self and the conclusions of Propositions 4.1 and 4.2 hold.

For a special case, consider n = 1, so that M(n) = NM(ή) = M. This is the case
which is considered by Witten in [W2]. The analysis in Sect. 4 yields the following
proposition as a corollary:

Proposition 5.4. Let M be a compact, oriented Riemannian manifold. Use
E = Mx {0} and any real, oriented vector bundle V->M in Proposition 4.1. Consider
two cases, unprimed and primed. In the unprimed case, make no assumptions. In the
primed case, assume that w2(TM) = 0. Then

1) I n d φ ; gM-Vm^ / J is zero for m<0, and for m^O, it is equal to the index of the
operator

where Re(m)->M is the coefficient of qm in the following formal power series with
coefficients in the real K-theory of M:

® ( Θ qnk Symk(T*M)\ ® ( ® ( - I f qnk Λ\T*M)\.k (
) 0 <neZ \0 ^

When M is spin, this is the q2m component of Ind(d, FE(q, V), y) with FE(q, V) given in
Eq. (1.5).

2) Ind(D; <oM,vnv^s) ^ z e r o for ^ < 0 , and for m^O, it is equal to the index of the
signature operator on M coupled to Rs(m)->M, where Rs(m) is the coefficient of q:>" in
the following formal power series with coefficients in Vect(M):

® qnk'Symk(T*M)\ ® / 0 qnk Λk(T*Mj).

When M is spin, this is the q2m component of lnά(d, Fs(q, V), y) with Fs(q, V) given in
Eq. (1.5).

In the primed case,

3) Ind(D;£M Vm, /e) is zero for m<0, and for m^O, it is equal to the q2m

component of lnά(d,FD(q, V),y) with FD(q, V) given in Eq. (1.5).
4) lnά(D;iM Vm,ίe) is zero for m<0, and for m^O, it is equal to the q2m

component of Ίnά(d,F( — q, V),y).

This section ends with the proof of Lemma 5.1.
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Proof of Lemma 5.1. Since V is oriented, wί(V(n0;0)) = wι(V(n0;n0/2)). Since
complex vector bundles are always orientable, is automatic the orientability of
V(n0; 0) in the case when n0 is odd. Assume that n0 is even. First, consider the case

Denote the S1 action by φ: S1 x M-+M. Since φ(π, ) is the identity on M(2),
φ(π, •)* : V{2; 0)->F(2; 0) is the identity map; and φ(π, •)* : V{2; 1)->F(2; 1) is an
involution which defines the Z/2 Z action. It is convenient to fix an S1-invariant
fiber metric on V. This induces a fiber metric on V(2; 0) and one on V(2; 1). Then,
φ(π, •)* acts on F(2; 1) as a special orthogonal automorphism, A, with τ42 = 1. Thus,
A is also symmetric, and so it can be diagonalized; all the eigenvalues of A are equal
to —1. This means that A=—I, with / being the identity automorphism.

Suppose that V(2; 0) were not orientable. With this assumption, there exists a
map q:S1-^M(2) with the property that wί(q*V(2\ 0)) + 0. For such q,

1 x 1R\ x R * " 1 , (5.9)
z/2-2 y

where k = dim(V(2; 0)). Since w ^ ^ ; 0)) = wλ(V{2\ 1)), one also has

q*{V{2 \))π(Sι x RhR" 1 " 1 , (5.10)

where m = dim(F(2; 1)).

The S1 action defines from q a map, qί:S
ί x Sι-+M(2) which sends (ί,s) to

,s) = φ(t/2,q(s)). For fixed s,

(5.11)

and therefore,

ίfK(2;0)«S1x/'S1 x R^xR 1 " " 1 . (5.12)
V ΈI2-Έ J

The bundle F(2; 1) obeys

qί(.,q(s))*V(2'9ί) = q(s)*φtV(2;ί); (5.13)

and this means that

Ẑ UV (5.14)

where Z/2 7L acts on (51 x z / 2 . z R) x IRm : as multiplication by ± 1.
The Z/2 Έ cohomology of S1 x Sι has generators z l 5 z2 which restrict trivially

to the second S1 and to the first S1, respectively. The total Stiefel-Whitney class of
q*V(2; 0) can be computed from Eq. (5.12) to be

) H l + z 2 . (5.15)

The total Stiefel-Whitney class oϊq:fV(2; 1) can be computed from Eq. (5.14) to be

1+z2 + (m-l)modi2)-z1Λz2. (5.16)
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The total Stiefel-Whitney class of q% V is now computable from Eqs. (5.15, 16)
as the product of the two classes:

w(q*V)= 1 + mm o d ( 2 ) zx + ( m m o d ( 2 ) + ( m - l)m o d ( 2 )) Z1ΛZ2. (5.17)

Equation (5.17) asserts that w2(q*V)ή=0. This is a contradiction, since w2(g*F)
= q*w2(V). The contradiction implies that V(2; 0) must be orientable as claimed.
For rco = 2/>2, use the same arguement with the fact that c1(E) = 0 for any
bundle E-+S1 x S1 to which the rotations around an S1 lift.

6. Localization for the Z/n0 2£ Twisted Case

Suppose that Sι acts geometrically as a group of isometries of M, and that this
action lifts to an action on the vector bundle V-+M. As in Sect. 5, consider for
n0 > 0, the fixed point set M(n0) of the natural Έ/n0 7L subgroup of S1. The action
of S1 on M defines an action on M(n0) which is an n0-fold covering of an S1 action;
the n0-root action. The fixed point set of the rc0-root action on M(n0) is the same as
the fixed point set of the original action on M, namely, UiΣ[i~].

Assume that the conditions of Proposition 5.3 hold so that the Z/n0 Έ
construction in said Proposition of the twisted Dirac-Ramond operator can be
made using M(w0), NM(no)-^M(no) and F|M ( ϊ I o ) .

For the vector bundle W-*M(n0), assume that a finite cover of the n0-root
action on M(n0) lifts to W. Give W an invariant metric and an invariant, metric
compatible connection.

The rc0-root Sι action on M(n0) has a finite cover which lifts to an action on the
vector bundle <2NM(no),v~*M(no) in both the primed and unprimed cases of
Proposition 5.3; this lift commutes with the endomorphism P; there is a lift to each
of the vector bundles iNM(n0),vm'

The Dirac-Ramond operator Dt on CCG(SNM{no] , m®ΦNM(nΌ)) i s equivariant
under the lifted action, which implies that the S1 character-valued index of Dt on
^co(^NM{no),vm® ^NM(n0)) f°Γ ^ e ^ o " r o o t ^ 1 action can be defined by mimicking the
definition in Sect. 2. Indeed, decompose <oNM{nυh \ m into the direct sum of finite
dimensional vector bundles ®h$ΉM{no),vm(h)®(l\M{nQ) a s discussed in the Ap-
pendix. Correspondingly, the operator Dt on C°°(#NM(no) F w ®Φ i V M ( M o ) ) decom-
poses into a direct sum of "standard" Dirac operators, {d + AJh)} as in Eq. (A.9).
Each of the d + Am(h) is equivariant under the n0-root action; and each is of the
form discussed in Sect. 2 and Proposition 2.6. Therefore, each has an S1 -character-
valued index which is defined as follows: Let k define a character of the
induced rc0-root S^action on Cα o(# i V M ( n o ) ) F m(/i)®Φ i V M ( n o )) (so, k is a rational
number). Let C™(£NM{no)tVJh)®ΦNM{no),k) denote the subspace of sections of
C°°(#NM(no),Fm®^NM(no)) o n which the n0-root S^-actioπ is defined by the rational
number k. The involution, / = 4 or ίs in Eqs. (4.17,18) commutes with the w0-root
action, and so defines an involution of C 0 0(# ] V M ( n o ) Fm(/ι)(χ)Φ]VM(no), fe). Define

- ί)nC"{£NMino)tVJh)®ΦNMino)9 k)))

( W o μ)) ) . (6.1)
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According to Proposition A.I, these indices are zero except for h = 0. Thus, one
can define

Ind(Z); δNuino)tVwt,k)= ΣInd(D; #£<Fm(/i),/,/c). (6.2)

The localization results in Sect. 2 can be used to localize the Dirac operator Dt

on C<X){SNM{no)ίVm®ΦNM(no)) by localizing each Dt on each C^{£NM{n^Vm{h)

®ΦNM(n0))' Recall that Witten's description of localization as discussed in Sect. 2 is
obtained by comparing the large \s\ behavior of the family of "standard" Dirac
operators

Dt8 = Dt + i s e*>-Ka

on Cco(iNM{nohVm(h)®ΦNM{no),k) with a family of differential operators on the
normal bundle to the fixed point set to the geometric S1 action. That is, the S1-
character valued index of Dt on each C™(&NM{nohVJh)®ΦNM{no)9k) can be
calculated using a Dirac operator on the normal bundle to the fixed point set; or,
equivalently using the Dirac operator on the fixed point set, but coupled to a
specific, finite dimensional vector bundle.

The description of these normal bundle Dirac operators (one for each pair of
eigenvalues (m,h)) is facilitated by defining an operator, Qno, on an infinite
dimensional vector bundle over the fixed point set which decomposes appropri-
ately upon restriction to an (m, h) eigenspace. This is analogous to the decompo-
sition in the previous section of the operator Dt into a direct sum of operators
{d + Am(h)}. For calculational purposes, it is much more convenient to consider
Qno, the Dirac operator coupled to an infinite dimensional vector bundle, rather
than a countable set of operators, each a "standard" Dirac operator coupled to a
finite dimensional vector.

The justification for the manipulations of the big operator comes, ultimately,
from the direct sum decomposition into "standard" Dirac operators; and then, by
referral to the results for "standard" Dirac operators which are summarized in
Sect. 2.

The result is Proposition 6.2, below, the analog of Proposition 4.6. This is an
assertion that the Sι character-valued index of Dt on Cco($NMino)tVm®ΦNM{no)) is
equal to the sum of the Sι character-valued indices of suitable Dirac operators on
the normal bundles to the components of the fixed point set of the S1 action. The
appropriate Dirac operator on the normal bundle to Σ = Σ\j] will be denoted by
6 n o = 6«o[Q; it is the analog of the operator in Eq. (2.21).

To write down this operator Qno requires a digression. Recall from Sect. 2 that
the normal bundle to Σ is naturally a complex vector bundle N-^Σ which
decomposes into character bundles N = Q)0<ϋNυ under the S1 action. Let

NL= © NΌ and Nτ= φ NΌ. (6.3)
0 <υ .oeno Z 0 < v: oφno Z

As a real bundle, NL is isomorphic to the normal bundle in M(n0) of Σ. The
subbundle Nτ-+Σ, is, as a real bundle, isomorphic to the restriction to Σ of
NM(n0), the normal bundle to M(n0) in M.

The normal bundle NM(n0) decomposes under the 7L/nQ Έ action on M
according to Eq. (5.2). The restriction to Σ of NM(n0; Ό) is given by

NM(no;υ)\Σ= ® NΌ. ® Nn.. (6.4)
0 < D' : Ό' = υmod(no) 0 < o': υ' — — υmod(no)
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Along Σ, the S1 action decomposes the vector bundle Vinto V= V0R®0<υVυ,
with V0R real, and with each Vυ naturally complex. The vector bundle V along
M(n0) decomposes under the Έ/n0Έ action on M according to Eq. (5.6); and
along Σ,

V(no;υ)= φ VΌ. ® Vv,. (6.5)
0 < Ό' : Ό' = omod(no) 0 < ϋ': v' — — i)mod(«o)

The vector bundle JrNM(n0) of Eq. (5.4) restricts to the normal bundle, NL-+Σ
in M(n0). Since J^NM(n0) is a bundle over NL, and NL is a vector bundle over Σ,
the total space of JrNM{n0) defines a vector bundle over Σ which is the direct sum

) = J^{n0) + Θ J^(n0) _ ® ̂ ( n o ) o , where

n o ) + « θ TM(Σ)n€ © ® Nυ,n ®
0<neZ 0<υ:i) = 0,n0/2mod(πo) O<neZ+υ/πo 0 < υ ' < « 0 / 2

0 < Ό : v — — v' mod(no) 0 < neZ — υ/πo /

θ θ NOiB θ
0<D:i)-0,«o/2mod(n0) 0>ί!eZ + φ 0 0 < D ' < Π 0 / 2

® θ N „,-„),
0 < υ: o= - ϋ 'mod(no) 0 > neTL — Ό/HQ J

D, (6.6)
0 < ϋ : υ - 0 mod(no)

where the "subscript ς'π" is an indexing label of the vector bundle in question.
The vector bundles Ψ" and Ψ"1 of Eqs. (5.7, 8) restrict to vector bundles over Σ as

r(n0) = r (n0) + ® r (n0) _ φ r(no)o

and

r'(n0) = r'(n0) J f ' W J r (na)0,
where

Ή n o ) + « θ K0,B θ φ Viκn φ
0<neZ 0<υ:t) = 0,πo/2mod(«o) 0<«εZ+ϋ/no 0<υ'<πo/2

θ φ κOiB
0 < i;: Ό = υ'mod(«o) 0 <neZ + υ/no

0 < υ: υ= — υ'mod(no) 0 <neΈ— o/no J

θ θ VΏta φ
<υ:o = 0.«0/2mod(«o) 0 > « £ Z + ϋ/«o 0 < υ ' < n

θ Φ K,.«
0 < υ : υ — υ'mod(no) O>neZ+o/no

0 < υ: D= — υ'mod(no) 0 > neZ-υ/πo /

R ® ΘK O i O ; (6.7)
0 < i): υ — 0 mod(no)
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and

1/2 0<υ'<no/2

θ
neZ + o/no+ 1/2

0 < υ : υ = - υ ' m o d ( n o ) 0 < π e Z - D / n o - 1 / 2 /

Φ Φ ^,* Φ

θ φ vOfΆ
u:υ = υ'mod(no) 0 > n e Z + υ / « υ + 1/2

0<ι>:» = -υ'mod(no) 0 > n e Z - υ / λ i 0 - 1/2

τ^"'(no)o« θ ΦK.o (6-8)
0 < υ : υ = no/2 mod(«o)

The normal bundle decompositions in Eqs. (6.2-5) also induce extra structure
upon the restriction to Σ of the spin^ bundles S(U;L) and S(U';L) given in
Lemma 5.2. Consider first the bundle U. Open restriction to Σ,

T*M(no)®V(no;0)R\Σ=TΣ*®VOR ® N* ® VΌ. (6.9)
0 < Ό : i) = 0 mod(no) 0 < υ : D = 0 mod(no)

The spin^-bundle S(U,L)\Σ-*Σ is isomorphic to

;L)\Σ = S(Ί*Σ@V0R; ® (det(JV*)®det(K*))"r

®Λ*( θ N* ®
\0 < U: υ = Omod(πo) 0 < o : u = 0mod(«o)

® (det(N*)φdet(FD*)),
0 < Ό: no/2 <Ό< nomod(no)

® Γ <g> ( ® {det{N*)(g)det(V*)y2-υ'/no

j_O < D' < no/2 \0 < ϋ : υ = Ό' mod(«o)

(x) (det(iV*)®det(F ϋ*)) 2 ' ϋ / / f 1 0 '
0 < u : u = — v' mod(no)

® (det(N*)®det(Fu*))T/2, (6.10)
0 < o : ϋ = «o/2mod(«o) J

with r = 0 if n0 is odd, and r = 1 if n0 is even. Equations (5.25) and (6.4, 5) insure that
the square root taken in Eq. (6.10) is well defined.

For the primed case, the following isomorphism of real bundles holds:

T*M(no)®V(no;no/2)\Σ=T*Σ ® N* ® V*. (6.11)
0 < υ: υ = 0mod(«o) 0 < u : o = no/2mod(no)
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The spin^-bundle S(U'; L)^M(n0) decomposes over Σ as

det(JV*Γn

0<t

®V*( Θ N* Θ Y*
\0 < ϋ: o = 0 mod(no) 0 < υ: υ - no/2 mod(no)

® det(7VD*)
0 < o : no/2 < υ < no mod(no)

® ( ® (det(iV*)®det(K,*))^2ϋ7"0

0 < D' < no/2 \ 0 < u: Ό — υ' mod(no)

0 < υ: o = - υ' mod(no)

® (det(W*)®det(K,*)"1)]r/2, (6.12)
0 < υ: υ = no/2mod{no) J

with r = 0 if n0 is odd, and r=\ if n0 is even.
The Fermionic Fock space bundle over Σ is either S(U; L)®^NM{no)®^v\Σ, or

S(U'; ̂ )®^NM(no)®^v\i' The isomorphisms above induce in a straightforward
way, decompositions of these Fock space bundles. In the unprimed case

= S(T*ΣφV0R; ® (detίiV^OdetίK,*))-1^ ® (det(N*)®det(F*))
0<υ J 0<υ:no/2<υ<n0mod(n0)

®Γ ® ( ® (det(iVD*)®det(K)*))~2u'/"0 ®
[_ 0 < υ' < no/2 \0 < v : υ = υ' mod(no) 0< υ : υ = — o' mod(no)

(det(N*)®det(FB*))2 l ) 7"ή ® (det(JV*)®det(K?))lr/2,
y 0 < υ : o = no/2 mod(no) J

® Λ * ( o o
0 < o: o = 0 mod(n0)

®Λ* ί f(« 0 )*φfW* + ® r * o y (6.13)
I 0 < D : υ = 0 mod(«o) J

In the primed case,

= S(T*Σ; ® det(JV*)~1Nj ® det(JV*)
0 < υ y 0 < υ :no/2 < υ<fίomod(no)

* ) ) " 2 ' B > 0(det(iY*)®det(K,*))"2'B

0 < v: v = — v' mod(«o)

®Γ ® ( ®
1̂ 0 < v' < no/2 yO < Ό : v = v' mod(no)

(det(iVD*)®det(K)*))2o7"°N)

(φjgno)*. φ N*Λ
0 < o: i) = 0 mod(no) /

®r'(no)*+ φ V*o). (6.14)
0 d J

0 < υ: u = no/2mod(no)

The Bosonic Fock space bundle over Σ for the operator Qno is

^NMino)(Σ) = Sym(jrNM(n0)®sVNM(n0)). (6.15)
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Let W-^M(n0) be the auxiliary, finite dimensional, complex vector bundle to
which a cover of the π0-root action lifts. Let W(Σ) denote the restriction of W to Σ.

The operator Qno will be defined on the space of smooth sections over Σ of the
vector bundle SNMino)tV(Σ)®ΦNMino)Σ, with

or °' ° (6.16)

and ΦNM{no)Σ is the function on Jf which is given by

t . y n.\χ \2\

0<neZ

xexp

x Π expf-ί Σ N K J Λ . (6.17)
O<i)€«o"Z \ neZ+o/no /

Here, {zVftι}υ>0 are complex fiber coordinates with respect to a local orthonormal
frame for the nth copy of JVυ-»Γ; while {xn} are complex fiber coordinates with
respect to a local orthonormal frame for the nth copy of TΣ$.

The bundles S(17; L)®^NM{no)®^V\Σ and S(l/'; L O Θ ^ M ^ O ) ® ^ ! ! h a v e

natural metrics and metric compatible covariant derivatives. The bundle
fiVM(«o)(̂ ) k a s a m e t r i c which is induced by using ΦNM{no)Σ to define a Gaussian
measure; or, alternately, one can introduce Boson creation and annihilation
operators as in the Appendix. The natural connection on &NM(n0)(Σ) fr°m

Eq. (6.15) is metric compatible. The finite dimensional bundle W(Σ) = W\Σ has an
S1 -invariant metric and an invariant metric compatible connection by
assumption.

Let V denote the induced covariant derivative on the space of smooth sections
over Σ of the vector bundle iNM(n0),v(Σ)-+Σ. Composing with the natural Clifford
multiplication map from $NM(no),v(Σ)®T*Σ->$Nmno)tV(Σ) gives a Dirac
operator, DΣ which defines an endomorphism of Cco{iNM{nΌhV(Σ)®ΦNM{no)Σ).

The Dirac-Ramond operator

is given by

Qno = DΣ+Tno, (6.18)

with Tno the following covariantly constant endomorphism of

&NM(n0),v(Σ)®φNM(n0)Σ [compare with Eq. (2.23)]:

Σ lΓΌ,n-(d/czυ,n-t-n'ZυJ + Γ*

Σ l V t n ( / O t a O ι J
O<neZ-υ/no

i Σ (Γv,o (d/dz0,0-s i)/n0 zϋt0)
0 <υeno Z

> 0 + s ϋ/n0 z ( ) > 0)), (6.19)
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with the covariantly constant endomorphism TΣ defined to be

TΣ= Σ lΓn (d/dxn-t'n xJ + Γ* (d/dxn + t n xn). (6.20)

To explain the notation, let {θ{, θ{, θa} be a local orthonormal basis for N*, N*, and

T*M respectively. The creation and annihilation operators {Γ*n, Γ*M, Γ*}=Γ*Jn,

Γ*/n, Γ*fl) and {Γ^n, ΓOtK, Γn} = {Γί<n, Γ{^ Γn

a} act, respectively, as exterior product

by {J/5-0L, |/2-0/;, _„, j/2 ̂ } and interior product by {j/2 ^ , j / 2 - ^ ,

|/2-^} on the Fock space S{U; L)®^NM{no)®^V\Σ or S{Uf; L)®^NM{no)(g)%\Σ

via the isomorphisms in Eqs. (6.13, 14).
The endomorphism P of Sect. 4 [see Eqs. (4.3, 8,9)] acts on iNM(n0),v(Σ) and on

iNMino)fV(Σ)®ΦNM(no)Σ a s t n c covariantly constant endomorphism P = P(n0)
= PB(n0) + PF(n0) + Pv{n0) with

0<ne
n (xn'd/dxn-xn d/dxn)

-Σ Σ π-iz^-a/az^-z^ a/^.j, (6.21)
p neΈ + υjno

and

p f = - i f Σ n-rn*-rn+ Σ Σ »•/;*„•./»„,„
\0<neZ 0<υ 0<neZ+v/no

+ Σ Σ « fu*,, Γι,,nV (6.22)

In the unprimed case,

Py=-i (Σ Σ «•©„.„ •©„.„+ Σ Σ « ®?,B 0D,πy (6.23)
\0ii)O>fieZ+!)/«o 0 θ Z /

In the primed case,

iV—WΣ Σ
Z

Σ Σ ? . ,
^Ό 0>neZ+Ό/no+ 1/2

+ Σ Σ n-θtn-ΘυX (6.24)
0 0 Z / l / 2 y
Σ

0<υ

For negative n, the creation and annihilation operators, {Θ* m Θ* π} Ξ {Θ*^, Θ*^}

and {ΘΌin,ΘΌ>n} = {Θ^n,Θ^n}, act as endomorphisms of the Fock spaces of

Eqs. (6.13, 14). The former act as exterior multiplication by j/2 x the component

{o»,o^} of an orthonormal frame for V*n and Fυ?-«; the latter as interior

multiplication by ]/2 x the component {o^, of} of an orthonormal frame for VDtn

and F0_π.
The Lie algebra of the geometric circle action on N-^Σ and on V->Σ has a lift

to an action on iNM{nohV(Σ) and on &NMino)tV{Σ)®ΦNMinQ)Σ with generator i X,
where K = K(no) = KB(no) + KF(no) + Kv(no) + Kw. Here, KB(n0) acts as the cova-
riantly constant endomorphism of ̂ ^M(no)(Σ) which is given by

KB(n0)=- Σ ( Σ Φo'^n-dldzΌtn+ Σ Ό/no-zΌ.n-d/dzΌΛ. (6.25)
0-<i)\«eZ + ϋ/f!O neZ-v/nu J
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Both KF(n0) and Kv(n0) are covariantly constant endomorphisms of
S(U'9L)®&-NMino)®&v\Σ or S(U';L)®.FNM{no)®&'v\Σ In either the primed or
unprimed case,

KΛno)=-Ί' Σ Φo ( Σ Γ*n-ΓOtn
0<υ \O^neZ+υ/no

— V Γ* - Γ
0 <neTL— Ό/Ϊ\Q

+1- Σ Σ dim(JV0) ι;/no
0 % Ό' < no/2 0 < υ = υ' mod(«o)

-Ί Σ Σ dim(iV0)^/n0
0 < υ' < no/2 0 < Ό = — υ' mod(«o)

- r Σ υ/Mo Σ dim(N0) • φ 0 . (6.26)
0 < v' < no/2 0 < o - - Ό ' mod(Ho)

Here, again, r = 0 if n is odd, and r=\ if ft is even. In the unprimed case,

Kv{n0)=-\- Σ Φo'ί Σ ®,t» ®o,n

Σ @tn-@o.n

-ϊ Σ Σ dim(F0) ι>/n0
0 ^ υ' < «o/2 O | D : U = !) ' mod(«o)

+ ί Σ Σ dim(K,) ϋ/«o
0 < (/ < «o/2 0 ̂  t): D = — !)' mod(Ho)

- r X υ'/n0- Σ dim(FD) «/n0

+ r Σ o'/«o Σ dim(FD) o/no (6-27)
0 < o' < «o/2 0 < υ = - υ' mod(«o)

In the primed case,

Kv(n0)=-i' Σ ̂ o Ύ Σ , n D , n
0 < D \0>neZ+υ/no+ 1/2

Σ
0^«eZ-u/no- 1/2

+ ί Σ dim(F0) u/n0
0 ^ υ = no/2 mod(«o)

- r X D/«0 Σ dim(FJ ϋ/n0
O<υ'<no/2 0 < υ = t>' mod(no)

r Σ t>/»o Σ dim(VD)-υ/n0. (6.28)
O<υ'<«o/2 0 < o = -ϋ'mod(no)

The endomorphism Kw of V (̂Σ) is defined so that ι Kw is the real, skew
endomorphism of W(Σ) which generates the Lie algebra action of the n0-root S1

action on W. This Kw is covariantly constant, and hermitian.

As endomorphisms of iNM(no},v(Σ)and oίfNM(n0),v(Σ)®φNM(n0)Σ, b o t h p a n d κ

are hermitian, with discrete eigenvalues; their spectra do not have accumulation
points. Furthermore, both commute with the endomorphism Tno of Eq. (6.19). As
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endomorphisms of Ccc(S>

NM(nohV(Σ)®ΦNM{no)Σ), both P and K commute with Qno.
Decompose 4NM{noh V{Σ) as an orthogonal, direct sum of vector bundles
iNM{no) v{Σ)Jk)^Σ on which P acts with eigenvalue m, and on which K acts with
eigenvalue k. Let L2(<$NM{noh v(Σ)m(k)®ΦNM{no)Σ) and H\(όa

NM{rloh v(Σ)m(k)®ΦNM{no)Σ)

denote the Hubert space completions of C(X)(£>

NMino^v(Σ)nι(k)®ΦNM(nQ)Σ) with
respect to the inner products

< , > L 2 E E K , > and <,>H^<βno(XβJ)>L 2 + <?>L2. (6.29)
Σ

By construction, Qno is a bounded operator from H1 to L2. The following
summarizes Proposition A.I in the present context.

Proposition 6.1. Let I = {(t, s) e R 2 : \s\, ί > 0}. Lei (m, fc) be eigenvalues of P and K on
$NM(no),v(Σ)- F°r feί)G^ i n e operator Qno defines a Fredholm map from
H\$NMin0),ΛΣ)Jk)®ΦNMin0)Σ) to L2(iNM(nohV(Σ)m(k)(g)ΦNMino)Σ). The kernel of the
adjoint and the kernel of Qno are both vector subspaces of
CΌ(iNM(no),v(Σ)m(k)®ΦNM(no)Σ): ™ fact, the same subspace. Both are empty for
m<0.

Define the index of Qno on H1(iNM{no)iV(Σ)m{k)(g)NM{no)Σ) as follows: Introduce
the covariantly constant automorphism f>=fe or £s, of 5 ( 1 7 ) ® ^ ^ ^ ) ® ^ ^ or
S(U')®^ΉM{nQ)®Ψv\Σ from Eqs. (4.17, 18). This automorphism anti-commutes
with Qnύ and Tno, but it commutes with P and K. Extend the automorphism to

(6.30)dim(ker(βJ | k e r V + 1 ) niϊ(# N M ( n o ) f K (Γ)Jfc)(8)Φ N M (6.30)

An immediate consequence of Propositions 2.6 and 4.1, 4.2, and A.4 (via the
discussion at the beginning of this section) is

Proposition 6.2. Let M be a compact, oriented, even dimensional spin manifold which
admits an isometric S1 action. Let V-+M be a real, oriented vector bundle with
w2{V) = 0. Assume that the S1 action on M lifts to an action on V. For integer no>0,
let NM(no)cM be fixed under the %/n0 Έ subgroup of S1. Let W->M(n0) be a
complex, finite dimensional vector bundle which is such that the restriction to M(n0)
of a multiple of the geometric S1 action has a lift. Make the assumptions of
Proposition 5.3. As specified in Proposition 5.3, make the construction in Sect. 4 of
4NM{no),v-*M(n0) and let m be an eigenvalue of P acting on S°NMino)^v-^M. Construct
the operator Dt on Cα o(DV M ( I I o ) > K m®Φ J V M ( Π o )). Let k be an eigenvalue of K on
Cco(<2NM(n0),vm®&NM(no)) aΐld define t h e ίndex Ind(D; # £ , F m , ί, fc) as in Eq. (6.1) using
/ΞΞ4 or 4 of Eqs. (4.17, 18). Let / = {(ί,s)eR:ί>0 and sφO}. Let {ή label the
connected components in M of the fixed point set of the geometric Sι action. For
(s, t) e /, and for each i, let Ind(βΠo, iNM(n0), v(Σ[ι])m, f, k) be defined by Eq. (6.30) for
the iih component. Then, the number Ind(βΠo, iNM(n0),v(Σ[Q)m, Λ k) is constant on the
connected components of I. Furthermore,

Ind(D; SEΛ-mqJ,k)= £ lnd(Qno,iNM(no),v(Σίf\)mJ,k).
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For future reference, it is useful to decompose the endomorphism 4, s with
respect to the decompositions of Eqs. (6.13,14). Consider first that the volume form
on M restricts to Σ where it is given in the coordinates of Eq. (2.22) as

vol(M)\Σ = vol(Σ) Λ i/2'(dzjAdzj). (6.31)
j • 0 < Ό(j)

The volume form on M(n0) is defined from that on M; and due to the complex
conjugate bundles in Eq. (6.4),

vol(M(n0))li = ( - 1)A' vol(2;) Λ ι/2' (dzJ Λ dzJ). (6.32)
j : 0 < υ(j) = 0 mod(no)

Here

Δ = Δ(n09Σ)= Σ Σ dirndl/))
no/2 < υ < no 0 < υ': υ' — υmod(no)

+ o(NM{nΌ,n0/2))9 (6.33)

with o(NM(n0; no/2)e {0,1}. The value depends on whether the given orientation
on NM(n0; no/2) agrees (0) or disagrees (1) with the complex orientation of

© 0 < υ = no/2 mod(n0) ^\Ό)

From Eqs. (6.32, 33), one finds

l)F°, (6.34)

where yΣ is Clifford multiplication by (i)σ{Σ) • d vo\Σ with σ(Σ) = di
•(dim^I^ + l)/^, and where ( —l)F o measures the degree of an element in the
exterior algebra

y l * ( > > o ) * Θ ^ > o ) * ® N*o).
0<υ:υ = 0mod(«o)

To discuss {e in the unprimed case, let

δ = δ(no,Σ,V)= Σ X dimc(Fu,) + o(K(«0;n0/2)), (6.35)
no/2 < o < no 0 < υ': υ' — υ mod(«o)

with o{V(n0; no/2))e{0,1}; the value depends on whether the orientation on
V(no;no/2) agrees (0) or disagrees (1) with the complex orientation of

© 0 < υ = no/2 mod(no) Kr

From Eqs. (6.35), one finds

ίe(M(n0)) = (-ί)A ' ( - ί)δ' yΣ,v®(-Φ + Go, (6-36)

where yΣ^v is Clifford multiplication by (ί)σ{Σ'V) x (volume form on T*I©F(0)K)
with

σ(Σ, V) = dimR(Γ*Σ® 7(0)*) (dimκ(T*£Θ V(0)R) +1)/2

and where (— l)F o + G o measures the degree of a form in the exterior algebra

0 < ϋ : o = Omod(no)

χ®Λ*ίr(n0)*.®r(ηo}l θ d v*Λ.

To discuss ie in the primed case, set δ'(no,Σ, V) = o{V{n0; no/2)). Then

Λ ) F o + G " ) , (6.37)
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where ye(Σ) is Clifford multiplication by the volume form on T*Σ@V(0)R, and
where ( — \)Fo + Gla measures the degree of a form in the exterior algebra

0 < v: v — 0 mod(/ίo) /

no)l θ Y*o).

7, The Shift Operator

As a vector bundle over Σ, Jf~NM(\) in Eq. (6.6) admits the Έ subgroup of
automorphisms whose generator sends

*:NΌ§n-+NΌtn + Ό. (7.1)

The generator on JV' is defined to commute with the complex conjugation map
from Jf to Jf so that ι defines an automorphism of the underlying real vector
bundle. Note that 4 commutes with the geometric S1 action on Jf.

Introduce from Sect. 6 the character decomposition of V\Σ: V=V0R@Ό>0Vυ.
This induces the character decompositions in Eqs. (6.7, 8) of the vector bundles
r{\) and r\\).

The Z-subgroup of automorphisms on Jf extends to define a subgroup of
automorphisms of if{\) and oΐir'(\) by requiring the generator, ,̂ to act according
to the following rule: For integer υ>0, by the natural identification

*'.VΌtn-*VOtn + o, (7.2a)

and to commute with complex conjugation,

*:F 0 . .-*K, B + 0 . (7 2b)

For a real or complex vector bundle E-+Σ, let det(£)->Σ denote the line bundle
Λdιm{E)E. For a real, oriented vector bundle E-*Σ on which Sι acts, let
E = E0R®υ>0Eυ be the decomposition into the character subbundles. Thus, E0R is
the real, S1 -invariant subbundle, and ED-+Σ is complex with υ defining the Sι

action on EΌ. Define the line bundle

L{E)= Π det(£)ϋ->Z. (7.3)

Also, let

e{E)ΞΞ- Σ Όi dim(Eυ). (7.4)

The topological significance of this data is described in Lemma 7.5.

Proposition 7.1. Introduce the vector bundles S(U, L)®^NM{l)®^v\Σ and
S(U\L)®^ΉM{1)®yv\Σ and ̂ NM{1)(Σ) of Eqs. (6.13-15). For a bundle E-^Jf, let
ϊ*{E)-*Jf denote the bundle which is pulled back by the map tof Jf to itself. Then,
there are the natural isomorphisms

i)

2)

3)
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Proof of Proposition 7Λ. Consider the first assertion. As a bundle over Σ,
&NM(i)(Σ) has fiber over x the set of finite polynomial functions on the fiber of Jί
over x. The action of t on Jί is a linear action, so a finite polynomial function is
pulled back to a finite polynomial

The second and third assertions of the proposition are direct consequences of
the following lemma :

Lemma 7.2β Introduce the vector bundles

and

L-' D, -n
0<υXO^neZ 0<neZ

and

= Λ* ® f Θ Y*n ® V*.H
\0<υ\0>neZ 0>neZ

( ( ® V*n ®
\0<υ \0^neZ+ 1/2 0>neZ+l/2

Then, there are natural vector bundle isomorphisms

2)
3) **(f/

Proof of Lemma 7.2. To see the assertion for #"(Σ), group the terms as

Ξ (x) (yl*ΛΓ*n(x)/ί*iy*_n) ® yl*iV*0. (7.5)
Ό,Π>0 ' ' υ > 0

The pull back under Ί of #"(Σ) can be readily computed to be

Ξ (x) (Λ*NZn + v®Λ*NZ_n + v) ® Λ*N*Ό. (7.6)
ϋ , « > 0 υ>0

The right-hand side above is not yet in the required form. To put it in the correct
form, note that the hermitian metric on N induces a natural, (C-linear isomorphism
Λ*N*&Λ*N*(g)dQt(N*). And, forα^O, this last isomorphism induces a natural
(C-linear) isomorphism Λ*N*i-a&Λ*N*^a-λ®det(Λf*). This last fact with
Eq. (7.5) gives immediately the assertion for <F(Σ).

The assertions for $(Σ) and for ψ{Σ) are proved by analogous arguments.
As a parenthetical remark, note that ϊ induces an automorphism of ̂ {Σ) only

when the line bundle L(N)-+Σ is the trivial bundle. That is, only when the first
Chern class cx(L(N)) = 0. Similarly, *, induces an automorphism of &(Σ) and oiψ(Σ)
only when c1(L(F)) = 0. Of course, ^ induces an automorphism oϊ iNMahV(Σ) of
Eq. (6.16) only when c1(L(iV)) + c1(L(F)) = 0. The vanishing of this Chern class is
implied by a global condition on the S1 action; see Lemma 7.5 below.

The generators of the canonical S1 action and of the geometric S1 action define
commuting endomorphisms of iNM(ί)^V(Σ)®L(N*)P®L(V*)P. The canonical S1

action on £NM{ί)tV(Σ)®L(N*)p<g)IJίV*)p is generated by -i P, where P = P(ί)B

+ P(1)F + P(1)F as defined in Eqs. (6.21-24). The geometric S1 action is generated
by -i K, where K = K{l)B + K(ί)F + K{ί)v + p {e{N*)-e{V*)), as defined in
Eqs. (6.25-28).



S1 Actions and Elliptic Genera 501

Proposition 7.3. The bundle isomorphism

obeys

1) K t* = *
2) P t* = *

The topological significance of l/2(e(N*) — e(V*)) is described in Lemma 7.5.

Proof of Proposition 73. Consider the separate effects of** on K(1)B F v and its
effects separately on P(l)BtFfV. These are described in the next lemma from which
the proposition follows as a corollary.

Lemma 7.4. (1) The bundle isomorphism *,* : ijvMd/^J^fivMίi)^) obeys K(\)B **
= **K{ί)Band P(ί)B ** = **P(ί)B + **K(ί)B.
(2) The bundle map **:&r®L(N*)p-+#r®L{N*)p-1 obeys K(ί)F ** = **K(ί)F

+ e(N*) and P(ί)F ** = **P{ί)F + **K(ί)p + y2e{N*).
(3) Let f ° denote either f(Σ) or ψ{Σ). Then, the bundle map ** : f °(g)L(V*)p

) p - x obeys K(l)v • ** = **K(ί)v-** = **K(ί)v-e(V*) and

Proof of Lemma 7.4. A direct computation using Eqs. (6.25-28) establishes the
commutation relations of 7^(1)^ with **. This is left to the reader to check. The
effect of i* on P(l)* is more subtle. Consider first the case of ψ°(Σ). For rcrgO and

t* = θ and ϊ~ι*Θ* * Θ*

For D > 0 , and for rc^ — υ; this equation should be interpreted with the identity

Λ ^ + ,~Λ*F_ π + ί;(χ)det(F/). (7.8)

thus, for υ > 0 and n ̂  — υ,

Θ0,n + υ = Θ*-n-0 and ΘJ.n + ^ Θ ^ _ n _ 0 . (7.9)

Using these last identities, and Eq. (6.24), one computes in the unprimed case
that

Σ Σ n Θ * n - Ό - Θ Ό , n - Ό + Σ Σ n Θ * n + Ό θ Ό t n + X

- Σ Σ (m-ϋ) dim(K0)-i Σ o dim(F0),

+ | Σ ι>2 dim(Fu). (7.10)
v>

where the middle line follows from the first using Eq. (7.9), Eq. (6.27) and the anti-
commutation relations for the Clifford algebra.
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For the ψ(Σ) case, one has from Eq. (6.28)

(Σ

1/2 \O ^ υ

0 J

Σ
0 < υ

- Σ Σ (m-u-i) dim(FB),
0

I
u>>0

D2 dim(KB). (7.11)

Equation (7.11) implies the assertion for the ψ(Σ) case.
Consider the case for #"(£). The effect of t on the Clifford algebra is

summarized by

a n c ι ^-
Λ I I U ^ Ό,n

. - i * r * , * _

^ n ^ ^ ; the first equation should be interpreted with Eq. (7.13) below which
identifies

(7.13)

Thus, for 0 ίg n ̂  υ,

Γυ,n-v = Γυ,-n + u and Γ£n-Ό = Γ*_n + Ό. (7.14)

With these last three identities, one can mimic the preceding calculations to obtain
from Eq. (6.22) the identity

) . (7.15)
υ > 0

For the Bosonic part, use Eq. (6.21) to derive the identity

*" 1 *P(l) i ϊ **=- Σ n (xn-d/dxn-xn d/dxj
n>0

+ Σ Σ(n + ») K« 3/dz»,n-zB.« dβ?oJ (7-16)
υ>0 n

The right-hand side of Eq. (7.16) equals P{l)B + K{l)B where K(ί)B is defined in
Eq. (6.25).

The numbers e(N*) and e(V*) and the Chern classes c^L^*)) and c ^ ^ F * ) ) in
Eqs. (7.3, 4) have a global topological interpretation:

Lemma 7.5. Let M be a compact Riemannian manifold on which Sι acts isometrί-
cally and let E-+M be a vector bundle to which the S1 action lifts. Let p^S00

x 5 i£)6i f 4 (S c c xsiM) denote the first Pontrjagin class of the vector bundle S00

x s i £ (the S1 equivariant, first Pontrjagin class of E). Lei ΣcM be a connected
component of the fixed point set of the S1 action. Pull back p1(5'co xs^E) to a
cohomology class on S00 X ^ I Z Ξ C C P 0 0 X Σ. Let π, π' denote the projections to (DPX

and to Σ, respectively. Then p^S100 x s i £ ) in //4((CP°° x Σ) is equal to π'^p^E)
+ 2 π*tίΛπ/*c1(L(£))-e(E) π*(uΛw) where u is the generator of H2(CP°°).
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Proof of Lemma 7.5. The first Pontrjagin class of a real vector bundle V is equal to
— c2(F(g)C) with c 2 denoting the 2n d Chern class. In the present context, V is the
restriction to (DP00 x Σ of S00 xslE; and V®<Cπ®Ό(π'*EΌ®π*HΌ) where H Ξ Γ

°°. The assertion now follows by direct calculation.

Let L denote the complex line bundle L(7V*)(x)L(F*), and let $p denote
iNM(1)tV{Σ)®Lp. According to Lemmas 7.1 and 7.2, ι*\ξp-*$p~x. ίn Sect. 6,
automorphisms / = ie or *fs of the bundle S° were defined. Define ί on # p by setting
ί(Ψ®s) = ίΨ®s. The shift 4* does not necessarily commute with /; their
relationship is described by

Lemma 7.6. Consider ι*\gp-^&p~λ and (e, ίs \£p-+£p as described above. Then, i %
= (_1)β(jv*)-e(^).^* a n d ^ = ( _ i ) ^ * ) . ^ * .

Proo/ o/ Lemma 7.6. This follows from Eqs. (7.8,13) and the fact that an integer n
obeys n = n2 mod(2).

In Sect. 6, an operator Qγ: Ccc{S0®ΦΉmι)Σ)-^Cco(i°®ΦΉM{1)Σ) was intro-
duced. Since the line bundle L->Σ has a natural metric and metric compatible
connection, one can, by twisting in the usual way, define Qx: C°°( | p (χ)Φ M ( 1 ) Σ )
-J>Cao(£p®ΦNM{ί)Σ). Use Eq. (6.18) but with the covariant derivative on Sp.

A key idea of Witten [W2] is to compare Q1 with t~p*Q1t
p*. This will be done

in Sects. 8 and 9. The comparison is complicated by the fact that i* does not fix
ΦNM(1)Σ But> by definition, one has

Lemma 7.7. Define the function ΦNM(1)Σ using Eq. (6.17). For integer p, define Q[
*Qλϊ

p* as an endomorphism of Ccc($p®ϊ~pΦNM{l)Σ). For p>0,

I—i I m l L-ί Lu
m> 0 o > 0 « φ — pυ

••\n + p-o\-Kf-\s\ p Σ »•
υ > 0

Σ Σ
υ n>0

i Σ Σ
υ pυ + n > 0

ί Σ (Γo, p o

<0 + t-po-z0,0)), (7.19)

where QΣ = DΣ+TΣ as defined in Eq. (6.20). An analogous equation holds for p<0.

Proof of Lemma 7.7. This is a direct calculation which is left to the reader.
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For integers p and pf, the function Ϊ~P*ΦNM(1)Σ defines a fiber metric on
@jNM{l)(Σ) and this metric with the fiber metrics on S(U,L)®^NM{l)®^v\Σ, on
S(U', ^)®^KM{\)®ΨV\Σ a n d on Linduce a fiber metric on Sp. The endomorphisms
P and K oϊ$p act symmetrically on Sp and they decompose Sp into a direct sum of
subbundles, {$p

m(k)->Σ} on which P and K act as multiplication by m and /c,
respectively.

For integers p and pf, construct the operator Q{ on CQO{Sξι(k)®^~p'ΦNM{1)Σ) as
described above. The automorphisms i = £e or /s of Lemma 7.6 act as involutions
which commute with P and K. Hence, they restrict to involutions of Sξ^k) and of
CG0(#^(/c)(χ)^"p'*ΦiVM(1)I) which anti-commute with Qp.

Use the fiber metric on $m{k)®ϊ~p'*ΦNM{1)Σ to mimic Eq. (6.29) and define the
Hubert spaces H\β%k)®*-p'*ΦNmί)Σ) and L 2 ( 0 f e ) ® Γ p ' * Φ M ( i μ ) .

The following proposition summarizes this section:

Proposition 7.8. For ί, \s\ > 0 and for each pair of integers (p, p'\ the operator Q^ on
Cad($%ι(k)®ϊ~p *ΦNM(I)Σ) extends to define a Fredholm operator from
H1(i£{k)®ϊ~p'*ΦNM{1)Σ) to L2(S>p(k)®^p'ή:ΦNM{ί)Σy Both the kernel and the
cokernel of Q{ comprise the same vector space of smooth sections. For the involution
t = t& 4 define the integer Ind(βξ', #£,/,fc) using Eq. (6.30) with Q{ and
#mW®^"P *ΦNM(DΣ replacing Qί and inl{k)®ΦNM{l)Σ. The index so defined is
constant on each connected component of ((f,s): t, \s\ >0). Also, Ind(βι, <op

v^,k) = 0
for m < 0. In general

where m' = m + p'k + ( —pp'+ p'p'β)' [e(N*) — e{V*)); and where μ=p' (e(N*)
-e{V*)) when £ = ί& but μ = p' e{N*) when ί = \.

Proof of Proposition 7.8. The Fredholm property of Q{ is established in
Proposition A.I. The dependence of the index on (t,s) is established in
Proposition A.3. The vanishing of the index for p' = 0 and for m < 0 is a
consequence of Proposition A.I. The final index equality summarizes Proposit-
ions 7.1, 7.3, and Lemma 7.5.

8. Deformations and the Semi-Free Case

Let M be a compact spin manifold with Sι action. Suppose that V^M is a real,
oriented vector bundle to which the Sι action lifts. Make Proposition 5.3's
assumptions and construct the vector bundle <SNM(I),V~*M\ either primed or
unprimed. Let m be an eigenvalue of the endomorphism P on <2NM{1)tV>

 a n d ^ e t

$NM(i),vm~*M denote the sub-bundle on which P acts as multiplication by m. Let k
be an eigenvalue of the generator, K, of the S1 action on C (S°NM{lhVm®ΦNM{ί)),
and let Cco(S>

NM(ιhv®ΦNM(1),k) denote the subset of sections on which K acts as
multiplication by k. (See Sect. 6.)

Label the connected components of the fixed point set of the S1 action by
{Σ[ί]}. FoτΣ = Σ[ΐ], introduce the line bundle L-*Σ, where LΞΞL(N*)®L{V*) as
defined in Sect. 7. Introduce iNM{ί)tV{Σ)-^Σ as defined in Eq. (6.16). For integer p.
Let Sξ^k) denote the (m, k) eigenspace for the endomorphisms P and K on
SNM(lhV(Σ)®Lp as defined in the preceding section. Construct the function ΦNM{ί)Σ
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and the operators Qι on CM(Sξik)®ΦNM{l)Σ), and Ql^t^Qh* on
C00(CS(fc)®*~1*ΦiVM(1)2;) as described in Sects. 6 and 7.

According to Proposition 6.1 and 7.8, these operators extend to define
Fredholm operators from Hι{Sξlk)®ΦNM{1)Σ) to L2(S>^{k)®ΦNM(l)Σ) and from
H\Sξι{k)®^^ΦΊ,M{l)Σ) to L 2 (^(/c)®^ 1 *Φ i V M ( 1 ) I ) , respectively. For such t and s,
and for the involution £ = /e, /s, the respective indices, lnd(β x, S^, /, fe) and Ind(β J,
#£, *f, /c)5 are well defined (see Proposition 7.8.).

The purpose of this section is to relate two sets of indices, {Ind(<21? Ά> £•> ^)}, and
{Ind(β}, Sv

m,ί, fc)}. This comparison comprises a crucial step in the proof of
Theorem 1.3. The import of such a comparison was suggested by the discussion of
Witten in [W2].

The desired comparison can be made when certain conditions on the bundle
V-+M are satisfied. The conditions are summarized in Definition 8.1 and
Lemma 8.2, below.

For fixed i, introduce the decompositions N=@0<ΌNυ-+Σ\j] and V\Σ[i]

] τ h e n > introduce

L[/]= ® (det(N*)®det(Fo*)->£[f|. (8.1)
0 < υ

Also, introduce the integer

e\_ί]= £ ϋ 2 (dim(Fυ*) — dim(N*)) = e(N*\Σ[i]) — e(V*\Σ[ΐ]). (8.2)
0<υ

Definition 8.1. Let M be a compact oriented manifold on which Sι acts. Let V-^M
be a real, oriented vector bundle. The bundle V is weakly S1 compatible with T*M
when the following is true:

(2) Require that there exists a complex line bundle L0^M to which the S1-
action on M has a lift, and which restricts S1 equivariantly to each Σ[ι] as L[z].
(3) For each integer n>\, and each component of M ( n ) 3 u ; l [ i ] , require that
the restriction of L o to M(n) has an πth-root.
(4) For n as in (3), require that V be TL/n -Z compatible with T*M as in
Definition 1.1.
(5) Require that e[z] = e[j^ = e for all z and j .

A global condition which implies the S1 -compatibility of V can be given in
terms of the equivariant, first Pontrjagin class of V.

Lemma 8.2. Let Mbea compact, oriented, even dimensional spin manifold with an S1

action. Let F—>M be a real, oriented vector bundle to which the S1 action lifts.
Assume that w2(F) = 0. // V is strongly S1-compatible with T*M as defined in
Definition 1.1, then V is weakly Sι-compatible with T*M. In particular, this occurs
when

w2(Sx x T*M) -w2(Sco x V) - O e i / V S 0 0 x Â
\ s1 J \ s1 J V sl

and when
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Proof of Lemma 8.2. In this case, Lemma 7.5 asserts that for all i, L[f] « Σ[f] x (C,
that S1 acts with trivial character, and that Φ ' ] Ξ O .

The significance of S ̂ compatibility is described below.

Proposition 8.3. Let M be a compact, oriented manifold on which S1 acts isometri-
cally. Let V->M be a real, oriented vector bundle which is weakly Sι-compatible with
T*M. Let I = {(t,s)eΈL2:t,\s\>0} and let (t,s)eL As specified in Proposition 5.3,
construct IJVM(1),F~^^ and the function ΦNM(iy Let m be an eigenvalue of the
endomorphism P on iNM(i),v~^M a s described in Sect. 4 and let k be an eigenvalue of
the generator of the S1 action, K, on C c 0 (# i Y M ( 1 ) F m (x)Φ N M ( 1 ) ) as described in Sect. 6.
Let / = ίeor is of Eqs. (6,34, 36, 37). For each component, Σ\_ΐ], of the fixed point set
of the S1 action, introduce the integers Ind(β l 5 S_l, ί,k) and Ind(β}, <f£ £,k) of
Proposition 7.8. Then,

I Ind(β,, C, S,k)=Σ l nd(δ 1, SZ, ί, k).
ί i

The proof of this proposition occupies this and the next section. The
comparison of indices for the two sets of operators is accomplished in both the
semi-free and the general case by constructing a 1-parameter family of index
problems which interpolates between the two in question.

The construction of this family of index problems starts with the following
considerations: Pick c e (0,1/4). let {υ} denote the set of characters for the S1 action
on the normal bundle in M to a component, Σ = Σ[ΐ] of the fixed point set. Define
for each α e [0,1] and for each υ and integer n φ 0, the number μ[υ, ή] = n + α υ. For
n = 0 define μ[p, 0] = (c + α) Ό.

Let

Ω = Ω[i] = {α6(0, l ] :αφ - c and aυeZ for some υ). (8.3)

Note that always, 1 e Ω.
For αe[0 5 l ]\Ω, the data {μ[_Ό,n]} satisfies Conditions (1H 3 ) i n

Proposition A.I. For αe [0,1]\Ω, use the data {μ[υ, ή]} in Eq. (4.12) to define a
function Φ[α] on Jί.

Using the data {μ[υ,ή\}, define the operator β[α] on Cco(^(/c)(x)Φ[α]) as in
Eqs. (4.13, 14). Note that for OCΞΞO and for c = s/t, one has Q\ϋ] = Qx on
CtC0(#m(̂ c)® ]̂VM(i)) a s defined in Sect. 7 and considered in Proposition 7.8. As in
the Appendix, introduce L2(#£(fc)®Φ[α]) and H\£Z(k)(g)Φloc]), the two Hubert
space completions of C°°(#£(/c)®Φ[α]).

According to Proposition A.I and A.3, the following is true:

Lemma 8.4. Let IC [0,1]\Ω be a connected subset. Pick ce(0,1/4) and {μ(n,j)} as
above. Then, the operator β M ί ί H ^ m W O Φ M J - ^ L ^ ί f c J ^ Φ M ) is Fredholm.
The integer Ind(β[α]5 #^, /, k), as defined in Eq. (A28) with t' = ίeor ίs is independent
of ocel.

The behaviour of Q[μ] near points in Ω must now be considered. The simplest
case occurs when the following assumption is made: Require for each connected
component Z[i] of the fixed point set that {ϋ[i] = υ = 1} is obeyed for the characters
of the S1 action on the normal bundle N^>Σ[f\. This case will occur if the
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geometric S1 action is semi-free. The remainder of this section treats the case {υ[ι]
= Ό = 1}. The general case is considered in the next section.

Proof of Proposition 8.3 in the Semi-Free Case. When the S1 action is semi-free,
then {o[ί]ΞDΞl}. Assume that such is the case.

With s>0, each set Ω[ί] of Eq. (8.3) contains only the point {1}. Let α = 1 -<5,
and observe that

ί Σ -\xm\2-( Σ H
m>0 \0<neZ

Σ
0<ne

t'\n-l+δ\'zlt-n\
2)). (8.4)

Introduce the shift operator ί* from Sect. 7, and observe that

ί Σ m-\xJ2-( Σ t \n-δ\-\z1j
\<neΊ

(8.5)

The operator **Q[1 — δ ] ^ " 1 * is given by

δ > - ι * = TΣ + i- Σ [Γ l f Λ (δ/3z l f n - ί (n-<5) z l t f I)
1 <Z

«• Σ
0

+ Γ1*o (δ/3z 1 > o -ί δ z l f O ) ] . (8.6)

It is defined on C°°(**(^(fc)® Φ[l - 5])). For future reference, note that Lemma 7.3
asserts that

where

m/ = m / p]=m + fc + ( - p + i) e[/] (8.7)

with e[/] defined in Eq. (8.2).
Now, consider the set of numbers {μ[υ,n]_ = n for n + 0 and μ[υ,0]= — c}.

Define

Φ f ί Σ m | x j 2 - X t-n-\zUn\
2

m>0 0<πeZ

- ί - c lzj.ol2- Σ f - M - K -
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and define the operator β_ on C"°($ξι7
1(k)®Φ_) by using the set {μ[υ, M]_} in

Eq. (4.14).
Another direct application of Propositions A.I and A.3 gives

Lemma 8.5. Fix δ>0, but much less than 1, and fix ce (0,1/4). Introduce the
operators t*Q[\-δ~\ι~ι* on Cco{iξι7\k)®^Φ[\-δJ) and β_ on
C^{S^7 ι{k)®Φι) as above. These operators extend as Fredholm operators from the
respective H1 spaces to the respective L2 spaces as defined in Proposition A.I. Define
the two integers Ind(**β[l - δ ] * " 1 * , g%r\k, *f,fc) and Ind(β_, ^ Γ 1 , ί,k) using
{ = ie or fs in Eq. (.4.28). Then, these two integers agree.

Define a set of numbers {μ[υ, ή]+=n for n=)=0 and μ[υ,0] = c}. Note that {μ
[», ft] + } and {μ[t>, n]_} differ in the sign of μ[ι>,0]±. Use the data {μ[u,n] + } in
Eq. (4.12) to define a function, Φ + , on ΛΛ Use the data in Eq. (4.14) to define the
operator β + on CG0(#£Γ1(/c)(x)Φ + ). Note that with c = s/t, one has Φ + = ΦNM{1)Σ9

and β + Ξ ^ as defined in Sect. 7.
There is no continuous deformation of the data {μ[p, π]_} into the data {μ

[υ,n] + } which preserves Conditions (l)-(3) of Proposition A.I along the whole
route. Therefore, Proposition A.3 cannot be invoked to compare the indices of Q__
with β + . This pathology is a real one it is precisely the difference between the cases
s < 0 and s > 0 in Proposition 2.5. The difference between the + cases can be
analyzed only by considering behavior away from the fixed point set of the
geometric S1 action; the global topology of M must enter the discussion. Resolving
this pathology requires the simultaneous consideration of all the components of
the fixed point set of the Sι action.

Let { £ [ J ] } denote the connected components of the fixed point set of the
geometric S1 action. Over each £[/], introduce the complex line bundle L[ΐ] ->Σ[_ί]
of Eq. (8.1). Let m'[ι\ be given by Eq. (8.7). When V^M is weakly Sι-compatible
with T*M, the number m'[i~\ = rri is independent of the component Σ\_ί] of the fixed
point set. Over each Σ\_ΐ] there is a vector bundle $[f\m>(k) = δ^(k)\Σ[ί] and there are
the operators Q\_ί]± defined on C

Lemma 8.6. Assume that V is weakly S^^-compatίble with T*M. Pick a constant
ce(0,1) and for each component Σ[ι] of the fixed point set, define the data {μ[i]
[D,n\±] as above. Using this data, define for each i the function Φ{ι\± and the
operator Q± on C G 0 (#[Ϊ]^(/C)(X)Φ[Ϊ] ± ) as specified above. The operators β[i]+ have
the Fredholm extensions as described in Proposition A.ί. For each i, define the
Ind(β[ϊ] ± , # [ / ] ^ , Λ k) using <? = έeor /s in Eq. (A.2S). Then

I Ind(β[Γ| _, £[iYm'> Λ k) = Σ Ind(β[/] +, δ\ι\^ t, k).
i i

This lemma will be proved shortly. Assume it for now. To complete the proof of
Proposition 8.3, observe that Lemma 8.4 and Proposition 7.8 assert that

with e = e[ΐ] is independent of i; and with μ[ΐ] = emod{2) when ιf = έe, and with

Ό2 dim(ΛΓ*|ΦlίΊ)mod(2Λ
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when / = /s. Meanwhile, Lemma 8.5 and Proposition 7.8 assert that

€JΛ). (8-10)

Proposition 8.3 follows immediately from Eqs. (8.9,10) if μ[ί] is independent of
the component, Σ[ι], of the fixed point set. Such is automatically the case when
{ = /e. When ί = /s, a sufficient condition for this to be the case is given in [A-H]
and restated below.

Lemma 8.7. Let M be an oriented, even dimensional spin manifold with Riemannian
metric. Suppose that Sι has an isometric action on M. Let {Σ[f\} be the connected
components of the fixed point set. To each Σ[_ΐ\, associate

Γ[i])mod(2)

Then μ\_ΐ] = μ is independent of the index i.

Lemma 8.7 is a special case of Lemma 9.7 to which the reader is referred. This
section ends with the proof of Lemma 8.6.

Proof of Lemma 8.6. The assumption that Vis S1-compatible to T*M asserts that
there is a line bundle L 0->M to which the S1 action lifts, and which restricts to each
Σ[ι] as L[ι\. One can construct a metric and a metric compatible connection on Lo

which restricts to Σ\_Γ\ as the metric and connection on L\_ί\. Then, consider, as in
Proposition 5.3, the vector bundle SNM{1)<F®I/0->M, the function ΦNM{1) on
JίNM(\\ and the operator

The number m' is an eigenvalue of the endomorphism P on
# ] V M ( 1 ) ? F ®L^ ) ®Φ ] V M ( 1 ) with eigenspace Sά

NM{lhVm>-^M. indeed, in the unprimed
case, e/2 + k is always an integer, as can be verified from Eqs. (8.2, 6.26, 6.27). In the
primed case, eβΛ-k can be half-integral, but in this case, P has half-integer
eigenvalues. The operator Dt restricts to

A : C ( # N M ( 1 ) ) F m ® ^ 0 ® Φ N M α ) ) C ^ # N M U ) , F m ® ^ 0 ® Φ N M ( 1 ) ) .

According to Proposition 4.1, Dt extends to a Fredholm operator from

\ 2

) . Vn.® ΠQ ® ΦNM(ί))

whose index is defined in Eq. (4.16) using / = /e or /s.
Since the Sι action can be lifted to an action of a finite cover of Sι on

<2NM(i),vm'®Lp

0®ΦNM(i)> the localization results in Sect. 6 apply, and allow a
computation of the Sι-character valued index of Dr as defined in Eq. (6.1).

Proposition 6.2 asserts that this character valued index can be computed using
either of the set of operators {Q\_ϊ] +} as long as the constant c is chosen to be equal
to ί/s. indeed, according to Proposition 6.1,

_ , # [ f l ^ (8.11)

This last equality implies the assertion of Lemma 8.6.
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9. Deformations: The Case of General ^-Actions

Consider Proposition 8.3 in the case where the positive characters of the S1 action
on the normal bundle to the fixed point set are allowed to differ from 1.

To begin, fix a component Σ = Σ[ί] of the fixed point set. Introduce the finite set
Ω[ι] of Eq. (8.3). Fix the constant c in Lemma 8.4. For αe [0, l ] \ β p ] , introduce
the notation Φ[i, α] and

Q[f, α] : //1(#[f]^(/c)(x)Φ[f, α]HL2(#[f]£(fc)(x)Φ[*, α])

to distinguish the data in Lemma 8.4 at the various components of the fixed point
set.

Suppose that α0 e U Ωjj]. This α0 is a rational number; let n0 be the minimal
positive integer with the property that po = no ocoeΈ. If ocoφΩ[Q, then Σ[ί] is an
isolated, connected component of M(n0). Otherwise, Σ[ί] is a proper submanifold
of M(n0). The following facts about n0 are needed later:

Lemma 9.1. Define n0 and p0 as in the preceding paragraph. Let Σbea component of
the fixed point set of the Sι action on M and let 0<υ define a character of the S1

action on N\Σ. Then p0 υ/n0 εΊLif and only if υ/n0 eΊL. Also, p0 υ/n0 eΈ+ί/2 only
ifv/noeZ+i/2.

Proof of Lemma 9.1. The "if of the first assertion is obvious. For the converse,
write Ό = l\no + υ' with /eTL and with 0<Ό'<n 0 . Then υ' • po/no = υ' α 0 e Έ which
contradicts the fact that n0 is the minimal positive integer which gives an integer
upon multiplication by α0. For the second assertion, write υ = l- no/2 + υ' with / e Έ
and with O^υ'<no/2. Then, 2 υr α o e 2 , which gives the same contradiction
unless υ' = 0.

For oioφΩ[ι], the index of Q[ΐ,α] is well defined and constant for all α in a
neighborhood of α0. For α e Ω[ι], the index of Q[z, α] may jump at α0 since Q[i, α0]
is not defined.

Consider this situation in greater detail: Let α = α0 -(1 —δ). Let Σ = Σ[_ί] and
write Φ\Λ - δ] = Φ[z, α0 (1 - δ)~] and write Q[i, α0 (1 - δ)] = β [ l - δ]. In order to
compare the indices in the two cases ± δ > 0, it is necessary to consider together the
components of the fixed point set of the ^-action on M. As in the semi-free case,
this will be done by observing that the index of g[ l — δ'] is equal to the index of an
operator which is the localization to a component of the fixed point set of a suitable
Dirac-Ramond operator which is defined on a submanifold of M on which the
geometric S1 acts with the same set of fixed points as the geometric S1 action on M.
Then, the sum, over all components of the fixed point set of the Sι action, of the
indices of g[ l — (5] for δ>0 will be seen to equal the same sum for δ<0.

To begin, introduce the "fractional" shift

Nυ^ φ (TΣm®<E) ® iVϋjn (9.1)
ΊL m>0

with restriction

*(no,Po)' N Ό t n - + N Ό , n + Po.Ό/no. (9.2
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Also, define

φ o , P o ) : © K,m® Kίn-> φ V0%m Θ VOtn (9.3)
m>0 neZ m>0 neZ + po' v/no

with restriction

Φ θ ? P θ ) K),n->K).n + poo/no ( 9 4 )

Finally, define

*(no,po): ® Fo,m θ F ϋ < π + 1 / 2 ® © K,» (9.5)
0<meZ+l/2 »eZ 0 <meZ + 1/2 υ ? m neZ + p0 υ/«0 + 1/2

with restriction

t(no,po): Vυjn->Vυίn+poυ/no. (9.6)

There is no expectation that the fractional shift induces a bundle automor-
phism of #°(£) = #jVM(i),v(Σ), or even an automorphism up to tensoring with a
line bundle. However, note that ^{n^poγSΉM{1)V(Σ) looks like iNM(no),v(Σ) as
defined in Eq. (6.16). To be precise,

Lemma 9.2 There is a natural isomorphism t(n0, p0Y

(det(iY*)®det(K*))" [ P o ' ϋ / n o ]

0<v

Mo/2 < o' < Mo 0 < υ: υ = o' mod(Mo)

® (det(N*)(g)det(V*)yιΓ (
j_0 < D = no/2 mod(tto)

(x) (det(JV?)®det(F ϋ *)) 2 ' ϋ 7 w o

0 < υ' < «o/2 I 0 < o : Ό = υ' mod(«o)

(x) ( d e t ( N * ) ® d e t ( K *
0 < o: υ = - t>' mod(no)

ϋ'/»oΊ>/2

JJ !

in the unprimed case. Here, r = 0 if n0 is odd, and r = ί if n0 is even. The symbol [5]
denotes the greatest integer which is less than or equal to a given number s. In the
primed case,

)= ® (det(N*)®det(Fu*
0 < D

l - Lpo t>/«o + 1/2J

® ® άet(NM(n0, υ')*)
i^k^poll {k- 1 J2)lpo <υ'/no<k/p0

® (det(N*)®det(K,*))
ί ϋ = no/2 mod(Mo)

® Γ ® (det(JV*)®det(K )*))2 ' l / / I I ί )

0 < o' < Mo/2 \_0 < υ: v = o' mod(«o)

® (det(iV*)®det(F o*))" 2" ϋ 7 π oΊT / 2

0 < v. Ό= — i)'mod(Mo) JJ
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Proof of Lemma 9.2. The unprimed case follows directly from Eqs. (6.13, 14) and
Proposition 7.1. In the primed cases, Eqs. (6.13, 14) and Proposition 7.1 yield
directly

0 < υ 0 < o

® ®
ΠQ/2 < ϋ' < no 0 < ϋ = v' mod(λio)

®
\ v = no/2mod(no)

0 < Ό' < no/2 L 0 < v : v = ϋ' mod(«o)

® (det(JV*)®det(ro*)Γ2 'ϋ 7"oΊT / 2. (9.7)
0 < υ: υ = — υ' mod(«o) J J

The assertion follows from the preceding equation with Lemma 9.1 and Eq. (6.4.).
The generators of the canonical S ι action and that of the n0-root Sι action on

<2NM(no),v(Σ) a c * by the endomorphisms P(n0) of Eqs. (6.21-24) and K(n0) of
Eqs. (6.25-28), respectively. Define P on iNM(no),v(Σ)®L(n0,Po) to send the
decomposable element ψ(g)s to P(no)ψ(g)s. Then, extend by linearity. Define K on

(no,po) to send the same ψ®s to {K(n0) + κ(n0,po))ψ®s, with

φ 0 ) Po) Ξ Σ ϋ/^o [Po * ΌM ' (dim(ΛΓ*) - di
0<υ

+ i Σ u/no (dim(iV*)-dim(p;*))
0 < υ = no/2 mod(πo)

+ Σ Σ ϋ/Mo (dim(JV*)-dim(K,*))
0 < v' < noJ2 0 < o : — v' mod(«o)

- r Σ »7«oT Σ u/»o (dim(JV*)-dim(Ko*))
0<υ'<no/2 |_0<υ: υ'mod(«0)

I ϋ/n0 (dim(N*)-dim(K0*))l. (9.8
0 < υ: — υ'mod(no) J

in the unprimed case; and with

Φo, Po) = Σ Φo-ίPo- Φo + ΰ (άim(N*) - dim(K*))

0< ϋ = «
Σ u/«o-(dim(N*)-dim(K,*))
/ 2 d

- Σ Σ ( Σ o/no dim(JV*
1 ^ fc ^ Po/2 (/c - 112)1 PQ < Ό'IΠQ < k/p0 \0<υ = υ' mod(«0)

0 < t)= — ϋ'mod(no)

-r Σ »7"oT Σ D/no (dim(JV*)-dim(K,*))
0 <Ό' <ΠQJ2 |_0 < υ : υ'mod(wo)

Σ D/no (dim(N*)-dim(K,*))]. (9.9)
0 < υ: ~ ϋ'mod(no) J

in the primed case. Then, extend by linearity. The generator of the n0-root S1

action acts as multiplication by κ(no,po) on L(no,po).
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The involutions £ = 4 and ίs were defined on <2NM(i),v(Σ) and on $πM{nQ), v(Σ) in
Eqs. (6.23-37). Extend the definition of/ to SNM(no)t v(Σ)®L(n0, p0) by requiring the
action to be linear, and to send a decomposable element ψ®s to ίψ®s.

Lemma 9.3. The induced isomorphism

4n0, p0)* : iNM{1 )t F(^)-^#iVM(,o), F ( ^ ) ® L K , Po)

has the following properties:
1) K φ o , p o ) * = φ o , p o ) * lC
2) P φ 0 , p 0)* - φ 0 , p 0)* P + φ 0 , p 0)* (p0 X + ε),
where ε is defined as follows: In the unprimed case,

c = i Σ (dim(N )-dim(K,*)) ([po ι;/no] ([po ι;/no] + l)

-Po φo-2 p0 υ/n0 [p0 ϋ/n0]);

m ί/iβ primed case,

- i Σ dim(K)*H[/V<y«o+i]2

0 < u

- 2 p 0 υ/n0 [pot)/no +1]) .

3) 4(M(n0)) Φ o , Po)* = ( " ! ) " • Φ o , Po)* ' 4(M) with

^ = C Σ [Po ϋ/no] (dim(JV?)-dim(F0*)) + ̂ (no,Γ) + Φ o . ^ n > i
V 0 < υ /mod(2)

in the unprimed case; with A as defined in Eq. (6.33) and δ as defined in Eq. (6.35).
In the primed case,

μ=(Σ IPo- ΦO] dim(iV*)- Σ ίPo' Φo + i ]
\0<υ 0<υ

x dim(K,*) + Δ(n0, Σ) + δ'(n0, Σ, V)\
/mod(2)

with δ' as defined prior to Eq. (6.37).
4) SJtM(n0))- t(n09p0)* = {-ίY' t(nQ9p0)* -ts(M) with

mod(2)

Proof of Lemma 9.3. This is a straightforward calculation which mimics the proof
of Lemma 7.4. Use Eqs. (7.8, 9), Eqs. (7.13, 14) and Eqs. (6.31-33).

The effect of φ o , p o ) * on the function Φ[l —(5], and on the Dirac operator
Q[l —(5] can be calculated in a straightforward way. To summarize the result, let
L^Σ be as in Eq. (8.1) and let m, k be eigenvectors of the endomorphisms P and K
on $NM{ί)tV(Σ)®Lp and let (SΉM{1)V{Σ)m®1J){k) be the eigenspace bundle over Σ.
According to the preceding lemma,

i(no,poΠSNM{i),v(Σ)m®Lf)(k)



514 C. H. Taubes

is the subbundle of

on which K acts with eigenvalue fc, and on which P acts with an eigenvalue
m'(m,k,no,po). Let

(iNM(n0)

denote

Lemma 9.4. There exists δo>0 with the following significance: Let m, k be
eigenvalues of the endomorphisms P and K, respectively, on SΉM{l)tV(Σ)®lF. Let m'
= m + po k + ε be the eigenvalue of P on

<n09 po)*(#iVM(i), v(Σ)m(k)® U) = (iNM(noh v(Σ)®L(n0, po)®Lp)m(k)

as given in Lemma 9.3. Fix ce(0,1/4] and δe( — δ0, δo)\{0} and £>0.

(1) The operator φιO5Po)*β[l ~~^M^O'Po) 1* defines a Fredholm operator
from

H\($Nmno),v(Σ)®L(n0, po)®iηm.(k)®*(no,

to

sign(5) = sign((5), introduce the function ΦNM{no)Σ of Eq. (6.17) and ί/ie Dirac
operator Qno on

o/ £̂ f. (6.18). Lβί / = 4 or ίs be as defined in Eqs. (6.31-33), and define μ as in
Assertion 3) or 4) of Lemma 9.3.

(2) Then

= ( - \f Ind(ρπ o, (iNM{noh v(Σ)®L(n0, po)®L%, /, fc).

Proof of Lemma 9.4. Assertion 1) is a calculation which is left to the reader.
Assertion 2) is a direct consequence of Proposition A.I, A.3, and 6.1.

Lemma 9.4 exhibits the difference between the (5>0 and the <5<0 indices of
Q[\ — δ~\ in terms of the s > 0 and s < 0 indices of Qno. This difference might not be
zero, but under certain conditions, the sum of the changes over all the components
of the fixed point set for the n0-root action on M(n0) will vanish. Proposition 6.2
makes this notion precise, the next lemma summarizes.

Lemma 9.5. Let {Σ[j]} be the connected components of the fixed point set of the n0-
root S1 action on a connected component of M(n0). Require that V be Έ/n0 - Έ
compatible with T*M in the sense of Definition ί.ί. Require that w2(T*M)
— W2( K) = 0. For each Σ = Σ[f\, introduce the line bundle L(n0, p0) p ] of Lemma 9.2.
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Introduce the number ε[z], with ε = ε[i] defined in Lemma 9.2, and for S = t?e or /s,
introduce μ[z] = μ as defined in Lemma 9.3.
1) Require that L(no,po) [/] be the restriction to Σ[ϊ] of a line bundle over M(n0)
to which a cover of the n0-root action lifts. Require that this lift be compatible with the
Sι action over Z[i] as defined in Eqs. (9.8, 9).
2) Require that ε[i] be independent of i.
3) Require that μ[f] be independent of i.
Then, for all δ small and positive,

I lnd(QU - δ], Sίΐ]pm, t, k) = Σ Ind(β[l + <5], #[/]£, (, k).
i ί

It still remains to determine the circumstances under which the requirements of
Lemma 9.5 are fulfilled.

Lemma 9.6. Let {£[/]} be the connected components of the fixed point set of the n0-
root S1 action on a connected component of M(n0). For each Σ = Σ[ι], introduce the
line bundle L(no,po)[ι] of Lemma 9.2. Introduce the number εp], with ε = ε[i]
defined in Lemma 9.3. Introduce the line bundles L[i]->Σ[i] of Eq. (8.1) and the
numbers e[ΐ] of Eq. (8.2). Then, Conditions 1) and 2) of Lemma 9.5 are satisfied when
V is weakly S1 -compatible with T*M in the sense of Definition 8.2.

This lemma will be proved shortly. Consider the obvious example V= TM. In

the unprimed case,

UnΌ9pΌ)[ί] = Σ[_Qx(C9 (9.10)

and in the primed case

Iλno,Po)U]= ® ® det(NM(nΌ,D')*)\Σm. (9.11)
l^k^po/2 (k-ί/2)/po<υ'/no<k/po

In both cases, the bundles extend from the fixed point sets {£[i]} of the n0-root
action to M(n0) with a compatible lift of a cover of the π0-root Sι-action.

In the unprimed case, one has ε[z] =0. In the primed case, one has

β[0 = i " Σ dim(NM(n0 υ')) ([p0 ϋ ;/n 0] - p0 o'/no). (9.12)
0<ι/^n0/2

which is clearly independent of i.
Consider the question of the {μ[ΐ]}. The following lemma generalizes a result in

[A-H] (see also Lemma 9.3 in [B-T]):

Lemma 9.7. Let M be an oriented manifold on which Sι acts isometrically. Let M(n0)
be a connected component of the fixed point set of the Έ/n0 Έ subgroup of S1. Let
[Σ[ι]} be the connected components of the fixed point set of the n0-root Sι action on
a connected component of M(n0). For ?f = /s, 4 and for each Σ = Σ[ί], introduce
μ[ϊ] = μ as defined in Lemma 9.3.
1) Let l' = £s. If w2(T*M) = 0, then μ[i] is independent of i.
2) Let e = (e. If w2{T*M) = w2(V), then μ[i] is independent of i.

This lemma will be proved at the end of the section. Observe that Lem-
mas 9.4-7 complete the proof of Proposition 8.3 in the general case.
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Proof of Lemma 9.6. Consider first ε = c[ι]. In the unprimed case, consider
separately different values of p0 • υ mod(n0) in the defining sum. This yields

B=i Σ Σ (dim(JV?)
O^ϋ'<«o 0 < o: PQU = Ό' mod(«o)

(F0*) (-(p 0 υ/n 0 ) 2 + υ' • (n 0 - υ')/n2

0),

Po e[Q/no+i Σ (dim(N(no;o')*
O<D'<no/2

-dim(V{n o\Ό')*) ω(ι/) (n0 -ω{υ'))/n2

0

F(πo;no/2)*)) ; (9.13)

where ω(υ') = p0 υ' — [p 0

D Ί G (0^o) The last two terms are evidently independent
of the index ί, and the first term is independent of the index ί when the conditions of
weak S1 -compatibility in Definition 8.1 hold.

The primed case for ε[/] is handled in a similar way. The result is an expression
which is identical to that in Eq. (9.13) but for the addition of the term

- i Σ Σ dim(FK;ι/)* ωQ/)Az0
0%k<p0 k/po<ϋ'<(k+l/2)/po

- i Σ Σ dim(V(no;D')*'(no-ω(Ό'))/no
0<k^po (k- l/2)/po<v' <k/p0

-1 - d\mR(V(n0;n0/2)*). (9.14)

Consider now the line bundle question. To facilitate the analysis, write [pov/no~]
= Po'v/n0 — o)(υ)/n0. Note that for υ = n0/2(mod(n0)), ω(v)/no = ί/2. For the un-
primed case, one obtains the following formal expression for L(πo,po):

L(no,po) = L[i]-po/no ® (det(iV*)(χ)det(K*)Γ ( ϋ ) / π o

0 < i): o Φ no/2 mod(no)

® (det(N*)®det(V*)yx

0 < υ: no/2 < ϋ < no mod(no)

® Γ (g) (det(Λ
0 < o' < no/2 |_0 < o : υ = υ' mod(n0)

(det(N *) ® det(_F0*))" υΊn°Ύ, (9.15)

J0 < o: D = - ϋ'mod(no)

with r = 0 if w0 is odd, and with r = 1 if π 0 is even. Observe that when 0 < Ό' < n0 and
when Ό = Ό' mod(n0), then ω(υ) = ω(υ'). Also, ω(n0 — D;) = n0 — ω(υf). These facts imply
that, formally,

θ<ϋ/<nϋ/2

For the primed case, observe that [p 0 υ/no +1/2] =pov/no — ω(υ)/no provided
that k/p0 ^ ω(v)/n0 <(k+ί /2)/p0 for some integer k e [0, p0). If (fc - l/2)/p0 ^ cφ)/p 0

<k/p 0 for fce(0,po], then [p 0 ϋ/no + l/2] = p o

ϋ / w o + (wo —ω(ϋ))/wo These obser-
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vations imply for the primed case that formally,

; »')*) ®det(7(w0; υ')*ψW)+r
|_0<ι/<wo/2

(x) (x) det(JVM(wθ5 »')*) (9.17)
ί^k^po/2 {k~ l/2)/po<υ'lno<k/po

Caution. Equations (9.16, 17) are formal only; they make honest sense only when
the bundles in question have the appropriate roots.

Under the condition of the weak S1 -compatibility of V with TM*, the bundle
L[ι] is assumed to be the restriction to Σ[ι] of a bundle Lo to which a cover of the
ft0-root action on M(n0) lifts. The bundle L o is assumed to have an no

th root, L\jn°;
the restriction of L\jn° to Σ[ί] defines L[i]1/n°.

Equations (9.16,17) will make honest sense provided that a no

th root exists for
the line bundle

® (det(N(n0; ι/)*)®det(7(w0; Ό')*))">w+r °' (9.18)
0 < Ό' < no

on M(n0). The existence of the no

th root is guaranteed by Lemma 5.2.
The proof of Lemma 9.7 requires Lemma 9.3 of [B-T] as an auxiliary lemma:

Lemma 9.8. (Lemma 9.8 of [B-T],). Let M be an oriented manifold on which S1 acts
isomeίrically. Let M(n0) be a connected component of the fixed point set of the
Έ/n0 - ΊL subgroup of S1. Let {Σ[0], £ [ ! ] } be distinct, connected components of the
fixed point set of the n0-root S1 action on a connected component of M(n0). Let
F->M be a real, oriented, even dimensional vector bundle to which the S1 action on M
lifts. Assume that w2(V) = 0. Let p0 e (0, n0) be an integer which is relatively prime to
n0. Then

0 = ( Σ (dim(FJI[01) - dimlKJitijΛ ίp0Φo])mod(2)
\0<υeZ J

+ (δ(n09Σ(0\V)-δ(n0,Σ(ί),V)moά{2y

Here {K limluez ^s t n e character decomposition of V ®(£\Σ[i] under the lift of the S1

action; and δ( ) is defined in Eq. (6.35).

Proof of Lemma 9.7. The first assertion of the lemma follows immediately from
Lemma 9.8 by replacing V by Γ*M in the latter's statement. The unprimed version
of the second assertion of Lemma 9.7 follows from Lemma 9.8 by replacing V by
T * © F * in the latter's statement.

To prove the primed case of Assertion (2) of Lemma 9.7, consider the following
facts: Let 0 ^ υ' < n0 be an integer. Suppose that υ is a non-negative integer which
equals Ό' mod(π0). Then [_p0Ό/n0 + 1/2] = [po

D/^o] if a n d o n t y if there is an integer
ke[0,po) with the property that k^p0 v'/no<(k+ 1/2). Therefore, for z = 0, 1:

Σ dim(K*lκπ) [ P o ^ o + i ] = Σ dim(K*L(ί)) [PoΦo]
O<oel 0<veZ

+ Σ Σ Σ dim(K*|i(ί))
0 < k ^ po 0 < Ό' < n0 : (k - 1 / 2 ) < pon'jno <k 0<υ:v = υ' m o d ( « o )

+ X dim(V*\Σιi)). (9.19)
0 < v : v = no/2 mod(«o)

Here, an allusion to Lemma 9.3 has been made.
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The last term in Eq. (9.19) is d i m ^ F ^ ; no/2)), so is the same for Σ[O] and for

ΣΪM
If one is only concerned with equivalences mod(2), then, mod(2), the second

term on the left-hand side of Eq. (9.19) is equal to

( Σ Σ dim(V*\m)\
\rio/2 <υ' <HQ 0 < υ : υ — υ' mod(«o) ymod(2)

+ ( Σ Σ dim(V(no-υ'))\ . (9.20)
\O<k^po 0<υ' <no/2:(k- l/2)< poυ'/no<k /mod(2)

The second term above is the same for Σ[0] and for
Equations (9.19-20) and (6.35) imply that

Σ (dim(K*|Σ ( 0 ))-dim(K*| ί ( 1 )))
0< υeΈ

= ( Σ (dim(K0*|ί(o,)-dim(K,*|i(1))) I>ou/no]
\ 0 < Z

Σ
\0<υe

+ δ'(no,Σ(0),V)~δ'(no,Σ(ί),V)\
/mod(2)

+ δ(nQ,Σφ),V)-δ(n0,Σ(\),V)\ . (9.21)
/mod(2)

This last equation, plus Eq. (9.21) implies the primed version of Assertion (2) of
Lemma 9.7.

10. Conclusions

The proof of Theorem 1.3 is completed in this section; due to Lemma 8.2, it is a
corollary to the following proposition:

Proposition 10.1. Let M be a compact, oriented and spin Riemannian manifold.
Assume that S1 acts isometrically on M. Let K—>M be a real, oriented vector bundle
to which the S1 action lifts. Require that w2(V) = 0, and also, require that V be weakly
S1-compatible with T*M in the sense of Definition 8.1. Let e denote the constant that
appears in Requirement (4) of Definition 8.1. Construct $NM(i),v and ΦNM(I) an^ t n e

operator Dt on CGO(# iYM(1))F(x)ΦΛrM(1)) in both the unprimed and primed cases, as
specified in Proposition 5.2. Let $NM{\),vm be the subbundle of iNM{1^v on which the
canonical circle generator P acts as multiplication by m. Let k be an eigenvalue of the
geometric circle generator, K, on C G C (# i V M ( 1 ) > F m ®Φ Λ r M ( 1 ) ). For f-=ίe or £s in
Eqs. (4.17,18), and for the unprimed or primed cases, define Ind(Df, $KM(i),vnv ^ k ) a s

in Eq. (6.2). // e#0, then Ind(Dt, £NM{ί)tVm, /, k) = 0.Ife = 0, then Ind(Z) t , '^ M ( 1 ) , V m

ί,k) = 0 for allkφO.

Proof of Proposition 10.1. Introduce the line bundle Lo-+M of Definition 8.1.
Due to Propositions 6.2, 7.8, and 8.3,

lnd(Dt,gNMiί)tVm®Lp,t,k)=±Ind(D»^ (10.1)

where m! = m + p' k + (— p p' -f pr2/2) e.
Suppose first that e = 0. Then, following Witten [W2], when k φ 0, one can take

p = 0 and p' such that m' < 0. But, for rri < 0. Proposition 4.1 asserts that the right-
hand side of Eq. (10.1) is equal to 0.
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If e < 0, take p = 0 and pf > 2 (m + k2je)j]fe. This makes m' < 0 on the right-
hand side of Eq. (10.1), and, again, the right-hand side is equal to 0. If e>0, take
p = p' and switch the roles of m and m'\ then repeat the preceding argument.

Appendix. Fredholm Properties

The purpose of this appendix is to consider the detailed properties of the various
operators which are constructed in Sect. 2, 3, and 4.

Part /. Topologies

Consider topological and smooth structures on a countable direct sum of smooth,
finite dimensional vector bundles. Let {Bn-^M}neΛ be a countable set of smooth,
finite dimensional vector bundles over the compact manifold M. Define

Bn->M (A.I)
neΛ

to be the set of points in the countable direct sum which have only finitely many
fiber coordinates non-zero. Give ^ the direct limit topology (see, e.g. [Wh]). Let X
be a compact manifold. A map / : X -> # is declared to be Ck (0 rg k ̂  oo) if and only
if there exists a finite subset λcΛ such that / factors through the finite dimensional
sub-bundle ®neλBn->M; and does so as a Ck map. Conversely, a m a p / ^-^X is
Ck if and only if the restriction of / to every finite dimensional subbundle
(&neλBn->M is Ck. This makes the projection from Ή-^M a smooth map.

Let ^, ^ '->M be as defined in Eq. (A.I) from countable sets {J3n->M}πeyl,
{B'n->M}neΛ, of smooth, finite dimensional vector bundles. A map / : ^ - > ^ ' is
defined to be a Cfc bundle map if and only if the restriction of / to each finite
dimensional subbundle of # defines a Ck vector bundle map into a finite
dimensional subbundle of <€'.

For example, {Bn@Bn-*M}neΛ defines (€®^\ and fiber addition: ^ © ^ - ^ i s a
C00 bundle map. For a second example, suppose that UCM is an open set over
which each Bn admits a trivialization, φn: Bn -> U x ΊR.N{n\ Then, © n e y i ^ w : ^-^ t/
x n e y lR

7 V ( n ) defines a smooth bundle map which respects fiber addition. In this
sense, r€-+M is locally trivial; and defines a vector bundle over M with fiber IRX.

For # and ^ as above, define ^ © ^ using {BM}u{βw-} as defining data. KM
%®<#', use {Bn®Bn,}.

All of the infinite dimensional vector bundles over M which are constructed in
this article will be defined, implicitly, in this way. All of the bundle maps between
these bundles will be smooth in the sense above.

Part 2. Fredholm Properties

Introduce the vector bundle &E-+Σ in Eq. (4.2). Note that ME is locally the space of
finite polynomials in the coordinates on J/Έ and their complex conjugates. The
function ΦE in Eq. (4.12) defines an inner product on the vector bundle
&E®ΦE-+Σ. One can construct this inner product at x e M by using ΦE\X to define
a Gaussian measure on $E\X. Equivalently, one can define creation and annihi-
lation operators along the fiber J/Έ\x a t x e M : Introduce the local coordinates
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{xn, zU;„} ΞΞ {χa

ny zln} on <ΛrE\x. For 0 < Ό < r and neZ + oc(υ); or for Ό = r and 0<neZ
+ α(r), let

/,*„ = ί - (5/5zUt n - 1 |μCϋ, n] I • z0, n) and £*n = i (d/dzΌtn-t \μlυ,ή]\ z0J;

n + t'\μlv,n]\ z Ό n ) a n d £Όn = i (d/dz + t'\μlΌn]\-zJ

Here, μ[r,n] = n by flat. For α = 0, introduce for 0<neZ,

a* = i>(d/dxn-t-n xn) and a* = i ( δ / δ x π - ί n xn);

and αM = ΐ (δ/dxn + ί • n xn).

The function Φ£ is annihilated by each of {αm, aw /ϋ?n, /υ,n}, while the fiber of
•§E®ΦE at x is naturally isomorphic to the vector space of finite linear
combinations of functions which are obtained from ΦE by differentiating finitely
many times with the creation operators {α*, α*, /υ*n,/υ*π}. The inner product on
ίME®ΦE is obtained by declaring ΦE to have norm equal to 1 and by declaring that
each of {am, am9 fΌ%n, fΌ,n) and the corresponding member of {α*, α*, f*n, f*n} are
adjoint.

Introduce the vector bundle <f£ v from Eq. (4.13). A smooth fiber metric, <, >, is
defined on SE V®ΦE, as is a metric compatible connection.

The endomorphisms PE of Eq. (4.3), PF of Eq. (4.8) and Pv of Eq. (4.9)
annihilate ΦE and induce endomorphisms oϊ SE V®ΦE which are hermitian with
respect to the fiber metric. They are also covariantly constant.

Define endomorphisms SEV®ΦE by

0

K

K

Σ
<υ<

III

r πe2

0

+
0

0

+

V

< υ <r 0

Σ
<υ<r 0

< u < r θ

< B ξ B 0

'•{^n d/dz,

Σ υ'

Σ »•
<neZ-α(r)

ί-J

Σ
2 O>nεZ-/l(o)

- υ, n

Θt,

Ό ' 6

„ • «

,π

, n '

• β „.„)•

These are also covariantly constant, and hermitian.
Let P = PB + PF + PV and K = KB + KF + KV. Note that P commutes with K;

and both are covariantly constant. Neither is bounded, but it is not hard to
diagonalize them explicitly on each fiber. Their spectra are real, discrete, with no
accumulation points. Fiberwise, the (m,/c) eigenspaces of P and K define a
subbundle SF^Vm(k)cSE^v. These subbundles decompose iE,v®ΦE orthogonally
into the direct sum © (m, &)(#£, FmW®^)-

One can also ignore K, and decompose iE,v®ΦE= ®m{<$E,vm®($E)> where
$E.vm-*$E,v i s t n e subbundle on which P acts as multiplication by m. Thus,
<iE,vm®^>E=®k(^E,vJ<}<)®^E) i s a n orthogonal decomposition into subbundles.

Introduce the Dirac operator Dt on Cco(i0(Σ)®E®Φ0) in Eq. (4.14). Observe
that Dt commutes with P and with K; and so defines an endomorphism of

a n d also one of Ccc(iEίVm(k)®ΦEl
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Let L2(iE j F m ® ΦE\ L2(S°E ,Vm{k)®ΦE) denote the L2-completions of the space of
smooth sections oϊiE Vm®ΦF, iE,vm{k)®ΦE^M. Use the fiber metric to define the
L2-inner product in Έq. (4.15). Likewise, let Hι{iEVm®ΦE\ H\iEVm{k)®ΦE)
denote the completions of Cm(£EtVm®ΦE) and of C*°(&Etγm(k)®ΦE) using the H1-
norm in Eq. (4.15). By construction, Dt defines a bounded, linear operator from Hι

toL 2 .
It is the purpose of this section to explore the Fredholm properties of Dt. The

crucial issue is the choice of data {μ[υ, n]}.

Proposition A.L For each integer ve(0,r) and integer ΠEΈ + (X(Ό), specify a set of
numbers {μ[_v, n]}neZ + a{υ) with the following properties:
(1) There exists ό>0, such that \μ[υ,ή]\>δ for all υe(0,r).
(2) There exists a constant K such that μ[υ, ή] -(n — K υ)>δ |μ[ι>, ή]\ for all
υ6(0,r) and integers ne7L + oc(p).
(3) The sign of μ[u,0] is the same for all Ό having α(υ) = 0. Distinguish Case (I):
κ = 0 and all oc(v) e (0,1] from Case (II): K φ 0, or a(v) = 0 for some Ό. In the former,
set $ ΞΞ SEt F m, and in the latter, set ξ = SE Vm(k).
1) For fixed r>0, Dt extends to define a Fredholm operator from Hι{S®ΦE) to
L\δ®ΦE).
2) CokQΐ(Dt) = KQΐ(Dtl and this is a subspace of C X (#®Φ £ ) .
3) Suppose that for all nΦO and for all υ, n μ[υ, n]>0. Then ker(Dr) and
coker(D?) are empty for m<0.

Proof of Proposition AJ. The kernel and cokernel of Q can be analyzed by using
together a Wietzenbock formula and the decomposition of $ into its finite
dimensional subbundles.

To decompose in a convenient way, introduce the (finite) set Ω = {(υ,
n φ 0): n μ[υ, ή] < 0}. Then, introduce

Σ m J

0<meZ

(D.0<n)$Ω

( l ) , 0 < M ) φ β

+2- Σ {r'-ff.nf
{v,0<n)eΩ

+ 2- Σ (r 1 •/„?-„
( υ , 0 < « ) e Ω

+ 2- Σ ^•(f~1

0<Ό<y.a(υ) = 0

+ 2- Σ ( l - Λ ) / / . >
0 < o<f :α(υ) = 0

+ 2- V ί r " 1 f* f + π Γ* Γ ) (A5)
0<«eZ + α(r)

where x = 1 if {μ[t), 0] > 0}0 < υ < r. a{υ) = 0, and otherwise x Ξ 0. The sum over (υ, 0 < n),
above, is over Ό e {0,..., r — 1} and 0 < n e Z + α(ι ), though subject to the relevant Ω
constraint.
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This endomorphism is covariantly constant. It is also positive semi-definite,
with discrete spectrum whose first non-zero eigenvalue equals

λ 1Ξinf{l 5{ | iu[ϋ sn]|} 0 < 0 < r ί n e Z + α ( ϋ ),α(r)}. (A.6)

(It is an easy exercise to diagonalize H)
A simple calculation shows that P and K both commute with H as

endomorphisms of &\ and, as an endomorphism of C 0 0 ^) , H commutes with Dt.
Indeed, introduce the covariantly constant endomorphism TE of Eq. (4.14). Then

H = Γι>Ti. (A.7)

Decompose $ into the eigenspaces of H;

#ΞΞ 0 S(h). (A.8)
fιesρec(H)

Lemma A.2. The vector bundle ${h)-+Σ is a finite dimensional vector bundle of the
form S°(U)®R, where U-+M is given in Eq. (4.10), S°(U) is the appropriate spin or
spinc bundle and R = Rm(h) in Case (I) and R = Rm(k, h) in Case (II).

This lemma will be proved shortly; assume its validity for now.
Since each of P, K, and H commutes with Dt, Dt induces an endomorphism of

As an endomorphism of Ccχj(S>(h)®ΦE\ Dt is an operator of the form

d + A, (A.9)

where d is the Dirac operator coupled to R and where A~Am(h) or Am(k,h) is a
covariantly constant endomorphism of Rm(h) or Rm{k, h), respectively.

To analyze the operator Dt one can work with the set of "ordinary" Dirac
operators, {d + A}. However, it is convenient to manipulate these operators as one;
indeed, the ability to do this is the great achievement of supersymmetry. However,
the rigorous justification for the manipulations that follow stems ultimately from
the decomposition of Q into its "components", {d + A}.

The analysis of Dt requires the Wietzenbock formula for Df. Use the fact that TE

anti-commutes with ea Va to derive the following: For ΨeC00(S(h)®ΦE\

The last term in Eq. (A.10) is <Ψ, Γi HΨ\2. Thus, for Ψ eC"°(S(h)®ΦE),

Equation (A.ll) implies that any kernel of Dt on Hι(S®ΦE) must lie in
Hί($(0)®ΦE). According to Lemma A.I, #(0)->M is a finite dimensional vector
bundle. Since the restriction of Dt to C=o{i(0)®ΦE) is of the form in Eq. (A.8),
standard elliptic theory asserts that the kernel of Dt on Hι(S{G)®ΦE) is finite
dimensional, and consists of smooth sections. Furthermore, there is a positive
constant, c0, such that the quadratic form <Dt , Dt }L2 bounds c 0 (Ψ, Ψ\i on
restriction to the L2-orthogonal complement in Hί(d>(0)®ΦE) to this kernel.

To summarize, for t >0, the kernel of Dt on H1($®ΦE) is finite dimensional,
and it consists of smooth sections contained in H\$(ϋ)®ΦE). On the complement
of this kernel, (Dt , Dt \ 2 bounds a constant times the ϋ^-norm. This fact implies
that Dt has closed range in I}{S®ΦE).
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For the cokernel of Dί5 consider a non-zero element Ψ e cokeτ(Dt) C L2(<f ® ΦE).

for all ΦeH\S®ΦE\ Write Ψ = Σhψh with ΨheL2{£(h)®ΦE). Then, each
Ψh e coker(Dt). Dealing with Ψh instead of Ψ, one can invoke the standard theory of
elliptic operators on sections of finite dimensional vector bundles over M to
conclude that ΨheHι(i(h)®ΦE)nCco(i(h)®ΦE) and ΨhekQr{Dt). In particular,
this requires h = 0. In conclusion, cokerfT^) is finite dimensional and equals ker(Dr).

Only Assertion 3 of Proposition A.I remains unproved. To prove this last
assertion, decompose the symmetric endomorphism P into positive and negative
parts, P = PL-PR. Here,

Σ /7* . π _i_ V f* f \

Un Un~τ /^t Jo,n Jr,n
:neZ 0<neZ + α(r) /

+ Σ Σ n \μlo,ή]\-ι fo*« fo,«
0<υ<r 0<neZ + tx(ϋ)

+ Σ Σ « liu[»,-»]Γ •/»?-„•/•,,-,,• (A.13)
0<ι;<r 0<«eZ-α(υ)

Under the condition that n μ[v, ή]>0 for all nφ0, there is a constant c>0, which
is such that

holds as an identity of symmetric, non-negative endomorphisms of $®ΦE. The
verification of Eq. (A. 14) can be made by comparing Eq. (A. 5) with Eq. (A. 13).

Proof of Lemma Λ.2. Introduce twelve "occupation number" endomorphisms;
the first two are defined to be

( ) i Σ m ^ Σ fTΛfr.n ()
0<meZ 0<neZ + a(r)

The last ten are defined for any collection {σ[υ, ή] ̂  0}: The third through the sixth
are

c,o<π,*0

«(L,σ)=f Σ σCu.-nD ίt l i"^-"] !)" 1 •/„?-»/„.-»,
(«.0<n)fΩ

«(L,σ) = i Σ ^ ^ - ( ί lμfen]!)"1 •/*,/„,„•
( ϋ , 0 < n ) φ Ω

Here, the sums over (υ,0<n) are sums over D G { 1 , . . . ,r —1} and over 0<neZ

The seventh through the tenth are denoted by {^'(JR,σ), n(R,σ\ n{L,σ),
n(L,σ)}; they are given by Eq. (A. 16) but with the sum restrictions in Eq. (A. 16)
changed to require that (Ό, n) e Ω. If the resulting subset of Ω is empty, set the
corresponding {n(R, σ), n(R, σ), n(L, σ), n(L, σ)j equal to zero.
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Finally define the last two "occupation number" endomorphisms to be

no(σ)= Σ σ[o,0] ((ί |^[u,0]|)^ I /0*0/ l),o + Γ*π Γϋ.0),
0 < B < , : « ( 0 > = 0

no(σ)= Σ Φ,O] (t \μl»,0-]\Γl tiof,.o
0<υ<r:a(v) = 0

Each of the twelve endomorphisms above is symmetric and each is non-
negative with integer eigenvalues when {σ[υ, rί]} are sets of non-negative integers.
Furthermore, each commutes with P, K, and H; and the twelve commute amongst
themselves.

By inspection, #(/?) has finite dimensional fiber if and only if Pv from Eq. (4.9)
and each of the twelve number operators from above is bounded when {σ[u, n]}
are bounded away from zero.

Introduce the constant K from Assumption (2) of Proposition A.I. Introduce
the variable x = 1/2 (1 + sign(μ[υ,0]|ϋ:α(ϋ) = o)) in Eq. (A.5). The restrictions on the
set {μ[υ,ή]} imply that x = 0 only when κ^0 and when [n(R,σ\ n(L,σ)} are
zero. Also, x=ί only when /c^O and when {n(R,σ\ n(L,σ)} are zero.
Furthermore, if κ = 0, then all [n{R,σ\ n(R,σ\ n{L,σ\ n(L,σ)\ are zero.

Consider the case when x = 1 and κ§;0; the x = 0, /crgO case is handled by an
analogous argument which is left to the reader. In the x = 1 case, H gives a bound
f o r m(R) + n{R, σ0) + n(R, σQ) + n(U σ0) + Mσo), (A. 18)

when {σo[ι>,«]==|μ[ι>5«]|).
Bounds on the remaining ''occupation number" endomorphisms come from

studying P and K. Take {σ^υ, w] = |π|} and note that P decomposes as

where P F is the non-negative endomorphism which is given in Eq. (4.9).
Note that in Case (I) of Proposition A.I, Ω = Φ and ^o(σ) = - ô(σ) = 0. Then,

Constraint (1) on the set {μ[o, n]} implies via Eq. (A.18) and Eq. (A. 19) that

m{L) + n{U σx) + n{U σλ) + n{U ^i) + Pv (A.20)

is also a bounded endomorphism of S(h). This last bound plus Eq. (A. 18) bound all
of the "occupation number" endomorphisms of ${h) in Eqs. (A. 16-17). Such
bounds imply Lemma A.2 for Case (I) of Proposition A.I.

To make further progress, note that in the general case, the bound on the
endomorphism in Eq. (A.20) cannot be deduced directly. In the general case,
Eq. (A. 19) plus the bound on the endomorphism in Eq. (A.I 8), plus the fact that P
acts on S(h) as multiplication by m give an upper and lower bound on

m(L) + n{L,σ x) + n{L,ϋ J + Pv- n(R,O J . (A.21)

Additional information comes from the endomorphism K. To extract it, set
{σ2[o, ή] = Ό} and decompose K as

K = n(R, σ2) + n{JU σ2) + n'(R, σ2) + no{σ2) + KV+- n(R, σ2)

- n\U σ2) - »& σ2) -nQ{σ2)~Kv^ (A.22)

with Kv± obtained from Eq. (A.4) by taking only the first sum for KF_ and the
second sum for Kv + .
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Via Eq. (A.22), the bound on the endomorphism in Eq. (A.I 8) plus the fact that
K acts on S(h) with eigenvalue k give a bound on the absolute value of the
following endomorphism of #(/?):

n(L9 σ2) + no{σ2) + n{R, σ2) + KV^- n(U σ2)-Kv_. (A.23)

Reintroduce the constant K in the statement of Proposition A.I. Multiply the
endomorphism in Eq. (A.23) by K and add it to the endomorphism in Eq. (A.21).
The result is a bound on

-n{L, σ2) + K n(R, σ2) ~ κ{R, σ t)

-K'Kv- +κ no{σ2). (A.24)

Due to the Restriction (3) on {μ[p, n\} in the statement of Proposition A.I, there is
a constant δ>0 for which following inequalities hold:

n(L, σΛ — κ n(L,σ?)>n{L,σ =δ),

κ-n\R,σ2)~n(R,σx)^n{R,σ = δ).

Since the characters {υ} for the S1 action on V\Σ are bounded, and sincy any
finite sum of endomorphisms from the set {Θ* „ ΘΌ^n} defines a bounded operator,
the constant δ can be chosen so that

Pv-κ Kv^>δ'Pv-δ~} . (A.26)

These last two equations imply that the bound on the sum in Eq. (A.24) gives a
bound on

n(U σ = δ) + n{R, σ = δ) + δ-Pv + m(L) + n(L, σ 1) + K ^0(^2) ( A 27)

Each term in Eq. (A.25) is a non-negative endomorphism of S(h)\ and hence
bounded. These last bounds and those in Eq. (A. 18) imply that S(h) is a finite
dimensional vector bundle as claimed.

Suppose that M is even dimensional, so that S°(U)®^E®r^v admits the
covariantly constant involution ί = ίe or ίs as described in Eqs. (4.17, 18). This
involution extends to an involution oϊSE V®ΦE which is covariantly constant and
which commutes with P and K (and H) and which anti-commutes with Clifford
multiplication. The involution ί extends to define an involution of C^{iEV®ΦE)
which anti-commutes with Dt.

Distinguish Cases (I) and (II) of Proposition A.I. In the former case, let

i = iE,vml and in the latter, let £ = £EΎm{h)

Define the index of Dt on C 0 0 ^ ® Φ £ ) by

Ind(Df, #, η = dim ker(D f |k e r (,_, }) - dim ker(D t |k e r (, + ί)), (A.28)

with )LQτ{ί+\) = {t-\)-H\£®ΦE) and ker(/-l) = (/+1)
Proposition A.3. Suppose that a set of numbers {μ[v, n]} has been specified with the
properties required for Proposition A.I.Let(m, k) be a pair of eigenvalues of P and K
acting on Sά

E^ v.Let $ = # £ Vm for Case (I), and let & = # £ Fm(/i) for Case (IT).Let έ = te

or ίs as in Eqs. (4.17, 18).
(1) Ind(Df, #, ί) is independent of the choice of t>0.
(2) // ft μ[υ,/?]>0 for all ve(0,r) and O φ n e Z + φ ) , then Ind(D f 5#,O = 0 for
m<0.
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(3) Suppose that {μ[u, ή] (s): s e [0,1]} is a continuous deformation of the data

which defines ΦE in Eq. (4.12) and Dt in Eq. (4.14). Allow the metric on TM and the

connections on each {E\_Ό\} [_Ό]}Όe{Qrλ

 and o n each \y\_Ό\}υe[0^r] to vary continuously

with s also. Require that for each s, this data obey the conditions required by

Proposition A. 1 allow the constant κ = κ(s) to vary continuously with SG [0,1].

Then, lτιά(DtigJ) of Eq. (A.28) is independent of the choice of sε[0,1].

Proof of Proposition A3. The second assertion follows from Assertion 3) of

Proposition A.I. The first and the third assertions are standard consequences of

the stability of the index for Fredholm operators. Indeed, the kernel and cokernel

of D, on H1($®ΦE) reside as a sub-vector space in the space of sections of a finite

dimensional sub-bundle of S{h)®ΦE\ so the standard theorems apply.
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