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Abstract. Motivated by the operator formulation of conformal field theory on
Riemann surfaces, we study the properties of the infinite dimensional group of
local biholomorphic transformations (conformal reparametrizations) of (C1

and develop elements of its representation theory.

1. Introduction

String theory [1] has provided and continues to provide motivation for much
interesting mathematics. It suffices to recall the vertex operator construction of
representations of Kac-Moody algebras [2], the impulse it gave to the study of the
global geometry of the moduli space of Riemann surfaces, and the surge of interest
in two dimensional conformal field theory (CFT), inspired mainly by the role of
CFT in string theory. Indeed, recent developments, to mention only [3,4], have
raised CFT to the role of the main technical tool in the study of quantum string
dynamics, at least within the first quantized approach. It is also worth adding that
CFT has considerable interest in itself, for it has a quite intricate mathematical
structure, which is nonetheless much more tractable than that of more general
quantum field theories. CFT has moreover found important applications within
the theory of two dimensional critical phenomena.

The present work was motivated mainly by recent developments concerning
the operator formulation of CFT on higher genus Riemann surfaces [5,6]. One of
the characteristics of these approaches is the use they make of a space Jί of
geometrical data, consisting in the simplest case of triples (M, P, z), with M a
(closed) Riemann surface, P a distinguished point on M, and z a local uniformizer
at P, i.e. a holomorphic function in a neighborhood of P with dz(P) φθ. The
freedom of choosing any z with the above properties corresponds to the action on
Jί of an infinite dimensional complex continuous group, which we refer to in the
following as the group CS of local biholomorphisms; it would seem natural to view
Jί as a principal fiber bundle with structure group ^. Moreover, considering a
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CFT on M leads one naturally to the idea of associating to each (M, P, z) a "space
of states," isomorphic to the Hubert space Jf of the given CFT. Naively, the result
of this should be an infinite dimensional vector bundle over M, associated to the
above mentioned principal bundle. This is essentially the "bundle of observables"
introduced by Witten [6].

However, to make this precise we need to know more about the properties of ^
and its representation on 3Ίf. The subject of the present paper is to fill in some gaps
in our understanding of this problem. We think that such a study is also of interest
from the mathematical point of view. ^ is an example of a non-Banach infinite
dimensional Lie group, and to our knowledge no general theory of such groups
exists. On the other hand, non-Banach groups occur frequently both in
mathematical physics and pure mathematics, e.g. as various diffeomorphism
groups and loop groups [7,8]. A systematic investigation of their properties and
representation theory thus seems to be worthwhile.

Our strategy, in outline, is the following: on J f we are given the action of the
Virasoro algebra [9], a certain completion of which gives a central extension of the
algebra of meromorphic vector fields on M. The Virasoro algebra contains a
subalgebra, generated (in standard notation) by Ln, n^O, which may be completed
to the algebra ^ of holomorphic germs of vector fields at P, vanishing at P, and this
subalgebra is "anomaly free." This leaves the problem of whether ^ is in fact
generated by ^, via an exponential map with suitable continuity properties, and of
the existence and properties of the representation of ^ on Jf obtained by
exponentiating the corresponding representation of ^.

It should be noted that one cannot expect such a representation to be defined
on all of Jf: for example, exp(L0) is an unbounded self-adjoint operator. An
essential part of the problem is therefore to find the maximal invariant subspaee of
J-f on which this representation exists.

We find that most of the properties of ordinary Lie groups indeed hold also for
@, with an important modification: the exponential map is not locally invertible in
any neighborhood of 0. We have however found a way to deal with this problem,
and the net result is that ^ is spanned by one parameter subgroups, as any Lie
group.

As to the second question, we describe the maximal invariant subspaee of a
Verma module (more precisely: of the space obtained by taking the quotient of a
Verma module by null vectors), on which the representation of g obtained by
restricting the given representation of the Virasoro algebra integrates to a
representation of the universal covering group of ^. The latter is also explicitly
described. For non-negative integer values of the highest weight of the Verma
module this representation can be projected to one of ^. In the case of a
holomorphic CFT this solves the problem of representing ^ on J>f, since Jf is then
a direct sum of Verma modules. In the general case, one must consider the tensor
product of a representation corresponding to highest weight h with the complex
conjugate of the one corresponding to /z, and sum over all (/z, h) occurring in the
given model. This necessary generalization does not seem to pose problems.

This paper is organized as follows: in Sect. 2 we describe the group of local
biholomorphisms and its topology, the latter by making use of the concept of
inductive limit of Frechet spaces. In Sect. 3 we do the same for the Lie algebra ^
and introduce the exponential map. The properties of the exponential map are
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studied in detail in Sect. 4. In Sect. 5 we describe the universal covering group of ^
and the properties of the corresponding exponential map. Section 6 is devoted to
developing the representation theory. A few final remarks are gathered in Sect. 7.

2. The Group of Local Biholomorphisms: General Overview

We consider the space of germs of holomorphic functions at zero in (C1. It is a fiber
of the sheaf of holomorphic germs on (C1. Within this space we can distinguish the
subspace of germs of functions with a fixed point at zero and locally invertible at
zero, i.e. /(0) = 0 and /'(0) + 0. We are therefore dealing with the space of germs of
holomorphic transformations of some neighborhood of zero, which send zero to
zero in (C1.

It is easy to see that this space can be given the following explicit description:

Definition.

<S = ί/(z):/(*)= Σ fnz", ΛΦO, l imsupl/J^ooj. (2.1)

^ is naturally equipped with a group structure (^, o)5 where " o" is composition
of mappings: (/<> g) (z) =f(g(z)) for /, g e $. It is obvious that the group axioms are
satisfied, moreover we may introduce the following topological structure: let

\<n= 1

For every R>0,^R forms a Frechet space, with a countable family of seminorms
given by

L = s u p | / ( z ) | , r = R[ί--)9 n = 2,3,.... (2.2)
| | \ nj

Now take (J <§R and endow this set with the topology of an inductive limit of
R>0

Frechet spaces (ILF topology). Thus ^ is a topological space, as an open subset in
an ILF topological space. It is easy to see that ̂  enjoys the following properties: (a)
it is Hausdorff, (b) separable, (c) arcwise connected, and therefore connected. ̂  is
also non-metrizable as a strict inductive limit of Frechet spaces [10].

Since we can write fe $ as reiφz +f2z
2 +f3z

3 + ... for r > 0, φ e IR, and f{ e <C,
i = 2,3,..., there exists a one to one continuous map representing / as
(yφ,r,/2,/3, ...JeS1 x {contractible set}. This shows that ^ is homotopically
equivalent to the circle S1.

Proposition 2.1. (^,°) is a topological group.

Proof. Use of elementary properties of holomorphic functions yields the estimate

- ^ - ^ o g - ^ l ^ d sup \f(z)-fn(z)\
||\z\=r

+ C2 sup |g(z)-gn(z)|,
N=r2

where the constants C l 5 C2, rur2 have finite limits as /„->/, g«^g The continuity of
/ 0 ^ " 1 follows. •
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The ILF structure of ^ seems to be natural for our purposes. One could
attempt to equip ^ with the structure of a Lie group, but that would require at least
a differentiable structure in the Frechet space (cf. [11]), extendible to the ILF in a
way which would make the map (/5g)->/°g~1 smooth.

3. The Lie Algebra of ^

Although we have not shown explicitly that ^ may be considered a Lie group,
there is however a natural associated Lie algebra which may be easily described.

Definition.

f 00 1

p = l v : v = £ vnz
n{djdz\ vne<£, limsup|z;n |1 / n< oo >. (3.1)

(_ n= 1 «-•• oo J

Let us compute explicitly [v, w] for v,wep.

[t>,w]=Σ Σ vnWmίz\dldz),zm{dldz)]
n= 1 m— 1

00 00

Σ v / \ m + n — \ ί JIJ \ /oo\

L-i n τn\ / \ I / cΓ ^ '
n—\ m— 1

One may also think of g> as the Lie algebra of germs of holomorphic vector
fields vanishing at zero in (C1. Now, proceeding in the same way as in the case of the
group ^, we can introduce the ILF topological structure on ̂ . In addition we show

Proposition 3.1. ^ is a topological hie algebra.

Proof. The only nontrivial point is the continuity oϊ(υ, w)-*[v, w]. Let v = v(z) (d/dz).
Using the Cauchy inequality we find

>||r. (3.3)

Thus

H>>w]||Λ= sup
\z\ =

ex) k

k=1 n=l

l-2n)vnwk+ι_nz
ι

p !;|U|w||r J Σ \k + i-2n\r-
(k+l)\z\k

\z\=R / c = l « = 1

= C(R,r) \\v\\r

where C(R,r) is a constant which depends only on R and r, and R<r. The
continuity of the Lie bracket follows. •

We now explore the relation between ^ and <&. By analogy with the case of
ordinary Lie algebras and groups, it should be given by the exponential map.

Definition. By the exponential map exp:^->^ we mean

Σ γMz)dldzfz. (3.4)

Proposition 3.2. The map exp is well defined and continuous.
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Proof. First of all observe that, by direct calculation, if /=exp(ι;) then /(0) = 0 and
for the first coefficient we have fγ =exp(ι;1) + 0. Now it should be shown that for
every ve#, exp(ι;)e^.

Following the same procedure as in the case of Proposition 3.1 we obtain by
induction the following inequality for the nth coefficient of the fcth term of exp (v):

Mk)\ = \{_(v{z)d/dzfz-]n\ S 4τhτ°k-i(n)
r

where « n3 «2

) = Σ «*... Σ n 2 Σ «i

1 /nY
It is seen that σt(n) ̂  TJT I — I . Thus

00 ^ (fc)
Now let bπ = X -^-—. Then for n > 1 we have

k = o kl

γ
r" *έΌ r* V 2 J (fe!)2(/c+l)

Because of £ ——2 ^exp(2|/x), we obtain

Therefore

1 / 1 ; | | r / 2 r ) 1 / 2 ) . (3.5)

We have thus obtained an estimate for the radius of convergence of the analytic
mapping exp(ι ), which shows that exp(ι;)e^.

The continuity of exp can be shown by using the integral du Hamel formula

i d
Qxp(vιd/dz)z — Qxp(v2d/dz)z = ^Qxp(tv1d/dz)(vi— v2) — exp[(l —t)v2d/dz]zdt,

o dz

and formula (4.1) below. •

Example 3.3. Let / π e ^ be of the form

<?n=-zn+1d/dz, n = 0,l,2,3,.... (3.6)

We immediately obtain

UnJm\Hn-mYn + m. (3.7)

Then for αe(C, exp(α^) can be computed as

- 1/", n>0

π 0 (3.8)
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4. Properties of the Exponential Map

By analogy with the situation for finite dimensional Lie algebras and groups we
expect exp to display a series of convenient algebraic properties. In the following
we present the most elementary among these properties

Proposition 4.1. Take v(z)d/dze# and fe@. Then:

1. exp[φ)d/dz]/(z)=/(exp[φ)d/dz]z); (4.1)

2. v(z)df/dz = v(f(z)) if /=exp(t;); (4.2)

3. Let fλ(z) = Qxp[λv(z)d/dz']z. Then

fλl+λ2=fλl°fλ2' (4.3)

4. exp^H/^oexp^)0/, (4.4)

where υf = {dfldz)~ιv{f{z)\

Proof. To show 1. take two maps

t-^A^t) = exp [tυ{z)d/dz]f{z) and ί->42(ί) =/(exp |>(z)d/dz]z).

Observe that Aι(ΰ) = A2(0) and they satisfy the same differential equation:

A(ή ()

The above may be viewed as a system of ordinary differential equations (in t) for
the coefficients of the series expansion of At(t) in powers of z. Therefore Aλ and A2

must coincide.
To show 2. let us replace v with / in property 1. Then

υ(f(z)) = exp \y(z)dldz\v(z) = v(z)df/dz.

3. is a direct consequence of 1. To show 4. we can take two mappings

t -• exp (tvf) and t -+f ~x o exp (it;) ° /,

and repeat the same reasoning as in 1. Π

As is well known, not all the properties that the exponential map displays in
finite dimensional cases carry over in infinite dimensions. To illustrate this we shall
show with two counterexamples that exp is not an homeomorphism (even locally
in the neighborhood of zero) and is not surjective on <S.

Example 4.2. We demonstrate below that exp is not injective, even locally in the
neighborhood of zero. Let us take a one-parameter subgroup in ̂ , i.e. / 0 = id,
ft+s=ft°L of the form

ft(z) = eitz(l +(eint-l)zn)~1/n. (4.5)

For t = 2π/n we have f2%jn(z) = e2πιlnz. There exists a ve^ such that

/t(z) = exp[ίφ)d/dz].
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In fact, v(z) is given by

jf{z) =v(z).

Performing the computation we obtain

III ί = = 0

hence a single element e2πιtnze^ may be obtained in two different ways:

exp [(2πi/n)zd/dz]z = e2πί/nz - exp [(2πi/n)z(l - zn)dldz]z.

This is the counterexample, as claimed.

Example 4.3. Here we present a family /„ e ^, the elements of which are not
contained in the image of exp:

fn(Z) = e ^ Z + ^ . (4.6)

Below we will explain how this counterexample works, and thus show that exp is
not a surjective map onto an arbitrarily small neighborhood of the identity in (S.

We will need the following lemma, due to H. Poincare (cf. [12]), which concerns
the linearization problem for germs of complex analytic diffeomorphisms. This
lemma provides the possibility of showing the existence of a large subset of $> on
which exp is an homeomorphism.

Lemma 4.4. If feΦ and the first coefficient of its power series expansion satisfies
|/il=t=l, there exists a ge^ such that

gφg-^fiz. (4.7)

The proof is a standard exercise and will not be given here.
Now we are ready to state the following

Theorem 4.5. a) Let n i ) = {ve^:RQvί + 0}, and ^ ( i ) =
Then exp:^ ( 1 ) ->^ ( 1 ) is a covering map, i.e. a local homeomorphism with each

fiber being a discrete space (in fact, isomorphic to Έ).
b) For each / e ^ there exist vuv2 such that

f=Qxpv1 oexpι;2 (4.8)

Proof From Proposition 3.2 we know that exp is well defined and continuous. By
Lemma 4.4 and Eq. (4.4), exp" 1 exists locally:

Hέ' (4 9)

where g is the solution to the linearization problem of Lemma 4.4. It is
straightforward to show that e x p " ι is also locally continuous; we leave this to the
reader as an exercise.
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As to point b): let f=λ(λ~ιf\ 2φO and chosen in such a way that \λ~ίf1\ + \.
By Theorem 4.5a), there exists a. ve^ which satisfies

λ~ιf=cxp(v).

Hence g = exp (z log λd/dz) o exp (v). •

Corollary 4.6. From Theorem 4.5 b) it follows that $ is spanned by a family of one-
parameter subgroups.

Now we wish to make a few comments concerning Example 4.3. The
counterexamples are provided by the fact that the linearization problem has
different solutions in p and in <§. Were exp a surjective map, there would be a
correspondence between the respective solution spaces. We observed that, if
l/il + l, there exists a g e ^ such that g°f°g~i =/iZ, given by a solution to the
linearization problem in ̂  (cf. Lemma 4.4). Now let υe#, and v1ή=0. We ask: does
there exist a g e ^ such that

(4.10)

where v(z) = £ vnz
nΊ This is the linearization problem in^:vg-i=v1z,cϊ. (4.4). To

solve this problem we will apply the method of Lemma 4.4. Write down both sides
of (4.12):

00

Vlg(z)= Σ ^l&iΛ
i — 1

_ v Σ vn-k + igkk)zn.
n=ί\k=l J

We therefore obtain the recursive equations (with gx arbitrary):

(4.11)

which give a formal solution g, as required. We now verify the convergence of
00

gkz
k, i.e. ge&. To this end we introduce N = R\v1\, with R satisfying

k=l

N

Then

R " - 1 JV

Now we put

R
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in order to obtain inductively the inequality

But xn can be computed explicitly, by setting up a differential equation. Indeed,
denote

X(z)= Σ
n= 1

and

11=1 K K — z

We obtain the equation

Rz dX Λ dX „

K - z dz dz

which can be explicitly solved, yielding

X(z) = constz(£-2z)- 1 / 2 .

Since this function is holomorphic in a neighborhood of zero, so must be g.
At this point we are ready to prove that Example 4.3 is indeed correct. For

simplicity, take / = —z + z2. Suppose that there exists a ve^ such that /=exp(u).
Then vί = log( — 1) = in φ 0, hence for some ge^,vg = (dg/dz) ~ 1v(g(z)) = iπzd/dz. It
follows that / = g ° ( — z)og"1, i.e. fof=z. But obviously / o / = z —2z3 + z4Φz, so
we obtain a contradiction.

5. Covering Group

The properties of ^ make it obvious that ^ posesses a universal covering group
(#, ^, π). In this case we are able to present an explicit form of (#, ̂ , π).

Definition.

Φ { \ Λ (5.1)

If # is endowed with the product topology, as a subset of C x ^, then it is easily
observed that the operation o;

(λ,f)Hμ,g) = (λ + μ,fog) (5.2)

gives (β, o) the structure of a topological group. Observe that the first coefficient of
fog indeed satisfies f1g1=eλ + μ.

It is clear that # is contractible: to see this, it is enough to consider the
homeomorphism (A, f)->(λ, f2, f$, -••)', the first coefficient fx is then determined by
λ, and # is mapped into a contractible space. Therefore, in particular, Φ is simply
connected.
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Definition: Let us define

π:#->0 as π(λ,f)=f. (5.3)

We see that π is a group homomorphism, and a local homeomorphism with
discrete fiber:

U i /)^Z. (5.4)
neZ

Thus we have a covering (#, ̂ , π) of the topological group ^, and since # is
simply connected, (#, ̂ , π) is the universal covering.

Let us check the properties of the exponential mapping to Φ.

Definition. exp:^-># is given by

(5.5)

The map exp is obviously not injective nor surjective for any neighborhood of
zero in ^.

0n # ( 1 ) = { μ , / ) e # : R e A φ 0 } . (5.6)

Note that exp:^(1)—>^(1) is a homeomorphism (where ^ ( 1 ) was defined in
Theorem 4.5). Indeed, take g e ^ such that g°fog~1(z) = eλz (cf. Lemma 4.4); then

eϊp " ' (Λ /) = g(dg/dz) ~1 λd/dz. (5.7)

Arguing as in Theorem 4.5b) we can show that for each element (λ,f)eΦ there
exist v,we^ such that

μ,/) = e£p(t>)SSp(w). (5.8)

Hence # is spanned by a family of one-parameter subgroups.

6. Representations

One of the main goals of this paper is to construct a large class of representations of
# and of (S. They will be obtained as restrictions of the unitary highest weight
representations (UHWR) of the Virasoro algebra [13]. Let us recall here an
abstract definition of this algebra.

Definition. Let us take a family of formal elements {C,Ln}, where neΈ. By the
Virasoro algebra we mean the complex vector space

Vir = span {C,Ln}, (6.1)

together with the Lie bracket defined by

(6.2)
[LΛ,C]=0 for all n.meZ.

The unitary highest weight representation is given by
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Definition. There exists a Hubert space V(c, h), c, h e R, with a distinguished vector
\h) e V(c, h\ (h\K) = 1, and a dense subspace /), described below. F(c, /z) carries a
representation of Vir by unbounded operators, with D as a common invariant
domain. The following conditions hold:

a) C is represented as multiplication by celR.
b) L0|Λ> = Λ|Λ>.
c) LJ/z> = 0 for n>0.
d) \h) is a cyclic vector for the representation of Vir.
e) L+

n =L_n for a l i n e Έ.
We have used here the same notation for the abstract elements of Vir and for

the operators that represent them on V(c, h).
By virtue of c) and d) we can introduce the notation

|{nJ?=1> = (L_ ivr-...(L_2HL_1ΠΛ>. (6.3)

We take D to be the subspace of V(c, h) spanned by vectors of the form (6.3).
The UHWR exists for special values of c and h, in particular it is necessary that

c>0, h^.0, and then it is unique [14,15]. From now on c and h will be fixed.
Moreover, L o is an essentially self-adjoint operator on D with the discrete

spectrum {h + N} given by b) and

Lo\{nk^=1>=Σ (h + knk)\{nk}»=1). (6.4)
k= 1

The basic observation is that ίn= —zn + ίd/dze^, ft 2^0, have the same
commutation relations as LneVir [see (3.7)]. Thus any representation of Vir is
simultaneously a representation of the generators of #. In particular, this holds for
the UHWR described above.

Since L o is an unbounded operator, we cannot expect to have here a
representation of ^, and so of #, into a space of bounded operators acting on the
Hubert space V(c, h). We will thus take an approach which may be summarized in
the following points:

1. Choose a dense domain ScV(c,h), invariant under the representation of
Vir;

2. Introduce a Frechet topology on S (stronger than the induced one);
3. Show that there exists a continuous representation of ^ in the space of

bounded operators on S;
4. This representation may be now integrated to a representation of Φ.
Below we assume that h>0. If not, replace L o by L o + 1 in all formulas.

Definition.

S = {xe V(c, h): ||exp(AL0)x|| < oo for every λ > 0 } . (6.5)

00

Example. Observe that DC5, and moreover, x= £ e~n2L_n\h}eS. More gener-

ally, S consists of all combinations £ ^{nk}\{nk}k=ί} with coefficients α{nk} which
decay faster than exponentially. {"k}

As is natural, we take | |x | | Λ = ||exp(nL0)x||, n = 0,1,2,... as the family of
seminorms defining the topology on S. In this way S becomes a Frechet space.
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In addition, there obviously hold the following inequalities:

||xIIm= IIexp(mL0)x|| = ||exp[ —(rc —m)L0] exp(nL0)x|| ^ ||x||„ for n>m.
(6.6)

Proposition 6.1. The map /π->Ln, n^.0, uniquely extends to a continuous represen-
tation dρ of ^ in the space of bounded operators acting on S.

Proof Obviously for each v e ^, given in the form

00

v = Σ vn+i^n w i t n lir

0

we have a unique corresponding operator ^ vn+1Ln acting on S. It is now
n = 0

necessary to show that this operator is bounded, i.e.

Σ vn+1Lnx
n = 0

exp(/cL0) X vn + ίLnx
n = 0

S ( Σ K + i l Hexp(feL0)Lπexp(-sL0)|| )

Note that

exp(kL0)Lnexp(— sL0) = e~snexp[ — (s — fe)L0] Ln, s>k,

which implies that

0

vn+ίLnx S[ Σ k+i (6.7)

We now define An = Qxp( — tL0)Ln and study \\An\\. Using A* =L_nGxp( — tL0),
and the following formula:

we obtain

\\An\\2^(l-e-2t")~ 2tn\ - 1 exp( - 2ίL0) \2nL0 +^(n3- n)J

and

(6.8)

We see that for s sufficiently large the series
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is convergent. Hence the operator Σ vn+1Lnis bounded, as claimed. Using the
n = 0

Cauchy inequality and Eqs. (6.7), (6.8), we obtain

Σ vn
Sconst(fe,5,r) \\v\\r\\ (6.9)

The continuity of the representation follows. •

Now we are ready to integrate the representation of ^ to one of #. At first,
however, we restrict our attention to the simpler case of a one-parameter subgroup
of #. As was shown above, the group # is spanned by such subgroups.

Let us consider an operator exp Σ υn + iLn) acting on S. This operator is well

defined at least on D, since for every xeD a, sufficiently high power of Ln annihilates
x. We find the following inequality:

Σ vn+ιLn)x
/ G O \

exp(/cL0)exp Σ υn + ιLn exp(-sL 0 )
\n = 0

By virtue of [Lw, L o ] = nL0 we have

Σ ^ + i L

n = 0

We now introduce φ{t\ t ^ 0, by the formula

) = exp [ - t(s - fe)L0] exp ( t

(6.10)

(6.11)

(6.12)

It satisfies the following linear differential equation:

-7- = — >4(ί)φ(ί)j where for p = s-k^0,
dt

A(ή = pL0- Σ vn + ίe-np-"k + tnpLn.

From (6.10) we see that the boundedness of the operator exp V vn+ίLn on
\π = 0 /

the Frechet space S depends crucially on the existence of the operator norm ||φ(l)| |5

therefore it is necessary to study Eq. (6.12) more closely. To this end we will make
use of the following two lemmas:

Lemma 6.2. For s and k sufficiently large, and for all t e [0,1], the operator Λ(t) is the
generator of a semigroup of contractions.

Proof We shall verify the assumptions of Phillips' theorem (Theorem X.48, [10]),
i.e.

a) $(A(t)+A*(ή) is positive.
b) lm(λ + A(ή) = V(h,c) for a certain λ>0.
It was proved in [16] that LnL0

1 is a bounded operator with \\LnL0

 x || bounded
by a certain polynomial in \n\.
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To prove a) we decompose

where

B=M — V vn+ίe~np~nk+tnpLn + hQτm. coni. ).

Now observe that

where

for /?, k sufficiently large, by [16]. By virtue of the Kato-Rellich theorem
(Theorem X.12, [10]) and of the positivity of Lo, A(t) + A*(t) is positive.

To prove b) we observe that for λ positive and sufficiently large the operator
λ + A(t) is invertible. In fact, decomposing as above and using [16] we can define
(λ + A(t)) ~1 by a suitable Neumann series. Thus, by virtue of Phillips' theorem, A(t)
is a generator of a semigroup of contractions. •

Lemma 6.3. Let X be a Hubert space, and A(t) for t e [0,1] - the generator of a
semigroup of contractions. Suppose that there exists a dense domain ScX, common
to all A(t) (which allows A(t)A{s)~ι to be bounded). Let C(t,s) = A(i)A{s)~1-I.
Assume that (t — s)~1C(t,s) is uniformly continuous and uniformly bounded as a
function of t and s (for tή=s). Furthermore, assume also that the limit

C(ί) = lim(ί-s)"1C(ί,s)

exists uniformly in t, and C(t) thus defined is bounded and uniformly continuous.
Then there exists a unique solution to the equation

φ(0) = φo.

Moreover, for every t, \\φ(t)\\ ^ ||φoll

The above lemma is a direct consequence of Kato's theorem (see e.g. [10]).
We are now ready to state the following

Theorem 6.4. The representation dρ of # in V(c, h) is integrable along one-parameter

subgroups in Φ, i.e.

( °° \
a) exp λ Σ vn + iLn is a one-parameter group of bounded operators on S;

v n=o l ^
b) Let ve^ and let {oxp(λv)} be a one-parameter subgroup in Φ, generated by

v= Σ *>«+/«. Then
π = 0

λ £ υn+ίLn) (6.13)

is a continuous representation.
c) The differential of the representation ρ is dρ.
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Proof. We only need to prove a), since b) and c) then follow easily. To do this we
return to Eq. (6.12) and check whether the assumptions of Lemma 6.3 are satisfied:

where

C(ί, s) = A(t)A(s) 1-I = (I + 5(0) (/ + 5(5)) - ' -1,

-1
B(t) = Σ Vn-\ -np-nk + tnp (6.14)

We already observed in the proof of Lemma 6.2 that 5(0 is uniformly bounded for
te[0,1], and furthermore ||5(0H < l for p and fc sufficiently large. Since

C(t,s) _ 5(0-5(5)

ί - 5 "~ ί —S

it is enough to show that 5(0 is uniformly continuous. Indeed,

\\B(t)-B(s)\\Sr—

Note that the following inequality holds:

ί — s t-s
< const.

Now let

Then

ί — s
— - C ( ί )

C(t)= Σ vn + iPne~
P — VΛ n= l

Σ KΛ

The existence of C(0 as a limit as s-*£, uniform in t, follows. It is not difficult to
check that C(t) is bounded and uniformly continuous. Thus all assumptions of
Lemma 6.3 hold and the solution of (6.12) obeys ||φ(0ll ^ 1 for t e [0,1]. Hence by

(6.10), exp Σ vn + iLn is a continuous operator on S. •
\n = 0 J

Two essential facts hold: first, that dρ is integrable along one-parameter
subgroups in # (Theorem 6.4), and second, that # is spanned by a family of one-
parameter subgroups (Corollary 4.6); these allow us to define the representation ρ
of #. We will need some additional notation: denote the partial sum of a series

Ω = Σ cokz
k by Sn(Ω)= Σ ωkz

k. Now, let
k = ί fc=l

The group structure in #„ is given by
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It is clear that (#„, o) forms an rc-dimensional, simply connected complex Lie group.
Denote by Sn the following projection:

It may be verified that Sn is a group homomorphism.
We clearly have the following commuting diagram [this may be checked by

using recursive formulas for the coefficients of exp(ι )]:

Sn

5n (6.15)

Γ Ί - Λ

where ?n=<υ: Σ vkz*(d/dz)>, and # J^n3v h^ e x p » = Sn(exp(ι )).

To see that ρ is a representation, the following lemma is needed:

Lemma 6.5. Let u,v,w be elements of ^ such that exp(w)Sexp(ί;) = exp(w). Then
Qxp(dρ(u)) o exp(dρ(ι;)) = exp(dρ(w)).

Proof. Take \λ} to be an eigenvector of L o with eigenvalue λ. Then we can form

7 A
Observe that:

- Vλ is a finite dimensional subspace in S C V(h, c). Indeed, we have

and

L^...Lπ

1

iμ> = 0 if Σ knk>λ-h,

since L o is bounded from below. Thus the number of nonzero vectors of the above
type is finite.

- Vλ is an invariant space for dρ.
- Ln\Vλ = 0 for sufficiently large n(n^.λ — h+\).
The above observations imply that

dρ(v)\Vλ = dρ(SJυ))\Vλ9

for all vEf and sufficiently large m.
Similarly, we have

exp (dρ(υ)) | Vλ = exp [dρ(SJv)y] \ Vλ.

The meaning of the above formulas may be expressed by saying that both ρ and
dρ reduce on Vλ to representations of # m , ̂ m. We thus have a finite dimensional
representation dρ of the finite dimensional Lie algebra ^m, which by a classical
theorem can be integrated to the unique representation ρ of the simply connected,
finite dimensional Lie group # w . Making use of this fact and of the diagram (6.15)
we obtain

Qxp{dρ{u))\Vλ o Qχp(dρ{v))\VΛ = exp(dρ(w))\Vλ.
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Moreover, for any x e D,

exp(dρ(u)) o exp(dρ(v))x = exp(dρ(w))x,

since D is spanned by all Vλ. But D is dense in S and Qxp(dρ(v)) is continuous on S for
each vep, hence the lemma follows. •

n

Corollary 6.6. Let ub i = 1,..., n be elements of ^ such that f] exp (uι) = exp (w). Then
i l

) = exp{dρ(w)).
i = l

Now we are ready to present the definition of the representation ρ.

Definition.

ρ(λ, f) = Qxp(dρ(v)) ° Qxp(dρ(u)),

where u,υ are chosen such that (/l,/) = exp(z;)oexp(w).

To see that this definition is correct we must verify that ρ(λ, f) does not depend
on the choice of M, V. Indeed, let

(λ, /) = exp(ι>i) ° exp(«i) =

i.e. exp(i;1) = exp(ι;2)°exp(M2)°exp( —wj. Then, by Corollary 6.6,

OJ) = Qxp(dρ(v2)) o exp(ί/ρ(w2)) o e x p ( -

and thus ρ is well defined.
Now we present the main theorem of this section:

Theorem 6.7. ρ is the unique continuous representation of @ in the space of bounded
operators on S with differential equal to dρ.

Proof The uniqueness of ρ follows from Theorem 6.4. Corollary 6.6 implies that ρ
is indeed a representation, i.e.

The continuity of ρ on # ( 1 ) follows easily: by Theorem 4.5 and Proposition 6.1, ρ is
the composition of three continuous maps: ρ = exp ° dρ o exp" 1 (see also remarks
following formula 5.6). However, as ρ is a homomorphism of topological groups, it
suffices that it be continuous at one point for continuity on all of # to follow. •

Now the following question may be posed: for what values of h,c, the
parameters of V(c, h\ the representation ρ of # can be projected to ^, i.e.

#__?_> B(S)

Fortunately there exists a simple answer to this question, which is given by the
theorem below.
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Theorem 6.8. ρ can be projected to *§ if and only if h is a natural number.

Proof We need to show that ρ is constant on the fibers of π, i.e. ρ(λ,f)
= ρ(λ + 2πin,/), neZ. There are two cases to consider:

a) μ , / ) e # ( 1 ) . Then

by Lemma 4.4. As we have the freedom to choose μ, we can take ReμφO. Then
(μ,g) = exp(ι;) for some ve#, and

Likewise,

(λ + 2πin, f) = exp(exp(Adι;) (λ + 2πm)/0),

with the same vsp.
These assertions imply that'

ρ(λ, f) = exp {dρlQxp{Adυ)Uo]} = exp {exp [Addρ(ι;)] AL0}

= exp (dρ(v)) ° exp (2L0) ° exp (— dρ(υ)). (6.16)

Similarly,

ρ(λ + 2πm, /) = Qxp(dρ(υ)) o exp((i + 2πin)L0) o exp( — dρ(ϋ)). (6.17)

Now, (6.16) is equal to (6.17) if and only if

exp(2πmL0) = id for all neΈ.

In other words, the spectrum of L o may consist of natural numbers only. This is the
case if and only if h is natural.

b) (λ, f) φ # ( 1 ) , then (λ, f) is the composition of two elements of # ( 1 ) . The above
argument may now be applied to these elements, and hence to (λ, f) itself. •

7. Additional Comments

We would like to conclude this paper with remarks on some open questions which
we have not touched upon:

a) Observe that ^ has many normal subgroups - these are the kernels of the
homomorphisms Sn:^^^n. It seems likely that these are, up to conjugation, its
only nontrivial normal subgroups. We expect a direct correspondence to hold
between the (closed) ideals of ^ and the normal subgroups of ^, via the exponential
map (cf. [7], where the analogous problem is considered for groups of
diffeomorphisms)

b) As is known, in complex groups the Borel (maximal solvable) subgroups
take over the role that maximal tori play in real groups. We expect that the Borel
subgroups of ^ coincide with one-parameter subgroups. In particular, a natural
conjecture is that ^ is semisimple.

c) The representation of ^ in V(c, h) is reducible (a fact which was exploited in
our construction), but it is not likely to be fully reducible in S, in the sense of the
existence of a direct sum decomposition into invariant closed subspaces.
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d) We leave it to the reader to verify the formula

Q(f)T(z)Q-\f) = (df/dz)2T(f(z)) + (c/12) {f,z},

(see [9]), which was not used in the present paper.
e) It is usual to call a topological group a Lie group if it is spanned by its one-

parameter subgroups (this may be called the algebraic point of view), or if it is
equipped with a smooth structure compatible with the group structure (when the
geometrical aspect is stressed). In the former sense, we have shown ^ to be in fact a
Lie group. It seems possible to satisfy also the second definition (see [7,11]).
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