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Abstract. As in Part I of this paper, we consider the problem of the energy
exchanges between two subsystems, of which one is a system of v harmonic
oscilktors, while the other one is any dynamical system of n degrees of freedom.
Such a problem is of interest both for the realization of holonomic constraints
of classical mechanics, and for the freezing of the internal degrees of freedom
in molecular collisions. The results of Part I, which referred to the particular
case v = 1, are here extended to the more difficult case v > 1. For the rate of
energy transfer we find exponential estimates of Nekhoroshev's type, namely
of the form exp(λjλ)1/a, where λ is a positive real number giving the size of
the involved frequencies, and λ^ and a are constants. For the particularly
relevant constant a we find in general a = 1/v; however, in the particular case
when the v frequencies are equal (collision of identical molecules), we find a = 1
independently of v, as conjectured by Jeans in the year 1903.

1. Introduction

As in the first part of this paper [1] we consider a Hamiltonian system of the form

H(p, x, π, ξ) = ftω(π, ξ) + h(P, x) +/(p, x, π, ξ)\ (1.1)

here hω{π, ξ\ with (π, ξ) = ( π l 9 . . . , π v, ξl9..., ξ v)eR 2 v, is the Hamiltonian of a set of
v uncoupled harmonic oscillators of angular frequency ω = (ω l 9 . . . ,ω v ) , i.e.

hω = ̂ Σ(nf + ωfξf)9 (1.2)

while h(p,x\ with (p,x) = (p1,...,pn,xί9...,XH)G^ aR2", represents any dynamical

system with n degrees of freedom, defined on a domain ^, and /(/?, x, π, ξ) is a
coupling term which is assumed to vanish for ξ = 0. We are interested in the case
of large ω's, say ω = λΩ, with some fixed Ω = (Ωί,...,Ωv)eKv and large λ. Our
aim is to study the rate of the energy exchange between the two subsystems
described by the Hamiltonians hω(π, ξ) and h(p, x\ due to the coupling term
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f(p9x9π9ξ)'9 notice that the Hamiltonian (1.1) is not in general a perturbation of
an integrable system.

A Hamiltonian like (1.1) naturally appears in at least two typical problems in
classical physics:

i. The relaxation times in statistical mechanics, in particular the efficiency of
v-body collisions in polyatomic gases for the energy exchanges among different
degrees of freedom, possibly leading to equilibrium. The simplest model example
one should have in mind is the collinear collision of two identical diatomic
molecules, with short-range interaction forces, namely

H(p, x, π, ξ) =l(£ + ^ l + lty v(xu x2, ξ,, ξ2), (1.3)

where: xl9 x2 are the coordinates of the centers of mass of the molecules; ξί9 ξ2

those of the internal degrees of freedom (ξ = 0 for molecules at rest); pl9 p2, nί9 π2

are the conjugate momenta; M and μ are the total and the reduced mass respec-
tively of a molecule; finally, V is a short range interaction potential, as will be
made precise below. One recovers the above form (1.1) by putting h —
l/2M(p2+p2)+V(xux2,0,0\ f=V(x1,x2,ξ1,ξ2)-V(x1,x2,0,0); the trivial
rescaling πx = yfμπ'b ξι = ξΊ/^/μ, 1=1,2, gives to hω the form (1.2).

ii. The realization of holonomic constraints in classical mechanics. This problem
is discussed to some extent in part I, where some basic references are also given;
the system we propose to keep in mind is a point mass confined to a closed
curve in space, for example a circle of radius R in the x, y plane. Using cylindrical
coordinates r = R + ξl9 3 = x, z = ξ29 one has

where V is the external potential, while kl9 k2 are large elastic constants, say
kt = λ2Kh i = 1,2, providing in the limit A-> oo the required confinement. Here
too one easily gets the above form (1.1), by putting h = p2/2mR2 + V(x,0,0)9

f = v(x9 ξl9 ξ2) - V(x9 0,0) + p2/2m(R + ξ)2 - p2/2mR2, and introducing as
above a trivial rescaling of the π, ξ coordinates.

While in part I we were dealing, by a rather simple direct technique, with the
particular case v = 1 (collision of one molecule with a wall; realization of just one
constraint, as for example in a spherical pendulum), in the present part II we deal
instead with the much more difficult general case v > 1.

Roughly speaking, denoting by W the rate of the energy transfer between the
two subsystems, we look for Nekhoroshev's like exponential estimates [2] of the
type

W<W*e~iλlλ*)a

9 (1.4)

with explicit expressions for the constants W^, λ^ and a, which in general turn out
to be dependent on v, as typical of perturbation theory.
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However, in the very relevant case of identical frequencies (collision of identical
molecules), for the constant a, which is clearly the most relevant one in asymptotic
estimates, we find a = 1 for any v. This is exactly the value conjectured by Jeans
already in the year 1903 [3], later independently proposed, for example by Landau
and Rapp [4], on the basis of heuristic considerations; for a numerical study
oriented to the above problem i, also giving a = 1, see ref. [5]. On the other hand,
the value obtained by just adapting the common perturbation techniques would
be 1/v2 or 1/v (this fact led some authors to conclude that such results are irrelevant
for statistical mechanics). One might point out, in this connection, the curious fact
that the proof of the independence of the quantity a from the number of degrees
of freedom is obtained by suitably exploiting resonance; indeed, according to a
kind of folklore, resonance is often considered to be responsible for the pretended
failure of the freezing of the energy exchanges in the thermodynamic limit.

From (1.4) we get two consequences:

i. In the problem of a collision of v identical molecules, the energy exchange ΛE
during a collision is estimated by

ΔE<τW^e~λ/\ (1.5)

where τ is the collision time. So, if one accepts that only the few body collisions
are relevant in reaching the statistical equilibrium (as usual in discussing the
Boltzmann equation), one has a freezing of the internal vibrational degrees of
freedom of the molecules for times of the order eλ/λ*, as suggested by Boltzmann
and Jeans; this is quite relevant for the dynamical foundations of classical
statistical mechanics.

ii. In the problem of realization of constraints, the energy exchange between the
motion along the constraints and the transversal vibrations is negligible up to
a time of order e{λ/λ*)a.

From a technical point of view, this part II is substantially different and more
complicated than part I. In particular, in order to have an effective control on the
v-dependence of the constants, in particular of a, the relevance of which was
illustrated above, one needs a careful choice of the algebraic characterization of
the problem and generically of all the ingredients of classical perturbation theory.

The most apparent technical difference is that here we work directly in cartesian
coordinates π, ξ instead of using action-angle variables, /, φ say, as is customary
in perturbation theory, and as was done in part I. The reason is that the action-angle
variables have a singular point for / = 0, and this requires us to work within
domains excluding such points. This is not a serious difficulty if v = 1, and even
in the general case v > 1, provided the frequencies ω are strongly nonresonant,
because in such cases one can bound the motion away from 7 = 0. However, the
difficulty becomes serious when resonance relations exist between the ω's, because
in the latter case the point 7 = 0 cannot be excluded by dynamical considerations.
On the other hand, this is obviously not an intrinsic difficulty, being just due to
the choice of the coordinates. Taking instead into account the fact that we are
interested in initial data for the variables π, ξ in a neighbourhood of the origin,
the problem looks more similar to that of a system of harmonic oscillators, with
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a polynomial or analytic perturbation, at least if we can consider the variables
p, x, in some sense, as parameters, as we shall do. In fact, we develop our perturbative
scheme having in mind the formal results of Whittaker, [6] Cherry [7] and Birkhoff,
[8] and just add rigorous estimates along the lines of refs. [9] and [10].

The perturbation scheme developed in this paper is strongly reminiscent of
that of refs. [11], [9] and [10]. However, due to the peculiarities of the model,
such a scheme must be adapted in several nontrivial points, and for this reason
we give here all estimates in detail.

The paper is organized in three parts as follows. In Part A (Sects. 2 and 3) the
general results and the application to physical systems are discussed in synthetic
form, without details on the proofs. In particular, Sect. 3 contains a discussion on
the relevance of our results in the thermodynamic limit. The rest of the paper is
devoted to the development of the perturbative scheme; we try to make reading
easier by separating the general scheme (Part B, Sects. 4 to 8) from technical
lemmas and proofs (Part C, Sects. 9 to 12). For what concerns Part B, first the
perturbation procedure is explained in Sects. 4 to 7 in a slightly more general
framework than that of Sect. 2. More precisely, in Sect. 4 we give the Hamiltonian
a suitable form and build up an algebraic framework adapted to our problem; in
Sect. 5 we illustrate an algebraic approach to canonical transformations and give
the necessary estimates; in Sect. 6 we produce the generating sequence of the
canonical transformation which puts the Hamiltonian in suitable normal form; in
Sect. 7 the canonical transformation is used and the exponential estimates on the
remainder are obtained. The theorems of Sect. 7 can be considered as the main
general results of the paper, and could be applied to several models. Then, in Sect.
8 such results are applied to the models discussed above, and the results claimed
in Part A are proven. The remaining part of the paper, namely Part C, is devoted
to the detailed proofs of all theorems of Sects. 4 to 7.

Part A—Results

2. Statement of the Results

We start with the Hamiltonian (1.1) with hω given by (1.2), and assume both h(p, x)
and /(p, x, π, ξ) to be analytic functions of the canonical variables (p, x,π,ξ)e&x B,
where ^ c R2" is a bounded domain (it can be thought of as the natural domain
of definition of h, say a domain inside a compact energy surface), and B a R 2 v is
a suitable neighbourhood of the origin of R2v, to be specified later. Moreover,
/(p,x,π, ξ) is assumed to vanish for ξ = 0, and to be a polynomial of finite order
L in π. In the following, we shall assume L = 2, which covers all the cases of
physical interest illustrated in the introduction, and at the same time simplifies
the task of building an adapted algebraic framework, as will be done in Sect. 4.

Introduce now the dimensionless parameter λ by setting

ω = λΩ, (2.1)

where Ω = (Ωlf..., Ωv) is a fixed set of frequencies (for example chosen of the same
order of the inverse of a typical time scale of h), and perform the usual canonical
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change of variables

Wξί, π ^ O W X 1^/rgv, (2.2)

which transforms hω into

h'λΩ(π',ξ') = ̂ ΣΩιW2 + ξ'ι2)> (2 3)

while /(p, x, π, £) is transformed into

/'(p, x, π', ξ') - /(p, x, ( W V , (λΩ)-1'2?). (2.4)

Then the Hamiltonian takes the form, omitting primes,

H(p9 x, π, & λ) = λhΩ(π, ξ) + ft(p, x) + l/ λ (p, x, π, ξ), (2.5)

where

The factor I/A in front of fλ recalls the fact that the perturbation is of order λ *,
and is explained as follows: by hypothesis / vanishes for ξ = 0, so that it can be
written in the form / = ξf, and consequently the transformation (2.2) gives a
factor λ~1/2; moreover, we shall consider the new variables π', ξ confined in a
neighbourhood of the origin of size λ~1/2, so that the perturbation turns out to
be of size A"1.

According to the usual procedure in perturbation theory we try now to put
the Hamiltonian (2.5) in normal form, i.e. we look for a near to identity canonical
transformation (p, x, π, ξ) = ̂ λ(p\ x', π', ξ'), which puts the Hamiltonian in the form

H'(p\ x', π', ξ'9 λ) - λhΩ(π\ ξ') + h(p\ x') + Z(p\ x', π\ ξ', λ) + 0l{p\ x\ π\ ξ\ λ)9 (2.7)

where Z is the normalized part, and 01 is a small unnormalized remainder (noise).
Since the variables p, x must be essentially considered as parameters, we define

the normal form with respect to the variables π, ξ only. Precisely, we introduce
the usual linear canonical transformation to complex variables π, ξ defined by

4 / + iίΛ ξ^-^fa-il), (1^/^v), (2.8)
/2

which puts the unperturbed Hamiltonian hΩ(π, ξ) into the form

hΩ(π,ξ) = iΣΩιπιξb (2.9)
1=1

while /i(p, x) is unchanged. Moreover, with reference to the vector Ω of the harmonic
frequencies of hΩ(π,ξ), we introduce the resonance module Ji Ω defined by

JΐΩ={keZv:kΏ = 0}. (2.10)

Then, by considering a (possibly larger) module M =3 Ji Ω, Z is said to be in normal
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form with respect to Jί in case the power expansion of Z in the complex variables
π, ξ contains only monomials πjξk such that j — keJί.

In fact, for our problem of giving a bound on the energy exchange between
hω and h, we are mainly interested in the case Jt' = JίΩ, because in this case, as
is immediately checked, the Poisson bracket {hΩ,Z} vanishes, and consequently
hΩ(π\ ξ') turns out to be a constant of motion, up to the small noise due to M.
However, it is more natural in perturbation theory to take Jί possibly larger than
Ji Ω, so we will present our main result in this slightly more general case, and
deduce from it some corollaries adapted to the case Jί = Jί Ω.

As is well known, in performing the normalization procedure with reference
to the module Jί, there appear small denominators of the form kΏ, with keZv\Jί.
As is typical in perturbation theory, we shall use the bound

\k-Ω\^y\k\~τ for keZy\Jί (2.11)

with real constants y > 0 and τ ̂  0. In particular we shall consider the two extreme
cases of nonresonance, i.e. k Ω = 0 implies k = 0, and of complete resonance with
equal positive frequencies Ω1 = ••• = Ωv. In the first case one has JίΩ= {0}, so
that any Jί can be used; as is well known, even for Jί — JίΩ= {0}, which gives
the most stringent normal form, the condition (2.11) is satisfied, for τ > v — 1, by
a set of ί2's of large measure if y is small enough. In the latter case JίΩ is
(v — l)-dimensional, and we are forced to take Ji = JίΩ; concerning y and τ, we
can take γ = Ω1 and τ = 0. Notice that in this latter case the expression |fc ί2|
either vanishes, if keJίΩ, or is a multiple of Ωu so that there are no small
denominators at all. As will be shown in Sect. 7, this elementary remark lies at
the very heart of the v-independence of the exponent a in (1.4).

In order to use the standard methods of perturbation theory, in particular
Cauchy's estimates for the derivatives of analytic functions, we must consider a
complex domain $R, defined as the union of polydisks centered on every point
of &. More precisely, we define

%R= U DR(p,x), (2.12)

where

DR(p,x) = {(p\x')eC2n:\pι-p'ι\^R,\xι-x'ι\^R,l^lύn}. (2.13)

Here, for the sake of simplicity, the (p, x) variables are assumed to be dimensionally
homogeneous, as the variables (π, ξ) are (all of them being square roots of actions).
The extension to the case of dimensionally nonhomogeneous variables is just a
trivial technical fact. For what concerns the variables π, ξ, we make a power series
expansion of the perturbation fλ(p, x, π, ξ) in the neighbourhood of the origin, and
the coefficients of such expansion can be assumed to be analytic functions of p, x
in the interior of the domain $R and bounded in yR. The natural domain of
definition of the Hamiltonian H(p, x, π, ξ, λ) defined by (2.5), as well as of. the
normal form (2.7), can then be built up by considering the variables π, ξ confined,
for a given dimensionless parameter ρ > 0, in the polydisk ΔρR of radius ρR around
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the origin of C2v, i.e.

ΔQR = {(π9ξ)GC2\\πι\^ρR9\ξι\^ρRΛύl^v}9 (2.14)

and introducing the complex domain

The value of ρ must be chosen in such a way that the Hamiltonian is convergent
i n @R,Q

We can now state the main theorem of this paper, which is proven in Part B
in a more general and mathematically more natural form.

Theorem 2.1. Consider the Hamiltonian

H(p, x, π, ξ, λ) = λhΩ(π, ξ) + h(p, x) + -χfλ(p, x, π, ξ) (2.16)

with hΩ(π, ξ) of the form (2.6) and fλ a polynomial in π of order L rg 2. Assume that
H is analytic in the interior of a domain @Rρ defined by (2.15), with positive ρ^,
and bounded in ΘRQ and denote Eo = sup{PfX)e^R\h(p,x)\. With reference to the
vector Ω of the frequencies of hΩ and to the module JίΩ related to it, let Jί 3 Jt Ω

be a resonance module, and assume the nonresonance condition (2.11) with real
constants γ = 0 and τ ̂  0.

Then there exist positive constants E and σ, depending on ρ^, on v and on the
perturbation fλ9 such that for any λ^eτ+ιλ^ with

λ* =^2&2E + 3(4£ + Eo) + ϊyR2σl (2.17)

and for ρ = min(/l~1/2, ρ^) there exists a real analytic, near to identity canonical
transformation <&\ from @LKQ to @iR>β, with ^λ(^LRJ => %Λ > ρ 5 which puts the
Hamiltonian into the form

H'(p', x', π', ξ', λ) = λhΩ(π', ξ') + W, x')

+ Z(p', x', π', ξ', λ) + 0Hp', x\ π', ξ', λ), (2.18)

where Z(p', x', π', ξ', λ) is in normal form with respect to the resonance module Jί.
Moreover, for (p',x',π',ξ')e@±R one has the bounds

/ ; \ l / ( t + l )

\hΩ(π',ξ')-hΩ(π,ξ)<25λ-2E, \h(p',x')-h(P,x)\<22e-τλ-1i-f\ E,

/ I \l/(τ+l)

\Z(p',x',π',ξ',λ)\<25λ-ιE, l \

The proof is deferred to Sect. 8, where an indication is also given on how to compute
the constants E and σ. According to such indication, a possible choice is σ = v/ρ*
a n d E = (1 - σ 3 / l - σ)σsup | f(p, x, π,ξ)\.
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In some applications, in particular in dealing with colliding molecules, the
estimates (2.19) involving the "global" constant E turn out to be slightly rough,
because they do not exploit the possibility that in some regions of phase space
(say when the molecules are far apart) the coupling term f(p, x, π, ξ) in the
Hamiltonian (2.16) be negligible. One then needs a more detailed, so to say "local,"
version of the above estimates, obtained by replacing in the right-hand side of
(2.19) the constant £ by a convenient function E(p, x). In fact, one can prove the
following theorem, which will be used in discussing the collision of molecules in
Sect. 3.

Theorem 2.Γ. In the same assumptions of Theorem 2.1, there exists a function E(p, x),
(p, x)e@, with 0 ^ E(p, x) ^ E, such that the same conclusions of that theorem hold,
with E(p, x) in place ofE everywhere in the inequalities (2.19). A possible choice ofE is

E(p,x) = - σ sup \f(p',x',π,ξ)\,

with Q)RQ*(p,x) = DR(p,x) x Δρ*R, and DR(p9x) defined by (2.13).
The proof of this local version of the theorem requires very minor changes

with respect to the proof of Theorem 2.1, and will be sketched in Sect. 8. Essentially,
the local formulation is possible because canonical transformations are themselves
locally defined.

The Theorem 2.1 has the following

Corollary 2.2. The normalized part λhΩ(π',ξ') + h(p',x') +Z(p',x',π',ξ',λ) of the
Hamiltonian (2.18) admits v — dimJί independent prime integrals of the form

V

/ (π', ξ') — Σ l*ifi(n'i2 + ζ'ι2)> with μeRv and μLJί. Ifπ', ξ' and π, ξ are related by
μ ι=i

the canonical transformation %> λi then one has the bound

) i7

^ > ( 2 2 0 )

with \μ\ = Σ \μt\. Moreover, if one takes into account the whole Hamiltonian (2.18),
1=1

the time derivative of Iμ(π', ξ') is bounded in ^^R,Q by

λ

v •• ( 1 2 1 )

An easy consequence of Theorem 2.1 is that one can estimate the change in
time of the approximate integrals Iμ(π, ξ). In particular we are interested in orbits
starting from initial data (π0, ζo)e(£ x Rv with (π0, ξ0) close enough to the origin
of Rv. Denoting by (p(t), x(t), π(t), ξ(ή) such an orbit, and by (p'(t), x'(t), π'(t), ξ'(t))
the transformed orbit under the canonical transformation <β λ9 we can prove the
following

Corollary 2.3. For an orbit of the Hamiltonian system (2.16) with the initial datum
(p0, xo)e^ and real (π0, ξo)eΔιQR, with Q = λ~112, one has the bound
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λ Y / ( τ + 1 ) lί l
(2.22)

for

Eo \ λ j T

| ί | = min(T0,T), (2.23)

where To is the (possibly infinite) escape time of(p'(t), x'(t), π'(ί), ξ'(t))from @iRtS, and

( 2 2 4 )

Moreover, if' Jί— Jί Ω, one has over the same time interval the bound

\hΩ{π'{t\ ξ'(t))- AΩ(π'(0), ξ'(0))| < 26λ~2E, \£(p'(ί), x'(ή) - %'(0), x'
(2.25)

Analogous results hold for the same functions of the original variables. One
has in this connection the following

Corollary 2.4. For the same orbit of Corollary 2.3 over the same time interval one
has the bound

Moreover, if Jί — Jί Ω one has

\hΩ(π(t),ξ{t))-hΩ(π(0\ξ{0))\<26λ-2E, \h{p{t\x{t))-h{p{0\x(0))\<28?r1E.
(2.27)

The proofs of the corollaries are deferred to Sect. 8.

3. Physical Application

Before entering the perturbation scheme, let us briefly discuss the application to
the physical systems discussed in the introduction, namely a constrained system
with nonresonant frequencies, and a statistical model of a diatomic gas.

Consider first the case of a constrained system. In a practical application we
are interested in real values of the p, x, π, ξ variables in a domain ^ x B, as discussed
in the introduction. In particular we are interested in systems for which the energy
surfaces h(p, x) = S> have a compact component for, say, $ < Eo. Assume now that
these energy surfaces are contained to the complex domain &±R9 defined by (2.12),
and take real initial data (po,xo,πo,ξo)e@iRρ, still with ρ = λ~1/2. Assume
moreover that the harmonic frequencies are nonresonant, and that the usual
Diophantine condition

holds with real constants γ > 0 and τ > n — 1, so that the normalized system admits
v approximate prime integrals lx — 1/2 (p2 + xf), 1 ̂  / ̂  v. Then a sufficient
condition to guarantee a small energy exchange among the subsystems described
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by h(p,x) and hΩ(π, ξ) is that the initial datum satisfies the condition

[ l l

8~4

/ ( r + i π
\ l 2 = l =

(notice that the second bound is certainly positive, since λ> eτ+1λ^). Indeed,
Corollary 2.4 states that for | ί | < T one has \h(p(t\ x(t))\ < Eo and /z(π(ί), ξ(ή) <
iA" 1 ^ 2 , so that {p(t\x(t\π(t),ξ{t))e$ΪRρ. This in turn implies, by Theorem 2.1,
that the transformed point (p'(ί), x'(ί), π'(ί)> <ΓW) belongs to % Λ > ρ , so that the escape
time To from the latter domain actually exceeds T, and the energy sharing, according
to the definition of T in Corollary 2.4, takes an exponentially large time. In such
case the constant λ%, according to its definition (2.17) and the estimated values of
σ and E in Sect. 8, turns out to be proportional to some positive power of v, and
the exponent a in (1.4) turns out to be of order 1/v.

Let us now consider the problem of the relaxation times in a polyatomic gas,
and discuss in particular the Hamiltonian system (1.3). In this case Ω is completely
resonant, so that, as commented in Sect. 2, one can take τ = 0 and γ = Ωx, while
on the other hand one must take Jί = M Ω and μ parallel to Ω. Taking μ = Ω,
so that Iμ = hΩ and \μ\ = vΩί = 2Ωί, one can use Theorem 2.Γ and estimate

We now assume that the interaction potential between the two molecules decays
with the distance r = \x2 — * i | more rapidly than r~1; this means that for large r,
say for r ^ r0, there exists a function V(r) such that E is bounded by E(p, x) ^ V(r),

00 ^ ^

and the integral J V(r)dr converges to a constant, Vo say.
ro

We then assume that the two molecules have a collision, precisely that

i. for t -• + oo one has r(ί)-> oo;
ii. there exists a finite time To and a positive constant w0, such that f(t) ^ — w0

for all t ^ — To and r(t) ^ w0 for all t ^ To (this means essentially that the collision
time is bounded). One can always take To such that r(+ T0)^.r0.

It could be seen that if one makes the assumptions i. and ii. for a model of
perfectly rigid molecules, i.e. for a model described by the Hamiltonian H(p, x) =
h(p,x) = 2(pl + ^2)+ ^(*ijX2>0,0), then the same assumptions are automatically
satisfied also for the Hamiltonian (1.3), if λ is sufficiently large.

From the above assumptions one gets immediately

lim sup IhΩ(π'(t), ξ\t)) - hΩ(π'(- ί), ξ\- 0)1
ί->00

^ 2 1 1 e 3 ί 2 μ - 1 e " ( A / e Λ * ) f E(p(t),x(t))dt,
— oo

and the integral clearly converges: indeed one has

+ oo - Γo + To oo

J E(p(t),x(t))dtS f V(r(t))dt+ J E(p(t),x(t))dt+ J F(r(t))dί,
- 00 - 00 - T o T o
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00 ^

and both the first and the third integrals are bounded by WQ1 j V(r(t))dt ^

wo^^o> while the second one is clearly finite. Denoting by Vo the sum of the
three integrals, multiplied by 2 1 1β 3ί2 1, one gets finally

limsup |Λβ(π'(ί), ξ'(t)) - hΩ(π'(-t), ξ'(- t))\ g λ^e-^^V,.
f -

Now, in the left-hand side of this inequality one can clearly drop the primes:
indeed, in the above assumptions, one has E(p(t),x(t))^0 for ί-> ± oo, and, in
virtue of the local estimates of Theorem 2.Γ, the canonical transformation reduces
to the identity (i.e. π(t) - π'(t)->0 and ξ(t) - £'(*)-• 0 as ί-> ± oo). This means that
we have proven the following

Corollary 3.1. Consider the Hamiltonian system (1.3), describing the interaction of
two diatomic molecules; assume that the interaction potential decays sufficiently rapidly
as \x2 — Xi|-»oo, as discussed above, and let the two molecules have a collision,
which satisfies the above assumptions i. and ii. Then there exists a constant Vo

independent of λ, such that one has

lim sup \hΩ(π(ή, ξ(t)) - hΩ(π(- t), ξ(- t))\ S A" V ' ^ K o .
ί-» OO

Part B—The Perturbation Scheme

4. The Algebraic Framework

In order to apply the apparatus of classical perturbation theory, along the lines
of refs. [11] and [9], we need to build an algebraic framework compatible with
the operations required by our perturbative algorithm.

To this end, we first use the fact that we are interested in a neighbourhood of
the origin of the π, ξ variables, where we can perform a power series development
of the perturbation f(p, x, π, ξ) in the Hamiltonian (1.1), thus obtaining

L

f(p, x, π, ξ) = Σ Σ 7 ( / > S ) ( A *> π> £)> ( 4 Λ )
s> 1 1 = 0

where f{l's)(p, x, π, ξ) is an homogeneous polynomial of degree / in π and of degree
s in ξ, whose coefficients are analytic functions of (p, x) in the domain ^. Here,
use has been made of the fact that f(p, x, π, ξ) is assumed to vanish for ξ = 0 and
to be a polynomial of finite order L in the π variables.

Next we perform the canonical transformation (2.2), thus transforming hΩ(π,ξ)
to the form (2.3) and f(p, x, π, ξ) as in (2.4), or, more explicitly, to the form

J \p, X, 71 , Q ) — > } J \P, X, \Alύ) 71 , \λld) Q ) . \^'^)
s> 1 1 = 0

Divide now the whole Hamiltonian by λ, which corresponds to a rescaling of the
time variable, and denote

c — 1 ~ i/2' (A X\
8 — λ , (4. ό)

then the Hamiltonian takes the form, omitting the primes,
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H(p, x, π, ξ9ε)= £ Hs{p, x , π, ξ, ε), (4.4)
s>0

where
H0(p, x, π, £, ε) - Λβ(π, £) + ε2h(p, x),

and i/s, for s ^ 1, is a nonhomogeneous polynomial of degree s + L in π, ξ which,
using /(p, x, π, £) of the form (4.2), can be written as

tf,(p,x,π,&ε)= X e -' + V ^ ί P . x . β ' ^ β - 1 ^ ^ (4.6)
/ = o

Such a reordering of the power series development of /(p, x, π, £) requires some
additional comment. In order to apply the methods of perturbation theory we
must choose one or more perturbative parameters. On the other hand, we cannot
simply identify such a parameter with ε, because in the power series expansion of

/(p, x, π, ξ) one finds terms which are of the same order of ε2h. So, as was already
done in the first part of this paper, we consider the variables π, ξ confined to a
polydisk whose radius is of the same order of ε. This means that, besides ε, we
can use as a perturbative parameter also the size of the domain of the π, ξ variables.
The reordering above then corresponds to considering Hs(p, x, π, ξ, ε) as an
homogeneous polynomial of degree 2s + 2 in ε, π, ξ, due to the fact that f{Us) is an
homogeneous polynomial of degree / in π and of degree s in ξ.

The algebraic framework we are going to build takes into account such remarks.
Moreover, from now on we shall assume L ^ 2, so that negative powers of ε do
not appear in the expression (4.6) of Hs.

Starting with a formal viewpoint, we first introduce the spaces ΠΛ of the
homogeneous polynomials of degree A in the canonical variables (π, ξ)eC2v, whose
coefficients are analytic bounded functions of (p,x)e^R (and independent of ε),
with &R defined by (2.12). A function feΠΛ can be represented as

/(p,x,π,£)= Σ fjk(p,x)πjξ\ (4.7)
I./Ί + I*l = Λ

where πJξk = π{ί' -πJj>ξk

1

ι ξfyjι and kx being nonnegative integers for 1 ^ / ^
v, and |;| = \]x\ + — h | j v | , and similarly for |fe|.

It is an easy matter to check that, for feΠΛ and f'eΠA9 one has the following
properties:

.. df δf

iii if/\ =/I', then f+f'eΠΛ;

iv.f f'eΠΛ + Λ.;

v- {f,f'}P,xeΠΛ+Λ,;

vi. {/,/'},.4eΠΛ+/,-_2. (4.!
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Here, {','}PtX and {','}π,ξ denote the Poisson bracket restricted to the p, x and π,
ξ variables respectively, so that {•,•} = {', }PtX + {','}π,ξ- The properties v. and vi. in
particular show that, due to the inhomogeneity of the Poisson bracket between
homogeneous functions, the spaces ΠΛ are not suitable for the development of
our perturbation scheme, and that we need a weaker algebraic characterization,
where sets of nonhomogeneous functions are considered. Moreover, in the latter
characterization we also want to make reference to the order in ε; so, we introduce
the classes of function &ΛK, with K ^ A ^ 0 defined as follows: a function
f(p, x, π, ξ, ε) is said to be of class 0>ΛtK if it can be written in the form

ftp, x, π, ξ9ε)= Σ Bιfil'm)(P, *, π, ξ) (4-9)
l.m>0

A <l + m<K

with / ( / 'm )E/7m; equivalently one can write

np,x,π,ξ,ε)= Σ δ'/Jίfeφf. (4.10)
Λ<l + \j\ + \k\<K

Notice in particular that if A ^ A' and K^K' then ̂ AK => & Λ\κ > a n d t n a t t n e ° l a s s

^ 0 0 contains functions of the variables p, x only.
Let us give some motivations. As explained above, our aim is to develop our

perturbation scheme by considering ε as a small parameter and π, ξ confined to
a polydisk of radius ρR, with ρ of the same order of ε. So, it is natural to consider
functions of a definite order with respect to π, ξ, ε. However, for reasons which
will be evident below, we cannot have complete homogeneity in π, ξ, ε; that is why
we allow the class & ΛtK to contain functions which are non-homogeneous poly-
nomials in π, ξ, ε, at the same time keeping track of the minimal and maximal
degree. The minimal degree, i.e. the first index, will work as a perturbation order
in reordering the series arising from the perturbative algorithm, as was done above
for the Hamiltonian, while the maximal degree, i.e. the second index, will allow
us to work at each step of the perturbative procedure with polynomials of finite
order.

It is now an easy matter to check that for two functions / of class ^AK and
/ ' of class 0*Λ'fK' one has the following properties:

i. - S f- is of class 0>Λ,K;
Spi dxι

ϋ ^ - , ^ r i s of class 0>

Λ-UK-1;

iii. / + / ' is of class ^min(ΛtΛΊtmaxiKtKΊ;

iv. /•/' is of class ^Λ+Λ'X + K'\

v. {/, Γ}p,x is of class 0>Λ+ Λ,tK+κ>;

vii. {/,/'} i s o f c l a s s ^ Λ + / V _ 2 , κ + J Γ . (4.11)

Notice that all of these properties but the last one have a correspondent property in
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the framework of the spaces ΠΛ. It is just the property vii. that makes the
characterization by the classes ^AK more suitable for our perturbative scheme.

With such a formal algebraic framework the Hamiltonian (4.4) is characterized
by the fact that hΩ(π, ξ) and ε2h(p, x) are of class ^2,2 while Hs is of class 0)

ls + 2,2s + 2
for 5 ^ 1 .

To complete the formal algebraic framework we must consider an equation of
the form LhQf = g, where g is a known function of class &> ΛK for some A and K.
A classical result, recalled in Sect. 11, is that such an equation can be solved if g
satisfies suitable conditions depending on the frequencies ί2, and that in such a
case the solution / is of class ^ΛyK.

Within the above algebraic framework, the perturbation theory can be formally
developed. In order to make it rigorous, we must introduce norms for functions
and some technical inequalities.

Consider first a function feΠΛ of the form (4.7). As the coefficients fjk(p9x)
are analytic functions oϊ(p,x) in a domain ^R, defined by (2.12), with positive R,
we bound them by the usual supremum norm

\fjk\R= sup \fjk(p,x)\. (4.12)
(p,x)e$R

Then we introduce the norm for /

= RΛΣ\fjk\* ( 4 1 3 )

the factor RΛ, which is also suggested by dimensional reasons, will turn out to be
very relevant in simplifying the estimates.

Coming now to a function / of class @*ΛtK9 and recalling the form (4.9) or (4.10)
for / , we introduce the norm

NR(f)= Σ ll/ ( / 'm )ll*> (4-14)
m<K

or, equivalently,

NR(f)= Σ
Λ<l + \j\ + \k\<K

The choice of the norms made above allows us to conveniently bound derivatives
and Poisson brackets. The technical estimates are deferred to Sect. 9.

We finally consider a function of the form

f(p, x, π, ξ, ε) = ]Γ fs(p, x, π, ξ, ε) (4.15)
s > 0

with fs of class &As,κs

 o n a domain ^ , for given sequences {/is}s>0 and {^s}s>0

of nonnegative integers Λs ^ Xs. In order to investigate the convergence of such
a series, we consider fs(p, x, π, ξ, ε), for 5 ̂  0, as defined on the domain S)RQ given
by (2.15), and look for values ε^ and ρ^ such that the series (4.15) converges for
ε < ε^ and ρ < ρ^. Such a procedure obviously depends on the sequences {Λs}s>0

and {Ks}s>0, as well as on the norms NR(fs). Precisely, by introducing the
parameters

(5 = max (ε, ρ), δ = max (1,(5), (4.16)
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one easily sees, using the form (4.9) for fs9 that for (p, x, π, ξ)e3fRtQ one has the bound

I f (n x π F F)\ < δΛsfi(Ks~ Λ^M ( f \ (A 17Ϊ

The problem of the convergence of (4.15) is thus reduced to that of the convergence
of the series £ δΛsδ{Ks~ Λs)NR(fs). The actual application of such a method will

s > 0

be done below, when needed.

5. Canonical Transformations

We first recall how a canonical transformation can be defined by purely algebraic
methods, and avoiding any inversion. At a formal level, as in ref. [11], we consider
a generating sequence {χt}ι> i with χι of class ^ 2 I + IAI o n a domain &R. The choice
that Xi be of class ^2i + 2Ai is adapted to our case: we do not look for a more
general characterization. Let's also introduce the operator Lg by Lg = {g, •}. Then,
for any function / of class 0> ΛK we define the transformed function Tχf as a
series of the form

Tχf=Σf» (5-1)
r > 0

where the sequence {fr}r>0 is recursively defined by

/o = /> fr= Σ -LχJr-i- (5 2)
ι = i r

The operator Tχ so defined turns out to be linear and invertible, and to preserve
products and Poisson brackets. So, considering Tχ as acting on the canonical
coordinates, we can define a formal canonical transformation Tχ on the domain

(p,x,π,ξ)=Tχ(p',x',π',ξ'), (5.3)

by

Pi = Ίχp\, x, = Txx[, l^l^n,

π ^ W ξ, = Txξ'b 1^/gv. (5.4)

Such a transformation is near the identity, in the sense that the change of coordinates
is of the order O(ε). These formal properties can be directly checked, as was done
in ref. [11], so the proof is omitted.

Coming now to rigorous results, we first consider the coordinate transformation
(5.3). We have the

Theorem 5.1. Let {χι}ι>l9 with χt(p, x, π, ξ, ε) of class ^ 2 I + 2AI o n ^R an^ ε a

parameter, be a generating sequence, and assume that there exist positive constants
β and Φ such that NR(χι)^(βι~1lΐ)Φ. Consider a domain @Rρ = GRx ΔρR, with
canonical coordinates (p,x,π,ξ), where &R has the form (2.12) and ΔρR the form
(2.14). Assume ρ ̂  ε/e2, and define

δ = max(ε, ρ), <5~= max (1,(5). (5.5)
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Then, for any positive d < R/2 and for 0<δδ^ δ^/^2, with

f2e2Φ Λ " 1 ' 2

the canonical transformation (p, x, π, ξ) = Tχ(p', x', π', ξ) defined by (5.4) analytically
maps the domain @R-d,g into <3)R^ in such a way that Tχ(<$R_dρ)^@R_2dρ.
Moreover, for (pf,x',π',ξ)e@R_^ρ one has

,, 2δΔrΦ 2δAΦ

a d

2 ^ 2 3 ^ lύlύv. (5.7)
a d

By virtue of such a theorem, the canonical transformation (5.4) is not just formal,
and moreover, thanks to (5.7), we can estimate the deformation of coordinates
induced by Tχ. The proof is given in Sect. 10.

Consider now the problem of applying the transformation to a function. More
precisely, let f(p, x, π, ξ) be a function of the coordinates (p, x, π, ξ), and denote by
fr(pr,xr,π'9ξ') = (f°Tχ)(pr

9x',π\ξ') the transformed function under the canonical
transformation (5.3). By definition it is f'(p', x\ π', ζ) = f{Tχ(p', x', π\ ξ')\ and this
is an analytic function on the domain @R^dρ, where the canonical transformation
is defined and analytic. A standard result in the theory of Lie series, namely the
exchange theorem, [12] states that / ' is nothing but Tχf as defined in (5.1). More
precisely, we state the following

Theorem 5.2. Let {χι}ι>u with χt(p, x, π, ξ, ε) of class ^2ι + 2Ai o n ^R an^ ε a rea^
parameter, be a generating sequence, and assume that there exist positive constants
β and Φ such that N^χ^S (βι~ι/l)Φ. Consider a domain @Rρ = $R x ΔρR, with
canonical coordinates (p,x,π,ξ), where ^R has the form (2.12) and ΔρR the form
(2.14). Assume ρ ^ ε/e2, and define δ and δ as in (5.5). Let f(p, x, π, ξ, ε) be a function
of class ^ΛfK on the domain %?R for some K^Λ^O, and consider the function
TJ = X fr defined as in (5.2).

r>0 _

Then, for any positive d < R and for 0 ^ δδ ^ δJ^/2, with δ^ defined by (5.6), the
function Tχf is analytic in &R-dίP, and coincides there with the transformed function
offby the canonical transformation (5.3), i.e.

(f°Tχ)(pr, x', π', ξ', ε) = (TJ)(p\ x', n', ξ', ε), (5.8)

for(p',x',π',ξ')e@R_dQ

By virtue of such a theorem the construction of the transformed function (f°Tχ)
can be done by an explicit algorithm, and does not involve any inversion. The proof
is deferred to Sect. 10.

6. Construction of the Generating Sequence

We come now to the heart of our perturbative scheme, i.e. the reduction of the
Hamiltonian to normal form up to a finite order.
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Starting with an Hamiltonian of the form (4.4) transformed to complex variables
via the canonical transformation (2.8), i.e. with hΩ(π, ξ) of the form (2.9) and Hs of
class ^2s + 2,2s + 2 o n a domain ^R, we look for a truncated generating sequence
χ(r) = {χi}1<ι<r on a reduced domain &R-d, with 0<d<R/2, which puts the
Hamiltonian into the normal form up to order r,

ffMfo x, π, ξ, ε) = hΩ(π, ξ) + ε2h(P, x) + Z(r\p, x, π, ξ, ε) + «M(p, x, π, ξ, ε),

where

Z"(p,x,π,ξ,ε)= £ Zs(p,x,π,ξ,ε) (6.1)
1 ^s5Ξr

is the normalized part, and

# < Γ ) ( p , x , π, ξ,ε)=Σ H(;](P, x , π, ξ, e) (6.2)
s>r

is the unnormalized remainder. The canonical transformation is the one generated
by the operator Tχ of Sect. 5, and the functions χs, Zs and H^ will turn out to be
of class έ?2s+2As ̂ u r a ™ i s ^ e n to establish the equations needed in order to
determine the generating sequence {χι}ι<ι<r and the normal form Z(r\ and to give
estimates on the norms of χt.

Thus, we start with the formal deduction of the equations. Denoting
Tχ(r)Hs = Σ Hsb we write the equation Tχ(r)H = H(r) in the form

Σ Σ % - < = Σ Z r + Σ f f ί " (6-3)
s^O 1 = 0 $ = 0 s>r

We look now for a more explicit expression by isolating the terms of the same
class. To this end we use Ho = hΩ+ ε2h, and denote Tχ(r)hΩ= Σ K a n ( l Tχ(r)(ε2h) =

s>0

Σ £2hs. Assuming now that χs is of class &2s + 2As-> ^ ^s a n e a s Y m a t t e r to check

that,for s ^ l,/i sisofclass^2 s + 2 4 s andε 2 /z s i so fc lass^ 2 s + 4 4 s + 2 cz^2(s + i) + 2,4(s+i)
This elementary remark is the key which allows us to shift ε2hs to an higher order,
thus allowing us to consider the variables p,x essentially as parameters in our
perturbation scheme. Moreover, using the properties (4.11), it is also easily checked
that Hls_ι is of class ^ 2 s + 2,4s-2z + 2 e ^ 2 S + 2,4s Thus, Eq. (6.3) gives the system

1=1

H? = hs + ε2hs^ + t Hhs-h s > r. (6.4)
1= 1

Here, only the second and third equations need further discussion, because they
actually allow us to determine all the required quantities, i.e. χl9...,χr and
Z x , . . . , Zr. The fourth one just gives the explicit expression for the remainder, but
contains no information about Z{r) and χ{r); we shall use it in determining the size
of the remainder, in Sect. 12. So, we concentrate on the second and third equations.

By using the explicit expressions

s - l /

hi=LχιhΩ, hs= Σ -L

χιK-ι+L

XshΩ, 2 g 5 ̂  r,
1 = 1 $
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these equations immediately give

LhΩχs + Zs = Ωs, (6.5)

where

Ψs = ε2hs^ + Σ-Lχιhs^+ tHι,s-ι, 2^s^r. (6.6)
l=lS 1=1

These expressions can also be used to check that the assumption that χs be of
class &*2s+ 2 AS for 5 ̂  1 is consistent, provided that if Ψs is of class ^ 2 s + 2,4s> Eq. (6.5)
above can be solved with χs and Zs of the same class. Moreover, H^ as defined
by (6.4) is of class ^2s + 2As

Equation (6.5) is the standard one of perturbation theory, and can be solved in
our case by considering the variables p, x as parameters. The solution of such an
equation is a well known topic. Given the set Ω of the frequencies of hΩ, and the
related resonance module Jί Ω defined by (2.10), one chooses a module Jί with
the condition Jί' :=> Jί Ω, and splits Ψs into

ΨS=ΨS+ΨS, (6.7)

Ψs being the resonant part of Ψs with respect to Jί, and Ψs the nonresonant one.
So Eq. (6.5) can be split into

ZS=ΨS, Lhaχs=ΨS9 (6.8)

and the first of these equations determines the normalized part of the Hamiltonian,
while the second one can be solved, and gives the generating sequence. In solving
the latter equation, as is well known, small denominators appear of the form k Ω
with /ceZv, but, thanks to the polynomial dependence of Ψs on the variables π,ξ,
one has the bound \k\ ^ 4s. The details on the method of solution, as well as its
relations with the classes @*Ak, are deferred to the technical Sect. 11.

This shows that the Hamiltonian can be formally put in normal form with
respect to the resonance module Jί up to an arbitrary order r. In order to have
a rigorous result we must produce estimates on the norms of the generating
sequence {Zz}i</<r Precisely, we look for constants β and Φ, possibly dependent
on r, such that NR_d(χι) ^ (βι~1/l)Φ for 1 ̂  / ̂  r, as required by the theorems on
canonical transformations. To this end, we make a convergence hypothesis on the
Hamiltonian H by assuming that there exist positive real constants y, Eo and 3F
such that

NR(ε2ΐι)£E09 N R ( H s ) ^ y s - ^ , s^l. (6.9)

Moreover, we need a lower bound on the small denominators which appear in
the generating function in solving Eq. (6.5). To this end, let {α s } s > 0 be a
nonincreasing sequence of positive real constants satisfying

\kΏ\^(xs for keZv\Jί and |fe|^4s. (6.10)

The condition Jί' => JiΩ ensures that none of the αs's needs to be zero. The
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apparently most natural choice would seem to be αs = mink(\k Ω\) for keZv\Jί
and |fc| ^ 4s. However, such a choice can be handled in a numerical approach, but
must be replaced by a more regular function of s if explicit analytic estimates are
required (see for example ref. [10]). On the other hand, an explict expression will
be used only at the end of our perturbative treatment, while the monotonicity
property will be enough at each step of the procedure. That's why we prefer to
leave the sequence undefined until an explicit choice will be unavoidable.

Now we can state the

Theorem 6.1 Consider the Hamiltonian H(p, x, π, ξ,ε)= £ Hs(p, x, π, ξ, ε), with

H0(p,x,π,ξ,ε) = hΩ(π,ξ) + ε2h(p,x), hΩ = i ]Γ Ωxπxξu Hs of class ^2s + 2,2s + 2 o n

1 = 1

the domain &R defined by (2.12), and ε a real parameter. Assume that NR(ε2h) ^ Eo

and NR(Hs)^ys~λ^ for positive y, Eo and # \ With reference to the vector Ω
of the frequencies ofhΩ and to the module M Ωr'elated to it, let Jί ^ JίΩbea resonance
module, and {αs}5>, a sequence of positive constants satisfying (6.10).

Then, for any positive d < R/2 and any integer r ^ 1, there exists a generating
sequence χ{r) = {χι}ι<lύr, with χι of class &2I + 2AI o n ι^e domain $R-d, which
brings the Hamiltonίan into its normal form H{r\ defined by (2.7), with respect to the
module Jί, and one has the estimates

with

(6.12)
ar ocrd

The proof of the theorem is deferred to the technical Sect. 11.

7. Exponential Estimates on the Remainder

We can now use the canonical transformation of Sect. 5, with the generating
sequence of Sect. 6 in order to get the normalized Hamiltonian in the form (6.1)
with the remainder in the form (6.2). So, making a transformation up to a finite
order r, we prove the following

Theorem 7.1 Consider the Hamiltonian H(p,x,π,ξ,ε)= £ Hs(p,x,π,ξ,ε) with

Ho(p, x, π, ξ,ε) = hΩ(π, ξ) + ε2h(p, x), hΩ(π, ξ) = \ £ Ωx(π2 + ξf), Hs of class
1=1

^2s + 2,2s + 2 o n the domain &R defined by (2.12), and ε a real parameter. Assume that
NR(h) ίg Eo and NR(HS) ^ σs~1Efor positive σ, Eo and E. With reference to the vector
Ω of the frequencies ofhΩand to the module Ji Ω related to it, let Jί ^ Jί Ωbe a
resonance module, and {αs}s>o a sequence of positive constants satisfying (6.10).
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Consider a domain Q)RQ = ΉR X ΔρR with ΔoR defined by (2.14) and with ρ ^ ε/e2, and
define δ = max (ρ, ε) and δ = max (1, δ).

Then, for any positive d < R/3 and any integer r ^ 1, and for δδ^ δ^J^fl, with

2e2E + 3(4E + E0)(rl) + ardσ Ί

J (7.1)
ard

2σ ΊJ
there exists a real analytic, near to identity canonical transformation Tχ(r) from

^R-2d,ρt0 ®R~d,ρ> m ί ^ TX(r)(@R_2dJ => @R~3d,ρ> which puts the Hamiltonian in normal
form up to order r with respect to the module Jί, i.e.

H{r)(p', x', π', ξ, ε) = hΩ(π', ξ) + ε2h(p', x') + Z{r)(p', x', π', ξ\ ε) + @{r)(p', x\ π', ξ', ε),

(7.2)

and one has the bounds

\h
Ω
(π',ξ')~h

Ω
(π,ξ)\<2

5
Eδ\ (7.3)

2
5
£

0

Z
(r)
{p',x',π',ξ',ε)\<2

5
Eδ

4
, (7.5)

- V ' (7-6)

The theorem has the following

Corollary 7.2 The normalized part hΩ{π',ξ') + h(p',x') + Z(r){p',x',π',ξ',ε) of the
Hamiltonian (7.2) admits v — dim Jί independent prime integrals of the form

/μ(π',O= Σ y « - K ; 2 ) , (7.7)
1=1 ϊ

with Jί _L μeΈC. Moreover, ifπ\ ξ' and π, ξ are related by the canonical transformation
Tχir)ifor any such integral one has

\Iμ(π',ξ')-Iμ(π,ξ)\<~~δ4\\Iμ\\R, (7.8)

and its time derivative taking into account the full system (7.2) is bounded in the

domain &R_2d,Q by
5e2E ί δδ\2r

(-δ--]j \\Iμ\\R. (7.9)

The existence of integrals of the form above is a classical result which follows from
the characterization of the normal form given in Sect. 2. The proofs of the bound
(7.9) and of Theorem 7.1 are deferred to Sect. 12.

Our aim is now, in the spirit of Nekhoroshev's theory, to remove the
normalization order r from our theory. Thus, along the lines of ref. [9], we look
for an optimal normalization order ropt which minimizes the bound (7.6) on the
remainder M{r).
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In order to do that, we must give an explicit expression for ar. As described in
Sect. 2, we use the diophantine bound (2.11) for the small denominators, and define

ar = yr~τ (7.10)

with y > 0 and τ ^ O . Moreover, since the explicit expression (7.1) of δ^r is too
complicated for an analytical optimization, we use the inequality

* r ~ Λ ^ ' * 1 4\J 2e2E + 3{4E + Eo) + yd2σ'

The quantity δ ^ introduced here plays the role of a threshold above which no
perturbation procedure can be done.

By substituting these simpler expressions in (7.6), one is thus led to look for
the minimum with respect to r of r{τ^γ)r{δδ/δ^ι)

2r, and so to choose ropt as the
integer satisfying the inequality

1 /s \2/(τ+l)

This choice is not in contrast with the condition δδ ^ δ^/^/l of Theorem 7.1,
since in (7.11) one has

Finally, we substitute ropt everywhere in (7.10), (7.4) and (7.6) in order to completely
remove the dependence of the bounds on r. This proves the

Theorem 7.3. Consider the Hamiltonian H{p,x,π,ξ,ε)= £ Hs{p,x,π,ξ,ε) with

H0{p,x, π, ξ,ε) = hΩ{π, ξ) + ε2h{p,x), hΩ{π, ξ) = 1/2 £ Ωt(πf + ξf), Hs of class
1=1

^2s + 2 2s+ 2 o n t n e domain @R defined by {2.12), and ε a real parameter. Assume that
NR(h)^E0 and NR{HS) S σs~ιE for positive σ, Eo and E. With reference to the
vector Ω of the frequencies of hΩ and to the module Jt Ω related to it, let Jί ^ JiΩ

be a resonance module, and assume
\k Ω\^y\k\~τ for ke7jv\Ji

with real constants y > 0 and τ ^ 0. Consider a domain Q)R^Q = ΉR x ΔρR with ΛρR

defined by {2.14) and with ρ^ε/e2, and define ^ = max(ρ,ε) and δ = max(l,δ). Then
for any positive d < Rβ and for

δδ^e-{τ + 1)l2δ^, (7.13)

where δ^ is defined by {7.11), one can find a real analytic, near to identity canonical

transformation {p,x,π,ξ) = (£ε{p',x',π',ξ') from @R_2d,g

 t0 ®R,e>
 an^ s u c n t n a t

@R_3do cz ̂ ε{^R^2dρ) ^ ^R-dQ> wn^cn Puts t n e Hamϊltoήian into the form

H{p', x', π', ξ', ε) = hΩ{π', ξ') + ε2h{p', x')

+ Z{p', x', π', ξ, ε) + M{p', x!, π'', ξ', ε), (7.14)
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where Z(p',x',π\ξ',ε) is in normal form with respect to the resonance module Jί.
Moreover in the domain @κ_UtQ> one has the bounds

\hΩ(n',ξ')-hΩ(π,ξ)\<25Eδ\

/ S \2/(τ+l)

\h{p\x')-hip9x)\<<BEδ2[ — \

\Z^(p',x',πf,ξ',ε)\<25Eδ\ (7.15)

2/(τ+l) Γ τ _j_ 1 /Λ \2/(τ+l)

exp

where

' yd2 * x ' (/Λb)

In fact, the condition (7.13), which follows from (7.12) by requiring r o p t ^ l ,
introduces, besides the threshold δ^1, an effective threshold, in the sense that above
the latter one the perturbation procedure is useless.

It is now straightforward to remove the dependence on r also from the estimate
given in Corollary 7,2, thus obtaining the following

Corollary 7.4 The normalized part hΩ(π\ξ') + s2h(p',x') + Z(p',x',π\ξ',ε) of the
Hamiltonian (7.14) admits v — dim Jί independent prime integrals of the form (7.7),
and one has the bound

β / s \2/(t+l)

\Iμ(p\x\π\ξ\ε)-Iμ{p9x9π9ξ9ε)\<a—\\IJR-dδ
2[ — ) , (7.17)

ho \ΰ*ι/

with & given by (7.16). Moreover, the time derivative of Iμ taking into account the

full system (7.14) is bounded in the domain @R__2d,6 by

|/μ(p',x',π',^,ε)|<^^exp| H " ^ I WΛR ( 7 1 8 )

with srf defined by (7.16).

8. Connection with the Main Results

We show now how the results of the previous section can be applied to the models
discussed in Sect. 2. Coming back to the Hamiltonian (1.1), let f(p,x,π,ξ) be an
analytic function of its variables in a domain of the form ^R x Δη, where C3R is
defined by (2.12), and Δη has the form

4 = {(π^^lπ^gfyβΓi/M^i ^^f lVM^jgv} , (8.1)

Ω being defined as in (2.1). Let now .F^sup^ x^ \f(p,x,π,ξ)\, and consider the
power series development (4.1), which can be given the more explicit from
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Then, by using Cauchy's inequality, in the domain $R one has the bound

I f(s,l)( \ι < _ £ Q(k-j)/2

\J j,k {P>x)\ ^ - 7 + 7 "

Performing the change of variables (2.2) we now get

/<*•% x, π', ξ') = λ«-*

so that, by ignoring the power of λ which does not contribute to the norm, and
noting that the factor Ωij~k)/2 cancels out, just due to the initial choice of Δη in
(8.1), the coefficient of π'jξ'k is bounded in &R by F/ηs + ι. Since fsJ)eΠs+h we
immediately get

( Ϊ + ^ ( 8 2 )
and this is the bound to be used in evaluating the norm of Hs in (4.6), by just
computing the number of terms in the sum, which, since \j\ = l and \k\ = s, does

not exceed ( )( ) ̂  vs + ι. So, by the definition (4.14) of the norm,

\ l J\ s J
one has

ι = o\_ η J

provided one takes

V J R l - σ L + 1

σ = — , £ = — σF. (8.3)
fy 1 - σ

These general estimates of the values of σ and E can be used in Theorem 2.1.
Better values of these constants, mainly for what concerns the dependence on

v, can instead be found if one knows more about the perturbation /. For example,
consider the case of a diatomic gas of v identical molecules. Then /(p, x, π, ξ\ as
well as h(p, x), can be written as the sum of v(v — 1 )/2 terms due to the interaction
between pairs of molecules. Thus F, as well as Eo, turns out to be of order v2,
while the number of terms in the sum (8.2) turns out not to exceed 2s + ι. Moreover,
since the interaction does not depend on the momenta π, one has K = 0, so that
the values of σ and E can be replaced by

σ = γ , E = σFov(v-ll (8.4)

with constants η and Fo independent of v.
The proof of Theorem 2.1 is now just a matter of straightforward computation.

First take ε = ρ = δ, and recall that ε = λ~{1/2\ so that it is natural to assume also
(5^1, which in turn gives δ = 1. Then take d = R/4, so that the canonical
transformation is defined in the domain @LR ρ, and the image of Q)LR ρ contains
@LKρ and is contained in @iR}Q. With these settings one computes λ^=^δ~2.
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Finally, the estimates for Z(pf, x', π', ξ\ λ) and 0&$\ x', u\ ξ\ λ) are multiplied by /,
because the Hamiltonian was previously divided by the same factor. The inequalities
(2.19) then follow from (7.15) by just substituting the explicit expressions (7.16) for
sJ and <% and the trivial estimate J* <22e~~\ which in turn follows from the
definition of δ%u and this proves Theorem 2.1.

Let us now add a few words on the very minor changes which are needed in
order to prove the local version of the theorem, namely Theorem 2.Γ. We just
notice that all theorems given in Sects. 5 to 7 admit a local formulation, which is
obtained by simply considering domains of the form ΘRQ (p, x) in place of the full
domain Q)RQ , and replacing E by E(p, x), as illustrated in Sect. 2. The only point
where the global constant E is needed is the choice of the optimal normalization
order ropt in Sect. 7 (otherwise we would not obtain one and the same canonical
transformation on the whole domain Q)RQ ). The proof then immediately follows.

For what concerns Corollary 2.2, (2.20) follows from (7.17) by using \\Iμ\\R-d =
\μ\(R-d)2=^\μ\R\ and ^<2e~τ; (2.21) follows from (7.18) by substituting
the explicit expressions for s/, d and | | / J | Λ . This proves Corollary 2.2.

Let's now come to Corollaries 2.3 and 2.4. By the estimate (2.21), which holds
in the domain @ι/2Rρ, one immediately gets, for | ί | < min(T0, T),

1 £ l | | , (8.5)

*»
and such estimates can be made similar to (2.20) by using the inequalities λ> eτ+1λ
λ'1 < 2~9γR2/E0 and y<\Ω\9 from which (2.22) easily follows. The first of (2.25)
is nothing but (8.5) with μ = Ω, and the second one follows from the energy
conservation, by using

\h(p'(t\x'(t)) - ft(p'(O),*'(O))| < \λhΩ(π'(t\ ξ\t)) - λhΩ(π'(Q>\ £'(0))|

+ 21 Z(p\ x\ π'9 ξ\ λ) I + 21 <0(p', x', π', £', λ)\9

and using the estimates (2.19) for Z and ^ . This proves Corollary 2.3. Next, (2.26)
and the first of (2.27) are obtained by summing up the deformation due to the
canonical transformation, which is estimated by (2.19) and (2.20), to the change
above due to the noise of the remainder; the second of (2.27) is still obtained via
the conservation of energy in the original Hamiltonian (2.16). This concludes the
proof of the corollaries.

Part C—Technical Sections

9. Technical Lemmas

We prove here some technical lemmas used in the paper.
First, we consider the canonical transformation (2.8) to complex variables (π\ ξ').

The norm of a function fellA is changed according to the following

Lemma 9.1. For a function f(p,x,π,ξ)eΠΛ on the domain $R the transformed
function f(p, x, π, ξ) under the canonical transformation (2.8) also belongs to ΠΛ, and



Holonomic Constraints and Freezing High Frequency Degrees of Freedom 581

its norm is bounded by

\\f\\R^2Λί2\\f\\R. (9.1)

Conversely, for a function g(p, x, ft, ξ)eΠΛ on the domain &R the transformed function
g(p,x,π,ξ) under the inverse of the canonical transformation (2.8) also belongs to
ΠΛ, and its norm is bounded by

(9.2)

Proof. T a k e / = £ fjk(p,x)πjξk, and perform the substitution

Σ (iιV-' Σ (kι)ik'-rnΠr
j,k l=ls = O \ S j r = O \ r J

so that feΠΛ, and using the definition (4.13) of the norm one has

R Π Σ ( i ι ) Σ (kί

/ I 0 \ S /

= 2Λ'2RΛΣ\fjk\R,

so that (9.1) follows. The statement about the inverse transformation is proven by
essentially the same computations, and this concludes the proof of the lemma.

Such a result is immediately extended to a function of class 0>

ΛfK by the following

Lemma 9.2. For a function f(p, x, π, ξ, ε) of class ̂ ΛrK with O^Λ^K on the domain
$R the transformed function f(p, x, ft, ξ, ε) under the canonical transformation (2.8)
is of class 0*ΛtK, and its norm is bounded by

NR(f)S2KI2NR(f). (9.3)

Conversely, for a function g(p, x, ft, ξ, ε) of class 0ΛίK on the domain @R the transformed
function g(p, x, π, ξ, ε) under the inverse of the canonical transformation (2.8) also is
of class &AiK, and its norm is bounded by

NR(g)S2K/2NR(g). (9.4)

The proof is a straightforward application of Lemma 9.1, by only taking into
account the fact that / and g are polynomials of degree ^ K in the variables π, ξ
and ft, ξ respectively.

We come now to the technical lemmas related to derivatives and Poisson
brackets. In estimating the derivatives of the coefficients in the polynomial
expansions in π, ξ we make use of Cauchy's inequality. Precisely, for an analytic
bounded function φ(p, x) on a domain &R and for any positive d < R Cauchy's
inequality reads

(9.5)
όφ

dpι R-d

^W\R
= d '

dφ

dxj R-d

\<P\R

d
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Using these inequalities we can prove the

Lemma 9.3. For a function feΠA on the domain $R one has, for 0<d<R,

dpt R-d

,1

dx, R-d

R, l ^ v . (9.6)

Proof. Using the form (4.7) for /, compute

8f _γdfjk 3/

so that, by the definition (4.13) of the norm and the Cauchy's inequality (9.5), one has

<R
Λ

Spi R-d

i.e. the first of (9.6); using now the trivial inequality Λ(R - d)Λ~1 ^ RΛ/d for
0<d<R and Λ^.1, one has

R-d
- d)Λ-ι Σ\fjk\R S ]:

jk &

i.e., the third of (9.6). The derivatives with respect to x and ξ are bounded in exactly
the same way, so that the lemma is proven.

Such a result is extended to functions of class
A,κ

the

Lemma 9.4. For a function f of class 0* AX on the domain # R one has, for 0 < d < R,

~d

Proof Using the form (4.9) for /, compute

df dfv-m)'

dp i Λ^j + m^K dp i

then, by the definition (4.14) of the norm and by Lemma 9.3, one has

(9.7)

= Σ

Λ^j +

dfu ' I f ( ^ ' ' m ) II

and the first of (9.7) follows. The remaining inequalities are proven in exactly the
same way. The lemma is thus proven.

Concerning the Poisson bracket, we first consider two analytic bounded
functions φ(p,x) on the domain @R and φ'(p,x) on the domain ^ R _ d ' , with
0 < d! < R. In such a case we use the bound
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where 0<d<R— d!. This is nothing but a trivial generalization of Lemma 2 in
the first part of the paper.

Using such results we prove the

Lemma 9.5. For two functions feΠΛ on the domain &R and f ΈΠ'A, on the domain

^R-d' with 0 = d' < R, and for any positive d < R — d! one has

(9.9)

Proof Using the form (4.7) for / and /', compute

{/>/'},.*= Σ {fjk,fh'}p.χ^+J'ξk+k' >
jkj'k'

then, by the definition (4.13) of the norm and by (9.8), one has

ΛR-d'-dύ{R-d'-d)A+A> Σ \{fjkJj'k'}PtX\R-d'-a
jkj'k'

and the first of (9.9) follows from the definition of the norm. In order to prove the
second one computes

jkj'k' 1=1 7liQi

then, by the definition (4.13) of the norm, one has

Σ
jkj'k'

j'k'

and the second of (9.9) follows from the definition of the norm. Here the inequalities
V

Σ UiK +ΪM ^ΛΣiK +jd ^ A A' and s(R -SY'1^ (Rs/S) for 0 < δ < R and s ^ 1
1 = 1 I

were used. The lemma is thus proven.
Such a result is extended to functions of class &>ΛK by the following

Lemma 9.6. For two functions f of class 0>ΛK on the domain $R and f of class
^'Λ',K' o n tne domain yR-d> with O^d' < R, and for any positive d<R — d! one has
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(9.10)

Proof. Using the form (4.9) for / and /', compute

{/>/'}„» = Σ Σ zl+v{f(Um)-r''m'X,x;
Λ ^ l + ί K A ' ^ Γ + ' ^ K '

then, by using the definition (4.14) of the norm and Lemma 9.5, one has

IyR-d'-d\\Ji J jp,x)=2^ ZJ I' U J ]p,x\\R-d'-d
l,m V,m'

and the first of (9.10) follows from the definition of the norm. The second inequality
is deduced by essentially the same computation, and the third one immediately
follows from the previous ones by {/, /'} = {/, f'}PfX + {/, f'}πtξ, so that the lemma
is proven.

10. Proof of the Theorems on Canonical Transformations

In order to prove the theorems on canonical transformations of Sect. 5 we must
estimate the application of the operator Tχ to a function /(/?, x, π, ξ, ε). We shall
consider the following cases.

i. / is one of the canonical coordinates p, x. In such a case we shall denote by z
any of these coordinates, and the transformation will be denoted by

Tχz= £ z r . (10.1)

11. / is one of the canonical coordinates π, ξ. In such a case we shall denote
by ζ any of these coordinates, and the transformation will be denoted by

Tχζ=Σίr (10.2)

v

iii. / has the form Iμ(π, ξ)= Σ (μJ2)(πf + ξf), with 0 φ μeRv. In such a case the
1=1

transformed function will be denoted by

TχIμ= £/,. (10.3)

This is similar to considering a function of the variables π, ξ only. In particular
the unperturbed Hamiltonian hΩ has exactly such a form, with μ — Ω.

iv. / coincides with h(p, x). In such a case the transformed function will be
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denoted by

Tχh=ΣK- (10.4)

This is similar to considering a function of the variables p, x only, i.e. a function

of class ^o,o
v. / is a generic function f(p,x,π,ξ,ε) of class ^ΛtK for some K^Λ^O. The

transformed function will be denoted by

TJ= Σfr- (10-5)

Hence, the sequences {zr}r^0, {ζr}r^0, {Ir}r^0, {K}r*o, a n d {/r}r=o are recursively
defined as in (5.2), i.e.

I0 = I, Ir=ί-Lχ]Ir.j,

o = h, hr= ΣJ-LxA-j

fθ=f, fr=ΣJ-^fr-J- (10.6)
7 = 1 '

Before coming to the estimates on the sequences {zr}r^0, {ζr}r>0, {/r}r>0,
{K}r^o> a n d {/,-Uo? w e generalize Lemma 9.6 by giving the estimate for the
repeated application of the Poisson bracket.

Lemma 10.1. Let {Λι}ι^ί and {Kι}ι^1, with X ^ / 1 ^ 2 , be sequences of integers,
and {θjι = o> a sequence of functions, with θz of class ^ΛuKι on a common domain &R.
Let g be any of the functions z, ζ, Iμ(π, ξ), h(p, x) andf(p, x, π, ξ, ε) above, and consider
the sequence {ns}s>0 of functions recursively defined by

no = 9> 1s = Lφ-ί. (10.7)

Then, for s §: 1 one can determine three sequences {Ms}s> ί, {Ns}s> x and {As}s> 1 such

that ηs is of class ^MS,NS

 and, far any positive d < R, one has the estimate

NR.d(ηJ£A,. (10.8)

The sequences {M s } s g l , {AfJ^j and {^ s} sg l are recursively defined as follows:

lifg = z, then M1=Λ1, N1 = K1, A1^~NR(S1)

ii.ifg = ζ, then M^Λ.-l, N^K.-ί, A^^N^)
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in.ifg = Iμ9 then M,=AU N,=KU A, = ^NR($1)\\Iμ\\R

1
iv. ίfg = h, then M1=Λ1, N1=K1, A1=—^NR(Q1)\h\R

2
v. ij g-j, t en ί - x + - , i - i + , ι ~ ψ R{ i) R\J )

(10.9)

and, for 5^2,

lie2

As = -^NR($s)As-i- (10.10)

Proo/. The fact that /?s is of class ^MS,NS immediately follows from the definition
of Ms and Ns, and from the algebraic properties enunciated in Sect. 4. Moreover,
for s = 1 the inequalities (10.9) are trivial consequences of Lemmas 9.4 and 9.6,
taking into account that the Poisson brackets {θ l5z} and {θ l5£} are nothing but
derivatives of θ x , and recalling that Iμ and h depend only on π, ξ and p, x respectively.
So, we fix s > 1 and d, and introduce the sequence of domains @R_g, with d = d/s,
for 0 ^ / ̂  s. We start with iVΛ_j(fh) ^ s2A1? where ^ x is known by (10.9) and the
factor s2 has been introduced because the bound holds in the domain ^R_~ά, and,
for 2 ^ / ̂  s, we use Lemma 9.6 with (/ — 1)5 in place of d' and d in place of d, and
obtain

Such an inequality can be applied s times, and gives the explicit estimate

NR-dtys) — s 2^i Π Ngfti), (10.11)
ι = 2 Id

which holds for any s > 0. It is now immediate to check that (10.10) holds for 5 = 2.
To prove it for 5 = 3 we use induction. Write the right-hand side of (10.11) by
isolating the term / = 5 in the product, and compute

1 1 1 7 Λ 2 A 1 * V " ί / \ a _ _ l J J 2 -KX-sJ - " A ^ l Id2

2se2

Here the inequality (sls—l)2i $~l)<e2 was used. The concludes the proof of the
lemma.

We can now come back to the operator Tχ, and prove the

Lemma 10.2. For a given generating sequence {/;,}„>! with χs of class &2s + 2As o n
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a domain $Rf and for functions z, ζ9 Iμ(π, ξ), h(p, x) and f(p, x, π, ξ, ε) as in Lemma
10.1, with hΩ(π,ξ) of class ^2,2> h(p,x) of class &>OtO and f(p,x,π9ξ9ε) of class £P ΛK

on the same domain <SK9 the sequences {zr}r^0, {ζr}r±o, UJ^o> {K}r*o> and {fr}r^o
defining the transformed functions under the operator Tχ have the following properties
forO<d<Randr^l:

I zr is of class 0>

lr + 2Λr, and NR_d(zr) ^ Gr,

ii. Cr is of class 0>2r+1Ar_ί9 and NR_d(ζr)<> Γr9

iii. Ir is of class &2r + 2Ar> an^ NR_d(Ir) ^ C r,

iv. hris of class 0>2r + 2Ar, and NR_d{hr)^Dr,

v. frisofclass0>2r+ΛAr + κ, and NR_d{fr)^Br. (10.2)

The sequences {GΓ}r^l5 {Γr}r^, {Cr}r^19 {Dr}r^ and {Br}r^ are recursively
defined by

G1=~NR(χι),

ci=^2NR(Xl)\\IJR, (10.13)
d

_ 1

1 - ^ 2 Λ U l ) l I Λ »

2

αn<i

2 ^ 2 ^ „ , + l j v

_j2 / j j v J • " / ^ ' K V Λ j / 1 r — j > i i y R \ Λ r J >

?p2r-l 1
: — o ) 7 ( r ~~7 "

^ j = i

NR(χr)NR(f). (10.14)

Proof. That zr is of class ^2i- + 2,4r>C i s of class ^>

2r+i,4r-i> h i s of class ^ 2 c + 2,4r>
hr is of class ^2r+4,4r+2 a n d fr ^s °f class &2r+ ΛAr+K easily follows from Lemma
10.1. So, we concentrate on the bounds.
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Writing the recursive definition (5.2) in the equivalent form

r Σ J - j + Lχrf, r > l , (10.15)
j = i r

we immediately find Gί9 Γl9 Cl9 Dx and B1 from Lemma 10.1. The same holds
for the last term in the right-hand side of the recursive definition of Gr,Γr, Cr,Dr

and Br. So, we only need to discuss the first term in the right-hand side of (10.14),
which is the really recursive part of such formulae. This has the same form for all
the sequences, so we only consider the sequence for J5r, i.e. the last one. Looking
at (10.15) one immediately sees that fr = YjcaEaf for a suitable set of indices α,

α

where each Ea is a composition of at most r operators Lχι, and ca a suitable set
of coefficients. Thus, from Lemma 10.1 on the repeated application of Poisson
brackets, one has NR_d(Eαf)^Aα, where Aα can be explicitly computed via the
recursive formula (10.10) once the actual factorization of Eα is known. So, one has
NR-d(fr) S Yj\cα\Aα. We look now for a recursive bound of the latter quantity. If

α

we assume that the actual factorization of fs = ΣEβf is known for 1 ^ s < r, which
β

is obviously true for r = 2, then the definition (10.15) immediately gives the
factorization of fr (notice that the set of indexes β actually depends on s). So, in
order to obtain a recursive bound, we assume that the constants Aβ are known,
and that ]£ \cβ\Aβ g Bs, with known constants Bs, and use Lemma 10.1 to evaluate

β

a single term in the factorization of LZ j/ r_7 = 2LcβLχjEβf. This gives
β

2e2(r — 7 + 1)
~ ^ '-NR(χj)Aβ.

Here use has been made of the fact that the only relevant information needed in
applying the recursive formula (10.10) is the number of Poisson brackets in the
actual factorization of Eβ, in our case at most r—j, and the norm of χ7 . The
contribution of Lχ /,_ 7 to ]Γ|cJ./4α can then be estimated by simply performing

α

the sum over the set of indexes β, which is a trivial task, since Aβ is multiplied by
a coefficient which does not depend on β, and gives

2e2(r-j+\)

Finally, we perform the sum overj which appears in (10.15), and add the estimate
for LXrf, and obtain £ | c j / l a ^ Br, with Br defined by (10.14). The lemma is thus

α

proven.
We specialize now the contents of Lemma 10.2 to the case, assumed in Theorem

5.1, in which the generating sequence {χι}ι>ι is characterized by the condition that
NR(χι)^(βι~1/l)Φ for some real positive constants β and Φ. We have the
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Lemma 10.3. Consider the generating seguence {χ j^ i , the functions z, ζ, lμ(π,ξ\
h(p,x) andf and the sequences {zr}r^0, {ζr}r^0, {Ir}r^o> {K}r^o> and {fr}r*o a s ίn

Lemma 10.2. Assume moreover that there exist real positive constants β and Φ such
that NR(χ^(βι-ηϊ)Φ for ί ^ l .

Then, for any positive d^R and for r ^ 1 one has the bounds

e2Φ

2e2Φ

~12Φ
~NR(f). (10.16)

Proof Using the hypothesis on χι in the recursive formula (10.13) one immediately
has, by Lemma 10.2,

(10.17)

with

Λ-f

Φ ^ - 2β2Φ r ~ 1 - Φ
β i = ? I Λ | « . β, = - ^ - Σ ( r - j + i ) ^ - 1 D , - J + ^2i5 r-ΊΛIi t,

Φ ~ 2^2Φ r - 1 2Φ

(10.18)

Consider now the last of (10.18), and take r ^ 3. By isolating the term j = 1 in the
sum, replacing by j + 1 in the remaining ones we obtain
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It is now an easy matter to check that the latter two terms do not exceed βBr_1,
so that one has

Moreover, it is immediately seen that this holds also for r = 2, so that one has

and the last of (10.16) follows from the definition (10.18) of B1. The remaining
inequalities in (10.16) are obtained in essentially the same way. The lemma is thus
proven.

We can now come to the

Proof of Theorem 5.1. As in Lemma 10.2, denote by z any of the canonical
coordinates p, x and by ζ any of the coordinates π, ξ, and recall that zr is of class
^2r+2,4r a n d Cr of class ^ 2 r + i,4r-i I*1 order to investigate the convergence of the
series defining Tχz and Tχζ we follow the procedure illustrated at the end of Sect.
4, making use of the explicit estimates on the norms given by Lemma 10.3 and
the definitions (5.5) and (5.6) of δ, J a n d δ%, and get

δ3Φ _ /2e2Φ

provided δδ < δ^. This shows that the canonical transformation defined by Tχ is

analytic. Using now the conditions g ̂  ε/e2 and δδ ̂  δJ^/2 one easily checks that

the inequalities (5.7) hold, and moreover that (2δ4Φ/d) < d and (2δ3Φ/d) < gd, so

that @R_2d,ρ
 c Tχ(@R_dJ c Q)KQ. This concludes the proof.

We come now to the

Proof of Theorem 5.2. First, we prove that Tχf is analytic in Q)R__άq. Still applying
the procedure illustrated at the end of Sect. 4, by Lemma 10.3 and the definitions
(5.5) and (5.6) of <5, J a n d δ^, one has, for (p\x',π',ξ')e@R_dtρi

2Φ ίle2Φ
\Txf(p',x',7t?,ξ',ε)\Z-τNR(f)Σ[

ΛNR(f) ^ )

- ~ \ 'NR(/). (10.20)

On the other hand, it is an easy matter to see that if | f(p,x,π,ξ,ε)\^a on the
domain @RiQ, then there exists a positive constant C such that NR(f) ^ C'a, so that

TJ(p\ x', π\ ξ\ ε)\<Ca, C = 2δA?p-AC. (10.21)
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The actual size of C is not relevant in what follows. Coming to the formula (5.8),
namely the exchange theorem, denote by Z)α(p, x) a polydisk of radius α in the
variables (p, x) with center in (p, x), and consider the power series expansion of
f(p,x,π,ξ,ε) in the polydisk DR(p,x) x ΔρR, with (p,x)e^. This means that we can
write

/(p, x, π, ξ9ε)= (10.22)

f(l) being an homogeneous polynomial in the variables p, x, π, ξ, and also a function
of class 0*ΛtK, and such series converges in the domain DR(p,x) x ΔgR, where / is
analytic by hypothesis. We prove now that at every point (/?', xr, π', ξ') of the polydisk

(Tz/)(p', x', π', ξ', ε) = ', x', π', ξ\ ε). (10.23)

Indeed, the convergence of (10.22) means that for any η > 0 there exists L = L(η)
such that for L ̂  L one has | f(p, x, π, ξ,ε)— ^ / ( 0 (p, x, π, ξ, ε) | < ̂  for (p, x, π, ξ)e

DΛ x 4 o Λ, and we can use the fact that / — £ / ί 0 ̂ s a function of class 0*ΛtK, the

linearity of Tχ and (10.21) to compute

(Tχf)(p\x\π\ζ\ε)-

which implies (10.23). So, in order to prove (5.8) for / it is enough to prove that,
for any /, one has

(Txf«W, x', π', ξ', s) = fil)(Tχ(p\ x', π', ξ', ε))9

i.e., that it holds for polynomials. This is immediately obtained by the properties
of Tχ of being linear and preserving products. So, we have proven (5.8) in a polydisk
DR_d(p,x) x ΔQ(R ί/} for any (p,x)e^, and this implies that the same holds on

Q( }

^d x ΔQ{R_d) = ®R_ά^ This concludes the proof.

11. Proof of the Theorem on the Generating Sequence

We determine the generating sequence γ}r) and the normal form Z ( r ) by recursively
solving Eq. (6.5). In fact, this is the general problem of solving an equation of the
form

g being a known function of class 0*ΛiK, with the condition that / also be of class
0>A κ. Let us discuss in some detail how such an equation is solved.

Let us first consider geΠΛ; the extension of the result to the class 0*ΛK

is immediate, by the linearity of the operator Lh . We can write g(p, x, π, ζ) =

YjQjkiPi x)πjζk> with known coefficients gjk(p, x). Assuming for / the same form with
jk
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unknown coefficients fjk(p,x), and taking hΩ in complex variables as in (2.7), we
compute

jk

Then, the solution of Eq. (11.1) above in ΠΛ exists and is given by

(11.2)

provided the polynomial expansion of g(p9 x, π, ξ) in π, ξ contains no monomials
πjξk such that (j — k)Ώ = 09 i.e. such that (j-k)eJfΩ, the resonance module
associated to hΩ defined by (2.10). This solution is unique up to a term
g(p,x,π,ξ)eΠΛ such that Lhng = 0 i.e. such that the polynomial expansion of
g(p, x, π, ξ) in π, ξ contains only monomials πjξk with j - keJiΩ. However, we will
not need to introduce such arbitrary terms, and the solution will be made unique
by simply taking g(p9 χ9 π, ξ) = 0.

Coming back to Eq. Lhaχs + ZS = Ψs, the obvious solution is to consider the
polynomial expansion of Ψs in π9ξ, and to split Ψs into Ψs + Ψs, by putting in
Ψs (the resonant part) all the monomials πjξk with-; - keJίΩ, and in Ψs (the
nonresonant part) the remaining ones; then, the equation above splits into Zs = Ψs,
which defines the normalized part of the Hamiltonian, and LhΩχs = ψs, which can
be uniquely solved by the method above, and gives the generating sequence.

In fact, we can do something better, by including into the normal form Zs more
resonant terms than in the previous solution, precisely also terms such that (j — k) Ω
is very small, although not vanishing. This is done by considering a larger resonance
module Jί such that Ji z> JiΩ, and by performing the splitting of Ψs by the
condition (j — k)eJί instead of (j — k)eJiΩ as above.

Coming now to the estimates on the solution of Eq. (6.5), we can prove the
following

Lemma 11.1. For a known function Ψs of class & 2S + IAS o n t n e domain ^R and with

reference to a resonance module Jί u M Ω, Eq. (6.5) admits a solution Zs and χs of

class ^2s+2AS s u c n t n a t o n e n a s t n e bounds

NR(ZS)SNR(ΨS), NR(χs)^-NR(Ψs), (11.3)
us

where ocs satisfies (6.10).

Proof We write Ψs in the form (4.9), i.e. Ψs= £ ει Ψs

Um) with Ψfm)eΠm.

Then, denoting by Zfm) and χs

Um) the solutions of Eq. (6.5) in Πm, using the fact
that { α j ^ i is a nonincreasing sequence, and by the definition (4.13) of the norm,
one finds

II ΎiUm) ii < jj ψ{l,m) ji ji v(l,m) 11 ^ 1 1 U/(l,m) jj

II ^ s \ \ R ^ l \ T s \\R, \\χs \ \ R ^ — \ \ Ψ S \\R.

0ίs

Finally, the statement follows from the definition (4.14) of the norm, so that the
lemma is proven.
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Before coming to the estimates on the generating sequence, let us obtain for
Ψs a more suitable form than (6.6). We claim that (6.5) and (6.6) can be written as

LhΩχs + Zs=Ψs, (11.4)

where

i - i , s ~ ^ l 5 * ' s ' ι ^ ~ ~ s ~ X s ' l £ 0 + ^ i 7 Us~ι + ~sS s ~ x '

This is seen as follows. Using the second and third of (6.4) for hh write (6.6) in the form

1=1 S 1=1 S S S

s - 1 / ^ s - 1 I s-l

" Σ ~LXl£ K-l-l— Σ ~LXi Σ Hm,s-l-
1=1 S I = l S m = i

The first four terms give exactly the expression (11.5), so we should only check
that the remaining terms vanish. To this end, use the explicit expression oϊ hs_x

and HUs_ι given by the definition (5.2) of Tχ, and compute the last two terms as

s 1 Z ^ χ i s ι i

S ι=ι S

and

s s i s ~ 1 5 I s~ι m s~1
 ΪYI

 s~m

Σ ——Hus-i= Σ ~T~ Σ ~ ϊLXmHltS-ι-m= X ~L

Xm Σ Hι,s-ι-m>
1=1 $ 1=1 b m=lS — l m=l S 1=1

and check that these terms compensate the negative terms in the expression above
for Ψs.

We are now ready to obtain the estimates on the generating sequence. Recalling
the result of Lemma 11.1, namely the inequalities (11.3), we note that we just have
to estimate the norms of Ψs9 for .1 g s ^ r, via the recursive formula (11.5). To this
end, we fix d, with 0 < d < R, and introduce a sequence 0 = d1< ••• <dr = dby

L __ i
d,= \—-d, lίs^r. (11.6)

Then we look for a recursive estimate of Ψs in the domain &R_ds, so that Ψr will
be estimated in ^R-d. Starting with 5 = 1 , one has, by (11.5), NR(Ψγ) = N^H^ S &,
and so also

NR(ZX)^^9 NR(Xl)^-. (11.7)

Then we look for sequences {ήs}lύsύr9 {ζs}o^s^r-u a n d {ζι,s}i^ι=r,o^s^r-ι such
that
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NR_dι + s{HUs)^ζUs^. (11.8)

Here we can take η1 = ζ0 = 1 and ζl0 = yι~1. In order to determine such sequences,

we put them in the recursive formula (11.5), and use also the definition (5.2) of Tχ

and Lemma 9.6 to get

" j=is(dι + s-dj)(dι+s-i

:

j=1s(d s + 1-d j)(d s + ι-d s_ j)oί j

 J S r

s-ί

Recalling now the definition (11.6) of ds, and using the inequality

for 1 Sj = s ~ 1? we immediately get

1

(da-dj)(da-ds-j)= d2

recall moreover that one has α7 ̂  ocr for 1 ̂ j ^

be defined by

, so that the sequences above can

Co = I? (11.9)

and

Σ
S j=

Σ
S j = i

(11.10)

L
S ι=ι

(s-l)CE0_



Holonomic Constraints and Freezing High Frequency Degrees of Freedom 595

with

In fact, we are only interested in bounding the sequence {??s}i^s^r. This is given
by the following

Lemma 11.2. The sequence {ήs}ι<s<r defined by (11.9) and (11.10) is bounded by

i r i 2 y + B . ) ( r . ) + 2 1
s L ocrd

2 J

Proof. First, it is immediately checked that one has ζUs = γι~1ζs, so that, using
also η1 = 1, we can write the sequence (11.10) in the simpler form

= I

s ι = i

Σ
1 1
Σ

S 1=1

C-.. 2S,Sr.

Next, we define two new sequences {θ s}0§ssr-i a n ( l {'/Jisssr

-Σ / ' ?A-« ' ^s^r (11.13)

S 1=1 S 1=1

with

•Eo). (11.14)

It is an easy matter to check that one has ζs ^ θ s and ήs^ηs, so we now look for
an estimate of the sequence {ηs}. To this end, we forget the limitations on s in
(11.13), and consider the sequences $ s and ηs as being defined for any 5. Thus, we
can look for two functions / and g of the complex variable z,

/ ( z ) = X 0sz
s, g(z) = Σ Άs^\

s=0 s = l

so that ηs can be evaluated via the sth derivative of g(z), being ηs = ^f(s)(0)/5!. Equation
(11.13) then gives
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and the conditions θo==f7i = l above can be translated into the equivalent
conditions #(0) = 0 and /(0) = g'(0) = 1. Here, use was also made of the identity
£ sys~1zs~1 =(1 — yz)~2. We note now that, by induction, the 5th derivative of

g(z) has the general form

s 2s-1 2s fj
gίs) = S Σ Σ /

where α ^ j are nonnegative coefficients. Indeed, this is true for 5 = 1 , and by
assuming that the coefficients βjtkJ of

s-12s-3 2s-2 fj

1 Mkk kPj k l(l-Cg)k(l-yz)

are known, one easily computes

s- l 2s-3 2s-2

g(s) = Σ Σ Σ βjx,
jl kί l
Σ Σ Σ

j = l k = ί l = s

1(1 - Q ) t + 1(l - yz)ι + 2 + (1 - Cg)k + 2(l - γz)ι + 2 + (1 - Cg)*(l - γz)ι+1 j

This would allow us to explicitly compute the coefficients ajkΛ. However, we can

avoid these horrendous computations, and note that g(s)(0) = Σ <*;,&,/> i e

gκ\\j) = L L, Lu Pi,k,ιL\J + κ)C + W = (5"" 1)(3C + 2y) ̂  p7-fc /.
j = l fc=l Z = s ' ' j,k,l

This allows us to obtain the final estimate

so that, by using the explicit expressions of C given by (11.14) and C given by
(11.11), we obtain (11.12), and the lemma is proven.

We can now conclude the proof of the theorem. Indeed, by (11.3) and (11.8)
one has NR _ d(Zs) ^ήs^ and NR _ d(χs) ̂  ήs(^/(xr\ and using ήs ^ ηs we immediately
obtain the bound (6.11) with β and Φ given by (6.12), so that Theorem 6.1 is proven.

Before concluding this section we prove the following

Lemma 11.3. The sequence {/zs}s>i defined by Tχ{r)hΩ is bounded by

V"1

) F. (11.15)

Such a lemma will be useful in bounding the remainder, since the estimate given
here is definitely better than the one given in Lemma 10.3 for a generic function Iμ.

Proof. Recall that the terms of the generating sequence are bounded on the
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common domain 2R_dQ, and look for bounds of hs in ̂ R_2ί/,ρ To this end, write
hs in the form

K = ΣLLxjK-j-Lhjca9 2^s^r, (11.16)
j = l S

K= tJ-LxA-r s>r

(the second line exists only for r > 1), and recall that, by (6.4), LhQχs = Zs - Ψs for
l^sf^r. The proof now closely follows the line of the proof of Lemmas 10.2. and
10.3. Precisely, we can build a sequence {Cs}s^1 such that NR-2d(K) = Q v * a ^ e
recursive definition

sα j = i

( J)NAXj)Cs-j, s > r,

analogous to that of Lemma 10.2 for the sequence / s. Here a factor s —j appears

in the sum instead of s — j + 1 as in (10.14) because hs can be computed by at most

s — 1 Poisson brackets, since Lh^s is already known and bounded in @R-d. From

this, using NR.d{χ^ψ-ηj)Φ and NR.2d(Zs- Ψs)^NR.d(Ψs)^{βs~ηsW one

gets NR.2d(hs)^Cs, with

l

Σ ( s - jCs ό Σ
Su j=\

2e2Φ r

CS = —JTX(S-J)P~1CS-J>
 s>r>

SCI j=i

which are the analogs of (10.18). Proceeding now as in the proof of Lemma 10.3
one gets

and this immediately gives (11.15), so that the lemma is proven.

12. Proof of the Theorem on the Estimate of the Remainder

According to Sect. 7, we now collect the results of the previous sections and give
the estimates for the Hamiltonian in normal form up to the order r. We start with the

Proof of Theorem 7.1. Starting with the Hamiltonian H(p, x, π, ξ9 ε) in real variables,
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as in the hypotheses of the theorem, we first perform a transformation to complex
variables via the canonical transformation (2.8), so that, omitting the primes, we
recover an Hamiltonian of the same form with ε2h(p,x) of class ^ 2 2 (in fact it is
unchanged) and Hs of class ^ 2 s + 2,2s + 2 o n t n e same domain @R9 while hΩ is changed
to the form required by Theorem 6.1. From the hypotheses of the theorem and
Lemma 9.2, the norms of the new Hamiltonian change according to

NR(ε2h)^E0, N^H^f'1^, 5 ^ 1 , (12.1)

with

γ = 2σ, ^ = 4E, (12.2)

while the norm of hΩ, or more generically the norm of Iμ, in unchanged, as is easily
computed. By substitution of these values in (6.12) we obtain for the generating
sequence the bound (6.11), as required by the theorem on canonical transformations,
with

Φ = 4A β=l2i4E + E,f-l)

+4, (12.3)

Since the bounds on the norms of the generating sequence are given in a domain
@R_dρ, we can apply the theorems on canonical transformations only on a smaller
domain, that we choose to be ®R_lάq\

tne quantity δ# in (5.6) turns out to be larger
than δ^r given by (7.1). This proves the consistency of the canonical transformation.

Coming now to the bounds, consider first the inequality (7.3). As in Sect. 10,
denote Tχ(r)hΩ = ]Γ hs, and also h{m) = ]Γ hs. By Lemma 10.2 one has that hs is

s>m

of class 2̂*4-2,4s> a n < i Lemma 11.3 gives the estimates for the norms in complex
variables. By Lemma 9.2 one can then produce the norms in real variables, namely

\ (12.4)

By defining now δlr = i((2e2Φ/d2) + β)'1, and substituting the expressions (12.3)

for Φ and /?, the definition (7.1) of δ^r is immediately obtained; moreover, by the

hypothesis δδ^ δ%r/y/2, on the domain @R_2d,ρ

 o n e n a s

Inequality (7.3) then follows by just recalling the exchange theorem, i.e. that hΩ(π, ξ)
is changed by the canonical transformation TXir) to hΩ(π',ξ') + h(O)(p',x',π',ξ',ε).

By similar computations one proves the inequalities (7.4), (7.6) and (7.8). Indeed,

denote Tχ(r)Iμ= £ /,,7>£= £ h, and 7>, ΣHs=Σ Σ H M - I % Lemma

10.2 one has that Is and hs are of class ^2s+2,4s a n d Hι,s-ι ^s of class ^25+2,45-2/ + 2
Again, we use Lemma 10.3 in order to get the estimates for the norms of Is, hs and
Hls^.1 in complex variables, and Lemma 9.2 to transform back to real variables,
so that we get
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22sΦ [2e2Φ V"1

NR-2d(Is)S^{-Ί2- + β) \\Iμ\\R-d,

22sΦ (2e2Φ V"1

NR-iMύ-ji-^-jΓ- + β) NR-M

(12.6)

Proceeding now as above, one gets

25E ί δδ
\< — \\Iμ\\R_dδ

Gcra

\ 2 m

) (12.7)

For m = 0, these inequalities immediately give (7.8) and (7.4). Denoting now Jf(m) =
s

Σ Σ HliS-h and recalling that in complex variables one has by hypothesis
s>ml=1

NR(Ht) ^ (2σ)ι~HE9 one gets

^Γ Σ Σ
0CrU s>ml=ί

Using now the definition (7.1) of δ^r, and using also δ> 1 one easily computes

1 = 1

so that one has

2 1 0 F 2

In order to get (7.6) we recall now that the remainder 0ί{r) is defined for r > 1 as
# w = h{r) + ε 2 ^ - ^ + Jtf{r\ (see (6.2) and (6.4)), so that from (12.7) and (12.8) one
obtains

and (7.6) follows from the trivial inequality (l/(r + 1) + δ^rE0/ard
2 + 26(5:}:f.£/αrίί

2) <
2/(r+ 1), which in turn is obtained via the very definition of <5#r. For r= 1 the
remainder reduces to ̂ ( 1 ) = /z(1) + Jf(1), and the estimate is trivially checked.

In order to conclude the proof of Theorem 7.1 we must prove (7.5). To this end,
we use the bound (6.11) on the norms of Z s, and again transform to real variables
by Lemma 9.2. This gives, for 1 ̂  s ̂  r,
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so that in the domain @R-2d,ρ ° n e has

and (7.5) follows by simply extending the sum to infinity. This concludes the proof
of Theorem 7.1.

Next, we come to the

Proof of Corollary 7.2. That Iμ is a prime integral of the normalized part of the
Hamiltonian (7.2) follows from the characterization of the normal form with respect
to the module Jί given in Sect. 2, and from the condition μLJί. Indeed, using
complex variables one immediately sees that {/μ,Z

(r)} = 0. The bound (7.8) has
already been proven above. So, we only need to prove the bound on the time
derivative lμ.

Using Iμ = {Iμ, $
(r)} and the expression of the remainder, namely ^ ( r ) = h(r) +

ε2hir-1] + Jf(r), we are led to look for bounds on {Iμ,hs}> {Iμ,hs} and {/„,#,,,_,}.
To this end we use the bound (12.4) on the norm of hs with (s/s + \)d in place of
d and Lemma 9.6 with d/(s + 1) in place of d and 2d in place of d + d\ and get

d2 \ d2

A similar computation using (12.6) gives

ίc _i_ 1\Λ 2 O2sίfi

s~ι + 2 Φf2e2Φ

We can now proceed as in the computation of the estimate (12.5), (12.7) and (12.8),

and get

24e2E ί δδ\2m

|{J,,ft<»>}(p^π^\6)|<-^W—J \\Iμ\\R,

24e2E ί δδ\2m

( 2)Eδ4() \\IJR,

210e2E (δδ\2m

( + 1)£5^4\{Iμ,je}(p\x\π\ξ\ε)\<^(m
CCrU

and collect all these inequalities to get, for r > 1,

«.rd
2
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so that (7.9) follows by again noting that the last factor, via to the explicit expression
of δχn does not exceed 2. Here too the estimate for r = 1 should be separately
computed by using ^ ( 1 ) = /z(1) -f Jf(1). The lemma is thus proven.
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