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Abstract. Motivated by multiplicative K-homology, and understanding
critical phenomena in some classical statistical mechanical models, we
construct actions of GL(oo) on the operator algebras of V. Jones and Ocneanu,
and analyse these in terms of embeddings of (7(l)-current algebras.

1. Introduction

In this paper we shall describe a construction of actions of the group GL(oo) on the
V. Jones and Ocneanu algebras, to which both authors of this paper arrived at
independently and for different reasons.

The first author was motivated by the search for a multiplicative analogue of
the known additive K-homology theory. In this the Jones' index of subfactors
would be the multiplicative analogue of the codimension of a subspace of a Hubert
space. This analogy would be in the same way as the classification of outer
conjugacy classes of automorphisms of the hyperfinite factor of type IIt is the
multiplicative analogue of the classification of unitaries modulo the compact
operators. The basic notion of a Fredholm module (ί), D) on an algebra $1 gets
replaced by a pair (A, σt) where A is a C*-algebra, σt a one parameter group of
automorphisms, while the unitary group H(3I) acts on A by automorphisms. It is
easy to get such a multiplicative module out of a Fredholm module (F), D) by the
CAR construction, and the possibility of replacing the CAR algebra by the
algebras of V. Jones and Ocneanu served as one motivation for the search of an
action of GL(oo).

The second author was motivated by statistical mechanics, in particular by the
transfer matrix method, and the problem of understanding critical phenomena
and the continuum limit in classical models such as those of Potts and of Andrews
et al.

The transfer matrix method allows us to reduce a two-dimensional classical or
commutative statistical mechanical model to a one-dimensional quantum or non-
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commutative model. Subsequently, taking a continuum limit one obtains an
Euclidean field theory, equipped with representations of the Virasoro algebra in
the case of conformal invariant field theory. This framework is now well
understood in the case of the nearest neighbour two dimensional Ising model [P,
AE, EL, A, CE, K]. This paper is the first part of an investigation into
understanding critical phenomena in other classical models, such as those of Potts
[B] and Andrews et al. [ABF], and representations of the Virasoro algebra at the
level of some one dimensional quantum model (before the scaling limit takes place)
set in the operator algebras of Temperley and Lieb [TL], Jones [J], and Ocneanu
[O]. Such algebras can be regarded as deformations of the Clifford algebra. This
investigation begins here with a study of embeddings of t/(l)-current algebras in
the one-dimensional quantum systems.

Consider the following two dimensional classical models on the square
lattice TL2\

(a) The Potts model [B]. At each site we have g-possible states, so that a
configuration of the system is an element of {1, 2, . . . , q}^2. The Hamiltonian for the
(standard) Potts model is 3tf(σ)= — £ Jδ(σ^σβ}, where the summation is over

nearest neighbours. a'β

(b) The Andrews-Baxter-Forrester model [ABF]. Again we have £ possible
states at each site, but we only consider configurations σ e {1, 2, . . . , ̂ }π2 such that
lσα ~ σβ = 1 f°r nearest neighbours α, β. The Hamiltonian is obtained by consider-
ing interactions around faces.

In the algebraic approach, we reduce the problem set classically in C(P\ the
continuous functions on a configuration space P to a non-commutative
C*-algebra A [P, AE, CE, K]. The programme is, given a classical equilibrium
state μ at inverse temperature β, to find a linear map φμ on the C*-algebra A, and a
map F-+Fβ from local observables in C(P) to A, such that a classical correlation
function can be computed using a knowledge of the quantum system alone:

Φμ(Fβ). (1.1)

One expects that the map F-+Fβ depends only on the inverse temperature β, and
that positivity of φμ is related to reflection positivity of μ [K].

Take for example the one dimensional 2-state Potts model [B]. This can be
described using the algebra Mq of complex q x q matrices. The Hamiltonian for the
Potts model with periodic boundary conditions is

^L(σ)=- X Jδ(σi9σi + 1 ) . (1.2)
i= -L

Then the partition function is

+ 1, (1.3)

if Tσ ί0, = exp (βJδ(σ, σ')), a q x q matrix when σ, σ' e { 1 , 2, . . . , q} . Similarly

<FyL

β=Σ F(σϊ exP - β^(°}/ZL = KFβ T2L + Vtr T2L+ί. (1 .4)

Consequently, letting L-^oo, we have

(FβΩ,Ωy, (1.5)
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where Ώ — g~1 / 2(l, .., 1) is the largest eigenvector of the transfer matrix
T = (eκ—l)eκ*f, iί(eκ — ί)(eκ* — l) = q, and / is the rank one projection on Ω.

One proceeds similarly in 2-dimensions by first taking a finite box [ —M, M]
x [ — L, L] and pushing each column {ί} x [ — L, L] onto one site (i, 0) and picking

up one copy of Mq for each site (/,0) in the row [ —M, M] x {0}. Thus

= trFfT 2"VtrT 2 i + 1, (1.6)

where now TM, Ff e (x) Mq) and one can proceed to take the thermodynamic limit
-M

as before. The transfer matrix Tcan be expressed, up to a scalar, as T= V1/2WVi/2.
Here V comes from vertical interactions so that

and

e 2 ί =l® ®/®l.. .®l
zίh position•ίh ^^ ^; ' ')

We have taken different interaction constants J1? J2 in the vertical and horizontal
directions with Kt = /?Jt . Then W arising from horizontal interactions is diagonal,
and

e 2 i + 1 ,£? 2 i + 1 = l < 8 > . . . <g> g ® l . . . ® l , (1.8)
i ί, ί + 1

q

where g= £ gj®gj£Mq®Mq, and gj is the rank one projection on Ωj = (δίj)
<ϊ=<L.

The family {e^^ of projections arising from the Potts model transfer matrix
satisfy the relations [J, B] :

e&^e—τei, (1.10)

where τ~l = q. Similarly, one can describe the transfer matrix of the ABF model (at
least at criticality) with the aid of projections satisfying similar relations with
τ~ 1 =4cos 2 π/(/+l), [KAW, P]. We note from Jones' classification of index of
subfactors [J], that an infinite family {et} of projections exists satisfying (1.9) and
(1.10) if and only if τ - 1 e[4, oo)u{4cos2π/(/-f 1).Y = 3,4,...}. Observe that
2 = 4cos2(π/4), 3^4cos2(π/6). One can indeed generalise the ABF models
[P] by taking any finite connected graph Γ, with vertices Γ(0) and edges Γ(1).
Then consider the space of configurations σ e (F(0))z2 subject to the constraint that
(σα, Gβ) e Γ(1) for all pairs α, β of nearest neighbours in Z2. Then in this model, one
gets a representation of the Jones' relations where τ ~ 1 =α2, and α is the largest
eigenvalue of a certain incidence matrix associated with the graph Γ.

From a lattice model, one gets a field theory by taking a continuum limit;
letting the lattice spacing £-»0, whilst simultaneously letting the temperature
approach the critical temperature, in such a way that e (correlation length) is
constant.



510 A. Connes and D. E. Evans

This is well understood in the Ising model [SMJ, PT1, PT2, SO'C]. Belavin et
al. [BPZ] suggested using conformal invariance to understand scale invariance of
special critical points. Conformal invariance is understood via representations of
the Virasoro algebras. A knowledge of which representations can appear tells us
something about the field theory and the nature of the critical points. The Virasoro
algebra is the unique central extension of the Witt algebra of vector fields on S1,
generated by Lm, meZ and a central element c with

tLm,Ln-]=(m-n)Lm + n+~m(m2-I)δm^n. (1.11)

Unitarity of the field theory, (coming from reflection positivity of the statistical
mechanical model) means L* = L_n. From physical considerations, one is also
interested in highest weight representations, where the energy of L0 is bounded
below. There is a vector |/ι), the highest weight vector, a scalar h such that L0 |/?>
= h\hy, Ln\hy = ΰ, n>0. In an irreducible representation, c is a scalar, and so an
irreducible highest weight unitary representation is determined by a pair (c, h) of
real numbers. It is known that such representations exist if and only if either [FQS,
GKO]:

(1.12)

c=l-6/w(ro+l), h = hptq(c) = l((m+l)p-mq)2-i']/4m(m+ί),

m = 2,3,4,. . . ,p=l,2,. . . ,m-l, fl = l ,2, . . . ,p. (1.13)

The question then arises of which representations correspond to certain statistical
mechanical models. The possible values of h are related to the scaling dimensions
or critical exponents. In this way, comparing with known exponents, one can
match [FQS, H] (1.13) m = 3 with the Ising model, m = 4 with the tricritical Ising
model, m = 5 with the 3-state Potts model, and m ̂  5 with the ABF models. On the
other hand we have noted how the Potts model and ABF models are related to the
Jones' classification via the transfer matrix method. It is thus natural to look for a
direct link between the FQS classification and that of Jones. In this present paper
we construct [/(l)-currents directly from the Jones algebra, from which, using the
Sugawara formula one can construct representations of the Virasoro algebra with
central charge c = 1 .

The operator algebras of Jones and Ocneanu provide a natural setting for
deforming the Fermi-Dirac quantization of the classical fields on S1. The Jones
algebra A(τ) is the C*-algebra generated by projections {eJ ieZ satisfying relations
(1.9) and (1.10). The Ocneanu algebra (see Sect. 3) A(Γ) is a slightly larger algebra
associated to a connected graph Γ such that the largest eigenvalue of its associated
incidence matrix is τ~ 1 / 2 . In general A(Γ) is generated by A(τ) and a finite
dimensional C*-algebra. In Sect. 2 we show how to embed a copy of an observable
algebra in an operator algebra, simply by constructing certain representations of
the Lie algebra g/(oo) from operators satisfying infinitesimal versions of the Jones'
relations. This allows us in Sects. 3 and 4 to embed the observable algebra in the
algebras of Jones and Ocneanu, with the Ocneanu algebra permitting a rich choice
of embeddings. The Hamiltonian L0 = £ ne2n generates time evolution, and has a
unique KMS state ωβ for each temperature β (if τ" 1 <4), and a canonical ground
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state ωβ (Sect. 5). The restriction of ωβ to any observable algebra constructed in
Sect. 4 is quasi-free. In the state ω^ we can construct (Sect. 6) (7(l)-currents Tn

satisfying [Tm, TJ = nδm, _„, to which one can apply the Sugawara formula.
What we have achieved is to construct representations of the Virasoro algebra

in the setting of the algebras of V. Jones and Ocneanu, with central charge c = 1. It
remains to construct representations of the Virasoro algebra with central charge
c — 1— 6/m(m+l) in the setting of the algebras associated with index τ" 1

= 4cos2π/(w + l). However, we have strong evidence from studying the charac-
ters of the discrete series of representations of the Virasoro algebra that this can be
done. It also remains to understand how the families of l/(l)-currents which we
have constructed, associated to a single graph Γ, fit together.

2. Representations of #/(oo) and of the Observable Algebra

If I is a countable set, let gl(I) denote the Lie algebra of |/| x |/| matrices over C, with
only finitely many non-zero entries, generated by the elementary matrices
{Etj: ij e /}. The first lemma shows the equivalence between those representations
of gl(I)9 where En are projections, with representations of the observable algebra
over the Hubert space /2(/).

Lemma 2.1. Let I be a countable set, & a unϊtal C*-algebra, and for each ίj e /, let
etj be elements of £$. Then the following pair of conditions are equivalent:

(2.1) (a) eu = el
(b) ef, = ejί,
(c) [eίj ,ej ,] = e;;-e/v,
(d) Leipejkj = eik if
(e) [e0 ,ej = 0 if

(2.2) There is an unique unital *-homomorphism π from the observable algebra over
/2(7) into &8 such that πiafa^e^.

Proof. (2.2) => (2.1) is clear as £(J—^αfα,- extends to a Lie algebra representation of

gϊ(/)
(2.1) => (2.2). Suppose / is ordered, say an interval in TL.
Let fi = eiί9 Ui = ei)i+l. From (2.1)(d) we have f{u{-ujt = ui9 (*). Multiplying (*)

on the left by /t, we see fiUft = Q, and then multiplying (*) on the right by ft we see
ujt = 0, and so fίuί = ut. Similarly, u f f ί + 1 = 0, ufft = uf. Hence from (2.1) (c), [ut, uf~\
= fi — f i + ι , we see ufui = fi+l(\—f^ uiuf = fi(\—fi+l}. Then Lemma2.1 will
follow from:

Lemma 2.2» Let I be a countable set, say an interval in TL. For each i e /, let fb u{

be elements of a unital C*-algebra &. Then the following three sets of conditions
are equivalent:

(2.3) Eachfi is a projection and the map Eu-*j\, EiΛ f ί ->Mf extends to a Lie algebra
homomorphism from gl(I) into 3$.

(2.4) There is an unique unital ^-homomorphism π from the observable algebra over
/2(7) into ^ such that π(afaΊ) = fb π ( a f a ί + l ) = u{.
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(a) j\ is a projection, (2.5)
(b) [/i,/J=0,
(c) [Mί9/)] = 0 if 7ΦU + 1,
(d) [w f,Mf] = 0 if |i-j|^2,
(e) ^^/; +1(i-/a ^?=/i(i-y;+i).

Proof. (2.5) => (2.4). LetX = { — 1, 1}7 with the equivalence relation — on .K given
by x ~ y if x = (x(0)> y = MO) e ̂ 5 *(0 = J>(0 except for finitely many coordinates, and
£ (x(i) — XO) = O We identify the gauge invariant CAR algebra on /2(/) with the

16 /

C*-algebra C*(G) of the groupoid of the equivalence relation G of ~ [R]. In
particular C*(G) contains C(K), and so gί5 the projection given by the characteristic
function of {xeK:x(i) = l}. Let vt be the partial isometry with initial support
g ί+1(l — g;) and final support gf(l — gί+1), which replaces x(z) = — l,x(ι + l)=l with
x(ί) = 1 , x(i + 1 ) = — 1 , which does not affect £ x(z) and so ι;f belongs to C*(G). The ̂
generate the equivalence relation, since given any sequence ( — 1,1, — 1, ..., 1) of
+ 1, one can always put the — Γs on the left by replacing any pair 1, — 1 by —1,1.
Thus to show that π:gbυi-+fbui extends to a homomorphism between the
C*-algebras C*(G) and $, one just has to check that it gives a covariant
representation of a groupoid. It is clear that π : g^/j extends to a homomorphism
of C(K) onto C*(fj). To show that U'.Ό^UI extends to a representation of the
inverse semigroup ^ of partial isometries on K, one notes that ^ is the universal
inverse semigroup of partial isometries on generators { v i 9 v f , f i 9 1 — /J subject to
the relations 2(a)-(e), which imply the infinitesimal Jones or braid relations:

^±^ = 0 t>? = 0 (2.6)

together with vivf±ί=0 = vf+^vi. To see that ^ is universal one merely observes
that any non-zero word in { v b v f , f b 1 — /)} can be uniquely expressed as

.Λ</p), (2.7)
where

(a) /(ε)= Π/fe), /(£;) = !, /i or 1 -fh and suppε={i:/;.φl} is finite.
i

(b) J^^fci+l,...,^} Ji^ki9 ji+l>ji, ki+1>ki9 υ*(Ji) = v £ . . . v f ι . We say
ϋ*(Ji) is starred, v(Jt) is unstarred.

(c) If J? = {/cί5 ...j'j+1), and one of {^*(J/),t;*(Ji+1)} is starred and one is
unstarred, then JfnJ ί + 1=0.

(d) supp(ε)n U J? = 0.
i= 1

We can then deduce that (π, (7) gives a covariant representation of the groupoid
^ on K and so gives the required embedding of the observable algebra on /2(/)
in .̂

Remark 2.3. The relations (2.6) give rise to Quantum Yang-Baxter equation in
that Ri(s) = Qxp(svί) satisfy:

Rt(s) jR/s') = Rj(s') Rfc) \i -j\ φ 1 . (2.8
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3, Local Structure

We start with a C*-algebra A with the following type of local structure over TL, To
every subset ΛcΊL is associated a C*-subalgebra A(A)cA in such a way that

if ACA\ then A(A)cA(A'), (3.1)

if d(Λ9Λ')^l, then A(Λ) and A(Λ') commute. (3.2)

Here d(A, A') — min (|f — j| \ieAJe A'}. We are also given an automorphism σ of A
such that

σ(A(Λ)) = A(Λ + 2), for any /ίeZ. (3.3)

Example3. 1. The Jones Algebra. If τ~ 3 e[4, oo)u{4cos 2π/m:m = 3?4, ...}5 let
A = Aτ = A(τ) be the C*-algebra generated by projections en,neTL satisfying the V.
Jones' relations

enem^emen, |m-n|^τ, (3.4)

enen±ιen = τen. (3.5)

For each subset A C Z, let A(Λt) be the C*-subalgebra generated byen,neA. Let σ be
the shift of 2, σ(eM) = eΠ + 2?

 so that conditions (3.1)-(3.3) are obviously satisfed.
There is an unique positive trace Tr on A(τ) called the Markov trace, such that

Tr(xeJ = τTr(x) xe/4(-oo,ro-l] , (3.6)

Tr(O = τ, Tr(l) = l . (3.7)

In particular, for τ~ 1 — \ = 4cos2π/4, A(^) can be identified with the even part
of the Clifford algebra over /JR(Z). More precisely let {yn :nεZ} satisfy the Clifford
relations yn = y*, {yn, ym} = 2δmn, so that Un = iynyn+ΐ are self adjoint unitariesin the
Clifford algebra AF =C*(yn\neΈ) satisfying the relations UnUm=UmUn,
|m-n|^2,andE7Π[/Π + 1=-L/B +^
the V. Jones relations (3.4) and (3.5), so that A(\] can be identified with the even part
of the Clifford algebra, namely A + = C*(yiy j : ί j e Έ}. (The algebra AF is graded so
that yn is odd.) Going from this real or Clifford picture to a CAR picture, one takes
a complex structure on l^(%) with real basis ηn such that z^n^in+i?
irJ2n + ι== ~rJ2n- Then the creation operators dn = (y2n + iy2n + ι)/^ are °dd? and
satisfy the canonical commutation relations {αn, αm}— 0, {an^a^} = δnm. In this
language we identify:

e2n = a*an, (3.8)

e 2«+ι = [l+(fl n -fl?)(α Λ 4iH-α? + ι)]/2. (3.9)

Then α*0M = e2n> α*αn+ι — e2n(^ ~"2e2n+1)e2n + 2 defines a Lie algebra homomor-
phism of g/(oo) into Afy.

Example 3.2. The Ocneanu Algebra. Let Γ be a graph, with base point *, Γ(0) the
set of vertices, Γ(1) the set of edges, so that Γ(1) consists of certain two element
subsets of Γ{0). We say that y e Γ(0) is even (respectively odd) if it can be joined to *
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by an even (respectively odd) number of edges. We let Γ|0) (respectively Γi0)) denote
the even (respectively odd) vertices. Let K be the Cantor set of all sequences (xv)ve%
with

Vv,(x v ,x v + 1 )EΓ ( 1 ) , (3.10)

x0 is even. (3.11)

On K consider the equivalence relation — with countable orbits given by (xv) ~ (yv)
if and only if xv = yv, except in some finite set of v's. Let A = AΓ = A(Γ] be the
corresponding C*-algebra. For each (finite) subset AcZ, let A(Λ) = AΓ(A] be the
C*-subalgebra generated by the following partial isometries fyy, : Both 7 and 7' are
elements of

^^7e(Γ<°r:(7;,7^^

if i , i + l , 2 m , 2 n + l e Λ ' } , (3.12)

where Λ' = { ί : d ( ί , A ) ^ l } , and y(j) = y'(f) iϊjφΛ. The partial isometry fy^y, has as
initial domain the cylinder set Zy = {(xv) : xf = yf, i e A'}, and it replaces any such (xv)
in Zy, by (yv) in the cylinder set Zy, where yv = xv,vφ A, yv = γ'v, veA. The shift by 2
on K induces an automorphism σ of A(Γ) satisfying (3.1)-(3.3).

Associated to the graph Γ is a symmetric 0-1 matrix A, indexed by the vertices
Γ(0), with entries Aρη equal to 0 or 1, according as (ρ, η) e Γ(1) or (ρ, η) φ Γ(1). We let
t(ή) = (ρ 6 Γ(0) : (ρ, η) e Γ(1)}. If the graph is connected, then there exists an unique
eigenvector (vρ)ρeΓ{o) with strictly positive entries, and αe(0, 1] such that

»,= Σ ««β, Σ «,2 = 1 (3-13)
ρ e t ( η ) ηeven

Then X(η) = ((o^vρ/vηY
/2}ρeΓ(0) defines a unit vector in £2(t(η}\ lfk^/GZ,δ,βe Γ(0),

let y% /] = {γe&[k'*]:γ(k-l) = δ, y(έ + i) = β}. Then for each neZ, let

e n = Σ X ( l ) ( Q ) X ( η ) ( Q ' ) f v , ΐ , (3.14)
>7

where the summation is over all η e Γ(0) if n is even or all η e Γ|0) if n is odd,
7, 7' e ^J ,̂ and 7(71) = ρ, y'(n) = ρ'. Then βπ is a projection, being identified with a sum
(over odd or even vertices depending on whether n is even or odd) of the rank one
projection on X(η) in End(/2(φ?))). The family enί satisfy the Jones' relations (3.3)
and (3.4) for τ-α2, so that ,4(oc2)C,4(Γ).

We define a trace Tr, called the Markov trace, on A(Γ) to be the unique state on
A(Γ) such that

Tr/7ι/ = 0 if y Φ / , (3.15)

y = Qf-k + 2υδvβ9 if ye&ff. (3.16)

Then

oo,m-l], (3.17)

l . (3.18)
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Consequently Tr|^4(α2) is the Markov trace on A(oc2}.
We emphasize that A(Γ) φ A(a2) in general, and we shall indeed see in Sect. 6

that

However we claim that A(Γ) is generated by A(ct2) and a finite dimensional algebra.
Let ρ (respectively π) denote the left (respectively right) action of Ak on Ak so that
ρ(Ak)' = π(Ak). We first note that there is an action ρ of Ak+l = A[Q, fc + 1] on Ak,
whose commutant is the (right) action of Ah__ l on Ak. The right action π of Ak_ ± on
Ak is given by

if y' = y f , )v/e^[0 fc], )>!,/! e0[0 fc-l], QE&k~l>k\ and π(/Λ</l)/;A/ = 0 otherwise.
To describe the commutant of the action of {/,,,,/, yΊί/c — 1) = (5} on fy>y, we note
that we have the freedom to change ye[0, fc-f 2], where y|[0,fc] = y, y(fc + l) = <5,
which can be described as an action ρ of Ak+ί as follows:

7o(fc) = 7(fe), ηί=y(k) = y'(kl η2 = y(k\ and ρ(/?,r)Λ,y' = 0 otherwise. The factor
Vη^Vη!2 is inserted to make ρ a ^-representation with respect to the inner product
<X y> = tr j;** on Ak _ : . Then ρ(Ak + 1)' = π(/4Λ), and ρ is faithful if every vertex which
is a right-hand end point of a path of length k-f- 1, is also a right-hand end point of a
path of length k — 1 (with the same left-hand and points). We assume that this is the
case. This will certainly be the case if the two restrictions of A2 to even and odd
vertices are irreducible matrices. Then ρ(ek+1) = Ek+lis the orthogonal projection
of Ak on Ak_1.

Lemma 3.3. // k is sufficiently large, Ak + 1 is the C* -algebra generated by Ak and

Proof. We take k sufficiently large that ρ is faithful. Let x£(ρ(Ak\ρ(ek+l))'
Cρ(Ak)

f = π(Ak). Then xEk+1=Ek+lx shows that x = xEk+ί(I) = (Ek + 1x)I
= Ek + 1(x)eAk-1. Hence (ρ(Ak)9ρ(ek + 1 ) ) f C π ( A k . 1 ) 9 and so Q(Ak+ί)

Corollary 3.4 The C*-algebra A(Γ] is generated by A(a2} and a finite dimensional
C*-algebra.

4. Embedding the Observable Algebra in Local Algebras

Let A be a C*-algebra with local structure as in (3.1)-(3.3) of Sect. 3.

Lemma 4.1. Let /Oeyl{0} be a projection andu0eA{0,1,2} a partial isometry; with
initial support σ(/0)(l— /0) and final support /0(1 — σ(/0)). Then there exists an
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unique *-homomorphίsmj from the observable algebra Θ over /2(2£) to A such that

jσ&(x) = σA(xlxe(9, (4.1)

j(aξaQ) = fQ9 (4.2)

j(a$av) = u0. (4.3)

Remark 4.2. Here σ& is the automorphism of the observable algebra 0 which is the
restriction of the automorphism σ on the Fermion algebra given by σ(yn) = γn + 2or
σ(aί) = aί + l (see Example 3.1).

Proof of Lemma 4.1. Let fi = σ\f0)£A{i},ui = σί(u0)eA{2i,2i + i,2i + 2} for ieZ,
Then {fi,Ui} satisfy conditions (2.5) of Lemma 2.2.

Let us now examine Lemma 4.1 in the context of the Jones and Ocneanu
algebras.

Lemma 4.2. Let Aτ be the V. Jones algebra as in Sect. 3.

(4.4) In A{0, 1,2} the projections e0(l —e2) and (1 — e0)e2 are equivalent.

(4.5) The reduced algebra of A{Q, 1,2} by e0(l — e2) is one-dimensional.

Proof \ (4.4). If u = τ-le0(i-e2)e1(\-e0)e2 = e0(l-τ-ΐe1)e2eA{Q,\,2}, [cf.
(Example 3.1)] then

(4.5) is clear from (4.4), A{Q, 1,2} — C*(e0, e l 5 e 2 ) and the Jones' relations.

Theorem 4.3. (a) For τ ~ r e [4, oo)u {4 cos2 π/m}, let A = A(τ) the V. Jones algebra.
Then for each £eTΓ, there exists an unique *-endomorphism jt of the observable
algebra (9 into A(τ) such thai

), X E & , (4.6)

i eZ, (4.7)

le2i+1)e2i + 2, ieZ. (4.8)

(b) For Γ a connected graph, let A — A(Γ) be the Ocneanu algebra, and GΓ be
the unitary group of the reduced algebra of AΓ{0, 1,2} by e0(ί —e2). Then for each
t e GΓ, there exists an unique *-endomorphismjt of the observable algebra (9 into A(Γ)
satisfying (4.6)-(4.8).

Proof. Using Lemmas 2.2 and 4.2, it only remains to show that the embeddings
are faithful. This can be shown by computing the Markov trace on the projection
/(ε) (in the notation of the proof of Lemma 2.2) in the centre C((+ l)z) of Θ, and
observing that this is non-zero.

It only remains to compute the group GΓ.

Proposition 4.4. For Γ a connected graph, let A = A(Γ) be the Ocneanu algebra.

(4.9) Any function of xv, vEΛ'\A = dΛ lies in the centre of A(A).
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(4.10) Let q™ be the function q%}((xv)) = V i f x n + η, and q(^((xv)) =lifxn = η. Then

(4.11) Let P(k\η,η'} denote the paths of length k from η to η'. Then if
qη~l]eQq(

η

ί}(l—e2)q(

η?
} is a projection of dimension #P(2\η,η') in A{Q, 1,2}.

(Here #(0) = OJ
(4.12) q(

n~
1)eQq(

n

1)(l-e2)q^) is a projection of dimension #t(η)-ί in ^{0, 1,2}.

Proof. (4.9): Any function of xv, v e dΛ is a linear combination of {gj,v) : η}. Then g^
= Σ fy, y e A(Λ\ where the summation is over all ye^Λ such that y(v) = η. Moreover
g(

η

v} is a unit for {fyi7>:y,y'e&A, y\dΛ = y'\dΛ, y(v) = η} and annihilates
{fy yf' y>Y £(£A'> y\dΛ = y'\dΛ9 y(v)φτ?}. Hence g(

η

v) commutes with A(A)

(4.10): We have

,4(0}= Θ Endt2(P2(η,η'))9 (4.13)
η>n'

where the summation is over odd η, η' E Γ(0\ We have as in (4.9) that
q(

η~
l} (respectively q^) is a unit for End/2(P2(α, /?)) if η = a (respectively

η = β), and annihilates End/2(P2(α, β)) if 77 Φα (respectively η + β} Hence
^~1)End^2P(α,α)qS/!

)-0 if η*η'. Consequently ^""1)e0^
) = 0 if η*η' as

e0e ® EndJ2(P(η,η)l [where we identify P2(α,α) with ί(α)].
αodd

(4.11): Take η,ηf odd vertices in Γ(0), ηή=η'. Then

where the summation is over all y7 e ̂ \^ Take y e ${

η°\ such that ^f(

e~
 1)^0^ί/1) being a

rank one projection in End/2(φ/)), there exists a unitary u in End/2(ί(^))e^.{0}
such that q(

η~
1}eQq(

η

ί} = ufγί},u*. Hence, since [w,//0,']=0 for each /e^2^, we see
that

where the summation is over all y' e ̂ l,2 ,̂ and which is of dimension # P(2)(^, η') in
End(/2(P(2)(^, ̂ '))) (Here if y E &Λl, yf E &A2, with y - yr on Λ\ r^A'2, we let yy' denote
the obvious element of ^Λ^A\)

(4.12): As in the proof of (4.11), we see that the dimension of
q(

η~
ί)e0q

(

η

1\\-e2)q(

η

3} in End/2(P(4)M)) is the same as that of q(η\l-e2)q™ in
End/2(φ/)). Now e2 is a rank one projection in End/2(ί(^)), and consequently its
complement is of dimension Φt(η) — \.

Corollary 4.5. // Γ is a connected graph, the reduction of the algebra AΓ{0, 1,2} by
£0(1 — e2) can be identified with

® M(N(η9η'))9 (4.14)
η,η' odd

where M(N) denotes the algebra of complex N xN matrices, and the summation is
over odd vertices η, η' in Γ(0) with

(415)
Φt(η)-\ when η = η' (4'15)



518 A. Connes and D. E. Evans

and #0 — 0. In particular, when Γ is the graph of a simply laced Dynkin diagram
(with base point * as indicated below) the group GΓ is as follows:

Γ GΓ

T3(m~1}

D 2m

0 1 2

2m-2

2m- 1

*=o
* = 1

* = 0

* = 1

*=o
* = 1

* = 0

* = 1

T3(m~2) 017(2)

T3m

T3w-40I7(2)

ττ3m+ 1

T8

T4®L/(2)

EΊ T11

T7φL/(2)

o i
* = 0 T10

* = 1 T5®U(2)

5. The KMS States of the Hamiltonian Σ ne2n

Let Γ be a connected graph, with Jones index τ~1 as in Sect. 3. lϊHm=
|

then lim Ad(eίHwί) defines a strongly continuous one parameter group σt of
w —>• GO

^-automorphisms of/1(Γ), whose generator we denote by L0. Clearly σf leaves τ4(τ)
and 7(6?) invariant for any embedding j of the observable algebra G in A(Γ) as in
Sect. 4, and on such an observable algebra coincides with the time evolution given
by the Dirac operator.

Theorem 5.1. Let Γ be a connected graph with Jones index τ~l <4.
(5.1) For each β>0, there exists an unique KMS state ωβ at inverse temperature

β for LQ. Moreover, the restriction ωβ \ A(τ) is also an unique KMS state for L0 \ A(τ]
at inverse temperature β.

(5.2) The states ωβ, ωβ\Aτ are factorial, and if τ~l Φ2, of type 11^.
(5.3) If j is any embedding as in Sect. 5 of the observable algebra in A(Γ\ there

exists a projection E of norm one from A(Γ) ontoj(Θ), such that ωβ = ψβ^ E, where ιpβ

is the restriction of the quasi-free state ωAβ to the observable algebra, and where
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ωAβ is the unique KMS state on the Clifford algebra Cliffc(<f2(S1)1R) for the
Dirac Hamiltonian, with chemical potential β~l log(τ/(l — τ), namely Dτ = D
-β"1 logτ/(l -τ). //;=Λ, for £eTcGΓ, then E takes A(τ) ontoj(Θ)cA(τ).

Proof. The Markov property of the unique trace Tr on A(Γ) shows that ω(x)
= lim Ύr(e~βHmx)/Ύτ(e~βHm) defines a state on A(Γ\ and which is KMS at inverse

m-+ oc

temperature β for σt. Let φ be any KMS state for σt at inverse temperature β, and
φm = Φ/Am, Am = AΓ[-2m92m\. Then ψm = φm(eβH™ )/φm(eβH™} is a normalised
positive trace on Am. Let Am denote the compact convex set of normalised positive
traces on Am, which can be identified with a subset of z! m ̂  {x e Rp: x^ ̂  0, £ X; = 1},
where p-(#(Γ(0)))2. Then by [E, Sects. 5-6], ΛmlAm+ί9 diameter Λm-»0, and

00

Pi Am can be identified with the unique normalised trace Tr on A(Γ). Hence given
m= 1

ε>0, there exists m0, such that for m^m0, (1 — ε)Tr5ίιpm^(l + ε)Tr. Hence for

0:

- T r ( e ~ β H ™ x ) / Ύ ΐ ( e ~ β H > » ) = ^pm(e~βHmx)/ιpm(e~βHm) -Ύr(e~βH

Thus φ(x)= lim Ύr(e βHmx)/Ύr(e βH™) = ω(x), which shows uniqueness.
w-> oo

The state ωβ ° j " 1 1 & on the observable algebra (9 is independent of the choice of
embedding) of & in A(Γ). In fact it is the restriction to (9 of the quasi-free state ωAβ9

where Aβ = τe~βD/(τe~βD + (l—τ)) = e~βDτ(e~βDτ + l), Dτ = D~β~1\ogτ/(l-τ}. In
particular, taking β — 0, the restriction of the trace on A(Γ) to & is the restriction of
the Powers state φ}_ on Cliffc(/2(Z)R), for λ = τ/(ί -τ).

Next we show that there exists a projection of norm one from A(Γ) onto the
observable algebra j(Θ).

Lemma 5.2. Let Γ be a connected graph. Consider the type II ί representation
associated wiί/z the trace Tr on A(Γ\ and E the orthogonal projection onj(Θ). Then
£(x)eM-2m,2m], for all x e AΓ( - 2m, 2m), if we let 0(A) = Aίl2(A)τ.

Proof. We have xy — yx for all x e ^4( — 2m, 2m), y e <!/(( — oo , — 2m — 1 ]
u [2m +l,oo)). Hence E(x)y = E(xy)=E(yx) = yE(x) for all xeA(-2m,2m),
ye^((~oc, — 2m — l]u[2m+l, oo)). Consequently, if Rλ(A) denotes the weak
closure of A1/2(A) in the Powers state φλ, and Rφ

λ(A] denotes the centraliser
( A l / 2 ( Λ f ) " , then

To calculate ωβ, take x e ,£/„, m ̂  n, then

ω/x) - Tr (e " ̂ -xJ/Tr (e " βHm) = Ύre~ βH™E(x)/Ίΐ (e ~ βHm) = ωβ(E(x)}

using Hmej(&). Factoriality is clear, by uniqueness of KMS states for σt. Now
ojβ(e2n)-^ΰ as π->oo, and ωβ(l— e2n)-^0 as n-> — oo. Thus it is convenient to
introduce the projection in Jΐ = A(Γ)" given by

/= lim e_ 2 N e_ 2 J V + 2 . . .e_4e_ 2 ( l-e 2 )( l-e 4 ) . . . ( l-e 2 J V ) .
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The automorphism group σt extends to a weakly continuous one parameter group
of ^-automorphism of Jί. For xeAm7 N^m,

σf (/*/) = Hmσt(fNxfN) = lim Ad(expitHN)(fNxfN)
N^oo N^oo

= HmfNxfN = f x f as [HN,/Λ,x/N] = 0.
N->ao

Consequently, ωβ\Jίf is a trace. But

σ(/(l - *0) = /e0, and ωβ(fe0)/ωp(f(l - *0)) = τ/(l - τ) . (5.4)

This means that ̂  is not of type II x for if φ is then the trace of Jί, φ o σ = φ and
φ\Jίf = ωβ would contradict (5.4). Note moreover that

w = 0, 1,2, ... are a family of orthogonal projections whose sum

00

Σ σ"(/(ί -eo)) = . . .e_ 2 j v . . .e_ 4 e 2 e 4 . . . =e

has finite trace. Thus (A(Γ)}"e is a factor of type II ̂  On the other hand note that
A(Γ)e can be identified with AΓ[Q, oo).

6. Implementation of the Action of the Current Algebra at Zero Temperature

Let Γ be a connected graph, with Jones' index τ~l, and; an embedding of the
observable algebra 0 in AΓ as in Theorem 4.3. We first seek a canonical ground
state for L0. In analogy with what was done in the Fermion algebra (see the
appendix), we consider the dynamics Lε

0 = L0 + ε50 corresponding to the pertur-
bation D + ε of the Dirac Hamiltonian, where δk is the derivation

^W-Σ^K4A),x], (6.1)
n

defined on the elements x of finite support in AΓ. The derivations δk leave the Jones'
algebra Aτ and the observable algebraj(^) invariant. Then If0 has an unique KMS
state ωε

β at inverse temperature β with

ωε

β(x) = Ύγe~ βH**x/Tr e ~ βH™ (6.2)

for xe^Γ[-2m,2m] ?if# ε

m- X (n + ε)e2n.
Ύ-^ c \n\<mDefine

ω0 0(x)=lim limω^(x)= lim Tr(/Nx)/Tr/N (6.3)
ε I 0 j5->oo TV ^ oc

for xe,4Γ, where /^^e_2]γ ... ^-4e_2(l — β0)(l —e2) ... (1 — ̂ 2jv). Then ω^ is a
ground state for L0 on ^4τ, and ω^Θ — ω^Θ (for any embedding 7 of the
observable algebra in AΓ\ where ωA^ is the ground state (Appendix) of L0 1 &.

For /G CίS1, R) consider the potential function Φ = Φf defined on finite subsets

Φ(X) = /J(α* + nαm) + /_ j(αX , J (6.4)
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if X = {m,m+l, . . . ,mH-n}, meZ, n^N, and Φ(X) = 0 otherwise. Let

"]

/;+1 < oo for some λ>0>, (6.5)

and for /e ,̂ construct the derivation J(f) on the local elements A0 in ̂ 1Γ, using the
potential Φf defined above.

Thus

J(f)(x)= Σ i[/njK + BαJ,x]9 xe^o, (6.6)
m,«

and by [BR, Theorem 6.2.4], AQ consists of analytic elements for J(f\ J(f) is
closable and its closure, also denoted by J(f) generates a strongly continuous one-
parameter group of ^-automorphisms θ{ of AΓ such that

θ{(*)= Σ W))ΠMΛ*!, xεAv (6.7)

- lim Ad(exp(ϊΉ{f))(x), xεA, (6.8)
«-* oo

where Hf

n = _ Σ < /«- βj(aΐaβ}-

Moreover, by [BR, Theorem 6.2.4],

x) i | g (2α}/A) n ί lx | |π !expA(2m+l) (6.9)

for xe4[-2m,2m], and it is clear from (6.7) that Θ{θ9

t=θ{ + 9, /,ge#, f eR.
Let (π^, K,Ω) denote the GNS triple of ω^ on /1Γ For /e^, let

®(:J(/):)= j £ e K : H m Σ < ?Λ-βπJ(;.a*aβ:)ξ exists], (6.10)

and let

: J ( f ) : ξ = lim V fa_βπm](.a*aβ^ξ for ξ e @ ( : J ( f ) : ) . (6.11)

Then xΩe^(:J(/):) for all X6y4 0 , as

lim Σ/α_/?π00j(:αJα^:)ί2 in the Hubert space [π^C'JΩ]" (6.12)

exists [and is : J(/):Ω] by the classical theory in the appendix, and

J(/)(x)= lim Σ ϊ[/α-/ϊjCα?^:)5x] (6.13)

by (6.6). Consequently for xeA0:

i : J(f): xΩ = J(f) (x) Ω + z'x: J(f) :Ω. (6.14)

inductively we see that /40Ωc®((:/(/):)") and

(z:J(/):)ΠxΩ= Σ ΠC,J(/)"~Γ(x)(i:J(/):)rΩ. (6.15)
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Hence by (6.9) and (Appendix), for x e stf\_ — 2m, 2m] :

g Σ "Q2a)/ir^l!x|i(«-'-
r = 0

= £ (2aλ

f/λγ-r((2r)!)ll2(r!Γ3l2(\f\/2)rn!\\x\\expλ(2m+-l}. (6.16)
r = 0

Thus

= 0 w = r

2ta*f/λrl Σ (ίl/W^Γ^HΓ3'2 , (6.17)
r = 0

<oo for sufficiently small ί, (2|ί|αj-//<l).
Hence the symmetric operator :J(/): has a dense set of analytic elements and so

is essentially self adjoint. We again denote its closure by :</(/):.
The derivations J(f) and J(g) commute (for f,ge Ή). Thus for x e AQ, we have

Hence

where in the last equality we have used the classical theory of the Appendix in the
Hubert space [π '̂̂ Ω]".

We summarize this as follows, using the notation

Theorem 6.1. Let Γ be a connected graph with Jones index τ" 1.
00

(6.18) J(f}= Σ /A' /6^ defines a distribution with values in the derivations
— 00 ^

of A1 (respectively Aτ) and a representation of U(CCO(S')) in the group of
automorphisms of AΓ (respectively Aτ ).

(6.19) The time evolution σt satisfies J(/)= —J(ff}.
(6.20) The action of the current algebra leaves the state ω^:

r_ - -
ωα,(x)= hm

Λτ-«> Tr(e_ Λ Γ . . .e_ 2 ( l-e 0 ) . . . ( l-e Λ Γ )

on 4Γ (respectively Aτ) quasi-invariant, and is implemented by self adjoint operators
:J(f): (fe%) satisfying

(6.20)
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To get a representation of the Virasoro algebra, with c = 1, from the currents
Tn=\Jn:, one uses the Sugawara formula:

where

0_(TmTn if m<0.

°°TmTno = \TnTm m>0.

Appendix

We recall the Fermi-Dirac quantisation of the classical fields on S1. If H is a real
Hubert space, the Clifford algebra Cliffc(H) is the universal C*-algebra generated
by the range of a linear map y on H with the relations y(h)* = y(h\ y(h}2 = | | fo | | 2 ,
h e H. Cliffy (/f) has a Z/2 grading so that each y(h) is odd. If i is a complex structure
on H then α(/) = [}'(/) — iy(ίfj]β for /E/fC j the complexification of ff, defines a
representation of the canonical anti-commutation relations. If {eΊ}ieI is a complete
orthonormal basis for ίfc? we let α f = α(ef). The field algebra si is Cliff^/2^)^, and
ψ(θ) = Σane~ ιn° gives the Fermi quantum field.

The gauge group 17(1) of the first kind acts on si by %s(an) = e~ιsan. The
corresponding derivation δ = (as)'s = 0 takes an to —ian, and is given by δ(x)
= ϊΣC α « α M> χ ] The algebra of observable 0 is the α-fixed point algebra, and is
generated by {α*αm, 1}.

The gauge group U^QS1)) of the second kind acts on si by f' ψ(h)->ψ(fh).
Moreover C^S1,17(1)) (CC(S\ 17(1))= L^ίQS1))) is generated by the shift U and
the Lie algebra of real valued smooth maps on S1, in that we can write any
/eCco(Sr l, 17(1)) uniquely as /= Umf0, where m is the winding number o f / and
/0 = expig for some ge COC(S1,R). Then ge C00^1,^) gives a ^-derivation J(g) on
,5/0 the *~algebra generated by {am}. Complexifying, and taking g-=cιmθ, there is a
derivation δm such that ^»m(βn)^ —ian + m. δm(a*) = ia*-m. Then 5* = < 5 _ m , and

F o r = ^ J ( ) = = f ( θ ) J ( θ ) d θ 9 where J ( θ ) = ^ " ί w ^ i s a

distribution taking values in the derivations on j/0.
Time evolution is given by σt = Cliff (eίίD) on e^/5 where D is the Dirac operator

— iά/dθ on S1, or σt(an} = e~ίnϊan. The ^-derivation L0^(σί)^0 takes αM to man and

Conservation of the current is expressed by [L0, J(θ)] - — J'ψ}-
If C is a positive contraction on a complex Hubert space K, we let ωc denote the

quasi-free state on Cliff(C(KIR) such that ω(α*(/) α(g)) = <C/, g>. If D is a self-adjoint
operator, then for all Orgβ< oo, there exists an unique KMS state ωβ at inverse
temperature β for σ f — Cliff(^/ίjD), which is quasi-free with covariance operator
Aβ = e~~βD(e~βD + l ) ~ 1 . T h e Dirac Hamiltonian has a kernel, there is no unique
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ground state, so we take the canonical ground state ω^ with co variance operator

where F = lim(D -f ε) \D -{- ε| ~ 1 is the "phase" of D. In the state ω^ using the normal
ε j Q

ordering : a f a j ' . = a f a j — ωao(afaj)ί L0 is implemented by £n:0*απ: and δk by
Jk=Σ:an + kan'- Then J% =J-k9 and [Jm,JJ = n(5m< _„. Consequently J(g) is im-
plemented by :J(g): - £gmJm? and

for /,g e^- {/zeClS 1):!/?! 2-^ |fc|2 |^|2<oo}. Thus /^expκJ(/): is a represen-
tation of the canonical commutation relations on ,9$. Moreover, the vacuum
vector Ω gives the Boson Fock state

<expr.J(/):ί2,Ω>-exp~|/!2/4.

Thus /-»:./(/): is a free Bose field and

References

[ABF] Andrews, G.E., Baxter, R.J., Forrester, J.P.: Eight vertex SOS model and generalised
Rogers-Ramanujan type identities. J. Stat. Phys. 35, 193-266 (1984)

[A] Araki, H.: Analyticity of correlation functions for the two dimensional ίsing model.
Commun. Math. Phys. 106, 241-266 (1986)

[AE] Araki, H., Evans, D.E.: On a C*-algebra approach to phase transition in the two-
dimensional ίsing model. Commun. Math. Phys. 91, 489-503 (1983)

[B] Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic Press
1982

[BPZ] Belavin, A. A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in
two dimensional quantum field theory. Nucl. Phys. B241, 333 380 (1980)

[BR] Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics,
Vol. II. Berlin, Heidelberg, New York: Springer 1981

[CE] Carey, A.L., Evans, D.E. : The operator algebras of the two-dimensional Ising model. In :
Braids, Libgober, A., Birman, J. (eds.) Contemporary Mathematics 1988

[C] Connes, A.: Non-commutative differential geometry. Publ. IHES 62, 41-144 (1989)
[CK] Connes, A., Karoubi, M.: Caractere multiplicatif d'un module de Fredholm. J. K

Theory 2, 431-463 (1988)
[CR] Carey, A.L., Ruisjensaars, S.N.M. : On fermion gauge groups, current algebras, and Kac-

Moody algebras. Acta Appl. Math. 10, 1-86 (1987)
[E] Effros, E.G.: Dimensions and C*-algebras, CBMS Lectures 46 Am. Math. Soc. 1981
[EL] Evans, D.E., Lewis, J.T.: On a C*-algebra approach to phase transition in the two-

dimensional Ising model. LI. Commun. Math. Phys. 102, 521-535 (1986)
[FQS] Friedan, D., Qiu, D., Shenker, S.: Conformal in variance, unitarity and two dimensional

critical exponents. In: Vertex operators in mathematics and physics. Lepowsky, J.,
Mandelstam, S., Singer, I.M. (eds.), pp. 419-437. Publ. MSRI No, 3. Berlin, Heidelberg,
New York: Springer 1984

[GKO] Goddard, P., Kent, A., Olive, D.: Unitary representations of the Virasoro and Super-
Virasoro algebras. Commun. Math. Phys. 103, 105-119 (1986)



Embeddings of L/(l)-Current Algebras 525

[H] Huse, D.: Exact exponents for infinitely many new critical points. Phys. Rev. B30,
3908-3915 (1984)

[J] Jones, V.F.R.: Index for subfactors. Invent. Math. 72, 1-25 (1983)
[K] Kuik, R.: On the g-state Potts model by means of non-commutative algebras. Thesis,

Groningen, 1986
[KA W] Kuniba, A., Akutsu, Y., Wadati, M.: Virasoro algebra, von Neumann algebra and critical

eight vertex SOS model. J. Phys. Sci. Jpn. 55, 3285-3288 (1986)
[O] Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In

Operator Algebras and Applications, Volume II. Proceedings of UK-US Joint Seminar
on Operator Algebras. Evans, D.E., Takesaki, M. (eds.). London Math. Soc. Lecture
Notes. Cambridge Univ. Press (to appear)

[P] Pasquier, V.: Two dimensional critical systems labelled by Dynkin diagrams, Preprint
Saclay 1986

[Pi] Pirogov, S.: States associated with the two dimensional Ising model. Theor. Math. Phys.
11, 614-617 (1972)

[Po] Polyakov, A.M.: Critical symmetry of critical fluctuations. JEPT Lett. 12,381 390 (1980)
[PT1] Palmer, J., Tracy, C: Two dimensional Ising correlations: convergence of the scaling

limit. Adv. Appl. Math. 2, 329-388 (1981)
[PT2] Palmer, J., Tracy, C.: Two dimensional Ising correlations: the SMJ analysis. Adv. Appl.

Math. 4, 46-102 (1983)
[R] Renault, J.: A groupoid approach to C*-algebras. Lecture Notes in Mathematics,

Vol. 793. Berlin, Heidelberg, New York: Springer 1980
[SMJ] Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum fields. V. Publ. RIMS Kyoto 16,

531-584 (1980)
[SO'C] Schor, R., O'Carroll, M.: The scaling limit and Osterwalder-Schrader axioms for the two

dimensional Ising model. Commun. Math. Phys. 84, 153-170 (1982)
[TL] Temperley, H.N.V., Lieb, E.: Relations between the "percolation" and "colouring"

problem and other graph theoretical problems associated with regular planar lattices:
Some exact results for the "percolation" problem. Proc. R. Soc. London A 322, 251-280
(1971)

Communicated by A. Jaffe

Received September 26, 1988






