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Abstract. We present a detailed analysis of the non-abelian determinant of
massless fermions in two dimensional Minkowski space. In the framework of
the external field problem, the determinant vanishes if the out- and ingoing
vacua are orthogonal; the gauge potentials for which this happens are identified.
Causality implies that the effective action obtained from the sum of fermion
loops has the right singularity at a zero of the determinant. Such a zero can
be reached by a continuous deformation of a potential with non-vanishing
determinant. The set of zeros exhibits a rich structure.

L Introduction and Statement of Results

It has been realized some time ago that the determinant of massless fermion fields
coupled to an external non-abelian gauge potential in a two dimensional space
can be determined explicitly [1]. In a previous work [2] which will be referred to
as I, we derived the effective action, that is the logarithm of the determinant, in
the framework of 1 + 1 dimensional Minkowski space-time.

At first sight our effective action, as well as the action obtained in a euclidean
space, seems to be finite for all reasonable potentials. If this would be the case,
the fermion determinant would never vanish. On the other hand, one knows that
the determinant in a compactified euclidean space vanishes whenever the external
potential allows zero modes of the fermion fields [3]. As nothing seems to prevent
the occurrence of zero modes in two dimensions, there is a problem, at least in
the euclidean setting, which has been addressed by Kupiainen and Mickelsson [4].
They find that there are potentials for which the fermion fields have zero modes
and to which the known formula of the effective action does not apply. The main
motivation of the present work was to find out if the Minkowski space determinant
too has zeros and how they are compatible with our expression of the effective
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action. Whereas the possibility of such zeros has been recognized [5], their
occurrence has not been investigated until now, as far as we know.

Independently of the existence of zeros of the determinant, there is another
reason justifying a closer look at our effective action. This quantity has been defined
in I by its perturbation expansion, i.e. as the sum of closed fermion loops. In spite
of this, our result is non-perturbative because its derivation involves the conversion
of a recurrence relation between successive terms of a perturbation series into an
integral equation for their sum. It is the solution of that equation which determines
our effective action. If our formula makes sense for potentials for which the sum of
loops diverges, it defines a continuation of the effective action outside the domain
of convergence of the perturbation expansion. One would like to be sure that this
continuation is the correct one. These questions have not been discussed in I.

If we want to check our effective action, we need a source of information on
the fermion determinant independent of the fermion loops. We shall resort to the
solution of the external field problem of our fermion fields coupled to the given
gauge potential A. In this context, the determinant det |)[/l]of the Dirac operator
Φ\_A] is defined as the vacuum- to- vacuum amplitude (ί2out, ί2in), where Ωϊn and ί2out

are the incoming and outgoing vacua. One gets the modulus of the vacuum
amplitude and, from this, the imaginary part of the effective action H^[y4] (H^[/l] =
(l//)logdet|)[v4]). The external field problem will be solved in Sect. 2 and it will
turn out that there are potentials for which the determinant vanishes. Physically,
this comes from the fact that the configuration of outgoing fεrmion-antifermion
pairs created by the potential in the incoming vacuum can be such that Ωϊn is
orthogonal to Ωout.

The existence of zeros of the determinant being firmly established, one has to
ask how this agrees with our effective action. A specific feature of the Minkowski
space approach is that the effective action is constructed with the help of two
causal matrix functions T± . They are the solutions of the differential equations

x) (1.1)

fulfilling Feynman-Stueckelberg causal boundary conditions. In (1.1) light-cone

variables x± = (l/^/2)(x° ± x1) and light-cone components Λ±= (l/^/2)(A0 ± A±)
are used; x designates the space-time point specified by (x°, x1) or (x + ,x~). The
question of the existence of causal solutions of Eqs. (1.1) has been dealt with only
superficially in I. A complete analysis is presented in Sect. 3; it gives the clue to
the compatibility of our formula for the effective action and the external field
problem results. One discovers that there are potentials for which the differential
equations (1.1) have no solutions verifying the causal boundary conditions. These
are precisely the potentials producing a vanishing determinant according to the
external field problem. The main result of Sect. 4 is that our effective action makes
sense for all potentials for which the determinant is non-zero. Furthermore, as
indicated in Sect. 5, the modulus of det$)jyl] computed from the imaginary part
of W\_A] coincides with the result obtained in Sect. 2. This means that Im W\_A]
diverges when A varies and goes to a potential with vanishing determinant. Once
the occurrence of zeros of the fermion determinant is recognized, one starts asking
how they are distributed in the space of all the potentials we admit. There is no
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simple picture providing an answer to this question. Nevertheless we have collected
some indications in Sect. 4 and 5 in the case where the gauge group is SU(N). Let
A be the space of our admissible potentials, as it will be defined in the following
sections, A// the subset with non-vanishing determinant (ί2out has a component
parallel to Ωin) and A , its complement with respect to A (f2 i n_l_£2o u t). There is an
inner region of A containing small potentials which is entirely in A/;. Vanishing
determinants show up only for large potentials. It is easier to get a precise insight
into A± by means of functional of the potential which will be called transition
matrices. In the topological space of these quantities the image of A/; is dense and
path connected to the unit matrix (the image of a vanishing potential). This means
that the potentials in A± are limits of sequences in A / /;A 1 and Af/ are not
disconnected. Furthermore the zeros of the determinant are not isolated points in
A: a potential in A± can be changed continuously without leaving A±; this set has
in fact a very rich internal structure which is described in Sect. 5.

We have explicit examples illustrating all our results. The simplest one is
presented in Appendix A and in a separate note [6],

2. The External Field Problem

An Λf-plet of massless Dirac fermion fields ψ belonging to a unitary representation
p(G) of a compact gauge group G is coupled to an external gauge potential A. In
1 + 1 dimensions the Dirac equation gives:

d ± ι l / τ ( * ) = igA±(x)\l/τ(x)9 (2.1)

where ψ± are the spinor components of ψ in the chiral basis (y5 = σ3). Introducing
an index α with two values, α = + , the general solution of (2.1) is:

ιAα(x) = #α(x)χα(xα); (2.2)

where χ is an TV-plet of free canonical massless Dirac fields and Ra are c-number
matrix functions obeying Eqs. (1.1), Kα(x)ep(G).

The case of Weyl fermions is obtained by keeping just one set of the decoupled
chiral components, either ψ+ or ψ_.

Fig. 1. The localized potential A has its support in the double cone D contained in the strip \ x° \ ̂  τ. The
gauge function U is single valued in DC

Γ, the complement of D cut along Γ. The integral in (2.7) is along the
straight segment connecting u and v
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In this section we restrict ourselves to potentials A whose field strength Fμv

has a compact support located in a double-cone D. The potential needs not to be
zero in the complement Dc of D; locally it is a pure gauge there. In general, A will
be globally a pure gauge in Dc only after this domain has been made simply
connected by means of a cut Γ, as done in Fig. 1. Then there exists a matrix
function U(\) belonging to p(G] which is single valued in the cut domain DC

Γ and
such that:

A±(x) = - (i/g)d± U(x)U\x) for xeDc

r. (2.3)

As A Φ 0 in Dc, the fermion fields don't behave as free in- or outgoing fields for
x°-» T oo. Nevertheless the in-out relationship can be described in terms of free
and gauge invariant auxiliary fields. Our first goal is to show how this can be done.

We choose the matrices Kα as the solutions of (1.1) which coincide with U at
time x° = — τ (see Fig. 1). As a consequence of (1.1) and (2.3), this equality holds
also elsewhere, in particular at all previous times:

R Λ ( x ) = U ( x ) for x°^-τ. (2.4)

If we look at R+ we have for x° > — τ:

(2.5)

The symbol P means path ordering. The point u is defined by u° = — τ,u + = x + ;
we shall also need v such that v° = τ, v+ = x + . For x° > τ, Eq. (2.5) becomes:

R + ( x ) = U ( x ) V + ( x + \ (2.6)
with

Ό (2.7)

This matrix function and the corresponding V_(x~) will be called transition
matrices; they define the in-out relationship and will play a central role.

If we now define in- and out-fields as follows:

these fields are related by

<Kut(xΛ)=V*(**)Φΐ(x*) (2.9)

They are canonical free massless Dirac fields: φ™ and φ°ui depend on xa alone and
verify canonical anticommutation relations. Furthermore, Fα, φ™ and φ°ut are gauge
invariant quantities; the gauge dependencies of ι/^α, U and U* compensate each
other in the definitions (2.7) and (2.8).

The automorphism (2.9) defines the gauge invariant content of the in-out
relationship in the framework of the external field problem. It is completely specified
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by the transition matrices Kα. We notice right away that there is a whole class of
potentials leading to one and the same pair of transition matrices. We will come
back to this later on.

The automorphism (2.9) is equivalent to a Bogoliubov-Valatin transformation
relating the creation and annihilation operators of the in- and out-fields (2.8). If

in in in
out / °? out out , α

φa (χ«) = (l/^/2π) ldk[aa (k)e~lkx* + ba (k)elkx ], (2.10)
o

(2.9) gives:

00

<ut(/c) = j άk[_K\(k,k')a™(k') + Ka

2(k,k')b™\k')~\,
o

00

b°a^(k)~ J dk[K\(k,k'}a™(k'} + KJX/c,k')b™*(k ') ' ] . (2.11)
o

Notice that (fe/^/2) is the fermion energy.
The operators K* are obtained from the Fourier transform Fα of (Va — U):

c)-11 )<?-'**. (2.12)

One finds:

Kl(k,k} = δ(k - k} + VΛ(- k + k\ K*2(k,k) =Va(-k- k)

Kl(k, k) - VΛ(k + k}, Kl(k, k) = δ(k ~ k) + VΛ(k - k). (2.13)

It is well known [7] that the transformations (2.11) are unitarily implementable
iff the operators Ka

2 and ^3 are Hubert-Schmidt. If this holds true there is a
normed outgoing vacuum state Ωoui in the Fock space of the incoming fields φm.
The existence of Ωouί is an absolute necessity here because we want to define the
fermion determinant as the scalar product (ί2out,/2in). Therefore the potential A
has to be selected in such a way that K2 and Ka

3 are Hubert-Schmidt. Using (2.13)
we find that these conditions are equivalent to:

7° dk\k\ tτ(Vl(k)VΛ(k)) < oo. (2.14)
— oo

We work out this constraint for α = -f-, remembering the expression (2.7) of V+.
Let D = {x x± e[ - L, + L]}; we observe that the values of A. entering into (2.7)
are given entirely in terms of U if \x+ \ > L. For x+ < — L we find V+(x + ) = ί . If
x+ > L, V+(x + ) is determined by the discontinuity of U across the cut Γ:

V+(x+}=U = lim Ϊ/V)U(w") for x+ > L. (2.15)

The points w; and w" are on both sides of Γ: w / + — w'/+ = x + , w/ 0 = — w"° — ε > 0.
It is readily seen that U is independent of x + . These observations imply that the
integral (2.12) extends effectively to [ — L, oo) and that (V+(x) — U ) is constant for

x>L. Consequently V+(k) has the singularity (i/^/ϊπ) (H - U) (k-iε)"1 at the
origin and the integral (2.14) diverges at k = 0 unless U = 1 In other words (2.14)
forces U to be single-valued in Dc and (V+ — H ) to have a compact support. If
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moreover (V+ — H)eCo([R, C^2), the asymptotic behaviour of V+ is such that the
integral (2.14) converges.

The results obtained up to now are summarized in:

Proposition 2.1. If the field strength F has compact support and if A is such that
(Va — H) is in C1(IR5 C

N2), the following three assertions are equivalent:

(i) the in-out automorphism (2.9) is unitarily implementable,
(ii) (Fα — H) have compact support,

(iii) the potential A is globally a pure gauge outside a simply connected domain
containing the support of F.

The last statement is equivalent to:

1l, (2.16)

where C is a closed contour encircling D.
The condition (ii) and (iii) give a direct characterization of the potentials A for

which the in-out amplitude (ί2out,f2in) is defined.
In the abelian case, G = (7(1), condition (2.16) splits the admissible potentials

into disjoint classes by quantizing the space-time flux of the electric field:

jrf2xF0 1(x) = ~, neZ. (2.17)
c/

In strong contrast to the abelian case we have those non-abelian groups G which
have a trivial first homotopy group. In that case the condition (iii) can be
reformulated in a simple way. As π t(G) = 0, the map U: Dc -> p(G) has C1 extensions
into the interior of D. Choosing one of them we get a C1 map of the whole
Minkowski space into p(G); it defines a non-singular gauge transformation A -> WA
such that the new potential has its support in D. In the spirit of the terminology
used in I, we call localizable a potential which has in its gauge orbit a potential
with compact support, the latter is said to be localized.

Corollary 2.1. If the assumptions of Proposition 2.1 hold and ifπ^G) = 0, the in-out
automorphism (2.9) is unitarily implementable iff the potential is localizable.

In the abelian case, an admissible potential cannot be gauged away in Dc if n φ 0.
A consequence of Corollary 2.1 is that the set of admissible potentials does not
break up into disjoint pieces if π^G) = 0.

In the following we restrict ourselves to the case π^G) = 0 and ensure the
existence of ί2out by using a localized potential. Then U = H and the fields φm and
φout actually coincide with the asymptotic forms of φ. Furthermore, the matrix
function Ra are just the retarded solutions of (1.1).

Let S be a unitary operator implementing (2.9):

<r'(x) = SVn(x)S, Ωmi = S*Ω m. (2.18)

The automorphism (2.9) defines S up to an arbitrary phase. As long as we have
no prescription for this phase, the phase of the fermion determinant, in particular
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its dependence on A, is undetermined. As is well known, it is the causality condition
which removes this ambiguity (Yamagishi, ref. [5]). The machinery of the external
field problem gives only information on the modulus of the determinant:

|det0[Λ]|H(flout,βin)l- (2.19)

This is all we need for catching its zeros. A simple criterion established by Labonte
[8] tells us whether ί2out and Ωin are orthogonal. In his terminology, (ί2out, Ωίn) φ 0
if the transformations (2.1 1) are weak, (/2out, Ωin) = 0 if at least one of them is strong.
In a weak Bogoliubov transformation the kernels of K\ and K\ are both
trivial, at least one of them is non-trivial in a strong transformation. The potentials
producing a vanishing determinant are thus identified and one of our major goals
is attained.

Proposition 2.2. Assume the potential A to be localizable; the fermion determinant
det$)[y4] vanishes iff at least one of the equations

Kf/=0, KJV = 0, /,#eL2(R+,C*), (2.20)

has a non-trivial solution.
We explain briefly how (2.20) implies det$>[,4] = 0. Assume g to be a solution

of K*Jg = Q. The second equation (2.11) gives b™*[_g] = (b°a

ut[g^ = a?[g*K%].
Consequently £Ct1[#]i2in = 0 and, invoking the Fermi statistics, we see that there
is a vector Ψ such that Ωϊn = b°utt[0] Ψ. This shows that Ωln and Ωouί are
orthogonal.

The present situation is similar to the one encountered in the compactίfied
euclidean case: there the zeros of the determinant correspond to zero modes of
the Dirac operator. Here the zero mode equation is replaced by the integral
equations (2.20). An advantage of the space-time approach is that there is a physical
pair creation phenomenon which is responsible for the zeros of the determinant.
To get a better insight into this mechanism we shall look more closely at the
configuration of outgoing pairs the external potential creates in the ingoing vacuum.
As a preparation we collect some results on the dimensions of various kernels.

Lemma 2.1. The integral operators K\ ana Ka

4 of a Bogoliubov transformation are
such that:

dim ker K\ = dim ker Kf < oo ,
(22]}

dim ker K*4 = dim ker Kf < oo .

This is a direct consequence of the fact that the operator matrices

(122)

are unitary. In the special case at hand there are further relations among the
dimensions of the kernels.

Lemma 2.2. If the integral operators Kl are given by (2.13} one has:

N + +N- =N+ +ΛΓ (2.23)
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with Na = dimker K«, N« - dimker K« . Furthermore, ίfπ^G) = 0:

7Vα - N«, (2.24)

We are now ready to display the incoming vacuum in terms of outgoing entities.
It is a coherent state of fermion-antifermion pairs which can be obtained following
the techniques described in [9]. Due to the particular form of our K's we get a
remarkably simple expression if π3(G) = 0:

βin = *'* Π ΓKcosθ f s i n θ &r^aβΓ^/aίΛout. (2.25)
α= + , - n

Here sin2 θ* are the simultaneous eigenvalues of the operators Ka

2K^ and K^Kl\
f** and g* are their normalized eigenfunctions, the phase φ is undetermined, as
already noticed. The /"'s and g%s forming two orthonormal sets, sin2 θ*n is the
inclusive probability for the external potential to create a fermion-antifermion pair
(fn>9n} m tne incoming vacuum. Whenever one of the angles θ* is equal to π/2
(modπ) this probability is equal to 1 and Ωιn is orthogonal to Ωout, that is

If one changes the external potential continuously, the angles θ*n will move
continuously too and it is plausible that any one of them can be brought to go
through π/2. This goes in the sense of our previous observation that the sets
of potentials producing vanishing and non-vanishing determinants are not dis-
connected: we will come back to this point in Sects. 4 and 5. Appendix A contains
an explicit example where the product over n in (2.25) reduces to one factor.

By assumption, Ka

2 and K\ are Hubert-Schmidt operators; consequently |sin$*|
is smaller than their Hubert-Schmidt norm. Now, if the potential A is small enough,
the matrix functions Kα are everywhere close to U , Va are small and ||^||H.S. < 1
(n = 2, 3). Therefore, |sin 0"| < 1 if the external potential is sufficiently small; zeros
of the determinant show up for large potentials.

All potentials which produce the same pair of transition matrices (V+, F_) leave
the same configuration of outgoing pairs after they are switched off. In particular,
potentials such that V+ = K_ = H reabsorb all the pairs they create, their only effect
being the phase φ between ί2in and ί2out.

Without going into details, we describe briefly the structure of Ω m in the abelian
case G = 17(1). In this case Ωίn is orthogonal to ί2out if the winding number n defined
in (2.17) is non-zero. This is due again to the presence, with probability 1, of
outgoing fermion-antifermion pairs, their number being now equal to |n | . Whereas
in the non-abelian π:(G) — 0 case the outgoing particles were grouped into pairs
whose partners were both right- or left-goers, we have now, if n > 0, n left-moving
fermions and n right-moving antifermions. This situation is reversed if n < 0. The
\n\ outgoing pairs carry the total outgoing chirality, equal to 2/7, in conformity
with the chiral anomaly. In contrast, the fact that the members of the pairs (/",#")
in the non-abelian vacuum (2.25) go in the same direction ensures here a vanishing
outgoing 17(1) chirality, as it has to be. As the non-abelian chiral anomaly enters
into a co variant continuity equation (Dμj5

μ= —(g/4π)εμvFμv), it has no simple
implication on an outgoing non-singlet chiral charge which could be tested in
(2.25).



Two Dimensional Minkowski Space Fermion Determinant 429

3. Existence of the Causal Matrix Functions

The properties of the fermion determinant obtained in the preceding section have
been derived from the solution of the external field problem, without resorting to
the formula for the sum of fermion loops established in I. At first sight, it is by no
means obvious that the same properties result from this formula; that this is indeed
the case will be established in the next sections. In the present section we answer
the question of the existence of the ingredients our formula is made of.

We start with an outline of the basic results of I. We assume π^G) = 0, this
implies that p(G\ our unitary representation of G, is a subgroup oϊSU(N). Whereas
our main tools in Sect. 2 were the retarded matrix functions Ra and their asymptotic
forms, the transition matrices Fα, we have to work now with the causal matrix
functions TΛ. They fulfil Feynman-Stueckelberg boundary conditions and, as a
consequence, are not elements of p(G). Because of that, they define the determinant
as a complex quantity, fixing the phase which remained undetermined in Sect. 2.

Once the matrices Tα are known, the sum of fermion loops defines the following
effective action:

yl_)(x). (3.1)

The functional / is given by:

ί

( ί ) T ( ί )-1[a+Γ ( ί ) Γ ( r )-1,a_T ( ί )T ( ί )-1])(x), (3.2)
4π o

the last integral has the structure of a Wess-Zumino term [10]; T(ί) is a causal
matrix function depending on a parameter t and providing an interpolation between
Γ and the unit matrix: Γ(1) - Γ, Γ(0) = 1

As observed in the introduction, our result is not strictly perturbative; if there
are causal matrix functions for potentials for which the sum of loops diverges,
(3.1-2) define a continuation of the effective action beyond the domain of validity
of the perturbation expansion. One may ask if this continuation is correct.
Furthermore, formula (3.1) was established in I in the case of a localized potential,
but it makes sense also for a class of potentials extending to infinity; it is not certain
that these are potentials for which the in-out automorphism of Sect. 2 is
implementable.

The questions raised by the previous observations command a close comparison
of the properties of the fermion determinant resulting from the external field
problem and from the sum of loops. A crucial point will be to find out if formula
(3.1) reproduces the zeros of the determinant identified in Sect. 2. This question is
intimately related to the very existence of the causal matrix functions, a subject
we address now. We shall find that the Tα's exist whenever the potential A produces
a non-vanishing determinant according to Sect. 2.

To get a precise formulation of our problem we exploit the fact that the causal
Tα and the retarded RΛ obey the same differential equations (1.1); we can write:

Tα(x) = Rα(x)Qα(xβ). (3.3)
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The matrix functions Ra exist for all integrable potentials and we have to find out
if there are matrices Qα, each depending on a single light-cone variable, such that
Ta are causal. Considering Q +, the conditions it has to meet are obtained from
the x~ -> + oo limits of (3.3). As:

lim R+(x) - t, lim R+(x) = V+ (x+), (3.4)
Λ:~ -» - OG x~ -> + oc

we see that:

Q + (x+)= lim T+(x),
x —> — oo

β+(x+) = (F+β + )(*+) = I™ Γ+(x). (3.5)
X -» + GO

To get the asymptotic behaviour of Q+ we notice that:

lim Λ + (x)= I™ F+(x + )-l (3.6)
X + —>• + GO

Consistency with the perturbation expansion requires that Γ+(x) goes also to 1!
for x+ -> ± oo. Consequently (3.3) and (3.6) give:

+ (x+) = l (3.7)

Relations similar to (3.5) and (3.7) hold for Q_. A direct consequence of (3.5) and
the causality of Γα is that gα has only positive frequencies and Qa only negative
ones. Our formulation needs to be slightly more cautious: (3.7) implies that the
Fourier transforms of Qa and Qa have a delta function singularity at the origin
and what can be required unambiguously is that (Qa — 1), respectively (Qx — ^)
have frequencies of given signs.

We see that the external potential enters into the conditions determining Qa

only through the transition matrices Kα; we call Qa the causal complement of VΛ.
We may notice that if we rewrite (3.3) with Ra replaced by the advanced solution

of (1.1) then Qα stands in place of Qa. This provides an alternative definition of Qα.
In order to turn the conditions on Qa into a well posed problem, we have to

specify the assumed properties of Va as well as the space to which Qa has to belong.
For this we don't need to have a potential with compact support; we relax this
constraint and Eq. (2.7) gets replaced by:

+ 00

ίg J dy~A-(x + ,y~
— CO

with a similar expression for K_. For the time being our only requirement will be
that (VΛ — 1) have Fourier representations with integrable Fourier transforms. We
define the following space of matrix functions having a finite limit at infinity:

lim M(x) = M00,
χ-> ± CO -s

:MOG + \dkM(k)eikx, MeLί(U,dk)®CN2[. (3.9)J

u )

We choose a potential A producing transition matrices Vy through (3.8) which are
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in M with K α > 0 0 = H ; these Kα's are uniformly continuous by virtue of the
Riemann-Lebesgue lemma. As Va(x) is an element of the unitary representation
p(G) of G, the Fα's are in a subspace V of M:

V={V:R-*p(G)\VeM,Vao = 1}. (3.10)

We demand that the unknown causal complements βα belong to M (with βΛj00

 = Ό
This allows a precise formulation of the causality condition: the Fourier transform
δα °f (6α~^) nas to have their support on the positive axis I R + . This defines a
subspace M( + } of M. If U + is replaced by IR_ , we obtain a complementary subspace
M(~} which has to contain βα. We may now enunciate the problem of constructing
the causal matrices Tα. As we have separate problems for T+ and T_ , we can drop
the index α for a while.

Problem 3.1. To find a pair of non-singular matrix functions (Q, Q) such that:

(i)
(ii)

V being given, FeV.
Once the hopefully unique solution of this problem is known, T is given by (3.3).
The conditions (i) imply that the matrix functions β and β are boundary values

of analytic functions which are regular in the upper (lower) half-plane and go to
H at infinity. Condition (ii) connects these functions through their boundary values
and we have in fact a Riemann-Hilbert problem. This aspect of Problem 3.1 will
be used explicitly only in the proof of the following lemma.

Lemma 3.1. If the pair (β,β) is a solution of Problem 3,1, the matrices β(z), β(z)
and T(x) are elements of Sl(N, C).

Here β(z), I m z ^ O (β(z), Imz^O) designates the continuation of β(x)(β(x))
into the upper (lower) half-plane.

Proof To prove Lemma 3.1 we define:

fdetβ(z), Imz>0, <3 π>
This function is holomorphic in both half-planes and tends to 1 at infinity. It
follows from condition (ii) and from det V(x) = 1 that / is continuous across the
real axis. It is therefore regular in the whole plane and has to be equal to 1
everywhere. That T(x)eSl(N, C) follows from (3.3). Π

What are the conditions under which Problem 3.1 has a solution? Remarkably,
there is a "standard factorization theorem" due to Gohberg and Kreϊn (Theorem
73 in [1 1] ) which provides the answer to that question. Adapted to our case, it gives:

Lemma 3.2. Let MeM, M(x)eSl(N, C) for xelR; this matrix function has a standard
right factorization:

M(x) - m(~}(x}m(x)m( + \xl (3.12)

where m ( ± )eM ( ± ) and m ( i ) (z)eS7(N,C) for ϊm z g 0, respectively Im z ̂  0; m is a
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diagonal unitary matrix:

The τcfc's are the uniquely defined right indices of M; they are integers, κl ^
κ2 ^ ••• ^ KN, ΣKJ= — (l/2π) [argdetM(x)]^ Q0. This sum vanishes in our case

j
because det M(x) = 1.

Our assumptions on F imply that this matrix function has a standard
factorization (3.12): V--=υ(^υυ(~~\

Proposition 3.1. Problem 3.1 has a solution iff all the right indices of V are zero. If
this is so, the solution is unique.

Proof. Q~leM( + ) if ge]VI ( f ) as a consequence of Lemma 3.1. Therefore the
left-hand side of condition (ii) has the form of a right standard factorization without
middle term. If all indices of V are zero, v = H in its standard factorization and

Problem 3.1 has _the solution Q(x) = (v(^(x))~\ Q(x) = v(~\x). The boundary
conditions Q00 = Q^= ^ can be satisfied because u ( ± ) can be chosen such that
v(^] = v(^^ = H . The solution is unique because the right standard factorization of
a matrix function with vanishing indices is unique once v( + } is normalized by
requiring v{^} = ^ [11].

Suppose now that υ =£ H ; this term can be absorbed into v( + } and u(~} in such
a way that the new matrices are still in M( + ) and M(~}. However, their analytic
continuations have vanishing determinants at z = + i and z = — i and they cannot
be identified with (Q(z))~L and Q(z) without contradicting Lemma 3.1. Π

The example discussed in Appendix A provides an illustration of Proposition
3.1. The next Lemma tells us how to check whether a given element of V has only
vanishing right indices.

Lemma 3.3. Let FeV, all its right indices vanish iff the homogeneous integral
equation:

= φ(k)+]dpV(k-p)φ(p) = Q (3.14)
o

has no nontrivial solution in L2(U
Here V is the Fourier transform of (V - H ) as in (2.12).

The proof of this lemma can be extracted from [1 1], it is a direct consequence
of the fact that the number of independent solutions of (3.14) is determined by the
negative indices of V\

d i m k e r X - - £ KJ. (3.15)

As the sum of all the indices of V is zero, there are negative indices as soon as
they are not all zero and ker K Φ 0.

Remembering the expressions (2.13) of the kernels Kn of the Bogoliubov
transformations (2.11), we discover that K = K4; the requirement that (3.14) has
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no solution is identical to:

kerK 4 = 0. (3.16)

Using Lemma 2.2 and Proposition 2.2 we see that this is precisely the condition
ensuring a non-vanishing fermion determinant, as defined by the external field
problem, when π^G) = 0. A contact is thus established with Sect. 2 in a strikingly
simple way: the causal matrix function T exists whenever the fermion determinant
is non zero.

The following proposition summarizes the results of this section.

Proposition 3.2. The causal matrix functions Ta exist and are unique iff the transition
matrices Vy belong to a subspace V/ ; ofV:

V// = {K |K6V,kerX = 0}. (3.17)

Taking up an observation already made in Sect. 2, we see that the causal matrices
exist and I^eV/, if the external potential is small. It is for large potentials that Tα

may fail to exist. The membership of Va to \/f being an implicit constraint on A,
it is not easy to tell whether a given large potential produces a non-vanishing
determinant and has existing causal matrices.

If we go into the details we recognize that the present scheme is slightly broader
than the one of Sect. 2. Even if we allow non-localized potentials in the external
field problem, we have to maintain the implementability condition (2.14). Now
there are elements in V;/ which do not fulfill this condition. However, we will have
to introduce further restrictions on Va in Sect. 4 and definitive conclusions would
be premature.

4. Topological Aspects and Interpolations

Now that we know how to ensure the existence of the causal matrices Γα we can
proceed to the evaluation of the effective action defined in (3.1). This requires the
construction of the interpolations T£} appearing in the Wess-Zumino terms. This
is by no means an easy task because we have no direct characterization of the set
of all causal matrix functions. A straightforward procedure one could think of
would be to start choosing an interpolating potential Λ ( ί )(fe[0,l], /1(0) = 0,
A(1} = A), then determine successively the corresponding retarded matrix functions
jR^5 the transition matrices V(£ and their causal complements Q^; finally
T(? = R(2Q(2 as in (3 3) The delicate point is the existence of βf; according to
Proposition 3.2 this requires V(£ to be in K;/. In view of remarks made at the ends
of Sect. 2 and 3, this will certainly be the case if A(ί) is small enough and this can
be so for all ί's in [0,1] if the given potential A itself is small Therefore, there is
no obstacle in the construction of interpolating causal matrix functions T^ if the
external potential is small. However, there is a problem if A is large: it is not
obvious how one has to choose A(t) in order to secure the existence of T(£ for all
ί's in [0,1]. if we don't want to restrict the size of A, a more elaborate strategy is
required.
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In order to find our way we notice that V(*} defines a path in V{l. connecting
the unit matrix to VΛ(V(^ = 1, V(

Λ

1} = Fα). For such a path to exist for every Kα in
F//? this space has to be path-connected. This rather trivial observation shows that
we need properties of V/; as a topological space and this fixes our first goal in this
section. The results we shall collect are not just prerequisites for the construction of
the interpolations, they also improve notably our comprehension of the Minkowski
space fermion determinant.

We equip M with the norm:

| |M||= sup |My(x)|, (4.1)

and we endow V//? which is a subset of M, with the relative topology associated
to this norm.

We call V±, the complement of V// in V. If KαeV l 5 α = + or (and) —, Tα does
not exist, and we expect the fermion determinant to vanish (this is certainly the
case if (2.14) is fulfilled). Local properties of our spaces can be extracted from the
work of Gohberg and Kreΐn (Theorem 10.2 in [11]).

Proposition 4.1. (a) Let KeV / / } there is a neighborhood of V in V which is entirely
inside V//. (b) Let KeV I ; every neighborhood ofVinV contains elements belonging
to Vtl.
Part (a) is a direct consequence of the quoted theorem, part (b) is a refinement of
the result of Gohberg and Kreϊn. Proposition 4.1 tells us that V// is dense in V.

Remember that V has only vanishing left indices if it is in V / / ? it has
non-vanishing ones if it is in V±. Proposition 4.1 (a) expresses the stability of the
situation in which all indices are zero. Part (b) tells us that a configuration with
non-zero indices is unstable. This is already suggested by the expression (2.25) of
the ingoing vacuum. If K2 and K3 are Hubert-Schmidt, non-zero indices imply
that some 0's in (2.25) are equal to π/2 (mod π). A simple illustration of the instability
of non-vanishing indices is given in Appendix A. The lesson of this is that the
indices κj do not label disconnected components of V.

Now we turn to global aspects of V//. We shall get the properties we need only
when the gauge group G is SU(N) and we shall arrive at them in an indirect way.
First we shall demonstrate that the correspondence between a transition matrix
V and its causal complement Q defines a homeomorphism H between V//. and the
space Q (+) of causal complements:

Q ί±J = {β|βeM(±),βao = 1l 5β(x)εS/(Λr,C),x6R}. (4.2)

Then we shall find that global properties of Q( + ) are easily established; these
properties are shared by V// because of the homeomorphism H. Technically, the
crucial result of this section is therefore:

Proposition 4.2. If G = SU(N\ the spaces V// and Q( + ) are homeomorphic.

Proof. Our resolution of Problem 3.1 associates a unique QeQ( + ) to every VeV//

(such that Q = KβeQ(~}). We write Q = H(V) and have to show that the mapping

H is invertible. This is a consequence of:



Two Dimensional Minkowski Space Fermion Determinant 435

Lemma 4.1. If G = SU(N) there is, for every matrix function QεQ(+\ a unique
βeQ(~} such that

Vd^QQ-ι (4.3)

is in the space V//.
The proof of this lemma is given in Appendix B. The bijectivity of the mapping
H being established; it is straightforward to check its bicontinuity. Π

The reason why we were forced to take G = SU(N) is that the range of H is a
subset of Qί + ), as defined in (4.2), if G is a non-trivial subgroup of SU(N), and we
have no direct characterization of this subset. We assume G — SU(N) from now on.

Our information on the global structure of our spaces is contained in the
following proposition:

Proposition 4.3. The topological space Q{ +) is contractible to the unit matrix function]
the same is true for V//.

Proof. We have to show that the identity map of Q(+) is homotopic to the constant
map Q( + )->l Our proof exploits the analyticity properties of the elements of Q{ + ).
If βeQί + ) it is readily seen that the restriction of its analytic continuation to the
horizontal line lmz = a>0 defines a matrix function Qa belonging also to Q(+),
Qα(x) := Q(x + iα), xeR. Consequently the continuous map Φ: [0, 1] x Q( + )-+Q( + )

defined by:

te[0,l] (4.4)

provides the required homotopy:

<P(ί=l,β) = β, Φ(ί = 0,Q) = L (4.5)

That Y/; is contractible too follows from the fact that V;/ and Q(+) are
homeomorphic. Π

The very reason why localized potentials have been abandoned is similar to
the reason which forced the restriction to G = SU(N). If A is localized, (Va — H )
have compact supports and this property defines a subset of V//. The homeo-
morphism H maps it onto a subset of Q( + ). As we have no direct characterization
of this last subset, we cannot prove it is contractible. This means that if we have
a large localized potential A we are not sure that there is a localized interpolating
potential A(τ} such that T® exist for all t in [0, 1]. If we consider A _ , the preceding
remarks apply only to its x + -dependence. We may well ask A^ to have compact
support with respect to x", contained in [ — L, -f-L], and construct an interpolation
with the same property. This is what we shall do.

After these topological preparations, we may address the interpolation problem,
that of T+ to be specific. Dropping indices, the given external potential A defines
the retarded matrix function R, the transition matrix function V, which we assume
to belong to V/;, and its causal complement Q, βeQ(+). Compared to the scheme
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outlined at the beginning of this section, the procedure we work out now goes
backwards, starting rather than ending with Q(t).

Our construction breaks up into four steps:

(i) The interpolating causal complement Q(t} (β(0) = H , β(1) = 6) *s determined by
means of the homotopy Φ defined in (4.5):

β(ί) = Φ(ί,β), Q = H(V). (4.6)

(ii) The interpolating transition matrix F(ί) is obtained from β(ί) through the
inverse of the map H '.V//-* Q( + ):

V® = H-\Q(t)). (4,7)

(iii) Construction of an interpolating retarded matrix R(t}(x + , x ~ ) fulfilling the
following boundary conditions:

- L) = 1,

). (4.8)

(iv) The interpolating causal matrix T(ί) is given by:

T(ί) (x + , x ~ ) - R(t} (x + , x ~ )β(ί) (x + ). (4.9)

Although it is not necessary to know the interpolating potential, it can be computed
from A®= -(i/g)d-R(t) R(t)-1.

If this construction goes through, the effective action is obtained by inserting
T^, respectively Γ^"1 into the right-hand side of (3.2). At this point we can no
longer ignore that /[T] contains not only the interpolation T(ί) but also its first
order derivatives with respect to x + , x~ and ί. We didn't care about differentiability
properties until now, but the effective action may fail to exist if such properties
are not ensured. This means that we shall have to replace V/; and Q( + ) by suitable
subspaces of differentiable matrix functions. As we were mainly concerned so far
with V and β, there is another gap we left open and which has to be filled now:
we didn't specify the space to which the retarded matrix R has to belong.

Having again the case α = -f in mind, the three spaces we shall need are defined
as follows:

}, (4.10a)

(4.10b)

(4.10c)

}. (4.10d)

Similarly as in (3.9), (β(x+)-1), (F(x+)-H) and (R(x + ,x~)-1l) are the Fourier
transforms of β(/c), V(k) and R(k,x~) with respect to fe. The following lemma
completes Proposition 4.2 and asserts that whenever V is in V;/ its causal
complement β is in Q( + ) and vice versa.
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Lemma 4.2. The map H defines a homeomorphism between V// and Q( + ).
Conditions for the existence of the effective action W are given in the next

proposition:

Proposition 4.4. Assume A_ is such that ReR and VεVj/ Then there are inter-
polating matrix functions β(r)eQ( + ), F(ί)eV//? Ή( ί)eR with dtR

(t\ dtV
(t\ dtQ

{t)e
l}(R9dk)®CN2 and the functional J[T] defined in (3.2) exists.

We comment on this proposition without displaying its proof.

1. The interpolations are constructed according to the four step procedure
outlined before. Q(t} given by (4.4) is generally not differentiable at t = 0 and
has to be regularized there (by means of a partition of unity).

2. The existence of Rw is essentially a consequence of the fact that the second
homotopy group of SU(N) is trivial. R(t} defines a map of a 3-dimensional
domain A into SU(N) with given boundary values (4.8):

A = (re[0, 1], x + e(R, x"ε[-L, + L]}

These specify a continuous map dA -*SU(N) which has extensions to the
interior of dA because π2(SU(N)) = 0. The set of these extensions contains
differentiable ones.

3. In the definitions (4.10), the conditions on kQ, kV, kR and d^R secure the
existence of first order derivatives with respect to x+ and x~ with suitable
integrability properties.

4. If jR ε R, #( , x ~ ) is not necessarily in V;/ it may belong to V^ for some values
of x ~ in ( — L, + L). It is only its end-point value R(-,L) = V which is required
to belong to V/; in Proposition 4.4. This is related to the fact that the causal
complement Q is determined by V and does not depend on the details of
R( - , x ~ ) as a function of x " ,

5. The interpolations whose existence is ascertained in Proposition 4.4 are not
unique. The value of W[A] does not change under small modifications of the
interpolations; this was shown in I. However, as π3(SU(N)) = Z, there may be
non-homotopic interpolations and the corresponding effective actions would
differ by multiples of 2π.

6. In view of a functional integral over the gauge potential A we are interested in
obtaining an effective action under conditions on A which are as weak as
possible. The final restrictions on A we arrive at are contained in Proposition
4.4. These are rather implicit constraints on A and they are not optimal in the
sense that membership of the spaces (4.10) is a sufficient condition for the
existence of the effective action but is not necessary. However, our experience
tells us that there is not much room left once one agrees to start with the
spaces M(±) which are natural choices in the context of Problem 3.1.

An observation related to the last comment is that the transition matrix V fulfills
the implementability condition (2.14) if it is produced by a retarded matrix
belonging to R. The requirement of differentiability removes the discrepancy noticed
at the end of Sect. 3; it is worthwhile to keep this in a lemma.

Lemma 4.3. The in- out automorphism of the external field problem is unitarily
implementable whenever the transition matrix V is in V.
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We see now that within our assumptions the formula (3.1) for the effective
action makes sense whenever one has a non-vanishing fermion determinant, as
defined by the external field problem. This does not yet prove that our formula is
correct: the example in Appendix A provides a first indication that this is likely
to be the case. In this example we may vary V in V// and let it go to an element
of V±; whereas V behaves smoothly in this process, its causal complement Q
explodes with the effect that Im W diverges and det ty tends to zero, as it should.
Further evidence of the correctness of formula (3.1) will be presented in the next
section.

5. Further Results and Concluding Remarks

If a potential produces a vanishing fermion determinant according to the external
field problem this potential is also a singular point of the effective action provided
by the sum of fermion loops. Up to now this is the major outcome of the
confrontation of our two approaches to the fermion determinant. This confronta-
tion can be pushed further. In addition to its zeros, the external field problem gives
also the modulus of the determinant and one may check if the effective action gives
the same result. Even if one has no serious doubt about this identity, its proof is a
challenging exercise because one starts with two very disparate expressions. We
explain briefly how to proceed.

Formula (2.25) gives

. (5.1)

We discuss the positive chirality factor and drop indices. In view of the expression
(3.1) of W\_A] we have to establish the following equality:

(5.2)

We have used the fact that the set (cos2 θn} is the spectrum of K4K\.
The interpolating potential A(t} obtained in Sect. 4 defines an interpolating

operator K(£ connecting the identity (= K(£}) to K4 (= K(

4

}). This allows a more
tractable form of the right-hand side of (5.2):

(5.3)

Here K4 stands for K(£. The functional /[T] is given in terms of the x-space causal
matrix function T whereas the operator K4 defined in (2.13) acts on L2([R + ,rf/c).
To verify (5.3) we shall write its right-hand side in x-space by means of a Fourier
transformation. To this end we must extend K4 to an operator acting on functions
defined on the whole real fe-axis. Instead of (2.13) we write:

K4(fe, k'} = δ(k - kr) + θ(k)V(k - k')0(k'}. (5.4)

This substitution does not change the value of the right-hand side of (5.3). Switching
to x-space, (5.4) gives:

(5.5)
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Here P( + ) are the projectors onto positive, respectively negative frequencies:

y --- T^2π x — x ± is
(5.6)

and the transition matrix V is meant as a multiplication operator: (Vφ)(x) =

V(x)φ(x).
Besides K4 we need also its inverse; it is at this point that the contact between

the external field problem and the sum of loops is established in a rather unexpected
way. It is the knowledge of the causal complement Q of the transition matrix V
which provides the expression of K^ 1 we need. It is easy to check that this operator
is given by:

κ^1 = p(-) + Qp(+)Q-1 (5.7)

(remember that Q = VQ).
Inserting (5.5) and (5.7) into (5.3) we get:

" ) . (5.8)

To verify this relation, we have to evaluate its left-hand side with /[iγ] given by
(3.2). Replacing T(ί by R($Q($ one finds that the integrand of the imaginary part
of the Wess-Zumino term is a sum of total derivatives with respect to x + , x~ and t.
This leads to

- dtβ
(?β(Γ 1 Vφd+ K<ί?](x+). (5.9)

The structure of this expression is already very close to that of (5.8). Using the
analyticity properties of Q({} and Q($ one finds that the second term of the integrand
in the right-hand side of (5.9) gives the same contribution to Im/[T+] as the first
term; this proves that (5.8) is correct.

The identity of our two expressions of |det^>| comes out in a remarkable and
intriguing way. The projectors P(±) in (5.5) have their origin in the strict correlation
of the chirality and the sign of the momentum of two-dimensional massless fermions.
Equation (5.5) implies that K^1 too has the structure (P(~} + P( + )XP( + )). The
right-hand side of (5.7) has indeed this structure: QP( + ]Q~l ^P( + ̂ QP( + ]Q'lP(+]

because β and Q ~ 1 are regular in the upper, respectively lower half-plane. These
last properties are consequences of causality, which has manifestly nothing to do
with a chirality-momentum correlation. The causal complements Q are responsible
for the imaginary part of W (Im W — 0 if Q — 0) and their specific causal properties
have the effect that Im W has the value predicted by the solution of the external
field problem, a solution obtained without invoking causality in an explicit way.

The last result provides also an a posteriori justification of our definition of
the in-out correspondence in Sect. 2. The outcome of this section depends crucially
on the identification of Ωϊn and ί2out with the vacua of the gauge invariant free
fields 0in and φoui. Although this choice is quite natural, it is comforting to have
it confirmed by the sum of loops.
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Once one knows that the fermion determinant has zeros one becomes curious
about their distribution. As we have learned, the fact that det ty[A~] vanishes depends
only on properties of the transition matrices Fα and there is a whole class of
potentials producing the same transition matrices. These classes are subsets of the
space Aj_ referred to in the Introduction. As they are difficult to handle, it is
advisable to localize the zeros in the space of transition matrices. If det Jj>\_A~\ = 0
the causal matrices do not exist and FαeV± (α = H- or (and) — ). Proposition 4.1
gives a first information on the way V± is embedded in V. The results we present
now provide a deeper insight into the structure of V L and V;/. Let K designate the
collection of decreasing indices {KJ}*J= 1 appearing in the right standard factorization
(3.12) of a transition matrix V. The manifold V is the union of the submanifolds
V^. containing all matrices with a given ΛΓ: clearly: V// = V0 and:

V I = U V K . (5.10)
Λ T ^ O

Using results in [1 1], it can be shown that the complex codimension of V^ is finite,
non-vanishing if K / 0, equal to:

where v(κ) is the number of pairs (κj9κk), j <k such that κ3>κk. In particular
d(0) = 0, V0 is dense in V as already stated in Proposition 4.1.

Each Vκ is an infinite dimensional stratum of a stratification of V. To specify
this structure we have to introduce a partial ordering of the IT'S. According to [11]
we define an elementary operation acting on the IT'S. If for a given κ9 there are
two integers j and k (I ^j < k g JV) such that

κ'j = K j — l , κk = κk+l, κΊ = κt for I φ j , l^k,

form a new decreasing sequence K', K' is said to be obtained from K by an elementary
operation. If κ! is obtained from K by a sequence of elementary operations, one
writes κ> K' and this defines the required partial ordering. The fact that V is
stratified by the Vκ's means that every V^ with κ! ^ K is contained in the closure
of V K : V K - c = V f f . Furthermore, every V belonging to Vκ, has for each κ^κf a
neighborhood in V^ which is entirely in Vκ. This local result is again a refinement
of Proposition 4.1. All this shows that V L has a very rich structure. A similar
stratification appears in. the study of the wave functional of the Wess-Zumino-
Witten models [12].

We may conclude by saying that the properties of the non-abelian two
dimensional Minkowski space fermion determinant we have established, particular-
ly our complete characterization of its zeros, improve substantially our understand-
ing of this object. We list a few salient features.

1. In our two approaches we find that det$)[v4] is defined only for a restricted
class of admissible external potentials. These are the potentials for which
the in-out automorphism of the external field problem is unitarily imple-
mentable.

2. It is crucial that the building blocks of the effective action are causal in the
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sense of Feynman and Stueckelberg. If instead of T± we would use R ± in
(3.1) the effective action would be real, ignoring the pairs created by the
external potential. It is the use of the causal matrix functions which leads
to the physically correct complex effective action with singularities located
at the zeros of the determinant.

3. The causal complements Q are uniquely determined by the transition
matrices V which express global integral characteristics of the gauge potential
rather than the details of its local behaviour. There are large families of
potentials sharing the same transition matrices and causal complements and
for which the effective action has a fixed imaginary part. The real part of
the effective action, that is the phase of the determinant distinguishes the
potentials belonging to a given family.

4. The distribution of the zeros exhibits an intricate structure which is possible
because these zeros do not split into distinct disconnected classes. In terms
of transition matrices, the zeros are imbedded in the space of all these matrices
forming submanifolds of finite non-vanishing codimension labeled by sets
of integer indices. Our understanding of the distribution of the zeros is still
incomplete and we do not know what role they play in a functional
integration over the gauge potential.

5. Although there is no direct connection between the minkowskian and
euclidean external field problems, one may look for possible similarities. To
this end we notice that when one is dealing with the transition matrices Va(x*),
the real xα-axis can be mapped onto Sl. This is so because Fα(xα) go to the
same value H for xα-> + oo and xα-» — oo. This means that Fα are elements
of a loop group [13], i.e. mappings from S1 into the gauge group. The indices
KJ classify the elements of this group. In the euclidean problem, compactified
on S2, transition functions connecting quantities defined on the upper and
lower hemispheres play a crucial role [4]. They are primarily defined on the
equator and are also elements of a loop group. Consequently, the manifold
of euclidean zero modes and the manifold of zeros of the Minkowski space
determinant have equivalent stratifications.

Appendix A. An Explicit Example

We present an example where all our constructions can be done explicitly. It is
obtained by considering transition matrices whose elements are rational functions
and choosing the simplest case: G = SU(2) and a matrix with two poles which we
set at c = ±i. Each of these matrices has the form UV(x)U\ where U is a constant
matrix and V(x) is given by:

/x + i cos ω e sin ω \

(A.1)
x + i x — ί

x + ί x — i J

where ωe[0,π], ve[0,2π). Without loss of generality we restrict ourselves to this
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particular matrix function. Our first goal is the explicit determination of the
form (2.25) of the ingoing vacuum. The spectrum of the operator K^K\ is
{0, sin2 (ω/2)}; 0 is an infinitely degenerate eigenvalue and sin2 (ω/2) is non-
degenerate. In x-space its eigenvector is:

<A.2>
cos (

There is a second eigenvector of K3K\ proportional to (x -f z)"1 with eigenvalue
0. The remaining eigenvectors corresponding to this last eigenvalue span the space
of all vectors whose elements are regular in Im x > 0 and have a zero at x = i. If
we identify (A.I) with the chirality α transition matrix, the corresponding product
in the right-hand side of (2.25) reduces to a single non-trivial factor with θ = ω/2,
f,g~ exp ( - fe). In particular | det φ\_A~\ \ = \ (ί2out, βin) | = cos (ω/2); the determinant
is a continuous function of ω which vanishes at ω = π.

We turn now to the right standard factorization of (A.I). If ω^π, V has
vanishing indices τc t and jc2, belongs to V// and:

where

°--, (A.3)

__
tg(ω/2) -1 / x - i V

For the particular value ω = π the matrix K is diagonal, v+ = ι;_ =11, its indices
are non-zero, ic = (!,—!) and K is in V±. This illustrates the instability of a
configuration of non-zero indices. If we look at the form of (A.I) and the domain
of variation of its parameters ω and v, we see that every V is specified by a point
P of the two-sphere of S2: K = 0 on the whole sphere except at the south pole.
Furthermore, we observe that Q and Q have non-diagonal matrix elements which
diverge if P moves to the south pole. One checks that this produces the logarithmic
divergence of Im W as ω -> π which forces det Ij) to vanish at α> = π.

If we want to compute the real part of W we have to fix the external potential
and not only the asymptotic forms V± of R+. Considering again the positive
chirality components, we fix A_ by choosing a retarded matrix function R+ given
by the right-hand side of (A.I) with ω and v replaced by suitable functions of x~.
The ^-dependent interpolations are obtained by introducing a ί-dependence into
ω(x~) and v(x~). One verifies that the functional /[T+] (3.2) does not depend on
the interpolation one chooses up to a known possible additive ambiguity of a
multiple of 2π [1]. This multivaluedness is discussed in detail elsewhere [6]. One
finds that the real part of /[T+] is:

Re/[T+]=i+f dx~(l -cosω(x"))fl_v(χ-). (A.5)
— oo

It is the variation of the phase v appearing in the non-diagonal elements of R +

which plays the central role; Re/[T+] = 0 if this phase is constant.
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One can compute A^ given by —(i/g)d_R + Rl

+. One gets a clumsy expression
involving ω(x~\ v(x~) and their derivatives. The behaviour of A^ exhibits no
distinctive feature if the path on the 2-sphere defined by (ω(x~), v(x~)) ends at the
south pole or goes through this point.

Appendix B. Proving Lemma 4.1

The proof of this lemma uses results of [J1] but is more than a mere specialization
of these results. For every βeQ(") it is immediate that V, as defined in (4.3), is an
element of M, with V^ = H . It has only vanishing right indices and is such that
V(x)eSl(N9C). Therefore, as G = SU(N), all we have to do to ensure that V is in
V/i is to choose Q such that V(x) is unitary.

We define a hermitian positive matrix function B:

B(x) = Q\x)Q(x). (B.1)

Q\x) is the hermitian conjugate of the matrix g(x); BeM, B^ — 1 if V(x) is unitary
B(x) is also given by

B(x) - (Γ(x)βW. (B.2)

ϊri the terminology of Gohberg and Kreϊn [11], Eqs. (B.I) and (B.2) provide right
and left standard factorizations of B (the element of M( + ) is on the right of the
element of M("~} in (B.I), on its left in (B.2)). These factorizations contain no
analogues of the central piece m in (3.12). By its definition (B.I), B has only vanishing
right indices and all its left indices have to vanish too as a consequence of (B.2).
This is automatic because if #eM, is hermitian and positive, all its right and left
indices vanish and its right and left factorizations are unique [11]. Therefore B,
which is determined by Q via (B.I) defines a unique Q through (B.2).
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