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Abstract. A proofis given of Witten’s conjectures for the rigidity of the index of
the Dirac-Ramond operator on the loop space of a spin manifold which admits
an S' symmetry.

1. Introduction

When M is a connected, compact, oriented, even dimensional, spin Riemannian
manifold, one can define the Dirac operator, d, to act on the space of smooth
scctions of the bundle of complex spinors, S(T*M)— M. The index of this operator
can be defined by using Clifford multiplication on S(T*M) by (i)*®*V/* - @, with @
being the image in the Clifford algebra of the volume form on M and with
n=dim(M). This defines a covariantly constant involution, y, of S(T*M). As an
involution of C*(S(T*M)), y anti-commutes with the Dirac operator. Then,

1nd(@, 7) = dim(ker(Qlyeu, - 1)) — dim(ker(@lyer+ 1)) (1.1)

Now, suppose that M admits an isometric action of S*. Here, the index of ¢ has
a refinement which is the S' equivariant index. That is, use the S' action to
decompose C*(S(T*M))= @, C*(S(T*M), k) where the double cover of S acts on
C*(S(T*M),k) as multiplication by 2*; JeS'. As ¢ and y commute with the S’
action, they both preserve C*(S(T*M),k) and with this understood, the S'-
equivariant index of d is, by definition, the set of integers, {Ind(¢, y, k)}, which is
obtained by replacing ker(y £1)nC*(S(T*M)) in Eq.(1.1) with ker(y+1)
NCP(S(T*M), k).

The S'-equivariant index can be generalized in the usual way by twisting the
dirac operator with a vector bundle over M. Thus, when V— M is a complex vector
bundle, one can define the index of the Dirac operator on S(T*M)® V, Ind(d, V,y),
by replacing ker(y +1)C C*(S(T*M)) with ker(y + 1) CC*(S(T*M)® V). And, if a
finite cover of the S' action on M has a lift to ¥, one can consider the S' equivariant
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index of the Dirac operator on S(T*M)® V. This is a set of integers {Ind(¢, V,y, k)}
which is defined by replacing ker(y +1)C C*(S(T*M)) in Eq. (1.1) with ker(y+1)
NCP(S(T*M)RV, k).

Atiyah and Hirzebruch [A-H] proved that Ind(é, y, k) =0 for all k when S* acts
non-trivially on a connected spin manifold. Witten [W1], considering the Rarita-
Schwinger operator, asked whether for k=0, one could prove that
Ind(G, T*M,y,k)=0. Landweber and Stong [L-S] proved that
Ind(d, T*M, y, k) =0 for all k when the S*'-action is non-trivial and is assumed to be
of odd type and to be semi-free. [Odd type means that the action does not lift to an
action on S(T*M); and being semi-free means that the stabilizer of a pointis S* or
is 1.]

Infact, Landweber and Stong considered the following formal power series in a
variable ¢ with values in Vect(M):

Fyq:T*M)=  ® Sym(@™-T*M) ® A*(g" T*M), (12)
0<meven 0 <modd
where Sym(a-E)=1+4a-E+a”-Sym?*E)+..., and where A*(a-E)=14+a-E
+a*- A*(E)+ .... Landweber and Stong [L-S] proved that when the S* action on
M is of odd type and semi-free, then

Ind(0, Fp(g; T*M),y,k)=0 for k=0. (1.3)

Later, Ochanine [O1] proved Eq. (1.3) for all semi-free actions. Ochanine has also
proved Eq. (1.3) for certain kinds of non-semi-free actions [O2].

Witten recognized the power series in Eq. (1.2) as coming from physic’s string
theory [W2] (see also [W3]). On the basis of heuristic arguments, Witten proposed
that for any S* action, Ind(d, F(q; T*M), y, k)=0 for k=+0. Furthermore, Witten
suggested that a similar assertion should hold in greater generality. He considered
replacing T*M in Eq. (1.3) with a real, oriented vector bundle V— M to which the
S! action has a lift.

Two additional requirements on ¥ were made; their statement requires a
digression: Introduce the universal S' bundle, S*, the unit sphere in a complex,
separable Hilbert space. The classifying space for S' is $*/S'=BS!' =CIPP”. If S*
acts on a manifold M, then one can form the quotient S* x5 M as a fiber bundle
with fiber M over CIP”.

If V—M is a vector bundle to which the S! action lifts, then one can construct
the vector bundle S* x ¢ V- S* x i M. The characteristic classes of S* x 5: Vin the
cohomology of S* x4 M are called the S'-equivariant characteristic classes of V.
Of particular interest are the 2" Sticfel-Whitney class, w,, and 1/2 of the 1%
Pontrjagin class, 1/2-p,.

Here, a word of explanation is in order. Let M be a manifold, and let V—>M be a
real, oriented vector bundle of dimension d>2 with fiber metric. The principal
SO(d) bundle of oriented, orthonormal frames in V' is the pull-back of the universal
S0(d) principal bundle over BSO(d) by a map f: M — BSO(d). The characteristic
classes w,(V) and p,(V) are the pull-backs by f of the universal w, e H*(BSO(d);
Z/)2 - Z) and the universal p, e H*BSO(d); Z).

For d>2, introduce the Lie group Spin(d). Spin(d) is the simply connected,
double cover of SO(d); for d>2, one has SO(d)=Spin(d)/Center(Spin(d)). The
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cohomology of BSpin(d) has H*(B Spin(d); Z)~Z with generator q,. The class
p, € HYBSO(d); Z) pulls up to H*BSpin(d); Z) as 2-q,.

If V- X is a real, oriented vector bundle with w,(V)=0, then the classifying
map f lifts to a map f: X — B Spin(d). For such bundles V, the characteristic class,
1/2-p(V)e HYX; Z) is defined to be f*q,. The class f*q, is independent of the
choice of the lift of f (Dan Freed showed the author a proof).

Witten considered real, oriented vector bundles V— M for which

W, (S“C X (V—T*M)) =0eH? (S”C x M; Z/(2Z)>,
. i (1.4)
Ip, <83c X (V—T*M)) =0eH* (S“‘ X M;Z>.
St St

And, under these conditions, Witten investigated the following formal power series
in the complex K-theory of M:

Fplg; V)= ® Sym(g" T*M) ® A*q" V),

0 <meven 0 <modd

F(q; V)=S(T*M) ® Sym(q" - T*M) ® A*q"-V),

0 <meven 0 <meven
, (1.5)
Felg; V)=(S(T*M)—=S_(T*M)) ®  Sym(q"™ T*M)
0 <meven
X @ A¥=q"-V),
0 <meven

where S (T*M)=(y+1)-S(T*M), and the difference, (S, (T*M)—S _(T*M)), is
defined in the real, oriented K-theory of M. In [W2] and [W3], heuristic
arguments are given to justify the conjecture that when Eq.(1.4) holds,
Ind(0, F (q; V),7,k)=0 for all k+0.

In [B--T], Raoul Bott and the author proved Witten’s conjectures using ideas
from elliptic function theory. The proof in [ B-T] was based on a first proof by the
author which was more closely tied to the original loop space arguments of Witten.
It is the purpose of this article to provide an account of that first proof of Witten’s
assertions.

The precise results are stated in Theorem 1.3 below. To state the theorem, a
second digression is required: Since Z/(nZ) is a subgroup of S', the universal
bundle for Z/(nZ) can be taken to be S¥; with the classifying space BZ/(nZ)
=S*/Z/(nZ)).1f S" acts on M., so does Z/(nZ), and one can construct S x z,,z,M.
For a vector bundle V—>M on which S' acts, one can construct
8" X gV =8 X zyyM-

If M'CM is fixed under a subgroup I'CS', then S* x,M'=BI' x M'.

Definition {.1. Let M be a compact, oriented spin manifold on which S acts. Let
V' —M be a real, oriented vector bundle to which the S* action has a lift. Require
that w,(V)=0. Let I'SS" be a subgroup, and let M(I')C M denote the fixed point
set of I'. The vector bundle V will be called I'-compatible with T* M if the following
1S truc:

(1) The restriction to H*(BI' x M(I'); Z)2Z)) of w,(S™ x (V —T*M)) van-
ishes. (2) The restriction to H*BI' x M(I'); Z) of 1/2-p,(S™ x o(V —T*M)) is the
pull back from M(I') of 1/2-p,(V—T*M)e H*M(I'); Z).
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The vector bundle V will be called strongly compatible with T*M if it is
I'-compatible for all subgroups I'CS".

Lemma 1.2. Let M be a compact, oriented spin manifold on which S* acts. Let V—M
be a real, oriented vector bundle to which the S' action has a lift. Assume that
w,(V)=0. A sufficient condition for V to be strongly compatible with T*M is for
Eq.(1.4) to hold.

Proof of Lemma 1.2. There is a natural map n:S” Xz,,,,M =S xs M, and it is
not hard to check that S* X,z V' =1*(S" x5 V).

The purpose of this article is to prove the following theorem:

Theorem 1.3. Let M be a compact, oriented spin manifold on which S* acts. Let
V —M be a real, oriented vector bundle to which the S* action has a lift. Require that
w,(V)=0. Require that V be strongly S'-compatible with T*M in the sense of
Definition 1.1. For *=D, S or E, let F (q;V) be as defined in Eq.(1.5). Then
Ind(0, F (q: V), 7,k)=0 for all k+0.

The conditions in the theorem are not necessarily optimal, see
Proposition 10.1.

The proof of Theorem 1.3 is strongly motivated by Witten’s heuristic
arguments in [W2, W3]. Indeed, the proof amounts to finding a suitable context
for Witten’s ideas. Here, the following observations arc in order: Witten’s
arguments arise in consideration of a formal “Dirac operator” on the space of free
loops on M, ¥ M. And thus, one might conjecture that such an operator must be
constructed to obtain the proof of Theorem 1.3.

However, the manipulations in [W2] take place, for the most part, on the
normal bundle, /"M, to the embedding of M into #¥M as the space of constant
loops. And, it turns out that a Dirac operator on the normal bundle to M C ¥ M is
casy to construct, and is all that Theorem 1.3 requires.

The normal bundle to M is isomorphic to the underyling real vector bundle of
the infinite dimensional complex vector bundle

VM= @ T*M®C. (1.6)
O<neZ
(The topology on .4"M is the direct limit topology, see the Appendix.)

The Dirac operator, D,, on A" M is constructed in Sect. 3. (See also [W3].) It can
be thought of as the usual Dirac operator on M, but twisted with an infinite
dimensional vector bundle over M. Alternately, one can consider it as a countable
set of “standard” Dirac operators,

{04 A,(h): CH(S(T*M)@R,(h)) > C*(S(T*M)®R,,(h))] ,

indexed by integers m and h. The vector bundle R, (h)— M is a finite dimensional
vector bundle which is constructed out of T*M by taking various tensor products.
Here, A4,,(h) is a section of End(R,,(h)) which is naturally constructed from exterior
and interior product of covectors in T*M.

In Sect. 4, this operator is generalized by twisting with various vector bundles
over the normal bundle to M in # M. These vector bundles are constructed out of
tensor products of exterior products of V. The end result is still a countable set of
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“standard” Dirac operators. Particular generalizations are used in the proof of
Theorem 1.3; these are discussed in Sect. 5.

The Fredholm properties of D, are established by considering it as the
countable set of “standard” Dirac operators. This makes the analysis completely
classical. However, when manipulating D,, it is most efficient to consider it as an
honest operator on A"M; indeed, to do otherwise would waste the great
simplifications obtained from the super string — theoretic formalism. But, it should
be stressed that all of the manipulations are ultimately justified by returning to the
representation of D, as a countable set of standard operators on a compact
manifold.

The Fredholm properties of the Dirac operator on the normal bundle to M are
derived in a general setting in a separate Appendix. The main conclusions are the
following: There is a canonical circle action on ¥ M (as opposed to the geometric
circle action which is induced by the S' action on M) which acts on ¥M via
translation of the domain S!. The decomposition in Eq. (1.6) of A4"M gives the
character decomposition for this action. The double cover of the canonical S’
action lifts to an action on the domain of D, which commutes with D,. The domain
of the D, decomposes into character subspaces (with integral and half integral
weights) under the canonical §! action, and the restriction of D, to each character
subspace is Fredholm.

Given the vector bundle V, there are two relevant choices for D, which differ in
how they are twisted over A"M. These are unprimed or primed in this article; in the
physics literature, they give the Ramond and the Neveu-Schwarz versions of the
supercharge for the right movers in the underlying string theory. For each Dirac
operator, there are two involutions of the domain with which to define the index.
The four different constructions are described in Sect. 5.

The two versions of D, each have two indices: Let ge S'. For integer or half
integer m <0, both versions of D, and both involutions have zero index on the
character g™ subspace of their domain. On the character ¢™ (m = 0) subspace of the
domain, the index of D, equals the ¢*™ component of Ind(d, Fg(g,V),7) or
Ind(0, F (g, V),y) for the two unprimed indices. On the character g™ (m=0)
subspace of the domain, the index of D, equals the ¢?™ component of
Ind(0, F (g, V),7) or Ind(0, F ,(—gq, V), y) for the two primed indices.

The preceding assertions hold in some generality. In the unprimed case, the
assertions hold on any oriented, compact Riemannian manifold and with any real,
oriented vector bundle V' as long as w,(V)=w,(T*M). In the primed case, the
assertions only require that w,(7*M)=0. No conditions on the Pontrjagin classes
of V are required for the constructions, nor for the assertions in the last paragraph
to hold. (See Proposition 5.4.)

When S* acts on M, the construction, being functorial, yields an S* equivariant
theory. For a standard Dirac operator with S' equivariance, the Atiyah-Bott
[A-B] generalizations of the Lefschetz fixed point formula allow for the index to be
calculated from the geometric data at the components of the fixed point set of the
action. Since the operator D, decomposes into a countable set of standard Dirac
operators, the Atiyah-Bott formula can be applied to D,.

It is convenient to use an interpretation of the Atiyah-Bott formula which is
due to Witten [W1]. Witten views the contribution from each component of the
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fixed point set as coming from the S' equivariant index of a suitable Dirac operator
which is defined on the normal bundle to the fixed point set. This construction of
Witten is the finite dimensional analog of the Dirac operator D, on .#"M. Because
the fixed point formula is crucial to the proof of Theorem 1.3, and because Witten’s
version gives a model for the later constructions, this version is presented in the
next section as a warm up for the later constructions.

One by one, localize the countable set of operators which make up D,. Using
Witten’s interpretation of the Atiyah-Bott formula, the result is a Dirac operator,
Q, defined on the normal bundle, /"N, in ¥ M to the normal bundle, N C M to each
component, > C M, of the fixed point set of the S* action. Alternately, one may think
of /"N as an infinite dimensional vector bundle over X, in which case Q becomes a
countable set of “standard” Dirac operators on X. The Atiyah-Bott fixed point
formula for D, in terms of the operator Q is described in Sect. 6. To summarize: Let
{2[i]} label the connected components of the fixed point set of the S' action. Each
2[i] has its corresponding operator Q[i], and

Y index(Q[i]) =index(D,) (1.7)
21
holds as an equality of S* x S! equivariant indices. The first S* is the canonical S*
action on the loop space, and the second S! is the geometric S' action from M.

Since the geometric S' acts on M by isometries, the normal bundle N to a
component of the fixed point set is naturally a complex vector bundle (this is
described in the next section.) It decomposes as @, ., N(v), with each N(v)—2 a
complex vector bundle on which the geometric S* acts as multiplication by &%,
EeSt

As an isomorphism of real bundles over X, one has

NN~ < ® (T*Z@(E)) @ @® N(v). (1.8)
O0<neZ 0<vneZ
Equation (1.8) gives a decomposition of .4"N into character subspaces for the two
commuting S'-actions: The canonical S* action, sends g€ S* to ¢" on the n'" copy
of N(v); and the geometric S* sends ¢ € S* to & on the n'" copy of N(v). Let P and K
denote the respective generators; they define automorphisms of .4"M.

Equation (1.8) indicates that 4" N possesses a non-trivial Z subgroup of bundle
automorphisms. The generator, +, acts by sending the n'™ copy of N(v) to the
(n+ )™ copy of N(v). The following commutation rules are evident:

P '=P+K, 1K '=K. (1.9)

The import of this group of automorphisms is suggested by the arguments of
Witten in [W2, W3]. Interpreting Witten, one should ask whether - lifts to define
an automorphism of the domain of the operator Q on A N.

The behavior of « vis-a-vis the operator Q is considered in Sect. 7. There is an
obstruction to lifting 2 to the domain of Q, it is a component of 1/2-p,(S*
xg1(V —T*M)). The vanishing of this characteristic class insures the lift. Given a
lift, one computes

Q1 =0+ A", (1.10)

where " is Clifford multiplication on the domain of Q by K.
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As previously remarked, only upon restriction to an eigenspace of P does D,
become Fredholm. This consideration makes the lift of commutation relations in
Eq. (1.9) a crucial issue. But, there is an obstruction to the lifting; the second one
lifts automatically, but the first one lifts if and only if a different component of
1/2 - p(S* x5 (V—T*M)) vanishes.

Since an index of Q is the ultimate goal, it is important to consider how
behaves with respect to an automorphism, /, of the domain of Q which defines the
index. For the automorphisms in question,

W =(— 1) (1.11)

defines ue {0, 1}. The value of y« is computable from the geometric data at the fixed
point set.

Equations (1.9-11) allow, in principle, for the comparison of the index of Q on
the P=m eigenspace of its domain with + the index of Q on the P=m+k
eigenspace. Indeed, were there a Fredholm deformation of Q + ¢ to Q, such would
follow automatically.

Each 2[i] has its corresponding operator Q[i], and the fixed point formula
equates the index of D, on the P=m, K =k subspace of its domain with the sum,
over i, of the index of Q[i] on the P=m, K=k subspace of Q[i]’s domain.

Each component X[i] has an “anomaly” (— 1), with u[i] defined for X[i] by
Eq.(1.11). If M is a spin manifold and if w,(V) =0, then the anomaly is independent
of the label i. With the anomaly independent of i, and with a Fredholm
deformation of Q + .4 to Q, Eq. (1.7) implies an equality up to sign betwcen the
index of D, on the P =m, K =k subspace of its domain with the index of D, on the
P=m+k, K=k subspace.

Such an equality is the crux of Witten’s argument in [W2, W3]. With it,
Theorem 1.3 follows automatically: As previously mentioned, the index of D,
vanishes on the P <0 subspace of its domain.

Buried under the rug here is the assertion that there exists a Fredholm
deformation of Q + " to Q. Technically this assertion is false. Since " is a lower
order term with respect to Q, onc might be tempted to consider it as a compact
perturbation to Q. However, it is only on compact manifolds that a lower order
term is automatically irrelevant. On a non-compact manifold (for example A4"N),
symbol degeneracy can occur in spatial directions.

As a function of 2 € [0, 1], the operator Q +a - " fails to be Fredholm at € Q
={re[0,1]:r veZ for those 0 <veZ which have N(v)+0}. Given oqe €, let n,
denote the smallest, positive integer for which o - n, € Z. The Fredholm failure of
Q+oy- A is due to the “delocalization” of the operator along the submanifold,
M(ng), of M which is fixed by the Z/(n,Z) subgroup of S*.

Provided that the conditions in Theorem 1.3 hold, there exists an operator D,, ,
on .4/ M(ngy) which localizes under the S* action on M(ng) to Q +u, - # . This means
that the jump in the index of Q 4+« - " as a crosses «,, is compensated by jumps at
the other components of the fixed point set of the S' action. In particular, the
compensation is due to jumps at those components which are contained in the
same component of M(n,) as 2. Thus, under Theorem 1.3’s assumptions,

Y index(Q[i]+ o - A [1]) (1.12)
3T
is independent of o.
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This last assertion is proved for semi-free S' actions in Sect. 8, and for general
St actions in Sect. 9. The proof of Theorem 1.3 is assembled in Sect. 10.
Sections 2-10 of this paper are devoted to a self-contained proof of
Theorem 1.3.

2. Localization
Part 1. The Dirac Operator

Let M be a compact, oriented, even dimensional Riemannian manifold and
suppose that the group S' acts on M as a group of isometries. Then, the S action is
generated by a vector, K,,€ C*(TM); a vector field which obeys the Killing
equation. With respect to a local coordinate system on a neighborhood of a point
in M, write K ,,=K*d,, write the metric as g = g;,dx’ ®dx’; and then the Killing
equation is

Vi(gpoK) + Vg, K?) =0, 2.1

where ¥, is the Riemannian metric’s covariant derivative in the direction of 0,

When M is an even dimensional spin manifold, the Dirac operator is defined on
smooth sections of the bundle of spinors, S =S(T*M)— M. This is a complex vector
bundle over M of complex dimension 2?7 with p=dim(M)/2. (See [A-B-S].) In local
coordinates, the Dirac operator is

do=dx*V,. (2.2)

Here, Clifford multiplication by the basis covectors {dx*} in T*M obeys dx” - dx*
+dxP.dx*=—2-¢g*. Since Clifford multiplication by a covector is an anti-
hermitian endomorphism of S, the formal I*-adjoint of d,, 0%, is equal to d,,.

Suppose 7 is a fiber preserving, covariantly constant involution of S which anti-
commutes with Clifford multiplication by the odd elements of the Clifford algebra.
The involution has eigenvalues + 1. Define the index of d, to be

Ind(0y, 7) = dimker(dolier(, - 1) — dim ker(dolier(, + 1)) - (2.3)

ForteR, Witten [W1] introduces K as the 1-form which is metrically dual to
the Killing vector K, and he then considers the modified operator

0, =0p+it- K, (2.4)

on C*(S) where K acts by Clifford multiplication. Since y anticommutes with 2,
the index of 0, is well defined, and is independent of t.
Define

i-K=V,—1i-dK (2.5)

as a first order differential operator on C*(S). (Here, Vy is covariant differentiation
along K, and the 2-form dK acts by Clifford multiplication.) When the S* action
lifts to an S* action on S, this first order operator is the generator. In any case, K is
defined, symmetric and

[K,2,]=0. (2.6)
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Equation (2.6) implies that the eigenspaces of J, can be decomposed into
subspaces on which K acts by multiplication. Let C*(S, k) denote the subspace of
the space of smooth sections of § on which K acts with eigenvalue k. Then L*(S)
= @, L*(S, k), where L*(S, k) is the I*-completion of C*(S, k).

Since ¢, commutes with K, it maps C™(S, k) into itself. Let d,, denote the
restriction of @, to C*(S, k). Note that K commutes with the involution y. This
means that the integer

Ind(@q, y, k)=1Ind(0,, 7) (2.7

is well defined. Standard Fredholm theory implies that the left-hand side of
Eq. (2.7) is independent of ¢.

The Atiyah-Bott fixed point theorem [A-B] (see also [A—Se]) asserts that
Ind(0y, 7, k) can be computed from geometric data at the fixed point set of the
S'-action. Witten observed that the fixed point theorem can be obtained naturally
by considering the large |t| limit of the right-hand side of Eq. (2.7).

To obtain Witten’s proof of the fixed point formula, one should consider the
Weitzenbock formula for 7: Restricted to C*(S, k),

02 =V*V + 2| K |22kt + R +1-i-dK 2.8)

where V*V is the trace Laplacian, # is a curvature endomorphism and the two
form dK acts again by Clifford multiplication. (This is a calculation for the reader;
see the appendix of [F-U] for help.) As |t|— o0, one expects that all eigenvalues of
the self-adjoint, non-negative operator 87 will tend to oo, except for a finite number
of small eigenvalues, whose corresponding eigenvectors will remain localized near
the fixed point set of the S' action; near where K ,,=0. When M is compact, and
finite dimensional, this occurs:

Proposition 2.1. Let M be a compact, oriented, spin Riemannian manifold on which
St acts isometrically. Let S—M denote the bundle of spinors on M. Suppose that a
finite cover of the S* action on M lifts to an action on S. Fix an eigenvalue k of the
differential operator K in Eq.(2.5); and fix a real number t. For R=1, let N(R,t)
={xeM:|K |(x)>R/|t]|""?}. Suppose that e C*(S, k) and &,p = -, with |u| <t'/%.
At xe N(R, 1),

! (x) = z(k) - exp(—c(k) - [¢['/2 - R - dist(x, X)?),
where z and ¢ are independent of t, R, and .

Proof of Proposition 2.1. Let f be a cut off function on M which is zero if dist(:, X)
> R/|t]'?, and which is identically 1 if Dist(-, 2)<R/2-|t|'/*. Requirc that |df]
<8-|t|"?/R. Then,

a(1=p)w)=p (1 =) v—oldf) v. (2.9)
This last equation plus Eq. (2.8) imply that

W =Byl +ltl- R (=) wli Sz ftl-(A+ k) lwlZ..  (2.10)
Equation (2.10) implies that
(A =p)-wliz=z-(L+[K)/R? - llpl7a. (211
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Now, let f'=[y|. Then f obeys
d*(f?)2)+df P+ K> 2=z |t (L kD) - f2 =z [dBl - [Vl + IV dp| - [yl , (2.12)

from which the proposition follows with the maximum principle and a suitable
comparison function.

Part 2. The Normal Bundle’s Dirac Operator

Witten's proof of the fixed point formula arises by using the localization assertion
of Proposition 2.1 to compare the operator J, with a suitable operator which is
defined on the normal bundle to the fixed point set of the S* action.

To define this new operator, some preliminary observations are in order:
Recall that the fixed point set of the S! action is a smooth submanifold ¥ C M. Let
7: Ny—2 denote the normal bundle to 2. There exists ¢ >0 and a diffeomorphism
of the ¢-ball in Ny with a neighborhood, O C M, of X. Let v denote a point in Nj.
Then said diffeomorphism sends the point v to exp,,(v), where exp: TM — M is the
exponential map. The diffeomorphism is equivariant with respect to the S*action
on M and on N;CTM];.

The vector K,, vanishes on X, so on O, K,, has the following expansion:

K (0)= VK, + O(v)?). (2.13)

Note, because K, is a Killing vector, V,K,, defines a vector in Ny. In fact, with
respect to the Riemannian metric, the assignment of ve N to V, K, defines a non-
degenerate, skew-adjoint endomorphism, VK,, of N; which is covariantly
constant along 2.

With this understood, it is natural to use V'K, to define a complex structure on
N;®C. That is, Ny @ Cx~ N@® N, where N - X is the subbundle of Ny;®C which is
spanned at each point by vectors v for which

V.Ky=—iv-v with v>0. (2.14)

A priori, the set {v>0: —i-vis an eigenvalue of VK, on N,} is a set of dim Ny
integers after counting multiplicity; these integers are called the “exponents” of the
S'-action at ¥. Note that when v isan exponent at X, then N,={ve N: V,K ;= —i-
v-v} is a well defined subbundle of N, and N decomposes as

N= @ N,. (2.15)
v>0
Since VK,, is covariantly constant, the isomorphism Ny;®Cx~ N@N and that in
Eq. (2.15) are both preserved by parallel transport.

Note that this complex structure orients the fiber of N at each point x in 2.
Together with an orientation of M, this defines an orientation of X (if X is an
isolated point, an orientation is just a sign, + 1). This orientation will be implicity
assumed in what follows.

When M is spin, it is convenient to describe the spin bundle of M on the tubular
neighborhood O of X in the following way: Via the exponential map, pull the spin
bundle S(T* M) back to Ny; this identifies it with the spin bundle S(T*Ny).
Parallel transport along the normal geodesics to X constructs an isomorphism
between S(T*M)— N, and the spin bundle 7n*(S(T* M)|y), where 7: Ny— 2 is the
projection. This isomorphism will be implicitly assumed.
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Let Fr M denote the bundle of positively oriented, orthonormal frames in TM.
If n=dim M, then Fr M is a principal SO(n) bundle over M. Restricted to X, Fr M|,
~FrX®Py; where FrX—2X is the principal SO(n—2d) bundle of orthonormal
frames in TX; and where Py— 2 is the principal U(d) bundle of unitary frames in
the (complex) vector bundle N—2.

As M is spin, Fr M lifts to a principal Spin(n) bundle, Fr' M — M. The fact that
Fr M|, is spin means that the second Stieffel-Whitney class of TX@® N is zero. Note
that w, of a direct sum is the sum of the w,’s from each summand when the
summands are oriented. Also, w,(Ny)=c;(N) (mod 2). Here, ¢, is the first Chern
class. Finally, ¢,(N)=c,(A4°N), where 4N — X is the determinant line bundle of N.

Thus, X inherits a spin structure from M if and only if AN admits a square
root; that is, if and only if ¢, (4?N)=0(mod 2). In any case, a sping-structure on X is
defined by the line bundle A°N*; one can construct the sping bundle, Sy, from
T*X®(AN*) "

Here, a digression concerning sping-structures is in order. Let X be a smooth
manifold and let V— X be a real, oriented 2r-dimensional vector bundle with fiber
metric. The bundle of positively oriented, orthonormal frames in V, FrV—> X is a
principal SO(2 - r) bundle over M. The second Stiefel-Whitney class, w,(V), is the
obstruction to the existence of a principal Spin(2 -r) bundle, Fr'V— X with the
property that FrV=FrV’'/{+1}.

When w,(V)=0, the spin representation, g, of Spin(2 - r) on the complex vector
space 4= A*C") (see [A-B-S]) defines an associated vector bundle over X, the
bundle of spinors S(V)=Fr' (V) x,4-X.

Suppose that w,(V) is the mod(2) reduction of an integral class. Then, there
exists a complex line bundle, L—X whose first Chern class obeys ¢;(L)04(2)
=w,(V). When such a line bundle exists, a sping-bundle from V@L can be
constructed.

This construction starts with the observation that the bundle of positively
oriented, orthonormal frames in V@ L which respect the splitting is a principal
SO(2-r)xU(1) bundle, Fr(Ve@®L)->M. Introduce the Lie group Spin‘(2r)
=Spin(2-r) x,; 1, U(1) as in [A-B-S] and introduce the fibration of groups

{+1}-Spin2-r) x U1)—S0Q2-r)x U(1). (2.16)
{1

The condition w,(V) = ¢ (L)y.qc2) 18 necessary and sufficient for the existence of a
principal Spin(2-7) x,,,,U(1) bundle Fr(V@®L)—X with the property that
Fr(V@®L)/{ +1}=Fr(V@L)

The sping bundle constructed from V@ L is the complex vector bundle S(V; L)
=Fr(VOL) x,5;4—X. Here, i: U(1)-U(2") is the center.

In the situation at hand, use T*X @(A?N*)~ ! - X to construct the sping bundle,
Sy=S(T*X; (A°N*)~1). Then, the spin bundle S(T*M)|;— 2, is isomorphic to the
tensor product bundle S;®¢ A*N*.

With this construction understood, let us remark that a similar construction
can be made with N — X, the conjugate bundle to N. Since ¢,(A4N)= —c,(4‘N), a
sping-structure on X is also defined by the line bundle A*N. The sping bundle from
S(T*Z; (AN*)~ 1) is denoted by Sy and using Sy, one then constructs the spin
bundle S;®¢A*N*. However, there exists a natural, C-linear isomorphism
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SsReA*N* xS, ®cA*N* (complex conjugation gives a C-anti-linear isomor-
phism) as will now be explained.

Indeed, observe that S, ~S;®AN* and A*N*Q(AN*)" '~ A*N*. To con-
struct this last isomorphism, use the fact that A°N* A A'N* (= A**N%®C) has a
canonical section to conclude that A*N* ~ (AN*)* ~(AN*)~ . Then, note that the
Hodge star provides an isomorphism A?N*® AN* ~(A*"?N*)*. Finally, use the
hermitian metric to make an isomorphism between (44~ ?N*)* and A" ?N*,

Since S;®¢A*N* and S;®cA*N* are conjugate bundles, the C-linear
isomorphism S;®¢A¥N* xS, Q¢ A*N* induces a C-antilinear involution, 7, of
Ss®¢cA*N*. The involution 7 defines a real structure on S;@¢A*N*.

Now, through Clifford multiplication, T*N,; becomes a subbundle of
End(S(T*Ng))—>N; and this is conveniently described using the preceding
identification of the spin bundle as n*(S;®¢ A*N*)—N,. To begin, observe that
the complexified tangent space of N splits using the Riemannian connection as the
direct sum

¥ T2 *NPTEN (2.17)

where ¥ T2 is identified with the horizontal subspace H C T(Ny), as defined by
the Riemannian connection on the normal bundle Ny.
The complexified cotangent bundle of N, correspondingly splits as

T T*3DT*N@ T*N, (2.18)

where T*N ~n*N*— N is dual to 7*N in Eq. (2.17) and annihilates the horizontal
space H as well as n*N. The space T*N is likewise dual to n*N.

With this understood, identify T*N with #*N* and identify S(T*N,) with
*S;@mFA*N*. Now exterior multiplication embeds 7n*N* as a subbundle of
End(n*S;®n*A*N*) and this is Clifford multiplication when viewed in terms of
T*N and S(T*Njy).

The Riemannian metric on M induces a hermitian metric on T*N y¢ for which
the splittings in Eqgs. (2.17, 18) are orthogonal, and this same hermitian metric
identifies 7*N* with #*N. Interior multiplication embedds =#*N in
End(n*S;®@n*A*N*) and this is the Clifford multiplication embedding of T*N
into End(S(T*N,)) after n*N* and T*N are identified. Alternately, use exterior
multiplication to embedd 7*N in End(n*S;®¢n* A*N*) and then observe that
under the C-linear isomorphism S;®¢A*N*xS;®c A*N*, this embedding and
that of 7*N in End(n*S;®n*A*N*) by interior product are the same.

Complex conjugation defines a C-anti-linear isomorphism between n*N* and
n*N* and hence, with the Riemannian metric, a C-anti-linear isomorphism
between n*N* and 7n*N. With both n*N* and 7*N in End(n*S,®n* 4*N*), this
C-anti-linear isomorphism is induced by the anti-linear automorphism of
End(n*S;®@n* A*N*) which sends a matrix to its hermitian adjoint.

Let e be a 1-form in T*Nyg which is pulled back by n from T*X,. To define
Clifford multiplication on n*(S;® A*N*) by e, introduce the degree operator
(Fermion number operator), (— 1) on A*N*. For w e A*N* a p-form, set (— 1)F°w
=(—1)"- w. Then, extend this operator to A*N* by linearity. Now, define Clifford
multiplication by e on s@ to yield (e - s®(— 1)w). Then, Clifford multiplication
by e anti-commutes with Clifford multiplication by any elements of 7*N* and
w*N* as required.
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To define the normal bundle Dirac operator, D,: C*(S(T*Ny))—C*(S(T*Ny)),
it is necessary to take derivatives of spinors. One can distinguish between
directional derivatives which are tangent to the fibers of 7: Ny— 2, and then, the
horizontal derivatives. For xeX note that the restriction to a fiber Ny|. of
*(Ss® ¢ A*N*)is naturally isomorphic (up to an action of the unitary group U(d))
to Sy, ® A*C* and this has an obvious flat connection which allows differenti-
ation along the fiber Ny|,.

As x varies, this differentiation along the fiber takes a section over Ny of
1*(S;® ¢ A*N*) and gives one of

(SR A*NF)Q(T*NO T*N) = n*(S; Q¢ A*N*)R(n* N*Dr*N*).
Differentiation followed by the Clifford multiplication map from
TSy Q@ A*NH)Q(M*N*®*N*)  to 1Sy @eA*N*)

defines a first order operator, 0, which restricts to each fiber Ny, as the Dirac
operator on Nyl,.

A derivative V for the horizontal directions is defined as follows: Consider a
decomposable section u=s®@w:N->n*S;® A*N¥). Let ve H be a horizontal
vector. Then set

V(s@w)=(n*V®) s@w+s@(n*V?) w, (2.19)

where n*V¥ is the covariant derivative on n*(Sy) which is defined by the pull back
to N of the spin connection on Sy;—2; and n*F" is the covariant derivative on
n* A*N* which is defined by pull back to N of the Levi-Civita connection on the
normal bundle to X. Thus V takes a section of 7%(S;® A*N*) and gives one of
¥ Sy ®A*N*)@7*T*M.

Use V followed by the Clifford multiplication map from

TSy QA*NF)Qm*T*M  to  w*(Sy®@A*N*)
to define the first order operator D;. Then, the normal bundle Dirac operator is
D,=D;+2. (2.20)

Remember that the Dirac operators in Eq. (2.4) are indexed by a parameter ¢.
There is a corresponding 1-parameter family of normal bundle Dirac operators
and its definition requires a closer look at the S'-action on N,.

Recall that the S'-action decomposed the complex vector bundle N into a
direct sum of complex bundles according to Eq. (2.15) such that on N, the action
sends /e S! to multiplication by 4°. The generator of this S' action on N is the
restriction to N, of the vector field, K,; it is clearly vertical with respect to the
projection n: N,— 2. Identify the vertical subbundle of the total tangent space to
N, with 7*N @7*N, and then K,, restricts to N, as the section which sends the
point { to (—i-v-J({), i-v-J({), where J: N,—»n*N, is the canonical embedding.

The metric dual to K, is the 1-form K; on N,, this 1-form annihilates the
horizontal subspace H and so can be identified as a section of n* N*@n* N*, This is
the section which sends { to (i-v-J({), —i-v-J*()), where J*: N, —»n*N¥ is the
C-anti-linear embedding which is canonically defined once the metric is used to
provide the C-anti-linear isomorphism between N, and N*. Use Clifford
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multiplication to embed n*N¥@7n*N¥ in End(n*S;®¢n*4*N) so that K can
define a section over N of End(n*S;®¢m* A*N).

With these constructions understood, introduce a family of Dirac operators on
N by defining, for each ¢, the first order operator

D,=D;+o+it K. (2.21)

This family of operators D, is of fundamental interest to all that follows.

Before discussing the significance of D,, some remarks are in order. First, note
that Dy involves differentiation along horizontal directions in TN, while
d+i-t- K differentiates along the vertical directions. So, it should not be a
complete surprise that the operators Dy and d+i- ¢ - K anti-commute. Thus, one
can analyze D, by first analyzing the operator d+i-t- K. Then, one analyzes the
restriction of Dy to the eigenspaces of the operator (9 +i-t- K)* with which Dy
commutes. (This technique is the old physicist’s stand-by — separation of variables.)

Now, in practice, the study of d+i-t-K is simplified many-fold by the
observation that, as it differentiates only vertically, d+i-t- K is determined
completely by its restriction to each fiber of 7: Ny— 2.

Each such fiber is a copy of €% canonically up to the action on € of the unitary
group U(d). If one chooses the usual coordinates (z!,z?, ...,z for €Y, then the S*
action on the fiber is generated by

d

Ky=—i- Y oj)-(z/-0/0z"—z- 002, (2.22)

i=1

where each v(j) a positive integer. (The fiber of N, is {(z) e €?:z/ =0 if v(j) == v}.
The restriction of 6+i-t- K to € (as the fiber of Ny) is the operator

(I7(8)02' =%t 0(j) )+ T* (/07 +5 -t 0(j) - ), (2.23)

1

1 =

J
where IV denotes interior multiplication by 6/0z' on AC%*, while I'*/ denotes
exterior multiplication by dz’. It is not hard to find an explicit diagonalization of
the operator in Eq. (2.23); this exercise is a useful one which is left to the reader.

As a final remark, the operator K of Eq.(2.5) also involves only vertical
differentiations so it too is determined completely by its restriction to €* as the
fiber of Ny— 2. This restriction is

K=—Yu(j) (Z0,—270;+5(I'* - I'—1)). (2.24)
j
It is straightforward to calculate that the commutator of K with D, vanishes.

Part 3. The Localization Theorem
As Ny— 2 is oriented by its complex structure, there is a differential form, w, on Ny
of degree 2 - d which is uniquely determined by the following two conditions: First,
d
it restricts to each fiber € as the canonical volume element [] (i/2 - dz’ A dz’), and
=1

J
second, interior product by horizontal vectors annihilates w.
Define the L?-inner product, -, -, on the space of compactly supported, C*
sections over N of 7*(S;®A*N*) by integrating, over N, the pointwise inner



S! Actions and Elliptic Genera 469

product of two sections; use the top dimensional form n*d vol; A w to define this
integration. (Here, d voly is the Riemannian volume element for X. If X is an
isolated point, dvoly=+1 with +1 taken iff the complex orientation on
Ng~TM]|; agrees with the induced orientation from M.)

For fixed integer or half-integer k, let CZ(S, k) denote the space of smooth,
compactly supported sections of 7%(Sy® A*N*) over N on which the operator K
acts with eigenvalue k. Let L?(S, k) denote the completion of said space with the I
norm. Let H'(S, k) denote the completion C, (S, k) using the inner product {D(-),
D)2+ <+, D2 Automatically, D, defines a bounded operator from H'(S, k) to
LA(S, k).

Furthermore, one has, as a special case of Proposition A.1 in the Appendix,

Proposition 2.2. For t=+0, and for fixed integer or half-integer k, the operator
D,: HY(S, k)= L*(S, k) is Fredholm.

Since M and so Ny is an even dimensional manifold, one can define a character
valued index of the operator D, by restricting y. An example is y=(i)" - d vol,,,
where d vol,, denotes here the image in the Clifford algebra of the volume form on
M, and where 6 =n - (n+ 1)/2 with n=dimgi(M). Along X, the restriction of y has the
following decomposition : Introduce the endomorphism (— 1) of A*N* which
acts on APN* as (—1)?. Next, observe that Clifford multiplication by (i)* *¢- d vol,
defines a fiber preserving, covariantly involution, yy, of Sy. Now, the covariantly
constant involution y of Eq. (2.3) restricts to n*(S;® A*N*), where it sends s® w to
1*9;s®(— 1) °w. Remark that y anticommutes with the odd elements of the
Clifford algebra, and so it anticommutes with both Dy and with 6 +i- ¢ - K, while it
commutes with the operator K.

Define the index of D, on H(S, k) to be

Ind(Dra 7 k) = dim(kerDtlker(v - 1)) - dim(kerDt|ker(;r + 1)) . (225)

Proposition 2.3. The number Ind(D,, y, k) is a locally constant function of t in IR\ {0}.
For fixed, integer v>0, let N¥ -2 denote the sub-bundle of N* on which K, acts
with eigenvalue v, let N¥ denote the complex conjugate bundle and let ¢, =Y

v-dimgN,. For complex {, define a formal power series in { with coefficients in
Vect(2) by R({)=®,(®,,> 0™ - Sym,(N); and, for fixed k, let R,—X denote the
coefficient of (* in the expansion of {'/* - R({).

(1) Xisanisolated point: Fort>0and fork=1/2- ¢, the index of D,on H'(S, k)
equals R,. For t>0, and for k<1/2-c¢,, the index of D, is zero.

(2) X has positive dimension: For t >0 and for k=1/2- ¢y, the index of D, on
H'(S, k) equals the index of the sping-Dirac operator on X when coupled to R,. For
1>0, and for k<1/2-c¢,, the index of D, is zero.

(3) In both cases above, the index of D, for t <0 is obtained from that of D, for
t>0 after changing k to —k and after changing N* to N¥.

Proof of Proposition 2.3. Here, one need only look at the Weitzenbock formula
for D, (this appears as a special case of Proposition A.1 and Lemma A.2), and then
take ¢ large to reduce the index calculation to an algebraic computation.

It still remains to compare the normal bundle Dirac operator with the Dirac
operator ¢,. To do this, let { X} denote the connected components of the fixed point
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set of the S' action. The comparison yields Witten’s [W1] interpretation of the
Atiyah-Bott-Lefschetz [A-B] formula:

Proposition 2.4. Let M be a compact, oriented, spin manifold which admits an action
of S'. Let Eq.(2.7) define Ind(d,,y,k), the character valued index of the Dirac
operator. Now, let {2} denote the connected components of the fixed point set of the
St action. For each X, construct the normal bundle Dirac operator, D (i), as an
operator on sections over the normal bundle to X, of the pulled back, bundle of spinors.
Then

Ind(@q, 7y, k)= Ind(D,(i), 7, k).

Proof of Proposition 2.4. For an indirect proof, compute the left-hand side of the
equality using the formulas in [A-B] and [A-Se]; and compute the right-hand side
of the equality using the Atiyah-Singer index theorem and compare.

Alternately, one can prove the equality directly using the localization theorem,
Proposition 2.1. Indeed, due to that proposition, Ind(d,, 7, k) can be computed
from the left-hand side of Eq. (2.7) for any value of ¢. In particular, for |t| sufficiently
large, the kernel and cokernel of the d,, are supported almost entirely in the tubular
neighborhoods of the components of the fixed point set. As |t gets larger, these
neighborhoods get smaller and smaller. Pulled back to the normal bundle of a
component, 2, of the fixed point set, the operators D, and ¢, agree to leading order
in an expansion in the distance from 2.

As |t| gets large, the small eigenvalue eigenvectors of D, on (S, k) are also
supported (but for an exponentially small tail) within distance ¢(]t|'/?) in N of .
The proof of this assertion is obtained by mimicking the proof of Proposition 2.1:
Use the Weitzenbock formula D7 on N, a special case of the Weitzenbock formula
in Eq. (A.10).

Meanwhile, the gaps in the I*-spectrum of both d,, and of D, are not shrinking
with increasing t; again, this is a consequence of the Weitzenbock formulas for
these operators. For D,, the formula is a special case of Eq. (A.10).

The equality of Ind(d,, 7, k) with X, Ind(D (i), 7, k) follows from these last facts;
one can compare the small eigenvalue eigenspaces 03 and {D,[i]?} directly: Use the
fact that the eigenvectors are localized near the X[i], but for an exponential error.
One can also view this equality as a consequence of the excision property of the
index for elliptic operators (see [A-Si]).

Part 4. Coupling to Vector Bundles

Let V— M be a complex vector bundle to which the S* action on M lifts. When M is
a spin manifold, the localization theorem, and the fixed point formula of
Propositions 2.1--2.4 generalize to give a formula for the S'-character valued index
of the Dirac operator on C*(S® V).

More generally, when M is not assumed to be a spin manifold, one can consider
an oriented, real vector bundle Y—>M with wy(Y)=w,(T*M) and the Dirac
operator on the bundle of spinors, S(U), built from the bundle U=T*M @Y.
Require of U that a finite cover of the S action on M lifts to an action on U. One
can also consider a real, oriented vector bundle Y — M and a complex line bundle
L—M with the property that the vector bundle U=T*M@®Y obeys w,(U)
=¢1(L)moac2y- Then, the bundle U has a sping-structure, and one can consider the
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Dirac operator on sections of the sping bundle S(U; L). Assume that a finite cover
of the S' action on M lifts to an action on Y and to an action on L. For notational
convenience, set SO(U)=S(U) or S(U; L).

To discuss localization formulae in these more general contexts, endow V, ¥, and
L with invariant fiber metrics and invariant, metric-compatible connections. With
these connections, the Dirac operator is defined by Eq.(2.2) using the direct
product connection on S°(U)® V to define the covariant derivative. Equation (2.4)
defines the family of Dirac operators 9, on C*(S°(U)® V). More generally, let 4
denote a covariantly constant, self-adjoint endomorphism of V. Assume that
Clifford multiplication by T*M on S°U) has been extended to Clifford
multiplication on S°(U)®V in such a way that the extension of 4 to S (U)® V as
1® A anticommutes with multiplication by elements in T*M. (Section 3 provides
examples.) Consider the family of operators

0,=0g+it-K+A4 (2.26)
on C*(S°(U)®V).

To consider the S action, the following observations are necessary: Suppose
that E— M is a vector bundle to which a finite cover of the S* action has a lift. Give
E an invariant metric and an invariant metric compatible connection. The action
of the Lie algebra of S* on E induces an action on C*(E) whose generator is the first
order differential operator

Kp=Vyi—op. (2.27)

Here, Vy is covariant differentiation along K,, and o, C*(EndE) is a skew-
symmetric endomorphism which obeys

Vo, =i(K,) F (2.28)

with (K ) - Fe C*(T*M®End E) denoting the interior product between K ,; and
the curvature, Fe C*(A?T*M ®EndE), of the connection on E.

In the present circumstances, E=S°U)®V. Assume that
Kooy and 4 commute as endomorphisms of C*(SUUHRV).

To define the S* equivariant index of d,, assume that V admits a covariantly
constant involution (denoted by 6) which anticommutes with 4 and which
commutes with the S*-action on V. As the dimension of M iseven, S°(U)® V admits
a covariantly constant involution which anti-commutes with D,; namely / =y®¥0.
With ¢/ replacing 7, Eq. (2.3) defines the index of d,.

By virtue of Eq. (2.28), the operators Kgoqgy and 6, commute; and so the
eigenspaces of J, can be decomposed into representations of S'. Letting
C*(S%(U)®V, k) denote the subspace of C*(S°(U)® V) on which Ksovyey acts with
eigenvalue k, the S'-character valued index of ¢, (which is independent of f) is then
defined by Eq. (2.7) after replacing y by 7.

This S'-character valued index can be computed from the local data at the
fixed point set; there is localization to the fixed point set of the eigenfunctions of ¢,
as t gets large. As before, this fact is made evident with the Weitzenbock formula
for 02. The old Weitzenbock formula, Eq. (2.8) is changed somewhat; by the
addition of curvature terms coming from Y, L, and V; and by the addition of a term
A*A; and by a change in the term which is linear in ¢ involving 6oy But the
term which is quadratic in ¢ remains the same, so the localization result of
Proposition 2.1 still holds.
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The fixed point formula for the S'-character valued index can be derived by
comparing @, with the analog of the operator D, in Eq. (2.21). To state the formula,
the following comments are required: Let E->M be a vector bundle to which a
finite cover of the S! action lifts. Again, suppose that E has an invariant metric and
metric compatible connection. Upon restriction to a component, X, of the fixed
point set, the endomorphism o of E in Eq.(2.27) is covariantly constant. This
follows from Eq. (2.28).

The eigenvalues of g, on the complexification of any given fiber are a set of
rational numbers {v}; and for fixed eigenvalue v, the set E,=ker(s;—0)CEQC|y
defines a smooth vector bundle over 2. If E is real, then the eigenvalues come in +
pairs and complex conjugation identifies E, with E_ . In particular, E, always has
a real structure, and the underlying real bundle will be denoted by E . Thus, if E is
real, there is an isomorphism of real bundles E[;~ Eqzx®, -, E,.

If E is complex, then ¢, is already diagonalizable on E with eigenvalues {v} and
one has E|y~ ®,E,.

Let Y—M be a real, oriented vector bundle to which a finite cover of the S'
action on M lifts. Suppose that U=T*M @Y is oriented and spin. Restrict to 2,
and define

Ly= <® det(N¥) ® det(YU*)>“.
0<v 0<v
Or, suppose that L— M is a complex line bundle to which a finite cover of the S*
action on M lifts. Suppose that U=T*M @Y is sping using the line bundle L to
define the sping-structure. Restrict to 2 and define

Ly=L® (O@ det(N7) & det(Yv*))_‘-

Upon restriction to 2, one has

SAVASIT*ED Yori Ly) ® AXNT) @ A*(YF). (229)
0<v 0<v
The new Dirac operator is defined initially on the set of smooth, compactly
supported sections of 7*(S°%(U)® V|s) over the normal bundle N— . This new
operator is
D,=D;+0+i-t-K+A4. (2.30)

In analogy with the case where V' is trivial, define CZ,(S%(U)® V|, k) to be the
space of smooth, compactly supported sections of the complexification of
SUU)®V|y on which Kgoy)ey acts with eigenvalue k. Then, define the spaces
LA(S(U)®V |y, k) and H'(S°(U)® V|, k) as the completions of CZ&(SYU)® V|, k)
with the norms which come from the metrics {-,->,> and {D,(*), D{()>2+ <+, Dp2
respectively. By construction, D, extends to define a bounded operator from
HY(S(U)Y®V|y, k) to the I2(S(U)Q V|, k).

Since the endomorphism 4 commutes with K, it preserves the decomposition
V=V({0)g@®y<,V, Since A is covariantly constant, V, ,=ker(4)|V(v) defines a
smooth vector bundle over 2.

The analogs of Propositions 2.2-2.4 in the twisted case follow. They are proved
by generalizing in a straightforward way the proofs of Propositions 2.2-2.4; the

details are left to the reader.
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Proposition 2.5. Let M be a compact, oriented manifold which admits an isometric S*
action. Let Y—M be a real, oriented vector bundle and let L—M be a complex line
bundle. Assume that the S* action on M has a finite cover which lifts to Y and to L.
Let U=T*M®Y and assume that w,(U)=0 or else that w,(U)=c(L)yoac) Let
S%U)—M denote the spin bundle S(U) or the sping bundle S(U; L). Let X be a
connected component of the fixed point set of the S* action on M, and denote by
N—2X the complex normal bundle. For t=0, and eigenvalue k of K on
CL(SAU)R VI, k), the operator D,: H'(SX(U)®V |y, k)= L(SU(U)® V|, k) in Eq.
(2.30) is Fredholm. Let ¢ be an involution of S°(U)®V with /*=1. Require that ¢
commute with K, and anti-commute with A and with multiplication by odd elements in
the Clifford algebra. Define the index of D, on C*(S°(U)®V|y, k) to be

Ind(D,, 7, k)=dim(ker D |y - 1) —dim(kerD |z 1)) -
This index is a locally constant function on R\{0}.

The analog of Proposition 2.4 in the present context is the twisted version of
Witten’s interpretation of the Atiyah-Bott formula:

Proposition 2.6. Make the same assumptions as in Proposition 2.5. Define the
character valued index of the Dirac operator d,on C*(S°(U)® V) as in Eq. (2.7) using
the involution /. Let {X;} denote the connected components of the fixed point set of
the S* action. For each X, construct the normal bundle Dirac operator, D (i), as
defined in Eq.(2.30). Then

Ind(0, 7, k)= Y, Ind(D (i), /. k).

3. The Dirac Operator on the Normal Bundle to M

Let M be a compact, oriented Riemannian manifold of dimension »n and let M
denote the space of loops on M. The constant loops give an embedding of M inside
#M, and the normal bundle fiber over xe M is £, TM|,C Maps(S*; TM|,). Dense
inside this space is the total space of a real vector bundle

N Mz~ @ TM¢. (3.1)

n>0

Since .#"M has a natural complex structure, consider it as a complex vector bundle
over M. See the Appendix for a description of the topology of A4"M.

To make this isomorphism cxplicit, restrict attention to an open set U over
which TM admits an orthonormal basis, e={e,},-;. For y in U, a vector in
L TM|, is some x(7) - e(y) with x(1) = (x“(t)); , : S' >IR". Coordinates for 4"M|, are
obtained using the Fourier components of x(-). That is, a point in A M|, is
specified by the data Y= {y, x,,},,> o, Where y is a pointin U, where x,, = (x{,): -, isa
vector in €". The point Y= {y, x,,} has only finitely many {x,,} not zero and it
parametrizes the point

Z (xme i + ’lcmeimr) ’ e(y) € cgT‘A4|U . (32)
m>0
Here, x,, is the complex conjugate of x,,. If the orthonormal frame is changed, ¢(y)
=Ay)-€'(y), with 1: U—SO(n), then the normal coordinates change as

X =2 (0) X (3.3)
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The horizontal subbundle of 74" M is defined via the isomorphism in Eq. (3.1).

Explicitly, this is the kernel of the following set of C"-valued differential forms on
TN M: For m>0, sct

Qmdem_FO). Xm» @mEde"F(U' Xms (34)

where w=(wj(y)) is the Levi-Civita connection matrix of 1-forms. (Note,
w}= —w}) This horizontal bundle is spanned by the vectors v={r,} where
ve=e,— b, Y (xb - 8/0xE, +xh - 0/0x8). (3.5)
m>0

Thus the tangent space to A M|, is spanned by the vectors {v,d/dx,,
0/0X im0 These vectors define an orthonormal basis for T.4/"M|y, just as
{e,0,,0,} define an orthonormal basis for T*.4"M|,.

A convenient space of functions on A4"M is parametrized by the infinite
dimensional vector bundle over M,

A= ® Sym(T*MRC), (3.6)
n+0
where Sym(T*M ®C)= @, Sym(T*M ). (The topology on % is described in
the Appendix.) Indeed, a section of @, T*M QC defines a function on AM
which is linear (n > 0) or anti-linear (n < 0) in the fiber coordinate. More generally, a
section of 4 defines a function on 4"M which is a polynomial in the fiber
coordinates and the complex conjugate coordinates.

Note that #— M inherits an obvious connection from its representation in
Eq. (3.6).

To facilitate calculations, it is convenient to introduce a set of differential
operators along the fiber of A"M. Alternately, when A4"M is viewed as a vector
bundle over M, a differential operator along the fiber becomes a subbundle of
End(%). Define, for m >0, the physicist’s “right moving creation and annihilation
operators” on /" M—U to be

at=id/ox,,—t-m-x,) and a,=id/dx,+1-m-x,), (3.7a)
and similarly define the left moving
ar=id/0x,,—t -m-x,) and ga, =i0/0x,+1t m-Xx,). (3.7b)
The commutation rules for these differential operators are

a b b oa __ .4, Sab,
Ay — Ay Ay = 2:t-m-o 5mn >
a b (38)

ba __ ka xb xb, ka __
Ay — Ay = Ay Ay — Ay Ay, ——0,

and similarly for the left moving operators. The right moving operators all
commute with the left moving opcrators.
There are additional commutation relations with the horizontal vector fields:

skC
m

a,. NP oL *a,, . kd c .
AUy — Uplyy = — Wy, Ay Uy Uy = Uplyy = — Wy, - d
a a ¢ c ®a *a ¢ ¢ (39)
— . — Rt
AnUp = Uplyy = — Wyp " diy 5 Uy Up — Uplyy = —Wyp " Ay

To define the correct domain for the Dirac operator on .4"M, it is necessary to
introduce an additional function on .4"M; this being the “Bosonic” generating
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functional. It sends the point Y =(y,x,,) to
¢O(Y)Eexp<—t- Y m-|x,,,|2>. (3.10)

m>0
This is globally defined on M because of the change of variable rule between open
scts. Note that the set of operators {a,, a,} annihilate @,
At xe M, the Bosonic Fock space will be %], ®®,; it is generated by finite
linear combinations of functions of the form

1 J (1) J
I(a lr‘r:(l))* afpfu))*)'n(g::ﬂ((l))’b-- aﬁl(u)*) Dy (3.11)

When A"M is viewed as a vector bundle over M, then the creation and
annihilation operators define a subbundle over M of End(Z® @,). Equation (3.8)
describes the commutators between the members of this set of endomorphisms,
and Eq. (3.9) describes the commutators with the covariant derivative on Z® @,,.

Define a metric on #4|.®®,, by requiring that

( Dy, Py =1, (3.12)

and that a;¥ be the adjoint of aj, and likewise for gi¥ and g;,. Equivalently, one can
say that the restriction of @, to each fiber .4"M|, defines a Gaussian measure; the
functions in 4|, being measurable, and this inner product is the L? inner product
with respect to the Gaussian measure.

The family of Fock spaces, {4, } which are parameterized by M fit together to
form a vector bundle over M; #—M.

The bundle of spinors over "M is defined after introducing the “Fermionic”

Fock spacc at xe M (sce e.g. [W3]). Introduce

7", =Finite linear combinations of {0,,:m>0},

(3.13)
7 =Finite linear combinations of {0,,:m>0] .
The Fermionic Fock space is
Fl.=A*T, . (3.14)

The topology here is described in the Appendix. The vector spaces {7 |, : x € M} fit
together to definc a vector bundle # — M ; with
Frx ® ANT*MRC). (3.15)

n>0

The space 1. is a Clifford module for the complex Clifford algebra,
Cliff(.7 . ®7 _)|,. Indeed, for m>0, let [ ¥ “1/2 0,, act on 7|, by wedge product

on A*/ For m=>0, let |/ 2. 0,, act as interior product by ]/2 d/édx,,; and denote
this endomorphlsm of Z|, by I,,. (In physics lingo, these define the creation
operators for the right moving fermions.) The set {I", I'*} generate a subbundle of
End(#).
The following anti-commutation relations hold:
e rertx=2-6%-5

[P+ [ =0, (3.16)
Fbru + rtlrl) — O

nom

mn >
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Define the “Fermion number operator”, (—1)F°, on .Z by declaring it to be
equal to (—1)? on A?7,. Note that (— 1) anti-commutes with each of {I", I"*}.
A metric on .# is defined by requiring that

L1H=1, (3.17)

and that I'* be the adjoint of I'. From Eq. (3.16), Z inherits an obvious connection,

which is metric compatible. For computational purposes, it is useful to note that

the resulting covariant derivative enjoys the following commutation relations with

the set {I', I'*}: Over an open set U where TM|, has been trivialized,
Vol — V= — ol

mo errs*_rnll)*nz—_w?ar;l* (318)

Let Clif T*M)— M denote the bundle of Clifford algebras over M which is
isomorphic as a vector space to A*¥*T*M. Let S—M be a complex vector bundle
and Cliff(T*M) module; that is, there is a bundle map of Cliff(7*M) into End(S)
which gives a representation that is faithful on T*M. For example, if M is a spin
manifold, then S— M could be taken to be the bundle of spinors, S(T*M) on M.

Assume that S has a metric and a metric compatible connection. Require of the
connection that the bundle map from Clff(T*M) into End(S) be covariantly
constant.

Let ¥ =(S®.%). The operator (—1)™ can be used to extend the Clifford
multiplication by allowing covectors { € T*M|, to act on .¥’|, according to the rule
{(s@w)=({ - s@(—1)F- w). With the action defined in this way, the basis co-
vectors {e} anti-commute with cach of {I',['*} and define a Clifford sub-algebra
amongst themselves. Use the same notation e to denote the Clifford element which
is defined by the covector e.

Define a metric on ¢, by using the metrics on S and on Z.

Define the vector bundles § = 4®.¥. Note that § ® @, inherits a fiber metric;
denote it by (-, ->. The space C*(&® @) of smooth sections over M of § ® &, now

has the I? metric
Coe= AJ4<-,->-dvol. (3.19)

Let I*(6 ® ®,) denote the completion of C*(&® @) with the norm which comes
from the metric above.

To define the Dirac-Ramond operator, note that §® @, inherits a metric
compatible connection from the connections on S, Z® P, and Z. A covariant
derivative, I, is defined on C*(6 ® &) from this connection. With respect to a local
trivialization of TM over an open set U in M:

V=VS Lol Y IUT

ca m
m>0

W Y (X 0J0x,+ Xy 0/0x5,), (3.20)
m>0
where V¥ is the connection on S, and where {wj,} are the components of the
connection form with respect to the given frame for TM|,.
The Dirac-Ramond operator on A"M is
D=e"-V,+ Y (¥ a,+1I, ak). (3.21)

m>0



S! Actions and Elliptic Genera 477

Here, ¢“ denotes Clifford multiplication by the 1-form which is dual to the
orthonormal vector e,. Thus, ¢* - V, is the Dirac operator on M, but coupled to the
vector bundle ZR.Z .

It is an immediate consequence of Egs. (3.9, 18, 20) that D, defines an
endomorphism of C*(&® ®,).

Define the Hilbert space H'(§ ® @) to be the completion of C*(£® @) in the
norm which comes from the metric

Coom =D DD+ (3.22)

Then, D, defines a bounded map from H(E® ®,) to AR D).
Consider now the action of the circle S on C*(£ ® ®,). Note that S' fixes @,,.
The action on Z is generated by i- Py, with

PBE - Z m- (xm ’ a/axm__-z\'m : ‘)/("72(;11) . (323)

m>0
The S! action on .Z is generated by i- Py, with
Pp=—35- Y m-I}-T,. (3.24)

m>0

This S* action fixes the spin bundle S. Thus, S* acts on § @@, and on C*(ER D)
with generator i- P with

PEPB+PF:_ Z ’n.(xm'a/axm_ZCm.a/ﬁ)_(rn+%.r:.rm)
m>0
=—3 ZO (am-ap—am-ay)+m- I3 T,). (3.25)

It will prove convenient to decompose P as P, — P, where Py, P, are its right

and left moving parts:
PRE%A Z (arﬁ.am'*"n.]—‘m.[;f)’ PLE% Z g:’:l'gm' (326)
m>0 m>0
Both Py, P, define covariantly constant endomorphisms of &; and hence of
C*(E®R®Py). The two endomorphisms commute, and as endomorphisms of
C?(E®P,), both commute with D,.

Restricted to a fiber &, both Py and P, are symmetric, and negative semi-
definite. Let &,,,] denote the subspace of &|, on which Py acts with cigenvalue h >0
and P, acts with eigenvalue m+ h=0; m being the eigenvalue of P. This is a finite
dimensional vector space (see Lemma A.2), and the family of vector spaces
(&l x €M} defines a finite dimensional vector bundle, &,,— M. The bundle
&, is isomorphic to S® R,,(h), where R, (h)— M is the cocfficient of z *"w ™" in the
following formal power series with coefficients in Vect(M):

® (@ zi"'symi(T*M)> ® <® w“f"'~symj(T*M)>

n=0\1=0 nz0\y=0
X ® <@ w"‘"-A"(T*M)). (3.27)
p20\kz0

The decomposition & = @5 o, > 1S 1s Orthogonal, and compatible with the
connection on &. For an cigenvalue m for P on &, let 6,,= ®,> _,, &, denote the

=-m

eigenspace; an infinite dimensional vector bundle over M.
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Since D, commutes with both P, and P, it decomposes as the direct sum D,
= @1 0,m> —w Dimp Witheach D, : C*(6,,, ® @) = C*(&,,,® P,) an operator of the
form

o+ A,(h), (3.28)

where ¢ is the Dirac operator coupled to R,,(h), and where A4,,(h) is a covariantly
constant endomorphism of R,,(h).

Define I*(6,,®®,) and H'(£,,® ®,) accordingly.

The properties of D,: H'(&,,® ®,)— [X(&,, @ ®,) arc described in the Appendix;
sce Propositions A.1 and A.3. The following proposition summarizes:

Proposition 3.1. Let M be a compact, oriented Riemannian manifold, and let S—M
be a finite dimensional complex vector bundle on which T*M acts faithfully by
Clifford multiplication. Construct the vector bundle §@ Po— M, and D,: C*(ER )
—>C*ER D) as described above. Let m be an eigenvalue of P on &. Then

) D, extends to define a Fredholm operator, D,, from H'(&,,Q ®,) to IX(&,,Q P,).
(2) coker(D,)CHY(&,); and coker(D,)=ker(D,).
(3) coker(D,)=ker(D,)C HY(& ), the eigenspaces of Py with ¢=0. In particular,
both vector spaces are empty for m<0.

Suppose that the bundle S decomposes as S, @S_ which are the +1
eigenspaces of a covariantly constant bundle involution, y, which anti-commutes
with the odd elements in the Clifford algebra’s action on S. (See Sect. 4 for an
example.) Let # =y®(— 1). This defines an involution of &,,® ®,, and hence, one
of I*(&,,@®,). Also, since / anti-commutes with D,, it defmes an involution of

Hl(_gm®¢0)'
Define the index of D,,, by (see Eq. (A.28))
Ind(D> édma [) =dim ker(Dmrlker(/— 1)) —dim ker(Dmtlker(/ + 1)) . (329)

The following proposition is a direct corollary to Proposition 3.1 and
Proposition A.3:

Proposition 3.2. For m<0, Ind(D, &,,/)=0; and for m=0, Ind(D, &,, ) is equal to

the index of the Dirac operator from C*(S,.®S,,) to C*(S_®S,,), where S,,— M is

the coefficient of ™ in the following formal power series with coefficient in Vect M :
Slg)= @ <@ q”"S"(TM)>.

n>0\k=0

Here SY(TM) denotes the k'™ symmetric power of the tangent bundle to M.

4. Some Twisted Dirac-Ramond Operators

The Dirac-Ramond and Neveu-Schwarz operators are obtained by twisting the
operator D, from the preceding section with specific vector bundies over the loop
space. It is convenient to introduce the construction in some generality by using
the following generic setting: Let M be a smooth, oriented manifold. Let E, V—>M
be real, oriented, finite dimensional vector bundles. Suppose that

ExE[0], @& E[W]®E[r]g

0O<v<r
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is a real isomorphism which decomposes E into sub-bundles. Require the E[0],
= TM; and that when 0 <v<r, E[v] is intrinsically a complex vector bundle. Let
E[0] and E[r] denote the complexifications of E[0], and E[r]. Suppose that
VAV © VD@V

is a direct sum decomposition of V' into real sub-bundles, with V[v] naturally
complex for v=0,r. An important special case is to let E= E[0]=TM and let V be
the zero dimensional vector bundle, M x {0}. By convention, direct summing with
M x {0} is the identity on Vect(M). Also, tensor product with M x {0} gives
M x {0}. Setting both E=TM and V = M x {0} will recover the construction in the
preceding section. Examples of the general construction are provided in the next
two sections.

Choose a metric and a metric compatible connection on E and V which respect
the subbundle decomposition and which will induce real metrics on the v=0,r
subbundles and hermitian metrics on the v+0,r subbundles.

Foreachve {1,...,r}, choose a(v) € [0, 1). Define the infinite dimensional vector
bundle

NE= @& TM,, @ E[r], ® ® E],—-M. 4.1

O<neZ O<neZ+a(r) O<v<r neZ-+a)

(131}

Here, the subscript “,” is an indexing label of the bundle in question. This is an
infinite dimensional vector bundle over M ; see the Appendix for a discussion of the
topology on AE.

The physicist’s Bosonic Fock space at each x € M is the space of finite, complex-
valued polynomials on the underlying real vector space of A"E. This defines a
vector bundle over M which is isomorphic to

Br= Q@ Sym(TMjo) ® { ® Sym(E[v]Y)

O0O*neZ O<v<i (neZ+a(v)
X ® Sym(E[u],’,“)} ®  Sym(E[r]¥). (4.2)
neZ+a(v) - neZ+a(r)

Here, the complex conjugate bundle is indicated by underlining. Complex
conjugation is a C-antilinear isomorphism between TM¥. and TM* ., between
E[r]¥ and E[r]*,, and between E[v]} and E[v]¥.

There is a natural, covariantly constant endomorphism of the vector bundle
A"E—M which is generated by

Py=— Y n-(x, 0/0x,—x, 0/0x,)

0<neZ

- ¥y n(zvl,0/oz[v],—z[v], 0/Cz[v],)

O<v<rneZ+a(v)

— Y (el dfozlr], =20, 0fozrd,) (4.3)

O<neZ+a(r)

Here, x, = {x;} are local coordinates on T'M,¢ which are defined by the choice of a
local orthonormal frame, {e}, for TM. Likewise, z[v],={z[v]}} are local
coordinates on E[v], which are defined by the choice of a local orthonormal frame
for E[v]. Note that Py lifts to an endomorphism of ;..
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The physicist’s Fermionic Fock space bundle over M has left movers and right
movers together. To construct this bundle, begin by defining a vector bundle
N V—M. For this purpose, choose B(v)€(0,1) for each ve {0, ...,r}. Then,

NV= @ V[0, @ V[r], @ @ Vv, (4.4)

0>neZ+ B(0) O0>neZ+ B(r) O<v<r neZ+ p(v)

Define the physicist’s right moving, Fermionic Fock space bundle

?E5A< @® TM% @ E[r]*

O<neZ 0<neZ+a(r)
® @ < ® ED]* @ E[u]*i,,)). (4.5)
O<v<r\neZ+a(v) 0<neZ-—afv)

Define the physicist’s left moving, Fermionic Fock space bundle

%vf/l( @ Vol & Vrly

0>neZ+ B(0) 0>neZ+p(r)
® @ ( ©  Vhli @ V[v]’in>j. (4.6)
0<v<r\O>neZ+p(v) 0>neZ—Bw) y

The vector bundle #,®%, is a complex Clifford module for the bundle of
Clifford algebras which is generated by
® ™ @ VIOIF o Erly @ Virly

O<neZ 0>neZ+ B(0) O<neZ+a(r) 0>neZ+p(r)

@( ©  EQly © ﬂlﬂ’%)

O<v<r\0<neZ+a(v) 0<neZ—a(v)

® ( ®©  Vhly @ V[v]*i,,>. (4.7)
0<v<r\0>neZ+ p(v) 0>neZ—-p) ~

Introduce an orthonormal frame e =[e“] for TM* over a ball in M, and for 0 <
v<r, introduce an orthonormal frame {(v)= {{(v)'} for E[v]* over the same ball.
For n>0, and for 0 <v<r, it is convenient to introduce the notation I'*, I'(r)¥,

n>

I'(r)F, I'(r)¥ for exterior multiplication on the Fock space Z,.®%, by ‘/§

ree TM, ]/i -{(v)e E[v]%, [/5 () e E[v]*,, [/E'C(r)e E[r]¥, respectively.
Let I, I'(v),, ['(v),, I'[r], denote interior multiplication on the Fock space

F®%,  with |2 eeTM* .. |/2- () eED]E /2 L) eED]*,
]/2 -{(rye E[r]* ,, respectively.

The I'*’s are the Fock space creation operators, and the I'’s are the Fock space
annihilation operators.

The metric on ¥V—M induces metrics on V[0]% and V[r]%; and it induces
hermitian metrics on each V[v]* for 0 <v<r. Choose orthonormal frames o(0)
={0(0)*}, o(r)={o(r)*}, and o(v)={o(v)*} for V[0]% and V[r]§ and V[v]*,
respectively. For n<0, exterior multiplication on the Fock space Z,;®%, by
/2 0(0)e VIO]%, |/2- o(v)e V[V]E, /2 olv) e V[v]*,. /2 or) € V[r]¥ defines the
creation operators O(0)F, O©W)F, O)F, O@r)F.

For n<O0, interior multiplication on the Fock space Z.®%, by

1/2-0(0)€ VIOI%,, /2 ov)e V[VIE, /2 o(v)e V[v]*,, /2-o(r)e V[r]*, defines
the annihilation operators @(0),, @(v),, Ov),, O(r),.
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The endomorphism Py, has its analog on the Fock space #;®%,. This is the
endomorphism given by P+ P,. Here,

P b T L L Y e 0T,

0<neZ 0<neZ+a(r)

+ 2 Y n )y I(v),

O<v<r O<neZ+a(r)

+ X Y o on LT (v)n>- (4.8)

0<o<r O<neZ—a(r) - T
And
P,=—3 ( y n-0(0)F - ©(0),+ Y o o OF)F o),

0>neZ+ p(0) 0>neZ+a(r)

+ o2 Y n O 6),

O<v<r O0>neZ+p(v)

o) Y n O @(U)n>- (4.9)
0<v<ng/2 0>neZ—B(v) - -

No spin manifold assumption about M has been made yet; but now, a spinor
bundle over M must be constructed. Let Y — M be an oriented, real vector bundle.
Let L-»M be a complex line bundle. Assume that w,(Y)=w,(T*M), or that
Wo(T*M @ Y)=c((L)poq2)- Give Y and L metrics and metric compatible connec-

tions. Let
U=TM*®Y. (4.10)

Ifwy(Y)=w,(T*M), then U is spin; and if w(T*M @ Y) = ¢ (L) a2 then U has a
sping structure which is defined by the line bundle L.

Let S%(U)— M denote the spin bundle S(U) or the sping-bundle S(U; L) as the
case may be. Note that S°(U) is a Clifford module for the bundle of Clifford
algebras over M which is generated by TM*. Also, S°(U) is a Clifford module for
the bundle of Clifford algebras generated by Y. Clifford multiplication by TM*
anti-commutes with that by Y. Clifford multiplication by ee TM*@®Y will be
denoted by “e”.

The total Fermionic Fock space bundle over M is defined to be

SUU)® 7@y . (4.11)

Clifford multiplication by the I’s, I'*’s, and @’s and @*’s extends to the vector
bundles in Eq. (4.11) directly. To define the Clifford module structure over TM*
and Y*, introduce the automorphism, (—1)**¢: On forms of homogeneous degree
in Z,®%,, this is (— 1), [t extends to an automorphism of #,®%,. For
eeTM*®Y, Clifford multiplication on a decomposable element
sy eS'(U)RFR%, gives e-s@(—1)F 70 qp.

An additional necessity for the Dirac-Ramond construction is the density
function on A E. This is defined after choosing for each O <v <rand neZ + a(v), a
real number ufv, n]€IR\{0}. Assume that sign(u[v, n])=sign(n) for all but finitely
many n.

Let
(DEEexp<—t-< ) Zn‘Ixn'2+ )

O0O<ne O0<v<r neZ+a)

x|ulv, ]l 207+ Y o IZ(V),,|2>>- (4.12)

O<neZ+a(v
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For later applications, let W— M denote a complex vector bundle with metric
and metric compatible connection.

The domain for the Dirac-Raymond operator will be the space of smooth
sections over M of &, @®,, where

Eryv =B8RS (V)QF ,QY,QW. (4.13)

To define inner products on the domain, observe that the bundle S°(U) has a fiber
metric which is induced by the metricon T*M, E, Y, and on V. Also, #;®%, has a
natural fiber metric which is induced by the metrics on T*M, E and on V, the
constant 1 is declared to have unit length, and then, the I"’s are declared adjoint to
the respective I'*’s, and likewise for the @’s and @*’s.

The connections on TM* and E and on V induce connections on S(U), and
7 ,®%, which are metric compatible.

The Bosonic Fock space Z;— M has a natural fiber metric which is given by
the Gaussian measure which @, defines on each fiber. Alternately, one could
introduce the creation and annihilation operators as in the Appendix. A
connection on #, which is metric compatible is inherited from the connections on
TM* and on E.

Let {,)» denote the induced metric on & y, and let V denote the induced
covariant derivative on C*(§y , @ P).

In local coordinates, let ¢*-V,:C*(&p ,y ®Pp)—>C* (&, , ®P,) denote the
usual Dirac operator. Then, the Dirac-Ramond operator is

D,=e* V,+ 1T, (4.14a)
where Tj is the following covariantly constant endomorphism of & , @ @,
TEEi'[ Y (L (0)0x,—t-n-x,)+ T (0/0x,+1nx,))

0<neZ

+ X Y ('), (d/cz(v),—t- ufv,n] - z(v),)

0<v<r 0<neZ+a(v)
+ ')} (0/0z(v),+ 1 ulv,n] - 2(v),)
+ Z Z (F(U)n .(0/62(”)~n_—t..u[09 *’ﬂ] 'Z(U)*n)

0<v<r O<neZ—ua(v)

+ F(U);r ’ (8/62(0)~n +i ,Ll[_U, - n] ’ Z(U)An)
+ Y (T, (0/ozr),—t-n-z(r),)

0<neZ+a(r)

+ I (r)¥ - (0/0z(r),+ 1t n- z(r),,))J . (4.14b)

By construction, D, maps C*(& , ®P,;) into itself.

With these fiber metrics and connections, the endomorphisms Py, P, and P, of
&y are covariantly constant and symmetric. Furthermore, P=P,+ P.+ P,
commutes with 7; as an endomorphism of &y ,®®, As an operator on
CH (&g y@Py), it commutes with D,. The endomorphism P can be diagonalized
explicitly on &, and P decomposes &, - as the direct sum ®,,6% y,,, Where P
acts on &y, as multiplication by m. Then, D, restricts to an operator on
CHE L ym@ D).

Introduce the L*-norm and the H'-norm on sections of & 1, @ ®y;

o= ‘J;<,> and (D= (D), D)2+ oz (4.15)
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Introduce the Hilbert spaces L&y ,,,®Py) and H'(E v, ®Py) as the com-
pletions of C*(&y y,,®®P;) in the L and H'-norms above, respectively.
The following proposition is a reassertion of Proposition A.1:

Proposition 4.1. In the preceding construction, assume that o(v)>0 for all v>0.
Choose ulv,n]=n. Construct &y y, @y and, for t>0, the operator D, Then D,
defines a Fredholm operator from H(&y, y,,®@ Pr) and [X(&y 1,,@Py). The kernel
and cokernel of D, vanish if m<0, and in general, define the identical vector space of
smooth sections over M of the finite dimensional vector bundle Ker(Ty)
NEg ym® P

The index of D, on C*(&y.y,,®®,,) is defined using a covariantly constant
involution Z, of S%(U)®.%;®%,. The involution / is required to anti-commute
with D,. Define D, to be the restriction of D, to C*(6g. ,,® Py). Set

Ind(D; &gy £)= dim(ker(Dtmlker(/ )= dim(ker(Dtm'ker(/ 1) (4.16)

Proposition 4.2. Make the same assumptions as in Proposition 4.1. Let ¢ be a
covariantly constant involution of S°(U)®F ,®%, which anti-commutes with D,.
Define Ind(D; &g v £) by Eq.(4.16). Then this index is independent of t; and it
vanishes for m<0.

Proof of Proposition 4.2. The proposition follows from Propositions 4.1 and A.3.

When M and Y are even dimensional, there are two such involutions, 7, and Z,.
Thefirst, Z,, gives an index of D which is a generalization of the Euler characteristic.
The second, Z,, gives an index of D which is a loop space generalization of the index
of the signature operator or the Dirac operator.

To define 7,, start by defining ¢,=dim(TM@Y). Since TM*, Y* are all
oriented, det(T M*@® Y*) has a covariantly constant, unit norm section, w,, which
defines the orientation of TM*@ Y* along M. The image of w, in the Clifford
algebra defines an automorphism, o,, which anti-commutes with the operator e*V,
in Eq.(4.14a). This automorphism has square w?=(—1)®€*V/2 g5 5
= (i)t * /2. ¢y, defines an involution of S°(U). Define the automorphism Z, on
SOU)® Z ;®%, by first considering it on decomposable elements of the type s@ w,
with se S°(U) and with @ of homogeneous degree in Z,®%,. Require that

L(s®w)=y,  s@(—1)teerec@ . ) (4.17)

Then, extend the definition of 7, by linearity. Extend 7, to S°(U)® Z,®%, @ W by
ignoring W.

To define /,, use the orientation of TM and the metric to define the volume
form. When M is even dimensional, Clifford multiplication by the volume form on
M defines an automorphism, d vol,,, of S°%(U) with d vol3, = (— 1)dim3) (dim()+1)/2,
thus, y,,= ()M EmA+ 12 4yl defines an involution of S°%(U). Define the
automorphism 7; on S(U)®Z ,®%, by first considering it on decomposable
elements of the type s®w® @, with s € S°(U) and with » of homogeneous degree in
F; and with ¢ arbitrary in 4. Require that

L(S®ORQ) =7y s®(— 1) 0. (4.18)

Then, extend the definition of 7 by linearity. When tensoring with the auxiliary
bundle W, ignore W.
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5. A Relevant Example

A geometric example of the constructions in the preceding section arises in the
following way: Suppose that S' acts as a group of isometries of an oriented
Riemannian manifold, M. For each p e M, introduce the subgroup G(p)CS* which
stabilizes p. The S* action is called semi-free when the stabilizer of a point in M is
either {1} orelseitis S'. Generally, the set of distinct subgroups of S* which appear
as stabilizers of the points in M is some list from the set {Z/n-Z:ne{1,2,...,0}},
with Z/oo - Z=S".

Each ne{1,2,..., 00} defines a (possibly empty) subset M(n)C M as the set of
points p for which Z/n - Z C G(p); i.e., the set of points which are fixed by Z/n - Z. For
example, M(1)=M and M(0) is the fixed point set of the S*-action. Note that if n
divides n', then Z/n-Z is a subgroup of Z/n’ - Z and M(n')C M(n).

For ny >0, the normal bundle, NM(n,)— M(n,) inherits a covariantly constant
Z/n, - Z subgroup of its automorphism group. This induces a character decompo-
sition of the complexified bundle,

NMm)e= @ NM(ny;v). (5.1
0<v<ng
Complex conjugation provides a C-anti-linear isomorphism between NM(n; v)
and NM(n,; n,—v). If nis even, this produces a real structure on N M(ny; ny/2); this
bundle is the complexification of a real bundle NM(ng; ny/2)g— M(n,). Thus,
NM(n,) is isomorphic as a real bundle to

NMng)~NM(ng; ng/2)y @ NM(ngy;v). (5.2)
0<v<ng/2
When n=1, then NM(1)=M x {0} is the special case of the zero dimensional
bundle.
The manifold M(n,) will replace the manifold M in the constructions of the

preceding section. For this to proceed, it is necessary to insure the orientability of
TM(ny).

Lemma 5.1. Let M be a compact, oriented, manifold on which S* acts. Let V—M be a
real, oriented vector bundle to which the S* action lifts. Assume that w,(V)=0. Let
M(ng)CM be the fixed point set of the Z/ny-Z subgroup of S'. Let V(ng;0)x
—M(n,) denote the subbundle of V|, on which the induced Z/n, - Z. subgroup of
automorphisms acts trivially. Then V(ny; 0)g is orientable.

This lemma is a corollary to the main theorem in [E]; another proof is given in
Sect. 10 of [B-T], and a third proof is given at the end of this section.

To motivate the construction of the preceding section, define the fiber bundle
over S' with fiber NM(n,),

S' x NMi(ng). (5.3
Zinog-Z
Witten’s discussion in [ W2] suggests that one should replace the space of loops
on NM(n,) with the space of sections over S* of the fiber bundle in Eq. (5.3). This
space is naturally a fiber bundle over ¥ M(n,) whose fiber at the loop ¢ € ¥ M(n,)
is the space of smooth sections over S' of S* xz,,..z0*NM(n,).
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The constant sections of S' x4, .zNM(n,) can be identified with the point
loops, M(no)C.LM(ne)CC*(S' Xz5,,.2NM(ny)). The normal bundle to M(n,)
CC(S" Xz, zNM(ny)) has a dense subbundle which is the underlying real
bundle of

N NM(ng)= @ TM(no)nc@< ® @ NM(nO;U)n>

O<neZ 0<v<ng/2 neZ+v/ng

X @  NMing; ny/2),. (5.4)
O<neZ+1/2
Here, the last term is understood to be absent when ng is odd.

The relationship between AN M(no) and C*(S* X z,,,.z NM(n,)) is obtained by
considering Fourier components as in Sect. 3. Indeed, the metric on TM induces a
metric on NM(ny; ny/2) and for 0 <v<ny/2, a hermitian metric on NM(ny: v).
Choose an orthonormal frame e={e,} for TM(n,) at xe M; and for 0 <v <n,/2,
choose an orthonormal frame {(v)= {{(v);} for NM(ny;v). Then a point ¥ =(x,,
z(v),) in A/ NM(n,) as defined in Eq. (5.4) specifies

@(0)5( z (xn.e*ine_f_zcn.eine).e’

0<neZ 0<v<ng/2 neZ+v/ng

X (20} e~ - () + 2(v), - €™ - L(v) +

O<neZ+1/2

x 2(ng/2), - e~ " + 2(ng/2), - €™) - L(no/ 2)> (5.5)

as a map from [0, 2x] into TM|,. Composing with the exponential map gives a
section over S' of S' x z,,,.zNM(n,).
It is natural to make the constructions in the previous section using

E=TM=TM(n,)®NM(ny/ny/2) @ NM(ng;v);
0<v<np/2
and using a(v) =v/n,,.

Let V—M be a real, oriented vector bundle to which the S action on M lifts.
Endow V with an invariant metric and a metric compatible connection. The vector
bundle V along M(n) inherits a covariantly constant, Z/n-Z-subgroup of its
automorphism group which decomposes V into its characters under the Z/n-Z
action on M according to VQC= @<, «,, V(ny;v). For v+0, complex conjug-
ation gives a (C-anti-linear isomorphism between V(ny;v) and V(ng; ny—v).
Complex conjugation gives a real structure to V(n,; 0) and, when n, is even, to
V(ng; ne/2). As a real bundle,

Vi ®V0: 0r @ Ving; 0)@V(no; no/2)x: (5.6)

0<v<ng/2

where the last term is understood to be trivial when n, is odd.

The construction of 4"V in Eq. (4.4) from the vector bundle V in Eq. (5.6) can
be done in two ways, unprimed and primed. In the unprimed case, denote
A"V =7, and in the primed case, denote A"V =7". The two cases correspond to
distinct choices of the data {f(v)}: In the unprimed case, f(v)=v/n,; and in the
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primed case, f(v)=v/ny,+ 1/2. Thus,
4V% V(nO; 0)OR @ V(nO; O)n@ ( @ @ V(nOa D)n)

0>neZ 0<v<ng/2 neZ+v/ng
@ V(nO; nO//z)n 5 (57)
O0>neZ+1/2
S V(”O; nO/z)OR @ V(nO; ’10/2)n@ ( (_B @ V(no; U)n)
0>neZ 0<v<ng/2 neZ+v/ng+1/2
® Vi 0),. (58)
0>neZ+1)2

In the physics literature, the unprimed case is called Ramond, and the primed case
is called Neveu-Schwarz.

Distinguish %, and %) depending on whether ¥~ or ¥ is used in the
construction in Eq. (4.6).

The constructions of Sect.4 also require a vector bundle Y-M and, if
necessary, a complex line bundle L—M so that the bundle U in Eq. (4.10) is
oriented and spin or sping. The required bundles are provided in the next lemma.

To state this lemma, recall from Definition 1.1 the notion of V being Z/n-Z
compatible with T*M.

Lemma 5.2. Let M be a compact, oriented spin manifold on which S* acts. Let V—M
be a real, oriented vector bundle to which the S* action has a lift. Assume that
w,(V)=0. For integer n,> 1, assume that V is Z/n, - Z compatible with T*M. Let
r=0 when ng is odd, and let r=1 when n, is even. Then

(1) The line bundle

®  (det(NM(n,; v)*)®@det( V(ng; v pyF) D

0<wv<ng/2
has an ny'™ root.
(2) Let
Lz(0< ®  (@etNMn; 0))@det(V(no: v)¥)” >
®|,. 8, ,[detNMng: o) )@det(Ving: %)=,
0<v<np/2 —_—
and let
b= <0<u(?n /2 det{NMio; o))" 1)

®[ ®  (det(NM(ng; v)*)®@det(V(ny; v)*))~ 2'D]r/no.

O0<v<np/2

Let U=TM(n,)®V(ng; 0) and let U'=TM(ng)®V(ng; o/2). Then U and U’ are
oriented; and U with the line bundle L and U’ with the line bundle L are sping.

This lemma is proved as Lemmas 11.3 and 11.4 in [B-T].
To summarize for future reference,

Proposition 5.3. Let M be a compact, oriented spin manifold on which S* acts. Let
V— M be a real, oriented vector bundle to which the S* action has a lift. Assume that
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w,(V)=0; and for integer ny=1, assume that V is Z/n, - Z compatible with T*M.
The Dirac-Ramond construction in Sect. 4 can be made with the following geometric
data: There are two cases, unprimed and primed. In both, replace the manifold M in
Sect. 4 with the submanifold M(ny) C M which is fixed under the Z/n - Z subgroup of
St In Sect. 4, use the vector bundle N M(ny)— M(n,) for the vector bundle E, and use
a(v)=v. Use Vlyug— M(no) for the vector bundle V; in the unprimed case use f(v)=
v/ny, and in the primed case, use f(v)=v/ny,+ 1/2. In the unprimed case, use the
vector bundles U and L as described in Lemma 5.3 to define the sping structure. In the
primed case, use the vector bundles U’ and L' in Lemma 5.3 to define the sping
structure. Finally, choose any auxiliary, complex vector bundle W — M(n). This data
defines the vector bundle &y, v—> M(ng) of Eq. (4.13). For 0<v=n,/2, set u[v,n]
=n+v/ny in Eq. (412) to define @yu,,, Then D, of Eq. (4.14) maps
C™(Exnmtng), v @ Prsringy) to itself and the conclusions of Propositions 4.1 and 4.2 hold.

For a special case, consider n=1, so that M(n)=NM(n)= M. This is the case
which is considered by Witten in [W2]. The analysis in Sect. 4 yields the following
proposition as a corollary:

Proposition 5.4. Let M be a compact, oriented Riemannian manifold. Use
E=M x {0} and any real, oriented vector bundle V— M in Proposition 4.1. Consider
two cases, unprimed and primed. In the unprimed case, make no assumptions. In the
primed case, assume that wo(TM)=0. Then

1) Ind(D; EMY™ £ ,) is zero for m<0, and for m=0, it is equal to the index of the
operator
(d+d*): C(ATN(T*M)R R (m))—> C(AYT*M)RR (m)),

where R (m)— M is the coefficient of q™ in the following formal power series with
coefficients in the real K-theory of M:

®,(, &, 0" SI(TM) © (& (~1)f-g*a(TM)).
0<neZ \O=<keZ O0<neZ \O=<keZ
When M is spin, this is the ¢*™ component of Ind(d, Fz(q, V), y) with F(q, V) given in
Eq. (1.5).
2) Ind(D; & pp yms?s) is zero for m<0, and for m=0, it is equal to the index of the
signature operator on M coupled to R(m)— M, where R (m)is the coefficient of =" in
the following formal power series with coefficients in Vect(M):
®,(, @, " ST M) © (& gt arH).
0<neZ \0<keZ 0<neZ \0=<keZ
When M is spin, this is the g*™ component of Ind(0, Fs(q, V). 7) with Fg(q, V) given in
Eq. (1.5).
In the primed case,
3) Ind(D; &y ym ) is zero for m<O0, and for m=0, it is equal to the g*"
component of Ind (0, Fp(q, V), ) with F(q, V) given in Eq. (1.5).
4) Ind(D; Eps.ym Lo) is zero for m<O0, and for m=0, it is equal to the g™
component of Ind(0, F(—q,V),7).

This section ends with the proof of Lemma 5.1.
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Proof of Lemma5.1. Since V is oriented, w,(V(ny; 0))=w,(V(ny; no/2)). Since
complex vector bundles are always orientable, is automatic the orientability of
V(ny;0) in the case when n, is odd. Assume that n, is even. First, consider the case
no=2.

Denote the S* action by ¢:S! x M— M. Since ¢(r, -) is the identity on M(2),
@1, ), : V(2; 00> V(2; 0) is the identity map; and ¢(n, ), : V(2; 1)=V(2; 1) is an
involution which defines the Z/2 - Z action. It is convenient to fix an S'-invariant
fiber metric on V. This induces a fiber metric on V(2; 0) and one on V(2; 1). Then,
o(m, ), acts on V(2; 1) as a special orthogonal automorphism, 4, with 4> =1. Thus,
A is also symmetric, and so it can be diagonalized; all the eigenvalues of A are equal
to —1. This means that A= —I, with I being the identity automorphism.

Suppose that V(2; 0) were not orientable. With this assumption, there exists a
map q:S*'—M(2) with the property that w,(g*V(2; 0))%0. For such g,

g*(V(2; 0)~ (Sl X ]R) xRF™1, (5.9)
Z)2-Z
where k=dim(V(2;0)). Since w,(V(2; 0))=w,(V(2; 1)), one also has
a*(V(2; 1)~ (S‘ x ]R) xIR™™ 1, (5.10)
Z)2-Z

where m=dim(V(2; 1)).
The S' action defines from ¢ a map, ¢, :S' x S'—M(2) which sends (t,s) to
q,(t, )= (t/2, q(s)). For fixed s,

41(5 q(9))* V(2; 0)=g(s)* @, V(2; 0); (5.11)
and therefore,
qEV(2;0)x St x (S‘ X ]R) xR™ 1, (5.12)
Z/2-Z
The bundle V(2; 1) obeys

q1( q))*V(2; 1) =q(s)* @, V(2; 1); (5.13)

and this means that
q.*V(2:1)xS' x ((S‘ X ]R) ><]R"‘"1>, (5.14)

Z/2-Z Z/2-Z

where Z/2-Z acts on (S' xz,,.zR) xIR" ™" as multiplication by +1.

The Z/2 - Z cohomology of S* x S* has generators z,, z, which restrict trivially
to the second S* and to the first S, respectively. The total Stiefel-Whitney class of
q¥V(2;0) can be computed from Eq. (5.12) to be

W@V (2; 0)=1+2z,. (5.15)

The total Sticfel-Whitney class of g¥V(2; 1) can be computed from Eq. (5.14) to be
W@t V(2 D) =14+ Mpeq2) 21 H 22 H(M—Dpoaa) 21 A 22 (5.16)
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The total Stiefel-Whitney class of gFV is now computable from Egs. (5.15, 16)
as the product of the two classes:

w(giV)=1+ Mmod(2) " 21 +(mmod(2)+(m_ Dimoa2)) " 21 A Z5. (5.17)

Equation (5.17) asserts that w,(q¥V)=%0. This is a contradiction, since w,(g¥V)
= g¥w,(V). The contradiction implies that V(2; 0) must be orientable as claimed.
For ny=2¢/>2, use the same arguement with the fact that ¢,(E)=0 for any
bundle E—~S* x S! to which the rotations around an S* lift.

6. Localization for the Z/n, - Z Twisted Case

Suppose that S' acts geometrically as a group of isometries of M, and that this
action lifts to an action on the vector bundle V—M. As in Sect. 5, consider for
ny >0, the fixed point set M(n,) of the natural Z/n, - Z subgroup of S*. The action
of S' on M defines an action on M(n,) which is an n,-fold covering of an S* action;
the ny-root action. The fixed point set of the n,-root action on M(n,) is the same as
the fixed point set of the original action on M, namely, U, 2[i].

Assume that the conditions of Proposition 5.3 hold so that the Z/n,-Z
construction in said Proposition of the twisted Dirac-Ramond operator can be
made using M(n,), NM(ny)—M(ng) and V| ,0-

For the vector bundle W— M(n,), assume that a finite cover of the n,-root
action on M(n,) lifts to W. Give W an invariant metric and an invariant, metric
compatible connection.

The ny-root S' action on M(n,) has a finite cover which lifts to an action on the
vector bundle &yp,). v —>M(ny) in both the primed and unprimed cases of
Proposition 5.3; this lift commutes with the endomorphism P; there is a lift to each
of the vector bundles Eypring). vm-

The Dirac-Ramond operator D, on C*(Exaring 1 @ Prarng) 18 €quivariant
under the lifted action, which implies that the S* character-valued index of D, on
C™(Exnntinoy. vm® Prarng) fOI the ng-root S* action can be defined by mimicking the
definition in Sect. 2. Indeed, decompose Eypr,,. 1 » into the direct sum of finite
dimensional vector bundles @&y aring), ymM@ P\ rr(n) as discussed in the Ap-
pendix. Correspondingly, the operator D, on C™(Eyrin). vm® Prrr(n,) decom-
poses into a direct sum of “standard” Dirac operators, {0+ A4,,(h)} as in Eq. (A.9).
Each of the 0+ 4,,(h) is equivariant under the n,-root action; and each is of the
form discussed in Sect. 2 and Proposition 2.6. Therefore, each has an S*-character-
valued index which is defined as follows: Let k define a character of the
induced ny-root S'-action on C™(& yrrme). vmlMN® Pyrrne) (50, k is a rational
number). Let C(& yang), vmlM @ Pyrrngy k) denote the subspace of sections of
C™(Enptiny. vm® Pyar(nyy) ON Which the ny-root S'-action is defined by the rational
number k. The involution, / =/, or /; in Eqs. (4.17, 18) commutes with the n,-root
action, and so defines an involution of C™(&yrr(ng), ym(M) @ Py pr(ne) k). Define

Il’ld(D, éaNM(no), Vm(h)s /a k)
=dim(ker(D,|(ker(£ — 1)mcm((§dNM(no), ym(M® D rnoy k)))
—dim(ker(D,|(ker(Z + 1) C™(Enpting), v @ Py s gy K))) - (6.1)
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According to Proposition A.1, these indices are zero except for h=0. Thus, one
can define
Ind(D’ éz\"M(no), Vme /7 k) = Z Ind(Da (_gaE. Vm(h): /, k) . (62)
h

The localization results in Sect. 2 can be used to localize the Dirac operator D,
on  C*(Eyrring). vm® Pynrngy) by localizing each D, on each C*(Eypsg), ymlh)
® P rrngy)- Recall that Witten’s description of localization as discussed in Sect. 2 is
obtained by comparing the large |s| behavior of the family of “standard” Dirac
operators

Dy=D,+is-e" K,
on C*(Exprmey. vmM @ Py sy k) With a family of differential operators on the
normal bundle to the fixed point set to the geometric S action. That is, the S*-
character valued index of D, on each C*(Eyyng). ymM)@ Pypsingy k) can be
calculated using a Dirac operator on the normal bundle to the fixed point set; or,
equivalently using the Dirac operator on the fixed point set, but coupled to a
specific, finite dimensional vector bundle.

The description of these normal bundle Dirac operators (one for each pair of
eigenvalues (m, h)) is facilitated by defining an operator, Q,,, on an infinite
dimensional vector bundle over the fixed point set which decomposes appropri-
ately upon restriction to an (m, h) eigenspace. This is analogous to the decompo-
sition in the previous section of the operator D, into a direct sum of operators
{0+ A,(h)}. For calculational purposes, it is much more convenient to consider
Q.. the Dirac operator coupled to an infinite dimensional vector bundle, rather
than a countable set of operators, each a “standard” Dirac operator coupled to a
finite dimensional vector.

The justification for the manipulations of the big operator comes, ultimately,
from the direct sum decomposition into “standard” Dirac operators; and then, by
referral to the results for “standard” Dirac operators which are summarized in
Sect. 2.

The result is Proposition 6.2, below, the analog of Proposition 4.6. This is an
assertion that the S' character-valued index of D, on C*(Ex o). vm® Pratinoy) 19
equal to the sum of the ' character-valued indices of suitable Dirac operators on
the normal bundles to the components of the fixed point set of the S* action. The
appropriate Dirac operator on the normal bundle to X'= X[i] will be denoted by
0,,=0,,[i]; it is the analog of the operator in Eq. (2.21).

To write down this operator Q, requires a digression. Recall from Sect. 2 that
the normal bundle to X is naturally a complex vector bundle N—2X which
decomposes into character bundles N =@, ., N, under the S' action. Let

N= @ N, and N'= @ N

O0<v:veng Z O<v:vgng-Z

v (6.3)
As a real bundle, N* is isomorphic to the normal bundle in M(n,) of X. The
subbundle NT—Z, is, as a real bundle, isomorphic to the restriction to X of
NM(n,), the normal bundle to M(n) in M.
The normal bundle NM(n,) decomposes under the Z/n,-Z action on M
according to Eq. (5.2). The restriction to X of NM(n,; v) is given by
NM(nO; U)lZ‘: @ NU’ @ Nn' . (64)

0 <v’:v"=vmod(ng) 0 <v’:v'= —vmod(ng)
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Along X, the S* action decomposes the vector bundle V into V="V,z®¢ -, V.,
with Vg real, and with each V, naturally complex. The vector bundle V' along
M(n,) decomposes under the Z/n,-Z action on M according to Eq. (5.6); and
along X,

Ving; v)= ® Vi ® V. (6.5)

0 <v’:v'=vmod(ng) 0<v’:v'=—vmod(ng)

The vector bundle A" N M(n) of Eq. (5.4) restricts to the normal bundle, N — £
in M(n,). Since .A"NM(n,) is a bundle over N*, and N* is a vector bundle over X,
the total space of A" NM(n,) defines a vector bundle over X which is the direct sum
N NM(ng)= AN (ng)+ BN (no) - D AN (1), Where

'*/1//‘(”0) + X @ TM(Z)n(]Z @ @ Nv. n @
0<neZ 0<v:0=0,n0/2mod(ng) 0 <neZ+v/ng 0<v' <ng/2
( @ @ Nu.n
0 <v:v=0n"mod(ng) O <neZ+v/ng
® ® N, >
O<v:v=—v' mod(ng) O<neZ—vjng
:/1'/("0) - @ @ NU. n @
0<v:v=0.np/2mod(ng) 0>neZ+v/ng 0<v' <ng/2
@ @ N,
0<v:v=v'mod(ng) 0>neZ+v/ng
® ® N, ) :
0<v:v=—v mod(ng) 0>neZ—v/ny
N (Mg)o = @ @®N, o, (6.6)

0 <v:v=0mod(np)

99

where the “subscript “,” is an indexing label of the vector bundle in question.
The vector bundles ¥"and 7" of Egs. (5.7, 8) restrict to vector bundles over 2 as

Y (ng)=7"(ng) s @7 (ng) - B (ng)o

and
V() =7"(no) + @7 (o) - DY " (no)g »
where
Vng)s= @ Voo ® ® W, @
O<neZ 0<v:v=0.np/2mod(ng) O <neZ+v/ny 0<v' <ng/2
(‘B @ V;),n
0<v:v=v'mod(ng) 0 <neZ+vjno
® © b, )
O0<p:v=—v' mod(npg) O <neZ-v/np
4f/(}’lo)_ X @ @ V;J,n @
0<v:v=0.n0/2 mod(ng) 0 >neZ+v/ng 0<v <ng/2
@ @ I/U.n
0<v:v=v mod(ng) O>neZ+v/no
® ® b 7n>,
0<v:v=—v'mod(ng) 0>neZ—v/ng
1 (no)o~ Vor @ @V, 0 (6.7)

0 <v:v=0mod(ng)
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and

V' (no)s & ® ® Voin @
0=<v:v=0,n9/2mod(ng) O <neZ+v/np+1/2 0<v'<ng/2

|4

v, 1
<0<u:v=v’mod(no) O<neZ+v/ng+1/2

® ® v, >

O0<v:v=—v' mod(np) 0<neZ—v/ng—1/2

V' (ny) - x @ @ Vin @
0<v:0=0,n0/2mod(np) O>neZ+v/ng+1/2 0<v' <ng/2
( Voun
0 <v:v=v'mod(ng) 0>neZ+v/no+ 1/2
® ® V. -n)s
0<v:v=—v mod(ng) 0>neZ—v/ng—1/2
¥ (no)o ~ @ ®W.o- (6.8)

0 <v:v=ng/2mod(ng)

The normal bundle decompositions in Egs. (6.2-5) also induce extra structure
upon the restriction to 2 of the sping bundles S(U; L) and S(U'; L) given in
Lemma 5.2. Consider first the bundle U. Open restriction to 2,

T*M(no)®V(ng; O)gly=T2X* @ Vor @ N¥ @ V.. (6.9

0 <v:v=0mod(ng) 0 <v:v=0mod(ng)

The sping-bundle S(U, L)|;— 2 is isomorphic to

SU; D)ly=S$ <7*Z@ Vors ® (det(N7)@det(V7))” 1)

0<w

®A*< ® N¥ ® VJ")

0 <wv:v=0mod(np) 0<v:v=0mod(no)

(det(NF)@det(VF)),

0 <wv:ing/2 <v<ngmod(ng)

®[ 2 ( ® (det(N¥*)@det(V*)) =2 /o

0<v’'<np/2 \0<v:v=0"mod(ng)

® |y N @e(E2) )

0<v:v=—v" mod(ng)

® (det(N 3‘)®det(l/u*))}” 2 (6.10)
0 <v:v=np/2 mod(ng)
withr=01fn, is odd, and r =1 if n, is even. Equations (5.25) and (6.4, 5) insure that
the square root taken in Eq. (6.10) is well defined.
For the primed case, the following isomorphism of real bundles holds:

T*M(no)®@V(ny; no/2)|s=T*2 ® N} @ VE.(6.11)

0 <v:v=0mod(ng) 0 <v:v=ng/2mod(ng)
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The sping-bundle S(U’; L)— M(n,) decomposes over 2 as
S({UNY=S (T*Z; ® det(Nl’f)”)

O<v

®V*( ® N

*
Zv
0 <v:v=0mod(no) 0 <v:v=ng/2mod(ng) >

det(N*)

0 <v:ng/2 <v<ngmod(ng)

®( ® ( ® (det(N})®@det(V¥) 2V

0<v'<np/2 \0O<v:v=v"mod(np)

® (det(N¥)@det(V,*)* v'/ﬂo)

0<v:v=—v mod(ng)

® (det(N¥)®@det(V,*)~ 1)}’/2 , (6.12)

0 <v:v=ng/2 mod(ng)

with =0 if ng is odd, and r=1 if n, is even.

The Fermionic Fock space bundle over 2 is either S(U; LY®Z yy1(ny @ % vl5, OF
S(U"; LY® F yat(ae)@Fyly- The isomorphisms above induce in a straightforward
way, decompositions of these Fock space bundles. In the unprimed case

S(U; L)®?NM(n0>®f_qV‘2
=S (T*Z @ Vor: ® (det(NF)@det(V;)~ 1) ® (det(N¥)®@det(V,*))
0O<v

0 <v:ng/2 <v<ngmod(ng)

® [ ® ( ® (det(N¥*)@det(V*)) =2 v/no

0 <v’'<ng/2 \O<v:v=v"mod(ng) 0<v:v=—v mod(ng)

0 <v:v=rnp/2mod(ng)

(det(N})@det(V,})* ¥/ "") ® (det(N f)@det(h*))}” 2
®A4* (Af(no)’i DA (no)* ® N;*io)
- 0 <v:v=0mod(ng)

®A*(V(no)ﬁ®~f/(no)t ® %:':o>. (6.13)

—  0<v:vp=0mod(ng)

In the primed case,
SU L)Y®F Nptiny @G vls
=S<T*Z; ® det(Nz‘)‘1> ® det(N*)

0<v 0 <v:ng/2 <v<ngmod(ng)
® [ ( ®  (det(N¥)@det(F;F) 2
0<v'<np/2 \0<v:v=v'mod(ng) 0 <v:v= —v 'mod(np)
(det(NF)@det(V;¥))* " "°> ® (det(NF)®det(V*) ‘)J” 2
0 <v:v=ng/2 mod(ng)

QA% (JV(nO)’i @ AN (ng)* ® N¥ 0>

. 0 <v:v=0mod(ng)

A% (“// (no)2 @7 "(no)% ® VJf‘o>~ (6.14)

0 <v:v=ng/2 mod(ng) -
The Bosonic Fock space bundle over 2 for the operator Q, is

By 2)=Sym(A NM(ng)D.A"NM(ny)). (6.15)
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Let W— M(n,) be the auxiliary, finite dimensional, complex vector bundle to
which a cover of the n,-root action lifts. Let W(X) denote the restriction of W to 2.

The operator Q,, will be defined on the space of smooth sections over X of the
vector bundle &y i), v(2) @ Pyasingys> With

QgNM(nO),V(Z)EJ@NMMO)(Z)G@(S(Ué L) ®-ﬁ'1v1(no>®(ﬁjv)lz® w()

or (6.16)
Extino AE) = B 2V S(U'; L) ® Fypny) @G0 ) ;@ W(2),

and Py, 18 the function on " which is given by

Py M(no)s =CEXP <_[ R |xnlz>

0<neZ

><€Xp<— ( )} f'!nl'IZU.,,I2+|S|'U(/’)/Ho‘!zv.olz>>
O<veng-Z \O+neZ

x ] eXP(—t' > |"!'|Zu.n|2)- (6.17)
O<véng-Z neZ+v/ng

Here, {z, ,},~ o are complex fiber coordinates with respect to a local orthonormal
frame for the n™ copy of N,—2X; while {x,} are complex fiber coordinates with
respect to a local orthonormal frame for the n'™ copy of TX¥.

The bundles S(U; LY®-Z vy @%yly and S(U'; LY®F yrny @ %y |y have
natural metrics and metric compatible covariant derivatives. The bundle
Brmng(Z) has a metric which is induced by using @y, to definc a Gaussian
measure; or, alternately, one can introduce Boson creation and annihilation
operators as in the Appendix. The natural connection on Hy,,,(2) from
Eq. (6.15) is metric compatible. The finite dimensional bundle W(2)= W/|, has an
S'-invariant metric and an invariant metric compatible connection by
assumption.

Let V7 denote the induced covariant derivative on the space of smooth sections
over 2 of the vector bundle &y (. 1(2)— 2. Composing with the natural Clifford
multiplication map from &y ()@ T*X > Eyprmy.v(2) gives a Dirac
operator, Dy which defines an endomorphism of C*(&y ). 1(2)® Py asing)s)-

The Dirac-Ramond operator

Qno : C oO((gl‘\{]v[(no), V(Z)® gD!\[[\/I(no)E) - COC(@(”NM(nO). V(2)® QDNM(nO)E)
is given by
QizOEDE+ 7;103 (618)

with T, the following covariantly constant endomorphism  of

Enrtino). V(2) @ Pyrsingys [compare with Eq. (2.23)]:

7:10‘2_7}+l Z < Z [ru.pl.(a/agu,n~T.n.Zu,n)+rtffzz'(&/aznv.n+l.”’Zv.n)]

0<v \0O<neZ+v/ng

+ Z [[uAn.(a/aZv.—n_t'n'gu,—n)+[:n'(a/agu,—n+t'n'Zn.n)]>

0<neZ-v/np

+l Z (I;AO‘(5/5:7').0'5")/’10'Zu,o)

O<veng-Z

+ 170 (0/0z, o+5 v/ng " 2, 0)) (6.19)
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with the covariantly constant endomorphism T; defined to be

L= Y [L,(0/ox,—t-n x,)+ 17 (0/0x,+1-n"x,). (6.20)

0<ne
To explain the notation, let {0/, 0/, 0°} be a local orthonormal basis for N* N* and
T*M respectively. The creation and anmhllatlon operators {I'¥,, I'F . T, *} F s
rE, reyand {1, I Ly ={0) . T, I act, respectively, as exterior product

by {]/- 0, ]/2 0 . 1/ 63} and interior product by {f 0 1/ 0 .
/202 on the Fock space S(U; L)®Z ypn0y®%Fyly 0 SU'3 LY F yps0y @G s
via the isomorphisms in Egs. (6.13, 14).

The endomorphism P of Sect. 4 [see Egs. (4.3, 8, 9)] acts on &y, v(2) and on
Enming. V()@ Pypringy as the covariantly constant endomorphism P = P(n,)
= Pp(no) + Pp(ng) + Py(n,) with

PBE_ Z n.(xn-a/axn_zcn'a/azcn)
0<neZ
- Z Z n'(zv.n'a/azv,n_gv.n~a/agv.n)’ (621)
v neZ+vjno

and

PFE~%~< S n ¥+ Y Y n-IF, - T),.,

0<neZ 0<v 0<neZ+v/ng

+ Y > n: F;“,f]”v,,,). (6.22)

0<v 0<neZ-—v/ng

In the unprimed case,

PVE_%' n.@v.n.@u.n"f' Z Z n.@jn'@u,n>' (623)

<O§v 0>neZ+v/ng 0<v O0>neZ—v/ng N

In the primed case,

PVE-—%~<Z Y n-0%.-0,,

0<v O0>neZ+v/no+1/2

+ ¥ ) n-@k,- U,,) (6.24)

0<vO0>neZ—vjnp—1/2

For negative n, the creatlon and annihilation operators, { @}, ©F |} ={OF,, OF41}

and {0, ,,0,,1={0},0%,, act as endomorphisms of the Fock spaces of

Eqs (6 13, 14). The former act as exterior multiplication by ﬂ % the component
{of,08} of an orthonormal frame for Vj*, and V*_,; the latter as interior

multlphcation by 1/§ x the component {0/, 0} of an orthonormal frame for ¥, ,
and I/U n

The Lie algebra of the geometric circle action on N—2 and on V-2 has a lift
to an action on Eyp,), v(2) and on Ey i), 1{(Z)® Pyagny)s With generator i- K,
where K = K(ny) = Kgng)+ Kp(ng) + Ky(ng) + Ky Here, Kg(n,) acts as the cova-

riantly constant endomorphism of %y, (&) which is given by

KB(nO)'z— - Z D/nO.ZD.n'a/ﬁZD,N—}_ X U/nO‘gv.n.a/agv.n>' (625)

0=<v <nEZ+u/n0 neZ ~v/ny



496 C. H. Taubes

Both Kg(n,) and Ky(n,) are covariantly constant endomorphisms of
S(U; L)®Z nptny @yl or S(U'; L)®F ypt(ny®@%yls. In either the primed or
unprimed case,

Kpng)=—7" % U/”o’( Ly,
0<v 0<neZ+v/ng
- Z I__:kn.l_—‘u,n>
0<neZ~-v/ng
+3 X 2 dim(N,) - v/n,

0<v' <ng/2 0<v=v"mod(ng)

4 Y dim(N,)-v/ng
0<v'<ng/2 0<v= —v mod(ng)

—r Y vy 5 dim(N,)-v/n, . (6.26)
0<v' <ng/2 0 <v= —v'mod(np)

Here, again, r=0 if n is odd, and r=1 if n is even. In the unprimed case,

KV("O)E_%. Z D/nO.< Z @f.!x.@u,n

0<v 0>neZ+v/ng

- Z @tn v. n)

O0=2neZ—v/np

—3 ) > dim(V,) - v/ng
0=v'<np/2 0=v:v=v"mod(ng)

+3 X 2 dim(V,) - v/nq
0<v'<np/2 0=v:v=—v"mod(ng)

—re ) Vng: 2 dim(V,) - v/n,
0<v' <ng/2 0 <v=0"mod(ng)

+re Y 0/ng- Y dim(V,) - v/n,. (6.27)
0<v’ <ng/2 0 <v= —v" mod(ng)

In the primed case,

Ky(ng) = —%' OZ v/ng

<v <0>neZ+u/no+1/2

%k
@U n

)

o, n

O0=neZ—v/ng- 1/2

- 2 0. @D,n>

+3 > dim(V,) - v/n,

0 <v=ngp/2 mod(ng)

—r Y o/ng: Y dim(V,) - v/n,

0<v' <ng/2 0 <v=v"mod(ng)
reo Y o/nge Y dim(V) - v/n,. (6.28)
0<v <ng/2 0 <v= —v"mod(ng)

The endomorphism Ky of W(Z) is defined so that i- K, is the real, skew
endomorphism of W(X) which generates the Lie algebra action of the ny-root S*
action on W. This K, is covariantly constant, and hermitian.

As endomorphisms of y (), () and of Eypriue). (X))@ Py pgayys» POth Pand K
arc hermitian, with discrete eigenvalues; their spectra do not have accumulation
points. Furthermore, both commute with the endomorphism 7, of Eq. (6.19). As
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endomorphisms of C*(Eypriue). 1(Z)® Pyrring)s) both P and K commute with Q, .
Decompose &y, v(2) as an orthogonal, direct sum of vector bundles
Enmtino). (Z)mlk)— 2 on which P acts with eigenvalue m, and on which K acts with
cigenvalue k. Let LZ(@@NM(nU), D)) Py rgngys) a0d H ' ((Exat oy, v(Z)mK)® Pvageys)
denote the Hilbert space completions of C*(Eyuriug). v(2) (k)@ Pyagingys) With
respect to the inner products

<,>L25£<,> and Dy =0, ): Quy( D12+ 1 (6.29)

By construction, Q,, is a bounded operator from H' to L. The following
summarizes Proposition A.1 in the present context.

Proposition 6.1. Let [ ={(t,s)eR?:|s|,t>0}. Let (m, k) be eigenvalues of P and K on
Enmting.v(2). For (s,t)el, the operator Q,, defines a Fredholm map from
H Y (Exnt10), vl )@ Pryagys) 10 LAEnat o). (Z )l K)® Pynginys)- The kernel of the
adjoint and the kernel of Q, ~ are both vector subspaces of
CP(Enpting vV D)l K) @ Py rsing)s); in fact, the same subspace. Both are empty for
m<0.

Define the index of Q,, on H (&yarmo). AZ)m(K)® naringx) as follows: Introduce
the covariantly constant automorphism /=7, or £, of S(U)®Z yr(u)®%vls OF
S(UN®Z gy @%yls from Egs. (4.17, 18). This automorphism anti-commutes
with Q, and T, , but it commutes with P and K. Extend the automorphism to
Enmtng). v(Z). Then, define

Ind(Qno) (5NM(no), V(Z)m’ /a k)
=dim(ker(Q, Mer( - l)mHl(@@NM(no), P 2)(K) @ Py rrnoys)
- dim(ker(QnONker(f + l)mHl(gNM(nU), (2 ® (pNM(ng)E) . (6.30)

An immediate consequence of Propositions 2.6 and 4.1, 4.2, and A.4 (via the
discussion at the beginning of this section) is

Proposition 6.2. Let M be a compact, oriented, even dimensional spin manifold which
admits an isometric S' action. Let V—M be a real, oriented vector bundle with
w,(V)=0. Assume that the S* action on M lifts to an action on V. For integer n, >0,
let NM(no)CM be fixed under the Z/n,-Z subgroup of S*. Let W—M(n,) be a
complex, finite dimensional vector bundle which is such that the restriction to M(ng)
of a multiple of the geometric S* action has a lift. Make the assumptions of
Proposition 5.3. As specified in Proposition 5.3, make the construction in Sect. 4 of
Enmng,v = M(ny) and let m be an eigenvalue of P acting on &y, v—> M. Construct
the operator D, on C*(Eynrne).vm®@ Pymn))- Let k be an eigenvalue of K on
CoEnmng). vm®@ P pr(ny)) and define the index Ind(D; &y v, £, k) asin Eq. (6.1) using
{={, or {;of Egs.(4.17,18). Let I={(t,s)eR:1>0 and s+0}. Let {i} label the
connected components in M of the fixed point set of the geometric S* action. For
(s,t)el, and for each i, let Ind(Q,, Enrrng). (ELID)m £, k) be defined by Eq.(6.30) for
the i™ component. Then, the number Ind(Q,., Exnsiuey. Z[])m . k) is constant on the
connected components of 1. Furthermore,

Ind(D, (Qﬁf Vmg> /> k) = Z Ind(Qng> é/NM(no). V(Z[l])ma Ka k) .
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For future reference, it is useful to decompose the endomorphism 7, ; with
respect to the decompositions of Egs. (6.13, 14). Consider first that the volume form
on M restricts to X where it is given in the coordinates of Eq. (2.22) as

vol(M)s=vol(X) A i/2-(dz! A dZ)). (6.31)

J:0<v(j)

The volume form on M(n,) is defined from that on M; and due to the complex
conjugate bundles in Eq. (6.4),

vol(M(ny))ls =(—1)2 - vol(Z) A i/2-(dz' A dz). (6.32)
Jj:0<v(j)=0mod(ng)
Here
A=4(ng, )= ¥ Y dimg(N©)
np/2 <v<ngp 0<v’:v" =vmod(np)
+0(NM(ng,no/2)). (6.33)

with o(NM(ny; no/2) € {0, 1}. The value depends on whether the given orientation
on NM(ny; ny/2) agrees (0) or disagrees (1) with the complex orientation of

6_>0 <v=ng/2 mod(no)N(D)'
From Egs. (6.32, 33), one finds
£(M(ng)=(—1)"y;@(—1)", (6.34)

where 7y, is Clifford multiplication by (i)*®-dvoly with ¢(2)=dimg(Y)
-(dimg(2)+1)/2, and where (—1)"° measures the degree of an element in the
exterior algebra

AF(AN () @A (ng)* @ N¥o).
0 <v:v=0mod(no)
To discuss 7, in the unprimed case, let
0=0(ne, 2, V)= ¥ ) dimg(V,)+o(V(ng; no/2)). (6.35)

no/2<v<np 0<v’:v" =vmod(ng)

with o(V(ny; no/2))€{0,1}; the value depends on whether the orientation on
V(ng; nog/2) agrees (0) or disagrees (1) with the complex orientation of

®0 <v=ng/2 mod(ng) V;
From Egs. (6.35), one finds

£(M(ng)=(— 1" (= 1) 5 y®(— 1) %, (6.36)

where y; , is Clifford multiplication by (i)"*") x (volume form on T*X @V (0))
with
o(Z, V)= dimg(T* XD V(0)g) - (dimg(T*Z® V(0)) +1)/2

and where (—1)fo* % measures the degree of a form in the exterior algebra

0 <v:v=0mod(ng)

A* (uV(no)ﬁ GBA/»(”())>E @ Nf 0>

X ®A* <“V(no)’5 D7 (ng)% ® I/,f.‘o>~
0 <v:v=0mod(ny)

To discuss 7, in the primed case, set &'(ny, 2, V)= o(V(ng; ny/2)). Then
£(M(no)=(—1)" (= 1) - (D)@ (— 1" "), (6.37)
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where y,() 1s Cylifford multiplication by the volume form on T*X® V(0),, and
where (— 1) measures the degree of a form in the exterior algebra

A* <«/V (no)s @A (no)* ® N o>

0 <v:v=0mod(ng)

X @ A* (V/(nori@«f”(no)t ® V.:fo)-

0 <v:v=np/2mod(ng) N

7. The Shift Operator

As a vector bundle over X, A/ =NM(1) in Eq. (6.6) admits the Z subgroup of
automorphisms whose generator sends

/Z:Nv.n_')NU,n-H)' (71)

The generator on .4 is defined to commute with the complex conjugation map
from 4" to A" so that 2 defines an automorphism of the underlying real vector
bundle. Note that » commutes with the geometric S* action on A"

Introduce from Sect. 6 the character decomposition of Viy: V=V, @, 0V,
This induces the character decompositions in Egs. (6.7, 8) of the vector bundles
7°(1) and 77'(1).

The Z-subgroup of automorphisms on 4" extends to define a subgroup of
automorphisms of #°(1) and of ¥'(1) by requiring the generator, 2, to act according
to the following rule: For integer v>0, by the natural identification

/Z:I/;),n_)%,n-v‘-u? (723)
and to commute with complex conjugation,
/Z:I/u.n—_)yu,n+u' (72b)

For areal or complex vector bundle E— 2, let det(E)— 2 denote the line bundle
AY™EE - For a real, oriented vector bundle E—~X on which S! acts, let
E=E z®,-(E, be the decomposition into the character subbundles. Thus, E is
the real, S'-invariant subbundle, and E,— X is complex with v defining the S!
action on E,. Define the line bundle

L(E)= [] det(E)’—>2. (7.3)
v>0
Also, let )
eE)y=— Y v*-dim(E,). (7.4)
v>0

The topological significance of this data is described in Lemma 7.5.

Proposition 7.1. Introduce the wvector bundles S(U,L)®ZF ypi,®@%yls and
S(U, LY®F na1)®%yls and By (2) of Egs. (6.13-15). For a bundle E— A", let
2*(E)—> A" denote the bundle which is pulled back by the map » of N to itself. Then,
there are the natural isomorphisms
1) M (Byma(2) = By 2)-
2) *S(U, D)®F ym1y®%vly)

XS(U,)®F yuy@%ys @ LIN*) '@ L(V*) ™.
3) HS(U, L)@?mwm@?i/lz)

~S(U/, L)®?NM(1)®(5%/|2®L(N*Y1®L(y*);l .
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Proof of Proposition 7.1. Consider the first assertion. As a bundle over X,
HBym)(2) has fiber over x the set of finite polynomial functions on the fiber of A4~
over x. The action of z on 4" is a linear action, so a finite polynomial function is
pulled back to a finite polynomial.

The second and third assertions of the proposition are direct consequences of
the following lemma :

Lemma 7.2. Introduce the vector bundles

?(Z)EA*@( ® N:, @ fo,_n))az

0<v \0=ZneZ O0<neZ
and
fﬁ(Z)zA*(@( ® v © VJ,“-n»
0<v\0O=neZ 0>neZ
and

g’(Z)sA*(@( ® Vr @ V))

0<v\0=neZ+1/2  0>neZ+1)2
Then, there are natural vector bundle isomorphisms
1) MZQ)QLIN*P) = F(X)QLIN*P 1.
2) HEQ)QLV*P)RYX)QLV*)P
3) HEQ)SLIV*P) =G (D)L *yP .

Proof of Lemma 7.2. To see the assertion for Z(X), group the terms as

S

(D)= ® (M*N*,QA*N* _) @ A*N*,. (7.5)

v, —n
v,n>0 v>0

The pull back under » of Z(X) can be readily computed to be
*F ()= ® (AN, ®@A*NY _,.,) @ A*NF,. (7.6)

—v.—n+to
v,n>0 >0
The right-hand side above is not yet in the required form. To put it in the correct
form, note that the hermitian metric on N induces a natural, C-linear isomorphism
AEN* 2 A*NEQdet(NF). And, for « =0, this last isomorphism induces a natural
(C-linear) isomorphism A*N¥ _ ~A*N¥, _, ®@det(N¥). This last fact with
Eq. (7.5) gives immediately the assertion for Z(2).

The assertions for %(2) and for '(X) are proved by analogous arguments.

As a parenthetical remark, note that » induces an automorphism of . (X) only
when the line bundle I(N)—2 is the trivial bundle. That is, only when the first
Chern class ¢, (L(N))=0. Similarly, - induces an automorphism of %(2) and of ¢'(X)
only when ¢, (L(}))=0. Of course, 2 induces an automorphism of &y, () of
Eq. (6.16) only when ¢,(L(N))+¢,(L(}))=0. The vanishing of this Chern class is
implied by a global condition on the S* action; see Lemma 7.5 below.

The generators of the canonical S* action and of the geometric S* action define
commuting endomorphisms of &y, (Z)RLIN*)PQL(V*)". The canonical S'
action on &y, p(2)QLIN*PQL(V*)P is generated by —i- P, where P=P(1),
+ P(1);+ P(1), as defined in Egs. (6.21-24). The geometric S! action is generated
by —i-K, where K=K(1)z+K(1)p+K(1),+p-(e(N*)—e(V*)), as defined in
Egs. (6.25-28).
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Proposition 7.3. The bundle isomorphism

7 )y, XV LN QLV*) = Expyr), (2) @LIN*P T @L(V*)P ™!

obeys
1) K-*=2-K.
2) P-o*=4* P4+ +*K+(—p+1/2)- (e(N*)—e(V*)).

The topological significance of 1/2(e(N*)—e(V*)) is described in Lemma 7.5.

Proof of Proposition 7.3. Consider the separate effects of +* on K(1), p , and its
effects separately on P(1)g i These are described in the next lemma from which
the proposition follows as a corollary.

Lemma 7.4. (1) The bundle isomorphism +*: By 2) > Byng1(2) obeys K(1)g - 2
=2*K(1)y and P(1)g-2*=2*P(1)g++*K(1),.

(2) The bundle map +*:F QL(N*)P—-F QL(N*)P ™! obeys K(1)p-2*=2*K(1)p
+e(N¥) and P(1),- 1% = 1* P(1)p+ 1*K(1)p+ 1/2e(N*).

(3) Let 4° denote either 9(X) or %' (X). Then, the bundle map +*:4°@ L(V*)?
SGOQLV*P~ 1 obeys K(1), - 2% =1*K(1),, - 2* =1*K(1), —e(V*) and P(1) - 2*
— #P(1), 4+ 1#K(1), — 1/2e(V¥).

Proof of Lemma 7.4. A direct computation using Egs. (6.25-28) establishes the
commutation relations of K(1), with »*. This is left to the reader to check. The
effect of +* on P(1),, is more subtle. Consider first the case of °(). For n<0 and
v>0,

=0

= v,n" “uv,n+ov

O 4 * =0

= v, n— 0

and  '*@* F=0@F

~o,ntovs

and '@ =0F

v,n=0 "

(7.7)

For v>0, and for n= —v; this equation should be interpreted with the identity
A*_[/:kn+vzA*V—n—H)@det(K)*)' (78)
thus, for v>0 and n=> —o,

o

~o,ntov

@j,‘n~n 3Hd _@f,n+n:@u, —n—uv* (79)

Using these last identities, and Eq. (6.24), one computes in the unprimed case
that

/ZAI*P“)VZ*Z_%' n'@zin—v'@n.n-n—F 2 Z n.@:in-Fo'@u,n*—u)’

(O§UO§neZ 0<v O0=neZ

=Py +K()y— ¥ 3 (m—v)-dim¥,)—3 ¥ v-dim(V)),

0<vp 0<m<vp v>0

=P(1), +K(1), +4- 3 v? - dim(V)). (7.10)

where the middle line follows from the first using Eq. (7.9), Eq. (6.27) and the anti-
commutation relations for the Clifford algebra.
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For the 4'(2) case, one has from Eq. (6.28)

/l_l*P(l)V/l*:_%. Z n- @zfn v @u,n~v

O0=2neZ+1/2 <0<v

+ Z n- @:)k,n-i‘v. @u.n+u>>

0<v

=P(l)y+K(1)y— Y ¥ (m—v—3) dim(l,),

0<v0=m<v

=Py +K(1)y+1- 3 v -dim(Y,). (7.11)

Equation (7.11) implies the assertion for the %'(¥) case.
Consider the case for Z(X). The effect of » on the Clifford algebra is
summarized by

_]*I—‘l) n FD h—0v and 7/ I*Fl:k"/z* _Fljkn [
(7.12)
Stk %=T . and o VELEF=TF L

For 0 <n<=<v; the first equation should be interpreted with Eq. (7.13) below which
identifies

A*NE _ x A*NF _ Qdet(N¥). (7.13)
Thus, for 0<n =,
FD,M—U:[U,‘II‘FU and rgkn v FS*n+v' (714)

With these last three identities, one can mimic the preceding calculations to obtain
from Eq. (6.22) the identity

v EP(1) % =P(1), + K(1)y—4 - ¥ v?-dim(N,). (7.15)

For the Bosonic part, use Eq. (6.21) to derive the identity

1Pt == ¥ ne(x, 0/0x,—x, 0/0x,)

n>0

+ Z Z(n+v).(zu,n.a/azv,n Zp,n a/azu n)' (716)
v>0 n
The right-hand side of Eq. (7.16) equals P(1)z+ K(1)z where K(1)g is defined in
Eq. (6.25).
The numbers e(N*) and e(}'*) and the Chern classes ¢, (L(N¥)) and ¢,(I(}V*)) in
Egs. (7.3, 4) have a global topological interpretation:

Lemma 7.5. Let M be a compact Riemannian manifold on which S* acts isometri-
cally and let E->M be a vector bundle to which the S' action lifts. Let p,(S®
X g1 Eye H¥S™ x 41 M) denote the first Pontrjagin class of the vector bundle S*
x g1 E (the S' equivariant, first Pontrjagin class of E). Let X CM be a connected
component of the fixed point set of the S' action. Pull back p,(S* xs E) to a
cohomology class on S* x 2 =CP* x 2. Let n, n' denote the projections to CP*
and to X, respectively. Then p(S* xg E) in HYCP® x 2) is equal to n'*p,(E)
+2 - m*u A n'*c (I(E)) — e(E) - n*(u A u) where u is the generator of HX(TP®).



S' Actions and Elliptic Genera 503

Proof of Lemma 7.5. The first Pontrjagin class of a real vector bundle V is equal to
—c,(V®Q) with ¢, denoting the 2"¢ Chern class. In the present context, V is the
restriction to CP* x X of S* xg, E; and VRC~ @, (7 *E,@n*H") where H=S*
x g1 C—>CP*. The assertion now follows by direct calculation.

Let L denote the complex line bundle L(N*)®L(V*), and let &7 denote
Enmy (2)@LF. According to Lemmas 7.1 and 7.2, ¥ &P—-&P 1 In Sect. 6,
automorphisms # =/, or Z, of the bundle §° were defined. Define # on &7 by setting
/(P®s)=/P®s. The shift 2* does not necessarily commute with /; their
relationship is described by

Lemma 7.6. Consider 2*: §P—&P Y and (,, ;. £ — &P as described above. Then, 1%/,
=(—= 1) 2k and of = (— 1)V L%,

Proof of Lemma 7.6. This follows from Egs. (7.8, 13) and the fact that an integer n
obeys n=n?*mod(2).

In Sect. 6, an operator Q,: C(E°@Dypy1)s) > C(E°@Pypy1)y) Was intro-
duced. Since the line bundle L—2 has a natural metric and metric compatible
connection, one can, by twisting in the usual way, define Q,: C*(67® Pypr(1)s)
> C(EPQ Py (1ys)- Use Eq. (6.18) but with the covariant derivative on &7.

A key idea of Witten [ W2] is to compare @, with 2~ 7*Q,+?*. This will be done
in Sects. 8 and 9. The comparison is complicated by the fact that »* does not fix
Py 1) But, by definition, one has

* 18P0 D)y = E7 T @ Pyagays - (7.17)
Lemma 7.7. Define the function @y )y using Eq. (6.17). For integer p, define Q¥

=1 "*Q 2" as an endomorphism of C*(E"®2 PPy py5). For p>0,

”/ﬁp@NM(uz:eXp(_t' Y omelx P Y

m>0 v>0n* —pv

xIn+p-ollz, ,P=Isl-p- ¥ v'lZu,mIZ), (7.18)

>0

QI;EQE_}—IZ Z (Fv,n.(a/azu,n_l'(n_,_pu)'zv,n)

v >0

+ 1, (8/0z, 1 (n+pv) - 2, )
"HZ Z (Ijv,n'(a/azv,~n_t'(n_pu).Zu,-n)
0

o podn>
+I) 'p(@/(?zu. —att(n—pv)z, )
T Lo (002, b 5700 20, )
+ L, (0/02,, - py— 5PV -2, )
+i- };(Fv,o (0/0z,, 60—t pv-z, )
+ 150 (002, 0+ 1 pv- 2, 0)), (7.19)
where Qy= D+ Ty as defined in Eq. (6.20). An analogous equation holds for p <O0.

Proof of Lemma 7.7. This is a direct calculation which is left to the reader.
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For integers p and p’, the function 2~ 7*®y,,,y defines a fiber metric on
Byum(2) and this metric with the fiber metrics on S(U,L)® % yp1,®@% |5, on
S(U', L)Y®Z na1)®%yly and on Linduce a fiber metric on £7. The endomorphisms
Pand K of &7 act symmetrically on §” and they decomposc &7 into a direct sum of
subbundles, {&7(k)—>X} on which P and K act as multiplication by m and k,
respectively.

For integers p and p/, construct the operator QF on C*(EAk)® 2" Py 1)s) as
described above. The automorphisms / =/, or /, of Lemma 7.6 act as involutions
which commute with P and K. Hence, they restrict to involutions of &2(k) and of
CP(ERk)® 2 P * Dy )x) Which anti-commute with QF.

Use the fiber metric on (k)® 27 * @Dy, ;s to mimic Eq. (6.29) and define the
Hilbert spaces H'(85(k)®2 7 *®y(;)y) and LAEHK)® 2P * Pypg)s).

The following proposition summarizes this section:

Proposition 7.8. For t,|s|>0 and for each pair of integers (p, p'), the operator Q% on
CP(EP)® 2 P *Dyyy)y)  extends to define a Fredholm operator — from
HYER)® 2 " *Dyp1)y) 10 L(ENK)@7 P *Pypyyys). Both the kernel and the
cokernel of QF comprise the same vector space of smooth sections. For the involution
t={(, [, define the integer Ind(Q%, &2./,k) using Eq. (6.30) with QF and
ENRYR 2P * Dy yryyy replacing Q and ENk)QR Py 1ys. The index so defined is
constant on each connected component of ((t,s):t, |s|>0). Also, Ind(Q, &2, 7, k)=0
for m<0. In general

Ind(QF, 6.7, k)=(—1)"-Ind(QF, 617", /. k).

where m'=m~+p'k+(—pp' +p'p'/2) - (e(N*)—e(V*)), and where p=p -(e(N*)
—e(V*) when £ =/, but u=p'-e(N*) when / =/,

Proof of Proposition 7.8. The Fredholm property of Q is established in
Proposition A.1. The dependence of the index on (t,s) is established in
Proposition A.3. The vanishing of the index for p’=0 and for m<O0 is a
consequence of Proposition A.1. The final index equality summarizes Proposit-
ions 7.1, 7.3, and Lemma 7.5.

8. Deformations and the Semi-Free Case

Let M be a compact spin manifold with S' action. Suppose that V—M is a real,
oriented vector bundle to which the S! action lifts. Make Proposition 5.3’s
assumptions and construct the vector bundle &y y—M; either primed or
unprimed. Let m be an eigenvalue of the endomorphism P on &y, 5, and let
Enmty.vm— M denote the sub-bundle on which P acts as multiplication by m. Let k
be an cigenvalue of the generator, K, of the S' action on C*(Eypr1). ym® Pyarr)s
and let C*(Eyprr), v ® Pypr(1) k) denote the subset of sections on which K acts as
multiplication by k. (See Sect. 6.)

Label the connected components of the fixed point set of the S* action by
{Z[i]}. For X=X[i], introduce the line bundle L—X, where L=L(N*)® L(V'*) as
defined in Sect. 7. Introduce &y, p(2)—2 as defined in Eq. (6.16). For integer p.
Let &2(k) denote the (m, k) eigenspace for the endomorphisms P and K on
Enmr), (&)@ LF as defined in the preceding section. Construct the function @y 1)y



S! Actions and Elliptic Genera 505

and the operators Q; on CY(&EXk)®Pyya)y), and Qi=:"'*Q's* on
CP(EX(k)® 2™ "Dy pp1)5) as described in Sects. 6 and 7.

According to Proposition 6.1 and 7.8, these operators extend to define
Fredholm operators from HYEXK)®DPypr1)s) 10 LAEHK)R Pyps(r)s) and from
HY &)@+ * Dy ppi1yy) t0 LA(EHK)® 2™ By ppy)5), respectively. For such ¢ and s,
and for the involution / =/, £, the respective indices, Ind(Q, &2, /, k) and Ind(Q],
éF, £, k), are well defined (see Proposition 7.8.).

The purpose of this section is to relate two sets of indices, {Ind(Q,, §%,7, k)},and
{Ind(Q}, &%,¢,k)}. This comparison comprises a crucial step in the proof of
Theorem 1.3. The import of such a comparison was suggested by the discussion of
Witten in [W2].

The desired comparison can be made when certain conditions on the bundle
V—-M are satisfied. The conditions are summarized in Definition 8.1 and
Lemma 8.2, below.

For fixed i, introduce the decompositions N=®,.,N,—2[i] and Vg,
=Vor®,<,V,—2[i]. Then, introduce

Llil= ® (det(N})®@det(V,;*)—2[i]. (8.1)
0<v
Also, introduce the integer
e[i]= OZ v?(dim(V;¥) —dim(NF)) = e(N*|y) — e(V *|yp) - (8.2)

Definition 8.1. Let M be a compact oriented manifold on which S* acts. Let V—M
be a real, oriented vector bundle. The bundle V is weakly S* compatible with T*M
when the following is true:
(1) wo(TM)=w,(V)=0.
{2) Require that there exists a complex line bundle L,—~M to which the S'-
action on M has a lift, and which restricts S equivariantly to each X[i] as L[i].
(3) For each integer n>1, and each component of M(n)>u,;X[i], require that
the restriction of L, to M(n) has an n'-root.
(4) For n as in (3), require that V be Z/n-Z compatible with T*M as in
Definition 1.1.
(5) Require that e[i]=e[j]=e for all i and j.

A global condition which implies the S'-compatibility of V' can be given in

terms of the equivariant, first Pontrjagin class of V.

Lemma 8.2. Let M be a compact, oriented, even dimensional spin manifold with an S*
action. Let V—>M be a real, oriented vector bundle to which the S* action lifts.
Assume that wy(V)=0. If V is strongly S'-compatible with T*M as defined in
Definition 1.1, then V is weakly S*-compatible with T*M. In particular, this occurs
when

w2<S°C X T*M> —wz<sw X V> =OeH2<S“° X M;Z/ll)
S st st
and when
3D <S°° X T*M) —%'p1<S°° X V>EH4<S°° x M;Z).
St St st
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Proof of Lemma 8.2. In this case, Lemma 7.5 asserts that for all i, L[]~ 2[i] x C,
that S* acts with trivial character, and that e[i]=0.

The significance of S'-compatibility is described below.

Proposition 8.3. Let M be a compact, oriented manifold on which S* acts isometri-
cally. Let V— M be a real, oriented vector bundle which is weakly S*-compatible with
T*M. Let 1={(t,s)eR*:t,|s|>0} and let (t,s)e 1. As specified in Proposition 5.3,
construct Eyprry.v—M and the function @y, Let m be an eigenvalue of the
endomorphism P on &y 1y v —M as described in Sect. 4 and let k be an eigenvalue of
the generator of the S* action, K, on C*(Eypri1), ym® Pynr(r)) as described in Sect. 6.
Let/ =/, or{ of Egs. (6,34, 36,37). For each component, X[i], of the fixed point set
of the S* action, introduce the integers Ind(Q,, &7, £, k) and Ind(Q}, &%, £, k) of
Proposition 7.8. Then,
Y Ind(Q,, 6.4, k)= Y Ind(Q1, &5, 4. k).

The proof of this proposition occupies this and the next section. The
comparison of indices for the two sets of operators is accomplished in both the
semi-free and the general case by constructing a 1-parameter family of index
problems which interpolates between the two in question.

The construction of this family of index problems starts with the following
considerations: Pick c € (0, 1/4). Let {v} denote the set of characters for the S* action
on the normal bundle in M to a component, X = X[i] of the fixed point set. Define
foreach e [0, 1] and for each v and integer n +0, the number u[v,n]=n+o - v. For
n=0 define u[v,0]=(c+a)-v.

Let

Q=0Q[1={0e(0,1]:0% —c and o veZ for some v}. (8.3)

Note that always, 1 Q.

For o€e[0,1]\Q, the data {u[v,n]} satisfies Conditions (1)-(3) in
Proposition A.1. For ae[0,1]\Q, use the data {u[v,n]} in Eq. (4.12) to define a
function ®[a] on A"

Using the data {u[v,n]}, define the operator Q[o] on C*(&4(k)® P[«]) as in
Egs. (4.13, 14). Note that for «a=0 and for c=s/t, one has Q[0]=Q, on
C*(ENKk)® Py (1)) as defined in Sect. 7 and considered in Proposition 7.8. As in
the Appendix, introduce [*(&2(k)®@ ®[o]) and H'(E2(k)® P[o]), the two Hilbert
space completions of C*(&2(k)® P[a]).

According to Proposition A.1 and A.3, the following is true:

Lemma 8.4. Let 1C[0,1]\Q be a connected subset. Pick c€(0,1/4) and {u(n, j)} as
above. Then, the operator Q[o]: HY(EX(k)QP[a])— LH(E2 k)R D[ a]) is Fredholm.
The integer Ind(Q[ o], &7, 2, k), as defined in Eq. (A.28) with £ =/, or £ is independent
of ael

The behaviour of Q[«] near points in 2 must now be considered. The simplest
case occurs when the following assumption is made: Require for each connected
component X[i] of the fixed point set that {v[i]=v =1} is obeyed for the characters
of the §' action on the normal bundle N—ZX[i]. This case will occur if the
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geometric S* action is semi-free. The remainder of this section treats the case {v[i]
=v=1}. The general case is considered in the next section.

Proof of Proposition 8.3 in the Semi-Free Case. When the S* action is semi-free,
then {v[i]=v=1}. Assume that such is the case.

With s> 0, each set Q[i] of Eq. (8.3) contains only the point {1}. Let a=1—4,
and observe that

¢[1—5]=exp(-t- X ~lxml2—< Zzt-ln+1—6l-lzl,nl2

>0 0O<ne

- (1=8+4¢) |z o2+ T t-|n~1+5|'zlﬁ,,|2>>. (8.4)
0<neZ

Introduce the shift operator +* from Sect. 7, and observe that

¢*¢[1—5]=€Xp<—t' ) m‘lxm|2~< Y trn—=0|-|z,
m>0 1<neZ
'H'(1_5+C)'121,1|2+t'5‘|21,0|2
+ Y t'|n+5|'|21,_n|2>>. (8.5)

0<neZ
The operator *Q[1—45]2~'* is given by

#QU =0} ¥ =Tti- ¥ [I,(0/0z, ,—t (n—0) 2, ,)
1 Z

+ 17, (0/0zy 4+t (n—0) - 2, ,)]
Xi-[I].1(6/0zy ,—(t-(1=0)+5s) 2, 4)
+TF - (0/0zy (+(t-(1—0)+5)21,4)]
+i- Y Z[I_“l,,,(&/azLﬁ,,—t~(n—<5)'gl, )

O<ne
+I——‘1*.n.(a/ag1,—n+t.(n_5)'zl,;z)]
+i-[Iy,o:(0/0zy g+1t-6-2 )
+1IT o (0/0zy o—1021,0)]- (8.6)

Itisdefined on C*(+*(&E(k)®@ P[1—d])). For future reference, note that Lemma 7.3
asserts that
HMENR@ P —81) = &5 (@2 *P[1 — ],

where
m=mlil=m+k+(—p+3)-elil (8.7)
with e[i] defined in Eq. (8.2).
Now, consider the set of numbers {u[v,n]_ =n for n=+0 and ufv,0]= —c}.
Define

<D_Eexp<~t' Y omex,P— Y tonclzy )P
m>0

0<neZ

—t‘C‘lZl'()[Z- Z 1'7’1’l21._n|2>, (88)

0<neZ
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and define the operator Q _ on C*(£27 '(k)®® _) by using the set {u[v,n]_} in
Eq. (4.14).
Another direct application of Propositions A.1 and A.3 gives

Lemma 8.5. Fix 6>0, but much less than 1, and fix ce(0,1/4). Introduce the
operators  2*Q[1—06]."**  on  CEL Y k)®*P[1—0]) and Q_ on
C*(&27 Y k)@ @,) as above. These operators extend as Fredholm operators from the
respective H' spaces to the respective L* spaces as defined in Proposition A.1. Define
the two integers Ind(z*Q[1—361.~ 1%, 271k, £, k) and Ind(Q _, &7, 7, k) using
! ={, or £, in Eq. (A.28). Then, these two integers agree.

Define a set of numbers {u[v,n], =n for n£0 and u[v,0]=c}. Note that {u
[v,n] .} and {u[v,n]_} differ in the sign of u[v,0],. Use the data {u[v,n].} in
Eq. (4.12) to define a function, @, on A", Use the data in Eq. (4.14) to define the
operator Q, on C*(&h '(k)®® ). Note that with c=s/t, one has @, = Pyy)x
and Q. =0, as defined in Sect. 7.

There is no continuous deformation of the data {u[v,n]_} into the data {u
[v,n],} which preserves Conditions (1)~(3) of Proposition A.1 along the whole
route. Therefore, Proposition A.3 cannot be invoked to compare the indices of Q _
with Q .. This pathology is a real one; it is precisely the difference between the cases
s<0 and s>0 in Proposition 2.5. The difference between the + cases can be
analyzed only by considering behavior away from the fixed point set of the
geometric S' action; the global topology of M must enter the discussion. Resolving
this pathology requires the simultaneous consideration of all the components of
the fixed point set of the S* action.

Let {Z[i]} denote the connected components of the fixed point set of the
geometric S* action. Over each X[i], introduce the complex line bundle L[i]—2[i]
of Eq. (8.1). Let m'[i] be given by Eq. (8.7). When V— M is weakly S*-compatible
with T*M, the number m'[i]=m’ is independent of the component X[ i] of the fixed
point set. Over each 2] there is a vector bundle &[]},.(k) = &} .(k)|y; and there are
the operators Q[i]. defined on C*(&LilL (k)R P.),

Lemma 8.6. Assume that V is weakly S'-compatible with T*M. Pick a constant
ce(0,1) and for each component X[i] of the fixed point set, define the data {u[i]
[v,n]+} as above. Using this data, define for each i the function ®[i], and the
operator Q , on C*(E[i1E(k)®®[i] . ) as specified above. The operators Q[i]. have
the Fredholm extensions as described in Proposition A.1. For each i, define the
Ind(Q[i]+, &Li1%, £, k) using £ =/, or £ in Eq. (A.28). Then

Y Ind(Q[i] -, 61115/, k)= 3. Ind(Q[i] . €Ti15. 7. k).

This lemma will be proved shortly. Assume it for now. To complete the proof of
Proposition 8.3, observe that Lemma 8.4 and Proposition 7.8 assert that

Y Ind(Q,, 6115, 4, k)= 3 (= )" Ind(Q[iT - E[i0 ks (= p+ 172002, K)s - (89)

L

with e=e[i] is independent of i; and with u[i]=e,42) Wwhen /=7, and with

pli]= (}: v dim(Nmas[i])modm)
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when 7 =/, Meanwhile, Lemma 8.5 and Proposition 7.8 assert that

ZInd Q[l]+>é[l]m+k+ 120l k)= 2(_ 1“8 Ind(Q1, &n, £, k). (8.10)
Proposition 8.3 follows immediately from Eqgs. (8.9, 10)if u[] is independent of
the component, 2[i], of the fixed point set. Such is automatically the case when
/={,. When ¢/ =/, a sufficient condition for this to be the case is given in [A-H]
and restated below.

Lemma 8.7. Let M be an oriented, even dimensional spin manifold with Riemannian
metric. Suppose that S* has an isometric action on M. Let {Z[i]} be the connected
components of the fixed point set. To each X[i], associate

ulil= <ZU ~dim(N¥ ]Z[:])modm)

Then u[i]=p is independent of the index i.

Lemma 8.7 is a special case of Lemma 9.7 to which the reader is referred. This
section ends with the proof of Lemma 8.6.

Proof of Lemma 8.6. The assumption that V is S*-compatible to T*M asserts that
there is a line bundle L, — M to which the S' action lifts, and which restricts to each
2[i]as L[i]. One can construct a metric and a metric compatible connection on L,
which restricts to X[ i] as the metric and connection on L[i]. Then, consider, as in
Proposition 5.3, the vector bundle &y, ).y ®LH—M, the function Py, on
N"NM(1), and the operator

D,: COO(Q@NM(I).V® L%®@NM(1))—’COO((Q¢NM{1). y&® LIE)®(DNM(1)) .

The number m' is an eigenvalue of the endomorphism P on
Enm), v QLE@ Py pp(1y With eigenspace Eyyy(yy. v — M. Indeed, in the unprimed
case, e/2+ k is always an integer, as can be verified from Egs. (8.2, 6.26, 6.27). In the
primed case, ¢/2+k can be half-integral, but in this case, P has half-integer
eigenvalues. The operator D, restricts to

Dt: COC((Q@NMH),Vm'®L%®¢NM(1))_>COC(LHNM(l).Vm'®LIE)®¢NM(1)) .

According to Proposition 4.1, D, extends to a Fredholm operator from
Hl(gNM(l), Vm/®L%®djNM(1)) to LZ(éONM(l). Vm’®L%®¢)NM(1))

whose index is defined in Eq. (4.16) using / =/, or /,.

Since the S' action can be lifted to an action of a finite cover of S' on
Enmry,vm @LH@ Pypy(1), the localization results in Sect. 6 apply, and allow a
computation of the S'-character valued index of D, as defined in Eq. (6.1).

Proposition 6.2 asserts that this character valued index can be computed using
either of the set of operators {Q[i] } as long as the constant ¢ is chosen to be equal
to t/s. Indeed, according to Proposition 6.1,

Z Ind Q[l] é[l]m s / k) = Ind(D: édNM(l).Vm’: / k Ind(Q[I:l + é [l]m s / k) . (81 1)

This last equality implies the assertion of Lemma 8.6.
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9. Deformations: The Case of General S'-Actions

Consider Proposition 8.3 in the case where the positive characters of the S* action
on the normal bundle to the fixed point set are allowed to differ from 1.

To begin, fix a component X = X[i] of the fixed point set. Introduce the finite set
Q[i] of Eq. (8.3). Fix the constant ¢ in Lemma 8.4. For ae [0, 1 \Q[{], introduce
the notation @[i,o] and

Ol o] : H'(S [ @ @i, o) > LS [iT(k) @ P[i, o])

to distinguish the data in Lemma 8.4 at the various components of the fixed point
set.

Suppose that o, € U, Q[]. This «, is a rational number; let n, be the minimal
positive integer with the property that po=n, - oq € Z. If ay ¢ Q[i], then Z[i] is an
isolated, connected component of M(n,). Otherwise, X[i] is a proper submanifold
of M(n,). The following facts about n, are needed later:

Lemma 9.1. Define ny and p as in the preceding paragraph. Let X be a component of
the fixed point set of the S' action on M and let 0 <v define a character of the S*
action on Nly. Then py-v/ng e Z if and only if v/ngeZ. Also, py-v/ngeZ+1/2 only
if v/ngeZ +1)2.

Proof of Lemma 9.1. The “if” of the first assertion is obvious. For the converse,
write v=1[|nq,+v’ with [eZ and with 0 <v'<nq. Then v’ - py/ny =0 2y € Z which
contradicts the fact that n is the minimal positive integer which gives an integer
upon multiplication by «,. For the second assertion, write v=1-ny/2 +v' with [e Z
and with 0=<v' <ny/2. Then, 2-v" -a,€Z, which gives the same contradiction
unless v’ =0.

For oy ¢ Q[i], the index of Q[i, o] is well defined and constant for all « in a
neighborhood of . For a € Q[ 7], the index of Q[i, o] may jump at o, since Q[1, x|
is not defined.

Consider this situation in greater detail: Let a =0, - (1 —0). Let Z=2[i] and
write ®[1—5]=P[i,a, - (1 —9)] and write Q[i, o, - (1 —95)]=0[1—5]. In order to
compare the indices in the two cases + 0 > 0, it is necessary to consider together the
components of the fixed point set of the S'-action on M. As in the semi-free case,
this will be done by observing that the index of Q[ 1 — ] is equal to the index of an
operator which is the localization to a component of the fixed point set of a suitable
Dirac-Ramond operator which is defined on a submanifold of M on which the
geometric S* acts with the same set of fixed points as the geometric S* action on M.
Then, the sum, over all components of the fixed point set of the S' action, of the
indices of Q[1—4] for >0 will be seen to equal the same sum for 6 <0.

To begin, introduce the “fractional” shift

4(”0»[’0)3 @ (T2m®q:) @ Nv,n_) @ (sz®(]:) @ Nu.n (91)

m>0 neZ m>0 neZ+ po-v/ng
with restriction

'7"(”0’ pO) : NU,:I—)N (92)

v.n+po-v/ng*
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Also, define
Z(”Oapo): @ VO,m @ V;),n_) @ VO,m @ Vu,n (93)
m>0

nelZ m>0 neZ+ po-vo/ng
with restriction

Z(”Oa pO): VL>,n_)Vv.n+p0n/n0' (94)
Finally, define

/Z'(nO’pO): @ VO,m C—BZ Vu.n+ 1/2 - @ @ Vu,n (95)

O<meZ+1)2 0<meZ+1/207n1nel+po<v/n0+1/2
with restriction

/Z(nO’ p()): I/D,n_).[/;),n-FpoU/n()' (96)

There is no expectation that the fractional shift induces a bundle automor-
phism of %)= &yp1).v(2), or even an automorphism up to tensoring with a
line bundle. However, note that #(ng, po)*&yr),v(2) 100ks like Eypg) v(2) as
defined in Eq. (6.16). To be precise,

Lemma 9.2 There is a  natural  isomorphism  «(ng, po)*Enpmar) v(2)
X Enntng), (2)® Ling, po), with

L(ng, po)= ® (det(N¥)@det(¥*)) o v/nol

0<v

® ® (det(N})@det (V)"

no/2 <v’'<ng 0<v:v=v"mod(ng)

® [ ® (det(N¥)@det(V*) !

0 <v=ng/2 mod(ng)

2 [ ® (det(NF)@det(V;¥))>

0<v'<ngp/2 | 0<v:v=0v"mod(ng)

® (det(N,’f)@det(l/u*))"2‘”,’/"0H"/2 ,

0<v:v= - mod(ny)

in the unprimed case. Here, r =0 if nq is odd, and r =1 if n is even. The symbol [s]
denotes the greatest integer which is less than or equal to a given number s. In the
primed case,

L{ng, po)= ® (det(NF)®@det(V,*))~ Lpo-v/ng+ 1/2]

0<v

® ® det(NM(no, v')¥)

1=k=po/2 (k= 1/2)/po<v'/no<k/po

® [ ® (det(N})®@det(V¥)
0 <v=np/2 mod(ng)

® [ ® (det(Nf)@de’[(l/n*)V v ng

0<v'<ng/2 | 0<v:v=0"mod(ng)

® (det( N¥)®@det(V*)) 2 v'/noﬂrfz :

0 <v:v= —v" mod(ng)
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Proof of Lemma 9.2. The unprimed case follows directly from Egs. (6.13, 14) and
Proposition 7.1. In the primed cases, Egs. (6.13, 14) and Proposition 7.1 yield
directly

L(nmpo)E ® det(N;")_“’O'”/"”] ® det(}/[;k))ﬂpow/noﬂlzl

0<wv 0<wv

® ® det(N#)~!

np/2 <v’'<ng 0 <v=p"mod(ng)

® [ ® (det(NF)®@det(V,*)~ 1)

0 <v=np/2 mod(nop)

2 [ ® (det(NF)@det(V;¥))> v/

0<v'<ng/2 | 0<v:v=v" mod(ng)

® (det(N f)@det(ﬁ*))‘z'”””(’ﬂ” 2 9.7
0 <v:v= —v mod(no)

The assertion follows from the preceding equation with Lemma 9.1 and Eq. (6.4.).
The generators of the canonical S* action and that of the ny-root S' action on

Enmnoy. v(Z) act by the endomorphisms P(n,) of Egs. (6.21-24) and K(n,) of

Egs. (6.25-28), respectively. Define P on &y, v(£)® L(ng, py) to send the

decomposable element p®s to P(ny)yp®s. Then, extend by linearity. Define K on

Enrting. v(Z)@ L(ng, po) to send the same p®s to (K(ng)+ K(ng, po))p®s, with

K(ng, Po) = Y. v/ng [Py v/ng] - (dim(NF) —dim(V;¥))

0<vp
+3 2 v/ng * (dim(N7) —dim(}7¥))
0 <v=ng/2 mod(no)
+ X 2 v/ng - (dim(N7})—dim(V*))

0<v'<ng/2 0<v:—v mod(ng)

0<v’ <ng/2 0 <v:v" mod(ng)

—re ) U’/no'[ Y v/ng (dim(NF)—dim(}¥)

0 <v:—v" mod(ng)

- )y v/ng - (dim(N7) ~dim(l/u*))] : (9.8)
in the unprimed case; and with

Ko, po)= X vito [po-ving +32] - (dim(Nf) — dim(V¥))

v/ng - (dim(NF) —dim(V;*))

0 <v=np/2 mod(ng)

o= A

- X )X ( ) v/ng - dim(N)

1<k=po/2 (k—1/2)/po<v’'/ng<k/pg\O<v=0p"mod(ng)

- 2 v/ng - dim(N 3"))

0 <n=--v"mod(ng)

—re Y vng [ 2 v/ng - (dim(NF) —dim(F¥))

0<v' <ng/2 0 <v:v" mod(ng)

- ¥ v/ - (dim(N*)— dim( yv*))l. 9.9)

0 <wv:—p mod(np)

in the primed case. Then, extend by linearity. The generator of the ng-root S*
action acts as multiplication by (ng, po) on L(ng, po).
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The involutions # =7, and /; were defined on (1) v(2) and on Ey ), 1(Z) in
Egs. (6.23-37). Extend the definition of 7 to &y, () ® L(ng, po) by requiring the
action to be linear, and to send a decomposable element p&s to /P ®s.

Lemma 9.3. The induced isomorphism

Ung, Do) Ennca ) AZ) = Exrting). (2) @ Lin, Po)

has the following properties:

1) K- ?’(nOs pO)* = /7/('10’ Po)* K.

2) P ung, po)* =ung, po)* - P+1ng, po)* - (po - K +2),
where ¢ is defined as follows: In the unprimed case,

£=3- Og (dim(N;¥) —dim(V,*)) - ([po - v/no] - ([po - v/no] +1)
— Do V/Mg—2"po-v/ng - [py-v/ngl);

and in the primed case,

e=73" Y dim(NY) - ([po v/ne] ([po v/nol+1)—po - v/ng

0<v
—2-po-v/ng-[po-v/ngl)
_%' Y dim(V*) - ([po - v/ng ‘f‘%]z

0<v
—2:po-v/ng - [pev/ng +31)-
3) £dM(ng)) - dng, po)* =(—1)" - ulng, po)* - £(M) with
<Z [po - v/no] - (dim(N*)—dim(V*)) + A(ng, X) + d(ny, 2, V))

mod(2)
in the unprimed case; with 4 as defined in Eq. (6.33) and ¢ as defined in Eq. (6.35).
In the primed case,

<Z [po-v/nol - dim(NF)= 5 Lpo-v/no+ +3]

x dim(V¥)+ A(ng, XY+ ' (ng, 2, V))
mod(2)

with ¢" as defined prior to Eq. (6.37).

4) £(M(no)) - dng, po)* =(—1)" - dng, po)* - /(M) with

= < Y Lpo- U/"o]'dim(NZ‘)JrA(no,Z)
0<v mod(2)

Proof of Lemma 9.3. Thisis a straightforward calculation which mimics the proof

of Lemma 7.4. Use Egs. (7.8, 9), Egs. (7.13, 14) and Egs. (6.31--33).

The effect of +(ng, po)* on the function @[1—4J], and on the Dirac opcrator
Q[1—0] can be calculated in a straightforward way. To summarize the result, let
L—2Xbeasin Eq. (8.1) and let m, k be eigenvectors of the endomorphisms P and K
on Eyp), (2@ LF and let (Eypyr), v(2),, @ L) (k) be the eigenspace bundle over X.
According to the preceding lemma,

Ang, Po)*(fA'M( 1), v(2),, & L) (k)
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is the subbundle of
éaNM(no), y(2)® L(ng, po) @ LF

on which K acts with eigenvalue k, and on which P acts with an eigenvalue
m'(m, k, ng, po)- Let
(gNM(ng), W(2)® L(ng, po)® L), (k)
denote
#no, Po)*(@@NMu), (2K LF).

Lemma 9.4. There exists 0,>0 with the following significance: Let m, k be
eigenvalues of the endomorphisms P and K, respectively, on &y, /(Z)QLF. Let m'
=m+p, - k+¢ be the eigenvalue of P on

«no, pO)*(@@NM( 1), )R L) = (f_goNan), P(2)® L(ng, po) @ LF),, (k)

as given in Lemma 9.3. Fix c€(0,1/4] and 6 €(—4,, 0,)\{0} and t>0.
(1) The operator (ng, po)*Q[1 —014ung, po)~'* defines a Fredholm operator
from
Hl((é)NM(no),V(Z)QDL(nw Po)® L), (k)& ng, po)*@[1—0])
to

Lz((Q@NM(nO). W Z)® L(ng, po)® LF(,, (k) @21, po)*P[1—5]).

With sign(s)=sign(0), introduce the function @y .5 of Eq.(6.17) and the Dirac
operator Q, on

COC((@@NM(nO), (2)® L(ng, po) & LF),, (k)@ ¢A\M(;xo)z)

of Eq.(6.18). Let /=/, or /, be as defined in Egs.(6.31-33), and define p as in
Assertion 3) or 4) of Lemma 9.3.
(2) Then

Ind(Q[1 0], £n®7, k)
=(—=1)"-Ind(#(ng, po)*Q[1 —0]4(ng, po)~ E ((_gNM(no),V(Z)®L(nO, Po)R L), 4, k)
= ( - 1)ﬂ : Ind(QnOa ((Q@NM(HO), V(Z)®L(n0> p0)®Lp)m’7 /? k) .

Proof of Lemma 9.4. Assertion 1) is a calculation which is left to the reader.
Assertion 2) is a direct consequence of Proposition A.1, A.3, and 6.1.

Lemma 9.4 exhibits the difference between the >0 and the ¢ <0 indices of
O[1—0] in terms of the s >0 and s <0 indices of Q,,. This difference might not be
zero, but under certain conditions, the sum of the changes over all the components
of the fixed point set for the n,-root action on M(n,) will vanish. Proposition 6.2
makes this notion precise, the next lemma summarizes.

Lemma 9.5. Let {X[i]} be the connected components of the fixed point set of the ny-
root S* action on a connected component of M(n,). Require that V be Zjn,-Z
compatible with T*M in the sense of Definition 1.1. Require that w,(T*M)
=w,(V)=0. For each X = X[i], introduce the line bundle L(n, py) [i] of Lemma 9.2.
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Introduce the number €[], with ¢=¢[i] defined in Lemma 9.2, and for { =£, or £,
introduce u[il=u as defined in Lemma 9.3.

1) Regquire that L(ny, po) [i] be the restriction to X[i] of a line bundle over M(n,)
to which a cover of the ny-root action lifts. Require that this lift be compatible with the
St action over X[i] as defined in Egs. (9.8, 9).

2) Require that €[i] be independent of i.

3) Require that u[i] be independent of i.

Then, for all § small and positive,

> Ind(Q[1—0]. 6117, 7. k)= > Ind(Q[1 + 6], £[i]7. 7, k).

It still remains to determine the circumstances under which the requirements of
Lemma 9.5 are fulfilled.

Lemma 9.6. Let {X[i]} be the connected components of the fixed point set of the ny-
root S* action on a connected component of M(n,). For each ¥ = X[i], introduce the
line bundle L(ng,po)[i] of Lemma9.2. Introduce the number ¢li], with ¢=¢[i]
defined in Lemma 9.3. Introduce the line bundles L[i]—X[i] of Eq.(8.1) and the
numbers e[i] of Eq. (8.2). Then, Conditions 1) and 2) of Lemma 9.5 are satisfied when
V is weakly S'-compatible with T*M in the sense of Definition 8.2.

This lemma will be proved shortly. Consider the obvious example V'=TM. In
the unprimed case,
L(ng, po) []=2[1] x C, (9.10)

and in the primed case

Ling,po)il=  ® ® det(NM(ng, 0')*)|spy - (9.11)
1=k=po/2 (k=1/2)/po<v’/no<k/po
In both cases, the bundles extend from the fixed point sets {Z[i]} of the n,-root
action to M(n,) with a compatible lift of a cover of the ny-root S'-action.
In the unprimed case, one has g[i]=0. In the primed case, one has

e[i]=3" .- ) B dim(NM(no; V) (Lpo - v'/no]—po - v'/n) . (9.12)
which is clearly independent of i.
Consider the question of the {u[i]}. The following lemma generalizes a result in
[A-H] (see also Lemma 9.3 in [B--T]):

Lemma 9.7. Let M be an oriented manifold on which S* acts isometrically. Let M(n,)
be a connected component of the fixed point set of the Z/n, - Z subgroup of S*. Let
{2[i]} be the connected components of the fixed point set of the ny-root S* action on
a connected component of M(n,). For { ={, {, and for each X = X[i], introduce
ulil=p as defined in Lemma 9.3.

1) Let { ={,. If w(T*M)=0, then u[i] is independent of i.

2) Let £ =/, If w(T*M)=w,(V), then p[i] is independent of i.

This lemma will be proved at the end of the section. Observe that Lem-
mas 9.4-7 complete the proof of Proposition 8.3 in the general case.
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Proof of Lemma 9.6. Consider first ¢=¢[i]. In the unprimed case, consider
separately different values of p, - vmod(n,) in the defining sum. This yields

=3 Y )y (dim(NF)

0=<v' <ng 0<v:pov=v'mod(ng)

—dim(V*) - (—(pov/ng)* + 0"+ (ng —v')/n5),
=po-elil/ng+3- Y (dim(N(no;v)*

0<v’ <ng/2
—dim(V(ng; v')*) - (') - (g — w(v))/ng

+15% - (dimg(N(ny; no/2)%) — dimg(V(ng; n,/2)%) (9.13)

where w(v)=p, - v —[pev'] €(0, ny). The last two terms are evidently independent
of the index i, and the first term is independent of the index i when the conditions of
weak S'-compatibility in Definition 8.1 hold.

The primed case for ¢[i] is handled in a similar way. The result is an expression
which is identical to that in Eq. (9.13) but for the addition of the term

BT Yy dim(V(ny; 0')* - w(v)/n,
<k<po k/po<v'<(k+1/2)/po
_ Y dim(V(ny; v')* - (ng— w(v))/n,

0<k=po (k—1/2)/po<v’<k/po

— Lo dimg(V(ny: ny/2)%). 9.14)

0
1
2

Consider now the line bundle question. To facilitate the analysis, write [pov/n, |
=Dy - v/ng—o(v)/ny. Note that for v=ny/2(mod(n,)), w(v)/n,=1/2. For the un-
primed case, one obtains the following formal expression for L(ng, po):

L(ng, po)=L[i] 7" ® (det(N*)@ det(¥/%) =)o

0 <wv:v#*np/2mod(ng)

® (det(N¥)@det(V;5) !

0 <v:ng/2 <v<ngmod(ng)

D s B, GVDOE T

0<v'<ng/2 | 0<v:v=0v mod(ng)

® (det(N)@det(V;¥) ™" ""}", (9.15)

0 <v:v=—v mod(ng)

with r=01if n, is odd, and with r =1 if n, is even. Observe that when 0 <v’ <n, and
when v =v"mod(n,), then w(v) = w(v'). Also, w(n, —v') =ny, — w(v'). These facts imply
that, formally,

Ling po)=LI" "™ ®[ | @ (det(Ni1o; v)")

0<v' <ng/2

®det(V (o z/)*))ww')”'”’]”"o. (9.16)

For the primed case, observe that [p, - v/ng+ 1/2]1=pyv/ny,— w(v)/n, provided
that k/po £ w(v)/n, <(k +1/2)/p, for some integer k € [0, p,). If (k—1/2)/po < w(v)/pg
<k/po for ke (0, pol, then [pg - v/ng+1/2]1=pov/ng+(ny— w(v))/n,. These obser-
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vations imply for the primed case that formally,

L(ng, po)=L[i] ""® [ ®  (det(N(ng; v')¥) @det(V(ny: v')*))“““'“'"UTM

0<v’<ng/2

® det(NM(ng, v')*). 9.17)
1=k=po/2 (k—1/2)/po<v'jno<k/po
Caution. Equations (9.16, 17) are formal only; they make honest sense only when
the bundles in question have the appropriate roots.

Under the condition of the weak S'-compatibility of V with TM*, the bundle
L[] is assumed to be the restriction to X[i] of a bundle L, to which a cover of the
ny-root action on M(n,) lifts. The bundle L, is assumed to have an n,™ root, L}";
the restriction of L™ to X[i] defines L[i]"/™.

Equations (9.16, 17) will make honest sense provided that a n,'" root exists for
the line bundle

® (det(N(ngy; v)y*)@det(V(ng; v')*)e) (9.18)
0 <v' <ng -
on M(n,). The existence of the ny'™ root is guaranteed by Lemma 5.2.
The proof of Lemma 9.7 requires Lemma 9.3 of [B-T7 as an auxiliary lemma:

Lemma 9.8. ( Lemma 9.8 of [B-T] ). Let M be an oriented manifold on which S* acts
isometrically. Let M(n,) be a connected component of the fixed point set of the
Z/n, - Z subgroup of S*. Let {X[0], Z[1]} be distinct, connected components of the
fixed point set of the ny-root S* action on a connected component of M(n,). Let
V —M be areal, oriented, even dimensional vector bundle to which the S' action on M
lifts. Assume that w,(V)=0. Let p, € (0, ny) be an integer which is relatively prime to
neg. Then
0= < Y (dim(Vu|z[0})“dim(VnLr[l])) ) [pOD/nO])mod(Z)

0<veZ

+ (5(’109 Z(O)a V) - 5(”09 2(1)7 V)mod(2) .

Here {V,|5}vez is the character decomposition of V ® Cly;;, under the lift of the S’
action; and o(-) is defined in Eq. (6.35).

Proof of Lemma 9.7. The first assertion of the lemma follows immediately from
Lemma 9.8 by replacing V by T*M in the latter’s statement. The unprimed version
of the second assertion of Lemma 9.7 follows from Lemma 9.8 by replacing V by
T*@®V* in the latter’s statement.

To prove the primed case of Assertion (2) of Lemma 9.7, consider the following
facts: Let 0<v'<n, be an integer. Suppose that v is a non-negative integer which
equals v’ mod(n,). Then [pov/ng+1/2]1=[pev/n,] if and only if there is an integer
ke[0,p,) with the property that k<p,-v'/n,<(k+ 1/2). Therefore, for i=0, 1:

> dim(l/n*l);(,»,)‘ [Pov/no‘}‘%] = 3 4 dim(y.ﬂ).‘(i)\)' [pov/no]

0<veZ O<ve
+ ¥ Y Y dim(V*|y;)
0<k=po0<v' <ng:(k—1/2)<pov'/ng<k 0<v:v=0v" mod(ng)
+ > dim(V*|g). (9.19)
0 <v:v=no/2mod(no)

Here, an allusion to Lemma 9.3 has been made.
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The last term in Eq. (9.19) is dimg(V(ng; 1o/2)), so is the same for X[0] and for
2],

If one is only concerned with equivalences mod(2), then, mod(2), the second
term on the left-hand side of Eq. (9.19) is equal to
dim(K)*|2(i))>

(no/2<v’<no 0 <v:v=0v"mod(np) mod(2)

dim(V(ny: v’))> : (9.20)

_|._
0<k=pg 0<v'<ng/2:(k—1/2)<pov’/ng<k mod(2)

The second term above is the same for X[0] and for 2[1].
Equations (9.19-20) and (6.35) imply that

<0 <Z 2 (dim(F;¥]50)) — dim(l/u*lxm)) “[pov/ng +3]

= ( ) (dim(l/v*l}:(ﬂ))_dim(l/u*lx(l))) “Lpov/no]

0<veZ

+ 8 (g, 2(0), V) — 8'(ng, 2(1), V))

mod(2)

+0(ng, 2(0), V)—d(ng, 2(1), V)) . (9.21)
mod(2)
This last equation, plus Eq. (9.21) implies the primed version of Assertion (2) of
Lemma 9.7.

10. Conclusions

The proof of Theorem 1.3 is completed in this section; due to Lemma 8.2, it is a
corollary to the following proposition:

Proposition 10.1. Let M be a compact, oriented and spin Riemannian manifold.
Assume that S' acts isometrically on M. Let V— M be a real, oriented vector bundle
to which the S* action lifts. Require that w,(V)=0, and also, require that V be weakly
St-compatible with T*M in the sense of Definition 8.1. Let e denote the constant that
appears in Requirement (4) of Definition 8.1. Construct Sy .y and @y qy and the
operator D, on C*(Eyp1),y @ Pypy(1)) in both the unprimed and primed cases, as
specified in Proposition 5.2. Let Eyyy 1, ym be the subbundle of &y, on which the
canonical circle generator P acts as multiplication by m. Let k be an eigenvalue of the
geometric circle generator, K, on C*(Exp1),ym@Pyma)). For £=(, or [ in
Eqs. (4.17,18), and for the unprimed or primed cases, define Ind(D,, Eypri1y, v - k) as
in Eq.(6.2). If e+ 0, then Ind(D,, Eypri1y.ym - k) =0. If =0, then Ind(D,, Eyysi1y yms
4, k)=0 for all k=+0.

Proof of Proposition 10.1. Introduce the line bundle L,— M of Definition 8.1.
Duc to Propositions 6.2, 7.8, and 8.3,

Ind(Dn igNM(l),V:n@Lp: /r k): i Ind(Dn éNM(l). Vm/®L%~p’: {7 k) > (101)

where m'=m+p -k+(—p-p +p?/2)-e.

Suppose first that e=0. Then, following Witten [W2], when k0, one can take
p=0and p’ such that m' <0. But, for m' <0. Proposition 4.1 asserts that the right-
hand side of Eq. (10.1) is equal to 0.
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If e<0, take p=0 and p’>2-(m+k2/e)/]/5. This makes m’' <0 on the right-
hand side of Eq. (10.1), and, again, the right-hand side is equal to 0. If e> 0, take
p=p’ and switch the roles of m and m’; then repeat the preceding argument.

Appendix. Fredholm Properties

The purpose of this appendix is to consider the detailed properties of the various
operators which are constructed in Scct. 2, 3, and 4.

Part 1. Topologies

Consider topological and smooth structures on a countable direct sum of smooth,
finite dimensional vector bundles. Let {B,—M},_, be a countable set of smooth,
finite dimensional vector bundles over the compact manifold M. Define

¢=® B,»M (A1)
neAd

to be the set of points in the countable direct sum which have only finitely many
fiber coordinates non-zero. Give % the direct limit topology (see, e.g. [Wh]). Let X
be a compact manifold. A map f: X —»% is declared to be C* (0 <k < o0) if and only
if there exists a finite subset A C 4 such that f factors through the finite dimensional
sub-bundle @, ; B,— M; and does so as a C* map. Conversely, a map f: % — X is
C* if and only if the restriction of f to every finite dimensional subbundle
@®,e,B,—~M is C*. This makes the projection from ¥ —M a smooth map.

Let %, ¥'—>M be as defined in Eq.(A.1) from countable sets {B,—M},. ,,
{B,—~M},_, of smooth, finite dimensional vector bundles. A map f:%—%" is
defined to be a C* bundle map if and only if the restriction of f to each finite
dimensional subbundle of & defines a C* vector bundle map into a finite
dimensional subbundle of %".

Forexample, {B,®B,~ M}, , defines € ®%; and fiber addition: € @6 — % is a
C* bundle map. For a second example, suppose that UCM is an open set over
which each B, admits a trivialization, ¢,: B,—U x R"®, Then, ®,. ,¢,:6—U
X e 4/ RY™ defines a smooth bundle map which respects fiber addition. In this
sense, € — M is locally trivial; and defines a vector bundle over M with fiber R ™.

For ¢ and %" as above, define ¥ ®%" using {B,} U{B, } as defining data. For
C®%', use {B,®B, }.

All of the infinite dimensional vector bundles over M which are constructed in
this article will be defined, implicitly, in this way. All of the bundle maps between
these bundles will be smooth in the sense above.

Part 2. Fredholm Properties

Introduce the vector bundle 4 — 2 in Eq. (4.2). Note that %}, is locally the space of
finite polynomials in the coordinates on .4/ 'E and their complex conjugates. The
function @, in Eq.(4.12) defines an inner product on the vector bundle
B Q@ P;— 2. One can construct this inner product at x e M by using @, to define
a Gaussian measure on #|,. Equivalently, one can define creation and annihi-
lation operators along the fiber A E[, at xe M Introduce the local coordinates
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(Xp 2y 0} = (X502 .} on VE|.ForO<v<randneZ+a(v);orforv=rand0<neZ
+a(r), let

fra=i-(0/oz, y—t-|ulv,n]l-z,,) and f¥,=i-(0/0z,,—t|ulv,n]l- 2, ,);
fon= @0, 4 o]l 2, and [ =i 0f0z, 4t o]l 5, ). P
Here, p[r,n]=n by flat. For «=0, introduce for 0<neZ,
a¥=i-(0/0x,—t n-x, and a¥=i-(6/0x,—1 n-x,);
(0/0x ) 0/ ) (A3)

a,=1-(0/ox,+t-n-x,) and a,=i-(0/0x,+t n-x,).

The function @, is annihilated by each of {a,,4a,, f,... f..}» While the fiber of
B,QP, at x is naturally isomorphic to the vector space of finite linear
combinations of functions which are obtained from @, by differentiating finitely
many times with the creation operators {a}, a¥, f*,, f.¥,}. The inner product on
B QP 1s obtained by declaring &, to havenormequal to 1; and by declaring that
each of {a,, a,, f, .. /,.,} and the corresponding member of {ak, ak, f5,. fF,} are
adjoint.

Introduce the vector bundle & y from Eq. (4.13). A smooth fiber metric, {, ), is
defined on &, , ® P, as is a metric compatible connection.

The endomorphisms P, of Eq.(4.3), Pp of Eq.(4.8) and P, of Eq.(4.9)
annihilate @, and induce endomorphisms of &, , ® ¢, which are hermitian with
respect to the fiber metric. They are also covariantly constant.

Define endomorphisms &, ® @ by

I<EE - Z Z v ( (//aZ O/( Zn n
O0<v<r neZ+a(v)
KFE_ Z Z U.Fu*n ru.n

O<v<r O<neZ+a(r)

+ ) Y vl L

o,no
O<v<r O<neZ—a(r)

KV:* Z Z D.@fn. .n
O0<v<r O0>neZ+ p(v)
+ Z Z v @fn'@ n)-

0<v<ng/2 0>neZ— B(v)

These are also covariantly constant, and hermitian.

Let P=Py+ P+ Py and K=K+ K+ K. Note that P commutes with K;
and both are covariantly constant. Neither is bounded, but it is not hard to
diagonalize them explicitly on each fiber. Their spectra are real, discrete, with no
accumulation points. Fiberwise, the (m, k) cigenspaces of P and K define a
subbundle & y,,(k)C &y . These subbundles decompose &y @ @ orthogonally
into the direct sum @ 16 yulk) @ Pp).

One can also ignore K, and decompose &; Q@ Pp= @, (¢ v, @ Pr), where
6% ym—8p v is the subbundle on which P acts as multiplication by m. Thus,
g ym®@Pp= D (Es v (k)@ D) is an orthogonal decomposition into subbundles.

Introduce the Dirac operator D, on C*(&,(2)QER® @) in Eq. (4.14). Observe
that D, commutes with P and with K; and so defines an endomorphism of
C¥(&p.ym®@P;) and also one of C*(&p (k)@ P).
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Let LX&p ym®@Py), (& yu(k)® @) denote the L?-completions of the space of
smooth sections of &%y, @ Py, €% (k)@ Pr— M. Use the fiber metric to define the
[*-inner product in Eq.(4.15). Likewise, let HY(&; 1, ®Py), H (& ymlK)Q@Pp)
denote the completions of C*(&y 1, ®Pp) and of C*(&. (k)@ P ;) using the H'-
norm in Eq. (4.15). By construction, D, defines a bounded, linear operator from H'!
to I2.

It is the purpose of this section to explore the Fredholm properties of D,. The
crucial issue is the choice of data {u[v, n]}.

Proposition A.1. For each integer ve(0,r) and integer ne Z + o(v), specify a set of
numbers {{[v,n]},cz+ 40 With the following properties:

(1) There exists 0>0, such that |u[v,n]|>d for all ve(0,r).

(2) There exists a constant i such that u[v,n]-(n—wx-v)>0-|ufv,n]| for all
ve(0,r) and integers neZ + a(v).

(3) The sign of u[v,0] is the same for all v having a(v)=0. Distinguish Case (I):
k=0 and all «(v) € (0,1]; from Case (I1): k0, or a(v)=0 for some v. In the former,
set =6y vy and in the latter, set & =8y y, (k).

1) For fixed t>0, D, extends to define a Fredholm operator from H'(§ @ @) to
LAE@Py).

2) Coker(D,)=Ker(D,), and this is a subspace of C*(EQP,).

3) Suppose that for all n+0 and for all v, n-u[v,n]>0. Then ker(D,) and
coker(D,) are empty for m<O.

Proof of Proposition A.1. The kernel and cokernel of Q can be analyzed by using
together a Wietzenbock formula and the decomposition of & into its finite
dimensional subbundles.

To decompose in a convenient way, introduce the (finite) set Q={(v,
n#0):n- ufv,n]<0}. Then, introduce

H=2- Y (t '-a* a,+m-T;T,)

0<meZ

+2 Z (t‘I fu n+l/l|:l) n]' v un)
(0.0<n)¢Q

+2: Z (f ! f**nf ,n+|ﬂ[!) —I’l] _nn.-un)
(0,0<n)¢N

20 Y A St lulo | T, TE)
(v,0<n)eN

+2- Y S et lulo, —ndl- T L)
(v,0<n)ef

+2- ) X'(tﬁl'ffofu.o"’m[u»()]['ru*,o‘ru.o)

O<v<pr:a(v)=0

+20 Y (=X S S+ 1D, 001 o TE)

O0<v<r:a(v)=0

+2- Y (SRSt 0T, (A.5)

0<neZ+ar)

where x =1if {u[v,0]>0}4 <, <,. 40 - 0- and otherwise x =0. The sum over (v, 0 <n),
above,isoverve {0,...,r—1} and 0 <neZ+ o(v), though subject to the relevant Q
constraint.
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This endomorphism is covariantly constant. It is also positive semi-definite,
with discrete spectrum whose first non-zero eigenvalue equals

)“1 Elnf{1> {IH[U; n:”}0<n<r,nel+a(u): O((V)} . (A6)
(It is an easy exercise to diagonalize H.)
A simple calculation shows that P and K both commute with H as

endomorphisms of &; and, as an endomorphism of C*(&), H commutes with D,
Indeed, introduce the covariantly constant endomorphism T of Eq. (4.14). Then

H=t"1'T}. (A7)

Decompose & into the eigenspaces of H;
&= @ 4&(h). (A.8)

hespec(H)

Lemma A.2. The vector bundle &(h)— X is a finite dimensional vector bundle of the
form S(U)® R, where U— M is given in Eq. (4.10), S°(U) is the appropriate spin or
sping bundle and R=R,(h) in Case (1) and R=R,(k, h) in Case (II).

This lemma will be proved shortly; assume its validity for now.

Since each of P, K, and H commutes with D,, D, induces an endomorphism of
CHAEN® D).

As an endomorphism of C*(&(h)®@ @), D, is an operator of the form

0+ A4, (A.9)

where 0 is the Dirac operator coupled to R and where A= A4,,(h) or A,,(k,h) is a
covariantly constant endomorphism of R, (h) or R,(k, h), respectively.

To analyze the operator D, one can work with the set of “ordinary” Dirac
operators, {0 + A}. However, it is convenient to manipulate these operators as one;
indeed, the ability to do this is the great achievement of supersymmetry. However,
the rigorous justification for the manipulations that follow stems ultimately from
the decomposition of Q into its “components”, {0+ 4}.

The analysis of D, requires the Wietzenbock formula for D2, Use the fact that T,
anti-commutes with e“- ¥, to derive the following: For ¥ e C*(£(h)® &),

(DY, D,Vy =" VWV, e VY +<LT¥Y, T V). (A.10)
The last term in Eq. (A.10) is {<¥,1~*- H¥),.. Thus, for ¥ € C*(£(h® ®}),
(DY, DYy .= VW, e Vo4t - h-{V, V.2t -h-{¥V,¥.. (A1)

Equation (A.11) implies that any kernel of D, on HY(®®;) must lic in
HY (&(0)®®,). According to Lemma A.1, £(0)—M is a finite dimensional vector
bundle. Since the restriction of D, to C*(&(0)® @) is of the form in Eq. (A.8),
standard elliptic theory asserts that the kernel of D, on HY(§(0)®®;) is finite
dimensional, and consists of smooth sections. Furthermore, there is a positive
constant, ¢,, such that the quadratic form <D, -, D, ;> bounds ¢, - (¥, ¥);. on
restriction to the L*-orthogonal complement in H'(£(0)® @) to this kernel.

To summarize, for ¢ >0, the kernel of D, on HY(§® ®,) is finite dimensional,
and it consists of smooth sections contained in H'(&(0)® ®;). On the complement
of this kernel, {D, -, D, - »;. bounds a constant times the H'-norm. This fact implies
that D, has closed range in [X(§®@®}).
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For the cokernel of D,, consider a non-zero element ¥ e coker(D,)C (& ® D).
Then, (P, D,®>,.=0 (A.12)

for all @e H(§®@Py). Write ¥ =Y, ¥,, with ¥,e X &(h®Py). Then, each
¥, e coker(D,). Dealing with ¥, instead of ¥, one can invoke the standard theory of
elliptic operators on sections of finite dimensional vector bundles over M to
conclude that ¥,e HY(&(h)Q@ PN C*(&E(h)@Py) and ¥, eker(D,). In particular,
this requires h = 0. In conclusion, coker(D,) is finite dimensional and equals ker(D,).

Only Assertion 3 of Proposition A.1 remains unproved. To prove this last
assertion, decompose the symmetric endomorphism P into positive and negative
parts, P=P; — P. Here,

Py=Ppt+3-t"! ( Yo oafa+ ¥ *f)

0<neZ 0<neZ+afr)

+ Z Z n'|:u[v9n]|‘1'ffn'fv,n

O<v<r O0<neZ+a(v)

+ 2 Yo onclulo,—ndl T £ L (A.13)
O0<v<r O<neZ—a(v)
Under the condition that n- u[v,n] >0 for all n+0, there is a constant ¢ > 0, which
is such that
Hz=c Py (A14)

holds as an identity of symmetric, non-negative endomorphisms of § ® @,. The
verification of Eq. (A.14) can be made by comparing Eq. (A.5) with Eq. (A.13).

Proof of Lemma A.2. Introduce twelve “occupation number” endomorphisms;
the first two are defined to be

Wi(R)E% Z (t—l'a;l:l'am_’—.rr:lkrm) +% Z (t—l’ r?(nﬂ,n+’1'rrﬂfn'Fr.rz)s
O<meZ 0<neZ+a(r)
wL)=5 Y tlancanty Y R f (A.15)

0<meZ O<neZ+alr)

The last ten are defined for any collection {¢[v, n] 2 0}: The third through the sixth
are

wRo)=3- Y alon] (¢ lufo.nd)™ - L5 A+ T T,

0,0<men
#R,0)=73" OZ QG[U’_n]'((t'“"t[va”n:”)ﬂl'._U’F‘njgv,—n%»[jn.].—‘v,n)»
nome o (A.16)
%(L:G)Ef4 Z O’[U,——n]'(l'lﬂ[l),—n]) : U.—nfu,—n'
0.0<nygQ
wLo)=3 Y olo.n]-(t-fulo,nd)" 1 S5 L
0, 0<neN

Here, the sums over (v,0<n) are sums over ve{l,...,r—1} and over O<neZ
~+ o(v).

The seventh through the tenth are denoted by {#(R,0), #(R,0), (L,0),
#'(L,0)}; they are given by Eq. (A.16) but with the sum restrictions in Eq. (A.16)
changed to require that (v,n)e Q. If the resulting subset of Q is empty, set the
corresponding {+'(R, 0), (R, 0), »(L,0), #(L,0)} equal to zero.
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Finally define the last two “occupation number” endomorphisms to be
no(0)= 2 o[, 01 (¢ |ulv,01) ™" fi¥o S0+ Ta T0) s

O<v<r:a(w)=0

#o(0) = ) . alv, 01 (- 1p[v, 01D~ " - fi¥o Lo

O<v<r:a(v)=

(A.17)

Each of the twelve endomorphisms above is symmetric and each is non-
negative with integer cigenvalues when {a[v, n]} are sets of non-negative integers.
Furthermore, each commutes with P, K, and H; and the twelve commute amongst
themselves.

By inspection, &'(h) has finite dimensional fiber if and only if P, from Eq. (4.9)
and each of the twelve number operators from above is bounded when {o[v,n]}
are bounded away from zero.

Introduce the constant k from Assumption (2) of Proposition A.1. Introduce
the variable x=1/2- (1 +sign(u[v, 0]l,.,w)=0)) in Eq. (A.5). The restrictions on the
set {p[v,n]} imply that x=0 only when <0 and when {»(R,0), »(L,0)} are
zero. Also, x=1 only when x>0 and when {»'(R,0), »(L,0)} are zero.
Furthermore, if k=0, then all {#(R, 0), (R, 0), #/(L,0), #(L,0); are zero.

Consider the case when x=1 and k= 0; the x=0, k <0 case is handled by an
analogous argument which is left to the reader. In the x=1 case, H gives a bound

for sl R)+ (R, 69) + 2R, 60) +#/(L, 64) +10(00) (A18)

when {ao[v,n]=|ulv,n]|}.
Bounds on the remaining “occupation number” endomorphisms come from
studying P and K. Take {¢,[v,n]=|n|} and note that P decomposes as

PE W(L) + %(La 0'1) + ZZ(L’ 61)+ %/(La O—1) +
+Py—mR)=nR,0,)—#(R,0,)—#(R,0,), (A.19)
where P}, is the non-negative endomorphism which is given in Eq. (4.9).
Note that in Case (I) of Proposition A.1, Q=0 and (o) =»,(c)=0. Then,
Constraint (1) on the set {u[v,n]} implies via Eq. (A.18) and Eq. (A.19) that
L)+ #(L,0,)+#(L,0,)++'(L,o,)+ Py (A.20)

is also a bounded endomorphism of &(h). This last bound plus Eq. (A.18) bound all
of the “occupation number” endomorphisms of &(h) in Egs. (A.16-17). Such
bounds imply Lemma A.2 for Case (I) of Proposition A.1.

To make further progress, note that in the general case, the bound on the
endomorphism in Eq. (A.20) cannot be deduced directly. In the general casc,
Eq. (A.19) plus the bound on the endomorphism in Eq. (A.18), plus the fact that P
acts on &(h) as multiplication by m give an upper and lower bound on

w(L)+u(L,0,)+#(L,0,)+Py,—4#(R,0,). (A.21)

Additional information comes from the endomorphism K. To extract it, set
{o,[v,n]=v} and decompose K as

K=#R,0,)+uL0,)+#(R,0;)+ no(0,) + Ky . —#(R, 05)
= (Ly05) =L 05) —nol03) — Ky -, (A.22)

with K, , obtained from Eq. (A.4) by taking only the first sum for K, _ and the
second sum for K .
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Via Eq. (A.22), the bound on the endomorphism in Eq. (A.18) plus the fact that
K acts on &(h) with eigenvalue k give a bound on the absolute value of the
following endomorphism of &(h):

(L, 0,5)+no(0,)+ 2 (R,0,)+ Ky . —nl(l,0,)— Ky _. (A.23)
Reintroduce the constant x in the statement of Proposition A.1. Multiply the

endomorphism in Eq. (A.23) by x and add it to the endomorphism in Eq. (A.21).
The result is a bound on

wl L)+ 2L, 0,)— K #(L,0,)+ K2 (R,0,)—#(R,0,)
+ul,00)+Py—r- Ky +ik2y(0,). (A.24)
Due to the Restriction (3) on {u[v, n]} in the statement of Proposition A.1, there is
a constant 6 >0 for which following inequalities hold:
%(L, 01)~K : %(L, O’z)g%(L,O' 55) )
K7 (R,05)—#(R,0,)2+(R,0=0).

(A.25)

Since the characters {v} for the S' action on V|, are bounded, and sincy any
finite sum of endomorphisms from the set {©F - O, ,} defines a bounded operator,
the constant ¢ can be chosen so that

PV"“K'KV_>(S’PV—5—1. (A26)

These last two equations imply that the bound on the sum in Eq. (A.24) gives a
bound on

W L,6=0)+#(R,06=0)+0" Py +wL)+w(L,0,)+ K" 240,). (A.27)

Each term in Eq.(A.25) is a non-negative endomorphism of &(h); and hence
bounded. These last bounds and those in Eq. (A.18) imply that &(h) is a finite
dimensional vector bundle as claimed.

Suppose that M is even dimensional, so that S°(U)®.Z,®%, admits the
covariantly constant involution /=7, or 7, as described in Egs. (4.17, 18). This
involution extends to an involution of &, ,, ® @, which is covariantly constant and
which commutes with P and K (and H) and which anti-commutes with Clifford
multiplication. The involution ¢ extends to define an involution of C*(&y; , @ P;)
which anti-commutes with D,.

Distinguish Cases (I) and (II) of Proposition A.1. In the former case, let
& =6 v, and in the latter, let & =6 ,.(h).

Define the index of D, on C*(§®®,,) by

Ind(D,, &, /)=dimker(D |yer(, - 1) —dimKer(D fyers + 1)) s (A.28)
with ker(/ +1)=(/—1)- H(§®®p) and ker(/ —1)=(/ +1)- H(EQ @p).

Proposition A.3. Suppose that a set of numbers {u[v,n]} has been specified with the
properties required for Proposition A.1.Let(m, k) be a pair of eigenvalues of P and K
acting on & . Let & =&y v,y for Case (1), and let & = & y,(h) for Case (11).Let / =/,
or /g as in Egs. (417, 18).

(1) Ind(D, &,7) is independent of the choice of t>0.

(2) If n-ulv,n]>0 for all ve(0,r) and 0FneZ+ a(v), then Ind(D,,&,/)=0 for
m<Q.
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(3) Suppose that {u[v,n](s):s€[0, 1]} is a continuous deformation of the data
which defines @, in Eq. (4.12) and D, in Eq. (4.14). Allow the metric on TM and the
connections on each {E[v]} [v]},c (0., and on each {V[vl},c(0., to vary continuously
with s also. Require that for each s, this data obey the conditions required by
Proposition A.1; allow the constant k=x(s) to vary continuously with se[0,1].
Then, Ind(D,, §,4) of Eq.(A.28) is independent of the choice of se[0,1].

Proof of Proposition A.3. The second assertion follows from Assertion 3) of
Proposition A.1. The first and the third assertions are standard consequences of
the stability of the index for Fredholm operators. Indeed, the kernel and cokernel
of D, on H'(§ ® @) reside as a sub-vector space in the space of sections of a finite
dimensional sub-bundle of &(h)® @; so the standard theorems apply.
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