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Abstract. For a large class of 1 -f 1 dimensional interfaces of the Solid-On-Solid
type we prove on a microscopic basis the validity of the Wulff construction and
of the generalized Young equation which gives the contact angle of a sessile drop
on a wall. Our proof relies on a new method to treat random walks with a finite
number of global constraints.

1. Introduction

Consider a phase A in a container, whose walls are partially wet by droplets of a
phase B. Although small, these droplets are macroscopic, and their contact angle
Θ with the wall can be measured and studied as a function of temperature,
concentration or any other parameters. A transition from partial wetting to
complete wetting may occur, if the angle Θ decreases down to zero, where a thin
film of the phase B separates the phase A from the wall.

It is well known that the contact angle Θ is related to the surface tension σAB

and wall free energies σAW,σBW through Young's equation (Young 1805). For
isotropic media, it reads

σABcosΘ = σAW-σBW. (1)

The study of droplets and wetting films is also important in metals and other
anisotropic media. There Young's equation has to be modified. It takes the form [1]

d
σAB(Θ, φ)cos Θ - sin Θ—σ^Θ, φ) = σAW - σBW. (2)

Equation (2) is to be understood as follows: take a point anywhere on the
borderline of the droplet. This corresponds to a choice of a direction φ in the
plane of the wall. The contact angle Θ = Θ(φ) is then the angle of the wall with
the tangent plane to the droplet at the given point. The function σAB(Θ,φ) is the
A-B interfacial free energy per unit area of a flat A-B interface which would be
parallel to the given tangent plane. Equation (2) now may be solved to give the
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contact angle Θ(φ) in terms of ffAB(-\ °Άw^ σβw Alternatively, this equation may
be used to obtain information on the surface tension from measurements of the
contact angle.

In statistical mechanics, in order to obtain macroscopic droplets and well defined
contact angles, one must consider a statistical ensemble where the volume of one
or several droplets is fixed and large. One should then prove that the droplet profile
has relatively small fluctuations, and that the free energy is simply related to the
integral of the surface tension over the mean profile. The equation for the mean
profile, and the generalized Young equation (2), then follow by classical variational
methods similar to those which yield the Wulff construction for the equilibrium
shape of crystals [2,3]. The corresponding solutions may be obtained by a Wulff
construction. The above program has been performed in [1] for the special case
of the 1 + 1 dimensional Gaussian model: the wall is one dimensional (Z) and the
height of the interface above the wail is a real random function, with a Gaussian
distribution.

The present paper provides a proof of the Wulff construction and of the
generalized Young equation for general 1 -f 1 dimensional models: the height of
the AB interface is a real random function, whose probability distribution comes
from a general nearest neighbour coupling.

The paper is organized as follows. Section 2 is devoted to the mathematical
question: "How to deal with random walks which are subject to a finite number
of global constraints?" The physical applications are given in Sects. 3 and 4: We
first study the shape of one droplet of length N and V & N2 as N -»oo; this shape
is shown to obey the Wulff construction. We then consider a random number of
droplets on a wall of length L, in a canonical ensemble where the total volume of
droplets is V = λL2 with λ small. As L -> oo, we prove that the volume concentrates
in one droplet, whose contact angle obeys the generalized Young equation (2).

2. Random Walks with Global Constraints

We consider one droplet of two dimensional volume V and length N « Vl/2 on a
wall; the shape of the droplet is given by ( Λ 0 , h l 9 . . . , h N ) with the constraints

h0 = hN = Q, Λ .>0, i = l , . . . , J V ~ l , Σ Λ / = K (3)
o

The corresponding probability distribution is given by

( N \
^ ^ i i 1 J

where

ZF,N = J dh0 ] dh, - - - f dhN exp ( - f e(ht - hi-^δVioWhnWΣht - F),
o o o V i

and the coupling e(x) is a continuous even function strictly increasing for x > 0,
and such that

lim x~le(x) = oo (5a)
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or
x ~1 e(x) — a0 and

lim sup (log x)~ 1(e(x) — α0x) < oo.

Examples for e(x) are |x| (continuous SOS model), x2 (Gaussian), (1 4- x2)1/2 (arc
length). Clearly the variables xί = hi — hi^.1 are only coupled through the cons-
traints. Omitting for the moment the constraints h{ ̂  0, we get that the x/s are
distributed according to

/ N \
exp - £e(x t ) }δ(Σxi)δ(Σ(N - ι>i - V)Y\dxί.

V i /

For this fixed length N, we would like to study first the most probable droplet
according to (4).

The difficulty is of course to take into account the constraints £^ = 0 and
i

Σ(N — i)*i — V. Two main ideas will be used: first, the Dirac form of the constraints
i

allows us to introduce Lagrange multipliers in the Boltzmann factor, without
changing the probability distribution. This gives a guess for the mean shape of
the droplet, where each <xy> is obtained, independently of the other x/s, from the
energy function e() and from j, JV, V. The second idea is to keep the adjusted
Lagrange multiplier and omit temporarily the Dirac constraints, and to use a
suitably generalized version of the local central limit Theorem (Lemma 4 in the
appendix). In this way, we obtain the joint probability distribution of any two
increments Xj and xf, together with the appropriate constraint variables:

Ό _ /v- 1/ 2 y (x _ / Y MJ Y , j' — i V / I ^Ί' \ -̂ Ί' / /,JJ L~J ^ i N i ' / '

Vjr = N-v2 Σjl-2i/ΛO(x ί-<x ί».

Putting back the Dirac constraints yields the desired joint probability distribution
of yj and yr. This is the content of the following theorem:

Theorem 1. Let /zθ5 / ι l 5 . . . , hN be real random variables distributed according to

N

(6)

where
+ o o f o o +00 / J V

ZF > i V= j dh0 ί dh,- I dΛNexp -Σβ
- o o - o o - o o \ 1

and the coupling e(x) satisfies (5a) or (5b). Let

(7)

and let cλ be the solution of c~ 2I(c) = λ.
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Let V = λN2. Then, as JV-*oo, the random variables hi—h0, h2 — h1*...,

N — hN^l are asymptotically distributed according to

so that

t(c)dc + 0(l), (10)
(l-2j/N)cλ

Vj,f, (11)

where < >jv ^ f^e m^απ z α/we o/ vviί/z respect to the probability distribution induced
by (6), and <•;*) denotes truncated expectation values.

Proof: We first replace (6) by the equivalent expression (thanks to the Dirac
measures):

and we adjust c so that the constraints will be satisfied in the average by the
decoupled measure (i.e. without constraints), whose expectations will be denoted
<>0(c). For any c, we have

^0 for 0 < ; ^ ,

which implies

Let us now consider the volume constraint:
N N ί N

i = ι

Remark that IN(c) is the Riemann sum approximation of /(c). Lemma 3 therefore
allows us to choose

= c
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so that

(For example, in the purely gaussian case, one finds CN = 6V /N2 <x2 >0(0)). Return-
ing to the general case, we see that this choice of CN gives moments <(^j)fc)o(%)
bounded uniformly in j and N, for any given fe, and any given value of V/N2. Now
let

=

The y?s are distributed according to

We shall now use Lemma 4 (cf. Appendix) to estimate the fluctuations with the
constraints. For any given;,/ consider the 4 random variables

We wish to apply Lemma 4 with Ϋn = (Rjr, Vjr\ and we first compute the matrix
Γn. We have

/^x.^-te2

Since ίjjv = ί((l — 2j/N)cN), we may write

<^>o(%) = ̂ ((l-|)c,)^2((l-|)c,). (14)

Therefore

lN/2]2c., ίί 2/\ \
= cJί

1 Σ —€Ί I l - - ) c Λ r ) + 0 ( Λ f - 1 ) ^ c Γ 1 f d c ' f l 2 ( c ' ) (J5)Y jv vv N; / o
Similarly

(16)
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and, by symmetry,

i*JJ'

2i

where 0(N~1) comes from i = N~j and ί = N~f whose symmetric terms are
missing.

We have thus proven that the matrices ΓN converge. In order to apply Lemma 4,
we can't just take XiN = (yi9 (1 — 2i/N)yt) which doesn't have a density with respect
to the Lebesgue measure on (R2 (the ratio of the two components is fixed). Instead
we choose (for N even, but the proof is easily adapted to N odd):

3Ή JV/2

2 A 2z

i = 2,3,...,N/2

XIN —

+ N/2

2

"JV

2(j±N/2)
N

2(f ± N/2)

ΪV

where the + or — signs are chosen so that 0 rg j ± N/2 ^ N and 0 ̂  / + N/2 ^ N.
The hypotheses of Lemma 4 are then easily verified, for any k and δ. We take
/c = 4, but discard the k = 4 correction term into an O(N~l). Incorporating the
constraints, we find that y^ and y^ have asymptotically a joint distribution
proportional to

7 - 1 / 2

where

and dp af and b have a limit as N
coefficients converge as JV

oo, and P2 is
 a quadratic polynomial whose

oo. This implies the desired estimates

which proves (10) and (11) of Theorem 1, where 0(N~1} also includes the error
due to the difference between CN and cλ (Riemann sum approximation). The other
statements in the theorem follow easily. We now take into account the wall condi-
tion ht ̂  0:

Corollary. Under the hypotheses of Theorem 1, suppose that hi-"hN_1are restricted
to be positive and denote the corresponding expectation values by <(•>#,&><)• Then
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3α, b, ζ > 0 such that

and
ZVfN/ZV)N->ζ as JV— xx).

Remark. Brownian motion conditioned to be positive has been studied in particular
in [7]. The present Corollary deals with a rather different situation, because the
volume constraint by itself tends to push the walk away from the wall.

Proof. The method of proof is adapted from [1] (Gaussian model). Let

l if hi>0
r lj < Π' %hι<0~* λX>0?

\ / \
) =ZV.N/ZV,N> CN = \ Π^>o > (CN)

I N \ i I 0

Since ζ% is associated to a random walk with independent steps, we know
that

C£->C>0 as N-+OO.

Let us now prove the following lemma:

Lemma 1. 3b > 0 such that VJV, i with 1 ̂  i g N — 1,

Proof. We begin as usual (e.g. [6], p. 52):

We then study £3^- together with the constraint variables as in Theorem 1, and
i

obtain

from which the lemma follows by an optimal choice of t. For any N0 « N, we
then have

/NO-I N-i N-NO
Cw = ( Π ^>o Π Xht>Ό Π ( i-^A

\ i N-No+l No

/No-1 N-l \ N-No

= ( Π X f c . > 0 ' Π *A,>0 / ~ Σ <
\ i N-N0+ί /N No

No- I N-l

> i τ . -
i ΛΓ - No + 1 / N L ~~ eXP ( ~~ ^)

We want to prove C^ -̂  C Given ε > 0, we fix N0 so that the last term is less than
ε/2. Because A^0 is fixed, we can again apply the method of Theorem 1 to show
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that the first term equals the same in the measure < >O(CΛΓ)? plus an error O(N0/N).
This proves the second half of the corollary. Similarly we have

N- 1

hj-hj-ι) Π Xht*

Π ^>o) ( Π
\ 1 / N \ 1

so that

I < f y - hj..! >N Ϊ / J >O -<hj- hj.! >jv| ^ OiN*1) + 0(exp(- WV0)) + Q :

/ No - 1 N - 1

-U Π x*.>o- Π
\ 1 ]V - No + 1 / N

Given any ε > 0, we should prove that this is less than

cίN~l + c 2 exp( — bj) + ε

for all j and N with j^N/2. We fix 7V0 so that O(exp(- bN0)) < ε. Then we
analyze the last term in the measure </>ofev) together with the constraint variables
as in Theorem 1. If N0 ^j ^ N — N0, this last term is O(N~ί). If j < N0, then we
get an estimate α exρ(—fej) in the measure < >0(cjv) plus an error 0(N~ί) from
the constraints. This concludes the proof of the Corollary.

3. The Wulff Construction

We now present in this section how the previous ideas and results may be used
to establish the validity of the Wulff construction for a single droplet of length N
and "volume" V = λN2.

Let us indeed estimate the partition function

I I / \Γ \

— I f\\Λ . . I f\V\ PYT\ I \ £>(\Λ Kί ^ \?\(\] \?\(rl \?\( 5~"/I \/\τ/ -M — I (Λιlr\ I Uιl\τ CAL/ I 7 t^\ιL: il: i J I U\ιlr\ιU\1ίl/ιJi(J\^ il: V 1

- oo - oo V 1 /

(c»), (17)
)

where CN « cλ has been defined after Eq. (12). Using Theorem 1, we get

log ZV,N - logZ°, N (c N ) + 0(log N), (18)

and the decoupled partition function may be calculated:

logZ°κ>N)= ί>gz~°((l -|)c^) ^19)

with

Denoting

tan Θ(ΐ) =
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and comparing with [1, Theorem 1], we see that

-logί° 1-^ CN = ^ , (20)
^ N

and therefore asymptotically

N dx
- log Z° ,/v (CN) ~ j <7

0 COS eypCJ mean profi le

Using the Corollary to relate ZF!N and ZF N? we thus have:

Theorem 2. Lei h0-'hN be real random variables distributed according to

where ZV^N is a normalization factor and V = λN2. If e(-) verifies hypothesis (5a) or
(5b), then

1 ι -z l

— logZKJV = — /1B
^ /ΛB \ ^'

where IAB is the mean profile.
This additivity of the free energy associated to the interface AB is a central

result in our analysis. It will be an essential ingredient in order to establish the
microscopic validity of the Wulff construction.

Proposition 1. Let a sessile drop on a wall be described by hQ -hN real random
variables distributed according to

δ(h0)δ(hN)δ( Σhf-V )l\dht,

where ZV^N is a normalization factor and V = λN2. If e( ) verifies hypothesis (5a) or
(5b) then the mean profile of the droplet verifies asymptotically as N -» oo

dx d tan Θ(x) cos Θ(x)

which is the shape of the droplet corresponding to the Wulff construction.

Proof. As N-> oo, we have

_ : = _ _ j f -e(t{(1-2x)cλ] + y) + (l-2X)cλyd

SJcos(Θ(x))

where cλ has been defined after Eq. (8) and

tanΘ(x) = ί[(l-2x)cJ.

By integration by parts, we get

d βσAB(Θ(x))

dtanΘ(x) cos <9(x)
= (l-2x)cA,
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which leads therefore to

d d βσAB(Θ(x)) = __^

dx d tan Θ(x) cos Θ(x) λ'

That this equation corresponds to the Wulff construction may be shown by
a simple variational calculation with constraint [2, 3]. Π

Proposition 2. Let a sessile drop on a wall be described by h0 hN (N ̂  2) real
random variables distributed according to

δ(h0)δ(hN)δ

where

N>2

Ife( ) verifies hypothesis (5a) or (5b\ then the contact angle Θ0 of the droplet verifies
asymptotically as V -»oo the generalized Young equation:

cos(90σ^β(<90)-sin(90-
A

dΘ

Proof. The contact angle <90 for a given N is given by

where c satisfies

= σAW - σB
(21)

c2 N2

and N is to be optimized. Let us now compute the left-hand side of (21). We get

β cos Θ0'σAB(Θ0) - β sin 6>0

dσ AB

dΘ
= - log f - e(tan cy dy + ct(c\

On the other hand, the most probable length TV of the droplet verifies asymptotically

β(σAW-σBW)= -~

We now use

together with integration by parts, to obtain:

logz0((l - 2x)cN)dx = logz0(cN)
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and
d 1

— N Jlogz0((l - 2x)cN)dx = logz0(cN) -f cNt(cN),
aJM o

so that the optimal ΛΓ, or equivalently the optimal c, will verify

This equation gives us the value of c, let us denote it c*, which corresponds to
the most probable length N. For this droplet, we get the desired equation

cos Θ0σAB(ΘΌ) - sin 6>0 J^°AB(£

Along the same line of reasoning, one can check that this most probable length
for the droplet is characterized by relative fluctuations which go to zero as the
droplet becomes macroscopic.

This concludes our analysis of one sessile droplet on a wall. It remains to show
that a gas of droplets will concentrate into one macroscopic droplet. This is the
content of the next section.

4β A Gas of Droplets and the Generalized Young Equation

We consider an interface above a wall, hQ = Q, ^ ̂  0,..., fy ̂  0 /IL = 0. Phase
A is above the interface and phase B is between the interface and the wall h = 0.
The energy cost of the interface is chosen as

with e(x) as before, and e(Q) = 0 so that J2 is the energy per unit length of a
horizontal interface. The interaction energy of the wall with phases A and B is
taken respectively as JAW and JBW per unit length. The corresponding Boltzmann
factor at inverse temperature β is then

βJBW) + δ(h^

We wish to describe a situation where phases A and B are in coexistence: A
occupies the main part of the bulk, but phase B, along the wall of length L, also
occupies a macroscopic "volume" (area) λL2 with λ small. We thus have a canonical
constraint

The question is the number, size and shape of droplets of the phase B on the wall.
A droplet of length / and volume v is defined by a piece of interface
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with

As L -> oo with V = /L2, we shall prove that the bulk of phase B is concentrated
in one droplet, the remainder of the wall being unaffected by the volume constraint.

Let

Ξy,L = ]dh0-]dhLδ(V- ΣhiWhoWhJ.
0 0

i

L

Ή(exp( — βJβw} + <5(^i)exP(β(^2 — JAW))}
1

We have
*r Σ $dVl...dVnδ(V-Συp)

n>\

Π 0-β(J 2 + JBw-J
κ

p= 1

where xp and yp denote the first and last point of the p'th droplet and

oo oo / I \ / I

0 0 \ 1 / \ 1

We shall call a droplet "large" when its length / and volume v satisfy

where ε > 0 is fixed. We then have:

Proposition 3. As L -> GO with V = λL2, the probability that there is more than one
large droplet is less than exp(--^(logL)1+ε).

Proof. Let V0 and L0 be the total volume of the large droplets, and n0 their number.
Let

where Ξy°>L is defined as the contribution with n0 large droplets. We have

ΞV,L= Σ \dVQdV,d

)̂ Σ UZVp,h Ξ°V2,L2.
L0=Σlp

The factor L""1 bounds the number of possible positions of the large droplets. The
strict inequality comes from the fact that Ξ°1>Ll Ξ°2>L2 overestimates the contri-
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bution of the small drops :L1 + L2 is in fact cut into n + \ rather than 2 pieces, which
reduces the configuration space (the factor L""1 and the sum over /!•••/„ have
already taken care of the choice of the position of n — 1 intermediate intervals).

Lemma 2. Let Zv L be defined as in (17). Then 3 a > 0, b > 0 such that Mυ ^ 0, / g; 2,
we have

Ί- i i t/,ί ^ j / -

Proof. Our hypothesis for e(x) imply

e(x)>a'\x\-b' MX.

Using half of e(x) to bound the integration over the /Γs and keeping the other half, we
get

where the infimum is taken over the configurations satisfying the volume constraint.
This infimum is achieved for a rectangular droplet, and therefore

which implies

This establishes the lemma for v/l2 large or for / small We now consider
/->oo with v/l2 bounded; we can then use Theorem 2, (see also (18)), which can
be written as follows:

— Γ1\ogZVJ = cst +

with

f(λ) =-\\^du log ί0(ucλ) + log z~0(0), (22)

and cλ and t(c) were defined in (7), (8). We then get

(λ)= -- j
2 -i

= icAc'λ J u2dut'(ucλ\
-1

where we have used <y> 0 = 0 and integration by parts for the second term. Now
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from

we get
: λ ) = c? -f 2/ic c';Λ / Λ Λ Λ

But t(cλ) = ί#<90, where <90 is the Young contact angle. Since the droplet is convex
and symmetric, <90 is larger than it would be for the triangular droplet:

V
tg Θ0 > tg 6>0(triangle) = 4 —^ = 4/1

Therefore c'λ > 0 and f ' ( λ ) > cst > 0. This concludes the proof of Lemma 2 with

a = inf f ' ( λ )

We now estimate Ξn

v L using

Yl7 <V\7 <- 7
1 ί^vp,lp < 1 l^ϋp./p < ZKo,L0

In models where λ lf(λ) is increasing in λ (recall the definition of/ in (22)), such as
the gaussian model, the proof can be concluded easily: there is at least one p, say
p= 1, such that

T^V
which implies of course (vjl\) > (K0/Lo). We then have, if λ~ lf(λ) is increasing,

Using Lemma 2 for p = 2,..., w then yields

Π 7 <?7
^yp.ίp <Z

which proves Proposition 3. In the present general framework however, we do not
know whether λ ~ l f ( λ ] is increasing. We distinguish the tall droplets as those for
which

so that use of Lemma 2 will be enough. For the others, we use an argument inspired
by the Wulff construction. Consider two such droplets (v^l^) and (v2J2) with
( v l / l ί ) ^ ( v 2 / l 2 ) . We shall prove



Microscopic Validity of the Wulff Construction 415

(23)

Indeed

cos Θ2(x)

, -H2/2 COS 02(χ)

-̂ - σ(0) )dx -f 0(log / 3 ) + 0(log /2). (24)

The last term will provide the damping factor in inequality (23). The second and
third term correspond to an interface which bounds a volume v2/2 + l2/2 hmax(2).
POT the first term, we have (see Fig. 1)

^ σ(Θί(x))
ί6 cos Θ^x) & cos Θ!(X) ί,

because σ(6>)/cos Θ is increasing in <9. Indeed

^ σ(Θί(x))
ί ~^̂ τ4^ cos Θ^x)

^75 = ~ log *COS (5/

a σ(Θ)

with

We now adjust aί and i t so that the new interface above (0, /,) bounds a volume

and meets the interface above (/15 / t -f / 2) corresponding to the second and third term
in (24).

Fig. 1. 0

The resulting interface above (0, / x + /2) bounds a volume v1 + ̂ 25 but is not optimal.
Therefore
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Exponentiating this inequality gives

/2

< Z ϋ l + I 7 2 ι Z l + Z 2 e x p -iα + 0(log/1) + 0(log/2)
12

Iterating this procedure yields

V]ZV lI I Vp,Lp

where Σ' is the sum over tall droplets a vp/l2

p > f ( F0/Lo), and Σ" the sum over the
others, and

We then have

We now use

where cst(F0/Lo) is bounded in terms of f ' ( x ) with X < K O / L Q . Using
V/p>(logL) 1 + e

5 we get

From up/;2 > /I, we get vp/lp > /4/p and /p <(V0/A)υ2. Therefore

This shows that ,4 can be chosen such that

Π 7 ^ 7- ^-(H-D(logL)H-e
.^I^.ΪP < AKo,L0^

This concludes the proof of Proposition 3.
We now have only one large droplet, and we know from Sect. 3 that its shape

obeys the Wulff construction. There remains to determine the value of F0/L§, or
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equivalently to prove that the contact angle obeys the modified Young equation. We
have

ΞIV.L = Σ \dV0dV,dV2d(V -Vo-Vi- V2)Ξ°t,LlZyo.LoΞ°2.L2.
L = Lι +Lo f L2

if we first perform the integral over the volumes, we see that

ZVO,LO = exp - L0f( + 0(log L0)

exp - L o / - + —2- /'-- + 0(logL

On the other hand, the volume dependence of Ξyί>Ll (and Ξy2>L2) could be
estimated by looking at the distribution function oΐΣhi without volume constraint,
in the partial wetting situation in which we are interested, characterized by a finite
mean size of droplets. One would find •(^Vιy ^ L1 and <(Ft — < Vl))2} & L1

because V1 is the sum of 0(Lt) volumes of independent droplets. Therefore a
Gaussian distribution

exp ------

will cut off the integral at

before the volume dependence of ZVo^Lo can come into the game. Therefore

ΓΓ V £7 7
—ΎtL ~ Lu ^L-LO ^K.LO'

Lo

where H L __ L o is the grand canonical partition function (no volume constraint).
We then have

log 2L_L o Zκ.Lo = (L - L0)βσAW + L0βσBW + ]° ̂ ί^ldx + O(logL),
o cos (y\X)

and we are back to the classical variational problem, which we know yields the
modified Young equation. The sum over L0 will be peaked around the optimal
value, with a fluctuation less than L1/2. in order that this optimal value be less
than L, we need F/L2 less than some constant which would vanish at the wetting
transition.

Appendix

Lemma 3, Let e(x) satisfy hypothesis (5a) or (5b). Then 30 < cmax ̂  oc such that

and



418 J. De Coninck, F. Dunlop and V. Rivasseau

I(c) = ~$c't(c')dc'

are continuous increasing functions o/ce[0, cmax[ and

t(c) -> -f oc as

/(c) -> Hh oo ί/5

Remark. Our hypothesis on φc) was stated in [1, Theorem 1 and Remark], it-
guarantees that the surface tension σ(Θ) is given by

σ(Θ)— —cosΘlogf \dx
V

where t = tan Θ and c is the solution of

Proof. The proof is straightforward, with cmax = oo for (5a) and cmax - c0 for (5b).

Lemma 4. Lei A^efKΛ w e N , j = 1 , . . . , n b^ centered independent random variables
whose distribution functions have densities which are uniformly continuous, uniformly
inj, n. Let

_ n _ f

V — ( V1 Vd\ _ M - 1/2 V Yϊn — (!„,,.., ϊn) — n 2-j Ai,m
7 = 1

Suppose that the dxd matrix Γn converges as n --» oo to a positive definite matrix Γ
ί for some integer k §• 3 and 5ome (5 > 0

1 V <(J??,)fc/2 + ί > < o o .
7 = 1

T/ιen ί/ie random variable Ύn has a density fn(Y) such that

-+
/„( Ύ) = nΓπ( y)

where nΓn(Y) is the density of the Gaussian measure of covariance Γn and Pyn(Ϋ) are
polynomials of total degree 3y — 1 in Yl- Yά whose coefficients are bounded in
modulus from above uniformly in n.

Proof. For d = 1, or for random variables Xjn which do not vary with n, the result is
standard [4, 5, 6]. The proof here is essentially the same.
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