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L. J. Mason*'** and E. T. Newman**
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract. It is our purpose here to show an unusual relationship between the
Einstein equations and the Yang-Mills equations. We give a correspondence
between solutions of the self-dual Einstein vacuum equations and the self-dual
Yang-Mills equations with a special choice of gauge group. The extension of
the argument to the full Yang-Mills equations yields Einstein's unifield
equations. We try to incorporate the full Einstein vacuum equations, but the
approach is incomplete. We first consider Yang-Mills theory for an arbitrary
Lie-algebra with the condition that the connection 1-form and curvature are
constant on Minkowski space. This leads to a set of algebraic equations on
the connection components. We then specialize the Lie-algebra to be the
(infinite dimensional) Lie-algebra of a group of diffeomorphisms of some
manifold. The algebraic equations then become differential equations for four
vector fields on the manifold on which the diffeomorphisms act. In the self-
dual case, if we choose the connection components from the Lie-algebra of the
volume preserving 4-dimensional diffeomorphism group, the resulting equa-
tions are the same as those obtained by Ashtekar, Jacobsen and Smolin, in
their remarkable simplification of the self-dual Einstein vacuum equations.
(An alternative derivation of the same equations begins with the self-dual
Yang-Mills connection now depending only on the time, then choosing the
Lie algebra as that of the volume preserving 3-dimensional diffeomorphisms.)
When the reduced full Yang-Mills equations are used in the same context, we
get Einstein's equations for his unified theory based on absolute parallelism.
To incorporate the full Einstein vacuum equations we use as the Lie group the
semi-direct product of the diffeomorphism group of a 4-dimensional manifold
with the group of frame rotations of an 50(1,3) bundle over the 4-manifold.
This last approach, however, yields equations more general than the vacuum
equations.
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1. Introduction

In this paper we provide a novel connection between Yang-Mills theory and
general relativity. We give a correspondence between a class of solutions of the
Yang-Mills equations on the one hand and solutions of Einstein's equations on the
other.

This correspondence is most satisfactory when the fields are both self dual.
When the Yang-Mills theory is not self-dual we obtain either Einstein's unified
field equations or a set of equations which reduce to the Einstein vacuum
equations when the torsion of a certain connection vanishes.

The group of gauge transformations for general relativity can be taken either as
the semidirect product of the diffeomorphism group with the group of frame
rotations or just the diffeomorphism group on its own. This is not isomorphic to an
ordinary group of gauge transformations (maps from a 4-manifold into the finite
dimensional gauge group1). From this it would seem unlikely that one would be
able to make a correspondence between solutions of some version of the Yang-
Mills equation and solutions of the vacuum equations.

We get around this by using infinite dimensional gauge groups; in particular,
we choose for the gauge groups the group of (volume preserving) diffeomorphisms
of some 4-manifold, MA, or the semi-direct product of this group with the group of
frame rotations of an S0(l,3) bundle on this space (this incorporates frame
rotations). The first possibility is sufficient for the self-dual case, and the second
possibility seems to be required to incorporate general vacuum fields. We then
freeze the Minkowski space dependence of the gauge transformations by requiring
that the vector potentials be constant so that the group of gauge transformations
be reduced to the original gauge group. That is, we require that the connection be
invariant under the translation subgroup of the Poincare group.

Our basic procedure is thus to first consider the Yang-Mills equations for an
arbitrary group and impose the symmetry condition that the connection be
independent of the Minkowski space points, i.e. it is constant. This leads to an
algebraic condition on the connection components. This algebraic condition
becomes differential equations on the auxiliary JίA when the above infinite
dimensional groups are used.

(There is also an alternative formulation in which we consider a Yang-Mills
field which is independent of the spatial variables, but still depends on time. The
appropriate gauge group is now the diffeomorphism group of some three manifold
Σ\)

An interesting question is: what of interest can be obtained by using other
infinite dimensional groups and other symmetry reductions for the Yang-Mills or
self-dual Yang-Mills equations?

In Sect. 2 we will discuss the reduced Yang-Mills equations, i.e. the algebraic
equations obtained from the symmetry conditions and in Sect. 3 we will outline
the version of the self-dual Einstein equations due to Ashtekar, Jacobsen and
Smolin. In Sect. 4 we will show how the self-dual Einstein equations are equivalent

1 Here we refer to the gauge group as the group in whose Lie algebra the vector potentials take
their values and the group of gauge transformations as the infinite group of frame rotations of the
Yang-Mills vector bundle
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to the reduced, self-dual Yang-Mills equations (identical to the Ashtekar, Jacobsen
and Smolin version) when the gauge group is the volume preserving four-
dimensional diffeomorphism group. Finally in Sect. 5 we discuss how the full
Einstein equations (and various generalizations) arise from these considerations.

2. The Reduced Yang-Mills Equations

Consider a vector potential ya on Minkowski space, M, where for each a = 0,..., 3
ya(x)el for some Lie algebra /. The curvature is then given by:

where Da = da-ya.
The full Yang-Mills (YM) equations are:

DaFab = 0,

and the self-dual Yang-Mills (SDYM) equations are:

r ab~ 2bab Γ cd~ ι r ab

(or in spinors, setting Fab = ΦABεA>B+ΦAB>εAB the SDYM become ΦAB = 0).
Note that we have the Minkowski metric, ηab, at our disposal to raise and lower

the indices, a,b,c,....
We first consider the case in which the vector potentials are independent of all

the spacetime coordinates. Then we have that the only invariant gauge transfor-
mations are constant, and the ya are each constant elements of the Lie algebra /. The
full YM equations then reduce to:

where the brackets, [ , ] z are the Lie algebra brackets for /. The SDYM equations
reduce to:

b ] d t ] (2)

(in spinors we have: [yA>{A, yi^i = 0). (We retain Lorentzian conventions for the SD
fields in order to avoid confusion when we discuss full Yang-Mills fields.)

The Jacobi identity, εahcd \_yb, [yc, y J ι ] ι = 0, implies that solutions of (2) also solve

(i).
{For completeness we also consider the case in which the ya only depend on t.

The remaining gauge transformations only depend on t, and can be used to
eliminate y0 (t = x°). We resolve the above equations parallel and perpendicular
to the time-like direction. We find, the indices i, j , . . . ranging from 1 to 3,

[yVΛ]z = 0 and y\-ly\ [ y ^ J J ^ O (3)

for full YM and

yi=-^ijkiyj,yk]i (4)

for SDYM (these are also known as Nahm's equations). Here εijk is the projection

}
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3. A Simple Form of the Self-Dual Vacuum Equations

Recently Ashtekar et al. (1988) have shown that the Self-Dual Einstein equations,
when written out in 3 + 1 form, are remarkably simple

and

J?Vί(v3) = 0. (6)

Here Vi9i=ί,2,3, are a triad of independent divergence free time dependent vector
fields on a three manifold, Σ3, the bracket, [, ], is now the standard Lie bracket of
vector fields (Lie derivative) and εijk = 6[ijk],

 εi23 = ^ is the 3-dimensional
alternating tensor and v3 is a fixed volume form (say v3 = adx1 A dx2 A dx3 with
x1,..., x 3 coordinates on Σ3 and α some nonvanishing function of x). The metric is
then retrieved o n ^ x R as follows.

Let t be a coordinate on the R factor, then the SD vacuum metric o n ! 3 x R is
i f ) \

determined by the requirement that the frame, σa = ( / ~1 —, / ~ * Vt I a = 0,..., 3, ofdt
the tangent bundle be orthonormal where / is determined by

f2 = V3(V»V29V3). (7)

A proof of these results can be found in Ashtekar et al. (1987); however a direct
proof of the above is also implicit in the following material.

4. The SDYM Equations and the Self Dual Vacuum Equations

It can now be seen that, by a special choice of gauge group, our Eqs. (4) become the
Ashtekar Eqs. (5) and (6). Let SDiϊϊ(Σ3) be the group of diffeomorphisms of Σ3

which preserve the volume form v3. Then the Lie algebra LS Diff(Z3) of S Diff(I*3)
consists of vector fields V satisfying (6). The commutator in the Lie algebra is just the
Lie bracket (Lie derivative) of vector fields. So we see that, identifying the V{ with
the γi9 Eq. (5) really is Eq. (4) where each yb i = 1,...,3 take values in LSDiϊf(Σ3).

Alternatively, we can see that (5) is a special case of Eq. (2). Let Jί^^Σ3 x R
and let v4 = dt A V3. Then consider the group of diffeomorphisms of Jί^ preserving

v4, SDiffpT4). If we write Va = (V0, V^= ( —, Vt I, α = 0,...,3,we have that the

Va e LS Όiϊϊ(Jί*) the Lie algebra of S Ό'ύϊ(Ji% So, identifying the Va with the ya9 we
have that Eq. (5) is now equivalent to Eq. (2).

We now wish to show (without relying on the observations of Ashtekar et al.)
the following:

Proposition. Let VaeSDiff(^4) for each a = 0, . . .,3, then if:

hab

cdiVc,Vd-] = i[Va,Vb-], (8a)

J^Fαv4 = 0 (8b)
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with v4 some non-vanishing A-form, then the Va are conformal to an orthonormal
frame (τa = f~1Va for a self-dual vacuum space-time, where

f2 = v,(V0,VuV2,V3). (9)

Conversely, given a self-dual space-time, there will always exist an orthonormal
frame, σω and a nonvanishing function, f such that Va = fσa preserve some volume
form v4 so that VaeLSΌiϊi(Jί4) and the Va satisfy Eq. (8).

Proof We first prove the second part of the theorem. Assume that we have a space-
time with self-dual curvature. This implies that the curvature of the unprimed spin
connection is zero so that we can find a basis of covariantly constant unprimed
spinors, Penrose (1976). This implies that we can choose a frame, σa, so that the
corresponding unprimed spin frame is covariantly constant. Define the rotation
coefficients, Γc

a

b, as follows:
VίΓcσb = Γc

a

bσa. (10)

Since σa is orthonormal we have Γcab = Γc[ab] and, as a consequence of the constancy
of the corresponding unprimed spin frame we have: ^Γcabε

ab

de = iΓcde, i.e. Γcab is self-
dual on the ab index pair.

Define the structure functions, Cab associated to σa as follows:

\°a,σh-\ = Cab

cσc. (11)

Then they are related to the rotation coefficients by

^abc = *acb~ *bca

We wish to express the self-duality condition on Γabc as a condition on Cabc. To
that end we can write

Cabc ~ ~ Γabc — Γbca = — jΓ[abc] + Γcab.

Define Γa = Γc

c

a. Then the trace of the self-duality equation for Γabc implies that

3Γ[abc] — ~~ ίεabc ^d

So the self duality of Γcab on the ab index pair implies the self duality of
Cabc — iεabc

dΓd. However the combination iεabc

dΓd + 2Γ[aηb]c is automatically self dual
on the ab index pair (where ηab is diag{l, —1,-1,-1}) . So we see that the
combination Cabc + 2Γ[aηb]c is also self dual,

i{Cabc + 2Γ[aηb]c} = ̂ ab

ef{Cefc + 2Γ[eηf]c}. (13)

Let us assume for the moment that Γa is a gradient

Γβ = σβ(log/), (14)

where V(f) denotes the derivative of the function / along the vector field V.
Define Va = fσa. Then we have [Fα, Vb] = f{Cab

c + 2Γίaδb{}Vc. So (13) implies

Eq.(8):

Equations (9) can be obtained as follows. Let vg be the metric volume form so

V 9 (σ o ,σ,,σ 2 ,σ 3 )=l. (15)
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Then define v4 = f~2vg in order to ensure Eq. (8b). We wish to see that Eq. (9),
^Vα

v4 = 0> follows. Differentiation of Eq. (15) along σa yields the equation2 £?σavg

= Γavg = σa(logf)vg. From (14) and the various definitions, this is equivalent to

where d denotes the exterior derivative on forms. Equation (9) now follows from
Eq. (15) and the definitions of Va and v4.

It remains to prove that we can choose our tetrad, σa, so that (14) holds for some
/ Indeed we will see that there exists at least a class of such frames depending on a
free function of three variables.

We choose a 3 + 1 dimensional decomposition of the space-time with the
σa = (n, σΓ ), i = 1, 2, 3, so that n = σ0 is hypersurface orthogonal. The condition that
the associated unprimed spin frame be covariantly constant restricts the choice of
the σ/s up to a rigid rotation. So we have that the dual one form to n (also denoted
ή) satisfies

n = fdT, (16)

and we chose the function T to satisfy the wave equation, Π T = 0, so that / ~ ιn is
covariantly divergence free.

For the acceleration of n we have

aiσ~Vnn = Γo

i

oσi= - σ ^ l o g / K , (17)

and for the divergence we have

V n = ΓU=Vn{\o%f). (18)

Decomposing Γa we have

Γo = /7o and Γ-Γ^-Γ^^Γ/,. (19)

If the last term in (19), namely Γ/b vanishes then from (17) and (18) we have that
Γa = σa(\ogf) as required. That /}7'f = 0 can be seen from the hypersurface
orthogonality of n and the self-duality of Γabc by the following argument: We have
that nAdn = 0. This implies that

rιifl0=o,
and the self-duality of Γabc implies that Γijk = ̂ εjk

ιΓil0. So tracing over the ίj index
pair gives the result.

In order to prove the first part of the theorem we must run through the reverse

of the above argument. The Lie derivative of Eq. (9) along σa = — Va yields the

relation Cab

b= — σα(log/). The rest of the proof is straightforward. •

Remark. It is worth noting that, if we fix a self-dual backround ^ # 4 , Eqs. (8) also
propagate the frame deterministically.

2 The covariant divergence V V of a vector field, V, can be obtained from the formula:

clearly from the regular definition of divergence, V σa = Γa
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5. The Full Yang-Mills Equations and Einstein's Teleparallel Equations

An interesting question arises as to whether some analogue of the above procedure
using the reduced full YM equations will yield the Einstein vacuum equations or
the conformal Einstein vacuum equations.

We have not succeeded in obtaining the full Einstein vacuum equations using
only the 4-dimensional diffeomorphism group. Instead, when we proceed by
analogy with Sect. 4, we obtain Einstein's equations for his unified field theory
based on "absolute parallelism". In this theory one is given not only a metric, but
also a global orthonormal frame, and one can work with the connection with zero
curvature but non-zero torsion obtained by defining the covariant derivative of a
tensor to be the ordinary derivatives of the components of the tensor in the given
orthonormal frame.

In this approach we take the σa e LS Diff{Jί^). We do not need to use the
conformal rescaling of Sect. 4, and so we proceed by directly identifying the σa with
the γa of Eq. (1). This yields the equation:

σa(Cab

c) + Cab

dCa

d

c = 0 (5.1a)

for the structure functions as defined in Eq. (11). (Here, again, V(Cab

c) denotes the
derivative of the functions Cab

c along V.) The volume preserving condition on σa is
equivalent to the further field equations

σa(Cbc

a) = 0. (5.1b)

This can be seen as follows. The trace of the Jacobi identity [σ[α, [σb, σc]]] = 0 yields

σa(Cbc

a)=-σ[bCc] + Cbc

dCd,

where Ca = Cab

b. The vanishing of the right-hand side of this equation is the
integrability condition for the existence of a function / such that Ca = σa(\ogf). If
we define the volume form, v by the condition that

v{σ09σuσ2,σ3) = f, (5.2)

then we have that £?frav = 0. Conversely, if the σjs all preserve the volume form v,
then Ca = σa(logf) follows from taking the Lie derivative of Eq. (5.2) along σa. This
in turn implies Eq. (5.1b).

Equations (5.1a and b) are the equations originally put forward by Einstein for
his unified field theory based on absolute parallelism, see for example Cartan and
Einstein (1979) and references therein.

These equations do not give equations on the space-time metric independently
of the choice of frame σa. These equations therefore describe a "teleparallel" theory
in which the frame, σa, is thought of as a dynamical physical field which reacts back
on the space-time geometry. This back reaction of the frame on the geometry
makes it impossible to forget about the choice of frame in our procedure as was
possible in the self-dual case (it is a familiar fact, from other field theories, that self
dual fields have zero energy momentum tensor, and thus do not react back on the
space-time).

The frame, σa, provides a parallelism of the space-time. Such theories were
considered by Einstein and Cartan as candidates for a unified field theory in which
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the frame plays the role of the electromagnetic and matter fields. There are many
possibilities for such a set of field equations (there are various places in which one
can insert "coupling constants"). It is remarkable, therefore, that we obtain
precisely the field equations preferred, and originally put forward, by Einstein.

6. The Full Vacuum Equations

We will now attempt to change the formalism in order to incorporate vacuum
fields.

In order to make our considerations independent of the choice of frame for our
space-time we can extend the diffeomorphism group of Jί^ to the group of
automorphisms of a principal SO(ί, 3) bundle 36-^ Jί4. The automorphisms of 36
are diffeomorphisms of 36 which preserve the principal bundle structure. As will be
seen, this incorporates frame rotations into the group of diffeomorphisms and thus
has the effect of making our considerations independent of the choice of a frame.

Let 36^JίA be a principal 50(1,3) bundle over JtA. On J> we have an 50(1,3)
action which has the effect of rotating the fibres. The action is determined
infmitesimally by the six "vertical" vector fields Dab = D[ab], a = 0,..., 3, which satisfy
the 50(1,3) Lie algebra relations:

ίDab, Dcd] = ηa[dDc]b - ηb[dDc]a,

where ηab is the Lorentz metric diag(l, — 1 — 1 — 1).
The gauge group for our theory will be Aut(^), the infinite group of maps from

36 to itself which preserve the 50(1,3) action. The Lie algebra of Aut(^), LkvX{β\
consists of vector fields, V, which preserve the 50(1,3) action so that

[Z)αfc,F] = O. (6.1)

Such vector fields have a well defined projection down to MA and so determine
an infinitesimal diffeomorphism of JiA. They also have a (non-canonical) vertical
part which can be thought of as providing an infinitesimal frame rotation.

As the "yα" of Sect. 2 we will consider a collection of 4 such vector fields Da.
However, since the index a should be thought of as a Lorentz index, we shall
require that Da transform as a covector under the Lorentz group so that we shall
require

[Dab,Dc-]=ηc[aDb]

instead of the trivial transformation law (6.1). (If we were not to require this, we
would have two distinct Lorentz groups in the theory, one acting on the index of Da

and one acting on 36)
We can now use the Da to identify 3$ with the bundle of orthonormal frames of

JίA, where JiA is endowed with the metric determined by the push down from 36 of
ηahDa®Db. The Da determine the horizontal subspaces on 36 of some connection
(possibly with torsion) compatible with the metric. The curvature, Rabcd, and
torsion, Tab

c, of the connection are defined by
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With the identification of Da with the ya of Sect. 2 we have the field equations:

lDMDωDJ]=0.

This yields after a straightforward calculation

Kb=-KTc

ab-Tca

dTc

db, (6.2a)

rdR
dabc=Td

aeR*dbc, (6.2b)

with Rab = Rd

abd, the Ricci tensor and Vc the covariant derivative.
If the connection is torsion free, then (6.2) become the standard vacuum

equations, Rab = 0. Unfortunately we have not, as yet, been able to articulate this
condition in the spirit of the Yang-Mills theory which motivated these consider-
ations. However it seems likely that these are a decent set of equations in the sense
that there are enough equations to propagate both the metric and the torsion
deterministically.

To our knowledge, the field Eqs. (6.2) have not been previously discussed in the
literature; they do not appear to be the Einstein Cartan equations or their
subsequent generalizations.

7. Conclusions

We have shown how, starting from the reduced YM equations on Minkowski (or
Euclidean) space with infinite dimensional gauge groups, one can obtain non-
linear field equations, for example, as demonstrated previously, the "teleparallel"
Eqs. (5.1) or the generalized Einstein equations, (6.2). There are many other
equations one can obtain in this fashion. In particular if one extends the group
kvX{β) by incorporating also the group of frame rotations of some vector bundle
on ^# 4 , then one obtains the minimally coupled Yang-Mills equation on the
backround satisfying Eq. (6.2). Unfortunately the Yang-Mills field does not back
react on the geometry at all.

Though the meaning of our "derivation" of these equations is slightly obscure,

they nevertheless appear to have a certain naturality, the Bianchi identities

εabcdlDa9 [A» AJ = 0 c a n b e written as

[ ^ [ D f l , A J * ] = 0 ,

the * indicating Hodge dual on the ab index pair, and thus our equations

are in some sense dual to the Bianchi identities, a known feature of the Yang-Mills
equations.

An alternative method of generalizing the ideas presented here would be to
avoid using the full reduction of the YM equations as we did in Eqs. (1) and (2), i.e.
leave in some or all of the Minkowski space dependence but still work with these
infinite dimensional groups. One could also investigate, for example, reduced SD
or full Yang-Mills equations based on Kac-Moody or Virasoro Lie algebras.

There appear to be many interesting questions that can be asked of the source
free Yang-Mills equations.
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