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Abstract. Large momentum properties and Wilson-Zimmerman short-
distance expansion are established via phase-space analysis for the weakly
coupled massive Gross-Neveu model in dimension 2. Methods are applicable
more generally.

1. Introduction

The aim of this work is to show how large momentum and (related) short-distance
properties can be rigorously established in non-perturbative field theory via a
refined application of phase-space analysis. We consider for defmiteness the
massive, weakly coupled Gross-Neveu model in dimension 2 [1] whose re-
normalization parts are as in φ\ 2- and 4-point functions, and which exists as a
non-trivial, asymptotically free theory recently constructed at weak (renormalized)
coupling in [2, 3]. Methods are, however, applicable more generally.

Results in Sects. 2 and 3 apply to euclidean functions. The extension to cases
when some of the variables are non-euclidean (and in fact are fixed in Minkowski
energy-momentum space while others tend to infinity in euclidean space) is
discussed in Sect. 4: as recalled below, this is needed e.g. for "field theory" versions
of Wilson-Zimmerman short-distance expansion.

Large momentum properties of the 4-point connected, amputated function
F(p1?...,p4) are established in Sect. 2. The method is based on a suitable
modification of the renormalization procedure of [2, 4]: effective couplings of
vertices involving external lines will depend on corresponding energy-momenta.
The reason for this modification is explained in Sect. 2.1. It amounts to the
introduction of effective couplings for composite operators.

Results include in particular
(i) "Generic" situations
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Theorem 1.

C g t ( ^ - ^ Γ ί ' - ' ^ (1)

as τ—xx), whenever ĝ  + ĝ  ΦO, V(i,j), iφj .

(ii) "Exceptional" situations

Let k = pι+p2,z= —*--—-, z' — 3 4 . We give below results in cases where k

is fixed:

Theorem 2.

., . cst(/c, z')
rj/c, z, z) ~ pr7 (2)

ln|z|

as |z|->oo, where σ Ξ̂ ^ depends on the channel defined by particles 1,2 (fields ψ orψ,
spin and colour indices; σ = j if these indices are the same. Otherwise, σ = (
where Jf^Ί is the colour number).

Theorem 3.
cst(fc) .., _ < „

For (N + 2)-point functions FN + 2, Theorem 2 is still valid, z' being a set of N — 1
relative energy-momenta among p3, ...,pN + 2.

In Sect. 3, the aim is to establish factorization properties in momentum space
(at k,z' fixed, z->oo) of the set of functions FN + 2, which are (essentially) equivalent
to Wilson-Zimmerman short-distance expansion [5-8]. We denote below by

( k k \

ω(k,z) the product 5r(/?1)S'(p2) of 2-point functions ( p1 = - +z, p2= - — z 1.

Theorem 4 (first order expansion).

FN + 2(k, z, z') = ^ | F 4 (0, z, 0) ΛN(k, z') + RN + 2(k, z, z') (5)

with
r*i(k ^ ( 6 )

(7)
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where (lωA)(k,z') = $ω(k,z)A(k,z,z')dz and (\ωA)iρ) is defined similarly in the
theory with ultraviolet cut-off.

As a consequence of (5), (6), the behaviour of FN + 2, ViV§:2, as z->oo or (after
Fourier transformation) as its dual variable xι — x2 tends to zero, is given by
F4(0,z,0).

Equation (5) is established in Sect. 3.1 with remainders RN + 2

 t n a t a r e shown to
decrease at least like \f\z\1 ~ε; ε > 0 is arbitrarily small but the result holds only for
smaller and smaller values of the coupling λτen as ε->0. In Sect. 3.2, RN + 2 is itself
factorized as a main term, that does decrease at least like l/|z|, and a remainder that
decreases at least like l/|z|2~ε. This completes the proof of Theorem 4 as a
byproduct. The method allows one equally to pursue the expansion to higher
orders.

As already mentioned, the results of Sect. 3 apply to euclidean functions. Field
theory versions of Wilson expansion would require similar results as z-»oo in
euclidean space for fixed Minkowskian values of fe, z'. "Particle analysis" along the
lines of [9, 4] provides results in this direction as explained in Sect. 4, where
Theorem 4 is in particular established up to s( = — k2) = (4μ)2 — ε in Minkowski
space (where this ε > 0 is independent of the previous one).

2. Renormalization Procedure and Large Momentum Properties

2.1. Phase-Space Expansion of Green Functions: Preliminary Background. We
summarize the phase-space expansion of Green functions in euclidean space-time,
following [4] which is itself based on [3] with minor modifications. A momentum
cut-off is first introduced in the theory by replacing the bare propagator C(p) by
Cρ(p) = C(p)Qxp — LM~2ρ(p2 + m2)~]. The latter is itself decomposed as

CQ(P)= Σ C{ί)(P) (8)
ί = 1

with
ilX M-2ip2+m2*\ (9)

M~2ίip2 + m^-e-M~2{i'i)ip2+m2^}, i > l . ( 1 0 )

A corresponding decomposition of Cρ(x) follows by Fourier transformation.
Euclidean phase-space expansions of e.g. connected Green functions in terms

of phase-space diagrams are then obtained from cluster expansions in each
momentum slice i = l , ...,ρ with respect to scaled lattices of size M~ι and Mayer
procedures. (Phase-space diagrams include propagator and Mayer lines between
squares of the lattice in each slice i, and lines joining different slices which link
propagator lines attached to the same interaction vertex.) The expansion would be
convergent (uniformly in ρ), at small (bare) coupling constant, if any connected
subdiagram D ( J ) obtained in slices §y from a cut at slice j (and having at least one
propagator line in slice j) had strictly more than 4 outgoing lines below j , true
external lines (corresponding to external particles 1,...,4) being considered as
belonging to slice 1: this would yield for all diagrams exponential fall off factors
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M~*sup allowing resummations over the indices of the momentum slices; /sup is the
index of the highest internal line. This condition is not satisfied. The renormal-
ization procedure amounts to a rearrangement of terms of the expansion, starting
from slice ρ and then proceeding to lower and lower slices. At each stage a new
expansion is obtained with new effective couplings, as we now explain at a given
stage corresponding to slice/ Any 4-point function associated with a subdiagram
D 0 ) with 4 outgoing lines below j , can be written (in euclidean energy-momentum
space) as:

λ{υ)Λ I\ku...,fc4), (11)

where ku ...,fc4 are the 4 outgoing energy-momenta (fe1 + ... + fc4 = 0) and, for
each vertex v of the subdiagram, λ(v) is the effective coupling (obtained at that
stage). One then writes:

aϋ>(fe1,...,fc4)=a^g(fei—fe4)+aϋ)(o, o,o,o), (no

i.e. 2\jlg — 3{j) — 3ij\θ). This subtraction yields in euclidean space time gradients on
outgoing lines and internal regularization factors. From the viewpoint of power
counting, this is equivalent to having two more outgoing lines. On the other hand,

the factor £ [γ\λ(v)']2ίU){O9...,O) = δλj yields a redefinition of the effective

coupling constants of vertices all of whose lines belong to slices <j. Diagrams with
2 outgoing lines below j are also treated. One is finally led to a new expansion in
which: ρ

(i) each vertex with highest line / has an effective coupling λι = λρ+ Σ δλk,
where λρ = λ is the bare coupling, k-ι+i

(ii) all new subdiagrams D 0 ) have an equivalent of at least six outgoing legs
below j , Vj.

With a choice of the bare coupling λ = λρ depending on ρ, of the form:

λρ = l-β2(\nM)ρ + β,lnρ + Dr1 (β2<0) (12)

with D sufficiently large (independent of ρ), it can be checked that λt has a similar
expression (in which ρ is replaced by i), so that all λt remain small (\At\ < 1/D,
VΪ = 1,..., ρ) and the new expansion is convergent (uniformly in ρ). Since λί is of the
order of 1/D, λτen which is equal to λ ί at first order in λu is thus itself different from
zero: non-triviality. (Similarly an adequate choice of mρ depending on ρ is made;
mρ->0 in the ρ->oo limit, but m r e n and the physical mass are >0.)

The phase-space expansion can be directly obtained for non-amputated
connected Green functions Sc, or for "semi-amputated" functions H from which
external bare propagators have been factored out, or for amputated functions F.
Some "particle analysis" is used in the latter case, as done in [4], by introducing
from the outset cluster expansions "of order r," r > 1 [9, 4]. This is not needed for
present purposes, at least as long as we are interested only in purely euclidean
functions. It is convenient in this section to treat semi-amputated functions.

22. Modified Renormalization Procedure. The renormalization procedure de-
scribed in Sect. 2.1 is appropriate for the construction of the model but is not
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sufficient for the study of large momentum properties. A preliminary difficulty is
that some of the outgoing lines of some subdiagrams D7 may correspond to actual
external variables. In this case, gradients coming from renormalization will act on
the functions eiΣ ±PkXk involved in the Fourier transformation and will a priori yield
unwanted factors \pk\ in bounds on momentum-space functions which will not in
general be compensated by factors M~~j coming from internal regularization
factors.

The way which seems most convenient to study large momentum properties is
to avoid this difficulty by modifying the renormalization procedure as follows.

Given the external energy-momenta pk, fc = l,...,4, let ik = i(pk) be the ^ 1
integer such that Mik~ι <\pk\^Mih: the external line k will be considered by
convention to belong to slice ik. M is chosen below ^ 2 and we assume e.g. (without
loss of generality) in this section that

i^H^i^U. (13)

Similar ly ia,β = i(pa + pβ), iΛ,β,y = i(pa + Pβ + Py)m, h,β,y

 = iδ (α,j8,y,5 a r e different
indices among 1,...,4).

For any connected subdiagram D ( J ) containing next(D) ̂  1 external lines with
indices ^.j among its 2 or 4 outgoing lines, the subtraction will now be as follows.
[There is no subtraction if there is no outgoing line below j . On the other hand, the
rule of Sect. 2.1 is unchanged if nexi(D) = 0.']

(i) No subtraction if w e x t(D)=l, or ftext(D) = 2 and j<iaβ, where oc,β are the
indices of the 2 external lines in slices ^ j , or next(D) = 3 and j < iα ^ v where α, β, y
are the indices of the 3 external lines in slices ^y.

In fact, energy-momentum conservation and the ultraviolet cut-off factors in
the definition of the propagators C(l\ I <j, of the outgoing lines below j , ensure
exponential fall-off factors much better than M~u~ll\ where lγ is the index of the
highest outgoing line below y, which make renormalization useless.

(ii) In the other cases:
a) πexί(D) = 2, external momenta pα, pβ, 2 outgoing lines below j(j > iαtβ). From

( ^Π λ(v)l ̂ ( p α , Pβ9 k39 k4) we now subtract ΓΠ λ(υ)l Ij) (^ψ1, ~ ^ ^ ? 0,0^ (i.e.

the outgoing energy-momenta /c3,k4 below j , hence also k = kί+k2, have been
fixed at zero).

We note that the effective coupling λ(v) and the terms 3^ differ here from those
of Sect. 2.1 although we have used the same notation. In particular, the effective
couplings of vertices involving external lines will now depend on their momenta.

b) next(D) = 3, external momenta pu p2, p 3 ,1 outgoing line below). Subtracted
term:

The sum over diagrams D o ) defines counterterms δmp δξp δλj which are the
usual ones and new counterterms δλj(pα, pβ), δλj(pα, pβ, pγ) in cases (ii). They also
depend in cases (ii) of the channel defined by the external lines. Effective coupling
constants of vertices with 4 lines will be the same as in Sect. 2.1 except for (at most
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4) vertices involving external lines: see Sect. 2.3. The new procedure yields
gradients acting only on outgoing lines below j , and still yields internal
regularization factors. Exponential factors in M~ ί s u p are, however, replaced by
M " ( l s u p " ί l n f ) , where Zsup is as in Sect. 2.1 the index of the highest internal line of the
diagram and /inf is the lowest index of all internal and external lines (7inf was always
equal to 1 in Sect. 2.1, since external lines were by convention in slice 1, and was
thus omitted). All summations over slice indices are thus again controlled by those
factors as before, except the summation over Zinf from slice 1 to ί4 at most. This
summation, which would a priori give at most a factor j 4 ~ l n | p 4 | in bounds on
connected semi-amputated or amputated functions, will be made in Sect. 2.4 by
taking into account the behaviour of effective couplings of vertices involving
external lines, so that better results will be obtained.

2.3. Effective Couplings. Given any vertex, let ί denote the highest slice of the 4
lines attached to it. The effective coupling is λ{ (as defined in Sect. 2.1) if the vertex
involves no external line or if at least one of the two highest lines is an internal one.
In remaining cases:

(i) If the two highest lines are external lines of indices α, β and if the third one is
an internal line of index;, then the effective coupling is:

pβ) = λiχ+ J δλk(pvpβ) if j^ia,β9 (14)

p») i f / < » « / > •

(ii) If the three highest lines are external lines of indices /„, iβ, iy{ia ̂  iβ ^ ί ) and
the fourth line is of index j , the effective coupling is:

a) (a,β,γ) = (i,2,3)

Pβ>Py) = λh(Pi>P2)+ Σ δλk(pup29p3) if j^U, (15)

k~j+l

K(Pl>P2>P3) ί f ί<U' ( 1 5 ' )

This case includes the vertex with 4 external lines with effective coupling

λiάPι>P2>Pz)
b) (α,j8,y)Φ(l,2,3)

λioc,β(PvPβ) i f h<htβ'

Evaluation of δλfp^ pβ) and of λj(pa, pβ). We use below expansions of the phase-
space diagrams contributing to δλj{pa, pβ) as terms of second order in the effective
couplings and remainders. The sum of the latter is bounded by cst λjipa,pβ)λj.
[Convergence is ensured as usual by the smallness of the effective couplings and
there are at least 3 couplings one of which is bounded by λj{pa, pβ) and others by λy~\
Terms with two couplings, i.e. two vertices vuv2 have two internal (propagator)
lines in slices;,/ respectively,/ ^y, running between υu v2 and two more outgoing
lines at each vertex, including the two external lines α, β which may or not be
attached to the same vertex: see Fig. 1.
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( P α - P β ) / 2 _ ί (Pα-PpJ/2

(pp-pα)/2—I y v2

Fig. 1

j !

I o
! 0

(Pp-Pα)/2

Correspondingly:

δλfpa9 pβ) = Σ 2(JJ, (α> β)) U X
i f f<i

λy if f^iβ) (17)

K if /<ί/J
+ terms with 3 couplings or more.

In (17), 3(j9f9 (α, /?)) - cst (α, j8) j C0)(/c) C(/)( -k)dk\oc,β attached to the same vertex,

external momentum of the channel (α, β) fixed at zero. It depends on the channel

determined by (α, β) (fields Ψ or Ψ, spin and colour indices). On the other hand

3{JJ9a;β;q) = cst(α,β)J CU)(k) x Cu'\-k + q)dk:oc,β attached to υί and v2 respec-

tively, external momentum of the channel α,.->j8,. fixed at qr=— ^ + 0

= — — - . It also depends on the characteristics of α, j?. (Fields φ or ψ, spin and

colour indices. There is possibly a summation over the characteristics of remaining
lines.)

The following remarks will be useful:

\3(jJ,(ot, β))\< cst M (18)

(18')

where σ = σ(α, β) depends on the channel (α, β).
On the other hand, recalling that ίβ ̂  j > iaβ,f ^j and using energy-momentum

conservation arguments,

<cstM~u'~j)/2M~{i«~j)/2. (19)

In formula (17), we now express λy and A7v(/?α, p^) as λ • — Σ δλk and λipa9 pβ)
k = j + l

j '

— Σ δλk(Pa> Pβ) respectively. The sums over k are controlled by the exponential
k = j + l

factors M~u'~j) or M~ij'~j)/2 in (18), (19) so that we can replace in (17) λr and
λy(pa,Pβ) by λj9λj(pa,pβ) up to third order contributions. Hence:

j(pa, pβ) = λj(pa, pβ) λjσβ2 In M+λ]0{M -dβ-j)/2 ) + higher order terms, (20)



616

and in turn:
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V& l n M + ° ( λ

Hence

= ̂ ( j j ( l + 0(1/7)) [l

α, p^) behaves like -^-^ — at large ^ and jj :g ty.
ty J

(21)

Evaluation of δλ}(pu p2, p3), ι3 ^j>iA. Leading contributions to δλj(pu p 2, p3) are
again diagrams with two vertices v1,v2, and two internal propagator lines in slices
jJ'J'^j, running between v1,v2. If external lines 1,2 are attached to vu and 3 (as
also a further outgoing line) attached to v2, energy-momenta of these 4 outgoing
lines are fixed to pup2, — (Pi+p 2 ) and zero respectively. Couplings at vuυ2 are
^ii 2^PuVi) a n d λί3. Summation over ;,/ is controlled by exponential factors
M-ϋ'-j) a n c j ^ y energy-momentum conservation arguments) M"'1'1'2"-7'1. Other
terms with 2 couplings have the external lines 1,3 or 2,3 attached to vu while 2 or 1
is attached to v2. Energy-momenta of these lines are fixed at pα, — (px + p 2 ) and
p^, (α, β) = (ί, 2) or (2,1). Couplings are λh and Af2. Taking also into account uniform
convergence properties of higher order terms, this gives finally:

2.4. Bounds on H(pu ...,p4) or F(pu . . . , p 4 ) .

Theorem 5.

(23)

where the Sup runs over values of α,β such that σ(α,β) = \, ia,β
<^-

Remark. The last factor can always be removed if i 4 < i3 — 1 . Moreover if σ(l,2)
< 1/2, it can be removed if i4 < iι — 2.

Proof. Diagrams contributing to H are divided into the following classes:
(i) the trivial diagram with one vertex (whose effective coupling has been given

in Sect. 2.3).
(ii) diagrams including 2 vertices v\ v" each of which involving 2 external lines

(1, β) and (y, δ) respectively, and whose highest internal line /sup is smaller than z4. If
/', Γ denote the highest internal lines attached to v' and v" respectively, effective

couplings behave like Λ_σ(1 β) - ( 1 β) and t l _ f f ( 1 β) - σ ( 1 β). Given /inf, the sum over

possible slices is controlled by the exponential fall-off factor M ( i s u p ί i n f ). The sum
over Zinf below ί(l,β) = ί(pί +pβ) is also controlled by exponential fall-off factors in
view of energy-momentum conservation and the ultraviolet cut-off factors in the
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propagators C ( ) of internal lines attached to υ' or v". The sum over /inf between
i(l,jS) and f4 is made by using:

1-2'' if σ Φ i

?) if σ = f l '

(iii) all remaining diagrams can also be treated by taking into account the
behaviour of couplings involving external lines and exponential factors analogous
to the above. Their sum yields better bounds than those arising from cases (i), (ii)
which are thus at the origin of the results of Theorem 5.

Proof of Theorems 1, 2, 3 of Sect. 1. In the case of Theorem 1, z l 5..., ί4 as also
i{ί,β\ β = 2,3,4 are all proportional to lnτ. The decrease of H at least in 1/lnτ
follows. The fact that this is the actual behavior of H comes from the evaluation of
the trivial diagram and of diagrams with two vertices. Other terms are smaller.

In the case of Theorem 2: iί~i2^χχ>, ι(l,2), /3, i4 remaining small. As a
consequence:

n / x 0(l)cst(p3) . . cst(p3 ?p4)
Λ i 4(Pi,P2,P3)~ i-σ(i,2) > ( t w o v e r t l c e s diagrams)- Λ-σ(U2)

In the case of Theorem 3, only iί 2 is small. Hence the behaviour is governed by
σ(l,2).

Remarks. 1) The same methods yield without difficulty the analogue of
Theorem 2 on (N + 2)-point functions for k, z' fixed, z-> oo, where z' is a set of N — 1
relative energy-momenta among p 3, ...,pN + 2

In the proof of Theorem 2 and of this result, the external lines 3, 4 or
3,4,...,N + 2 can from the outset be considered to belong to slice 1.

2) All results apply in a similar way for the (connected) amputated functions F
in view of the relations:

ωb{k, z) H(k, z, z') ω,(fe, z') = ω(fe, z) F(fc, z, z') ω(fe, z'), (25)

where ω and ω b are products of 2-point functions and of bare propagators
co(k z)

respectively, and of the fact that — γ >1 as z—•oo (see e.g. [4]).
ωb(k, z)

Results are alternatively obtained directly on the functions F if (as in [4]) some
"particle analysis" is made at the beginning in order to get adequate expansions of
these functions.

3. Wilson-Zimmerman Short-Distance Expansion

We consider in this section (N + 2)-point (connected, "semi-amputated") functions
HN + 2(P\> -ΊPN + I) with k = pί-\-p2 and z' fixed, z—xx) (z = (p1—p2)/2). We leave
below N implicit unless otherwise stated and express H in terms of k, z, z'. By
convention, external lines 3,..., N + 2 are considered to belong to slice 1 and lines
1,2 to slice i(z). Thus for j<i(z\ λj{pup2) depends only on z and will be denoted
λj(z). For j ^ i(z) by definition λ3{z) = λ} .

3.1. First Order ("up to ε"). Results in this section include some restrictions
(decrease of relevant functions in 1/lzl1"2, ε>0, for couplings ^ r e n

< ^ o ε ) Better
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results (decrease in l/|z| for couplings λren < Ao) follow from the further analysis (to
next order) carried out in Sect. 3.2.

Lemma 1. 3λo>0 such that V/ίren</l0, H can be written in the form:

H(k,z,zf) = Σ λJ[z)HV>(k9z') + H'(k,z9z') (26)

where, for any ε > 0 (ε<\):

\Hϋ\k, z')\ < <9(1)M~(1 ~ε)j, (27)

\H\K z, *')l < O ( i μ r

2

e n M - ( 1 -*<*), (28)

V/lren suc/z ί/zαί Λ,ren
l r e n

Proof. The decomposition (26) is obtained by regrouping diagrams contributing
to H into the following subsets:

(i) diagrams in which the external lines 1,2 are not attached to the same vertex.
The sum of these diagrams is H'. In view of renormalization and energy-
momentum conservation (applied at the vertices involving the external lines 1,2),
factors M~ ί ( z ) are obtained for all diagrams. A part M~εi(z) is kept for internal
resummations: it is sufficient for that purpose, but convergence is established only
for Λ,ren<O(l)Λ,0ε. A factor /lr

2

en can be on the other hand included because all
diagrams have at least two vertices. (The factor M~h{u)tβ obtained for each vertex,
where h(u) is the difference of the extremal indices of lines attached to that vertex is
replaced by M" ε / ι ( u ) / 6 : see [4].)

(ii) diagrams in which external lines 1,2 are attached to the same vertex. Let us
call j the highest index of the two remaining lines attached to that vertex.

For each 7, the term λj(z)Hu\k, z) is obtained after factorizing out the effective
coupling λj(z) of the vertex involving 1,2. (The trivial vertex is included in the term
7 = 1.) The bound (27) follows again from factors M~j (the index of the highest
internal line of contributing diagrams for each j being ̂ 7).

Lemma 2. There exist (unique) functions R{ί)(k, z, z') and A{1)(k, z') (independent of
z) such that:

H(k, z, z') = λ1{z)Λ^{k, z') + Rw(k, z, z') (29)

with

\R^(k,z,z')\<O(\){ί^^ε (30)

for λren<O(ί)λ0ε.

Remark. The uniqueness of the functions Λ<ι\R(1) (at ρ infinite) is a consequence of
the bound (30) on R(1) and of the fact that λt(z) has a lower decrease [in
l/αnlzl1-")] asz-+oo.

Proof. We start from (26) and use the relations:

ί δλn(z), (31)j ί
n = 2

δλn(z) = Ln(z)+ Σ λiz)Fι

n. (32)
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In (32), δλn(z) which is the sum £D (" }(z, — z,0,0) has been separated into the
contribution Ln corresponding to diagrams in which z and — z are attached to two
different vertices, and remaining ones, that have been again separated according to
the highest index / of the two lines attached to the vertex involving z, — z. We recall
that in all cases n is the index of the lowest internal line of the diagrams. Fι

n depends
on n, I but not on the momenta fc, z, z'.

Equations (26), (31), (32) yield (29) with:

(33)

z, z') = H\K z, z') + Σ H^(k, z') [1 + Fι

n + Fι

nΨ
ι

nι + .. .-]Ln{z), (34)

where summations run over (integer) values of j , n, nu . . . , n v + l 5 Z, I1,...jv+1,n
/

such that: j ^ 1, 2-^n^j, l^tn for the term Fj, or more generally, l^n, 2^nί^lί,
Z 2 ^ n l 5 ...,2^nr^lr, lr+ι^nr, . . . , / ^ n v + 1 , 2^n '^Z, and all possible integer values
of v. The convergence of the right hand side of (33), (34) and the bound (30) on
R{1) can be established as explained below from the following bounds on Fι

n and
Ln, obtained by the same arguments as (27), (28) for /lren<O(l)/l0ε:

M-^-^ι-n\ (35)

M - ( 1 - ε ) ( ί ( z ) - M ) , ί(z)>n, (36)

|Ln(z)|<O(iμ r

2

e n, n^i(z). (37)

a) Convergence of (33) and (34). We first state:

Lemma 3.

Σ \H^Fι

n'...F'nv+ι\<O(l)σMλ:enM-^2^-^ (38)
j,n,lι,...,nv+ i

/orλ r e n<O(iμ 0ε.

In (38), the sum in the right-hand side runs over all values of j , n, ...,/v + l 5

πv + 1, but not /, subject to the constraints already mentioned (nv+1^l,
h+i=nv + n •••)• The bound (38) is proved by induction on v.

From Lemma 3, by summation over Z, each individual term in the right-hand
side of (33) satisfies itself bounds in 0(1) (CM/lren)v, which yield in turn convergence
of the series (33), (34) for 2 r e n small enough.

b) Results on R{1\ For each v and all possible values of/, n, lu ..., Z, ri, satisfying the
constraints that have been indicated, a uniform factor such as M ~{1 ~ 2 ε ) ι ( z ) can first
be extracted (before summations) from the factors M ~ ( 1 " ε ) ( ) involved in the
bounds on Hij\ Fι

n\ .... Remaining factors M ~ ε ( ) will be used for resummation by
the same arguments as in paragraph a). The new constant CM(e), now linked to
£ M~εZ/2, behaves like 0(1)/ε at small ε, but desired results still hold (with suitable

i

choices of λ0, ε).
This ends the proof of Lemma 2.
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We can now prove:

Theorem 4'. ΞUo>0 such that the factorization properties (5), (7) hold for λτen<λ0

and such that, Vε>0 ( ε < l ) :

\RN + 2(k,z,z')| <0(1) ( 1 + ^ n

) 1 _ ε (39)

for λτen<O(l)λ0ε.

Proof
a) Apart from Eqs. (7), (7'), which require a more detailed analysis given in

paragraph b), Theorem 4' is a direct consequence of Lemma 2, of the relation (25)
and of known informations on the behaviour of ω(k, z), ωb(k9 z) at large z (see e.g.
[4]).

Equation (29), considered at JV = 2, k = z' = 0 yields:

λ,(z) = [H4(0, z, 0) - R^(0, z, ®β/ΛV\O, 0), (40)

and (29) can thus be rewritten as:

Λ2

1)(O,O)

) . (41)

From (25) [applied to HN + 2(k, z, z') and i/4(0, z,0)], one obtains in turn Eq. (5) with:

ω(0,0) ^^'(/c,/) ω,,(/c,z')

H(§4
, z) \ωb(0, z)

(42')

The decrease of RN + 2 follows from that of R{1) and of the decrease in l/|z| of
ωb(k,z) \ L ω

- ^ f τ - 1 I F actors-
b) Equation (7) might be established from a comparison of the expressions

(33), (34) of A{1) and R{1) and from (42), (4.2'). However, this procedure is somewhat
difficult and we outline here an alternative one, based on a complementary analysis
made directly, from the outset, on connected functions that are not semi-
amputated with respect to 1,2. In this case, the renormalization procedure is
analogous to above but the external propagators are now included in the diagrams
D ϋ ) (and have different values at k = p1-\-p2 and at k = 0. The latter are those
occurring in relevant subtracted terms). We here start with finite values of the
momentum space cut-off ρ (left implicit) and will below establish (7) for any given
value of ρ. The expression (7) of ΛN is then equivalent, in view of (5), to:

(43)
l+(lωF4)(0,0)
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where ρ is again left implicit. Equation (43) can e.g. be derived from (7) by
integrating (at ρ finite) both sides of (5) with the measure ω(k, z)dz. This gives the
relation:

which, together with (7), yields (43). When ρ->oo, both lωFN + 2 and lωF4 tend to
infinity in view of the behaviour of FN + 2 and F 4 , so that Eq. (7') will follow at ρ
infinite.

We do not attempt below to make a direct study of convergence properties in
the ρ-» oo limit. The (uniform) convergence of the integral lωRN + 2 [and hence the
existence of the ρ-»oo limit in (7')] follows from our previous methods.

Proof of (7) (ρ Finite). The analysis is made along the same lines as above, with
Q Q

λί(z) = λρ + X δλn(z) now replaced by μ(z)= £ δμn(z). [It is not convenient to
n=2 i=2

include in μ(z) the analogue of λQ.~] It gives:

SC

N + # , z, z') = χ(z)Λti \k9 z')ωh{K z') + £$\ # , z, z')ωb(k, z'). (44)

The link between χ(z) and λ^z) or R{1) and R{1) is not directly transparent, but
y?Sv

1) does coincide with Λψ as is clear from the comparison of the two procedures:

Λ^\Kz') = Λ^\Kz'). (45)

On the other hand, the following relation between Ά^] and R^\2 holds in view
of definitions of Λ{ί) and JR(1):

ΛW = λ$\k,ϊ)= ^ \ δ2tN+ \R^+2{k,z,z')dz. (46)

The first term in (46) corresponds at N = 2 to cases in which diagrams are no
longer connected when the two lines attached to the same vertex as 1, 2 are
"separated" from that vertex: this gives the contribution ω(/c,z) ( = product of the
two 2-point functions) to Λψω^k.z').

From (44), one derives in the same way as (41) was derived from (23) [and using
the definition (42) of ΛN~]:

f ( 0 0 y ,z,z'), (47)
where

R'N+2(k, z, z1) = \$%\ 2(k, z, z )- Riι\O, z, 0) j p l o o j ] o φ , z'). (48)

A comparison of (48) with (5) shows that:

k, z)RN + 2(k, z, z')ω(fc, z') = R'N + 2(k, z, z'), (49)

and Eq. (7) is then a trivial consequence of (46).
This ends the proof of Theorem A'. As already announced in Sect. 1, Theorem 4

itself, in which ε is removed, is a byproduct of the analysis of RN + 2 given in Sect. 3.2.
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3.2 Second Order (Outline). As in Sect. 3.1, it is convenient to treat semi-
amputated functions unless recourse is made to "particle analysis" in all slices
(allowing us to recover directly results on the amputated functions). We start from
(29) and now wish to obtain results on R{1) from the following renormalization
procedure, applying to diagrams Du\j<ί(z), with 4 outgoing lines below j or an
equivalent number of lines and gradients (in power counting): two lines with
momenta kl9 k2 and one gradient acting either on k = kί-\-k2 or on u = (kι~ k2)β.
These three cases will be represented below by indices α = 1,2,3; δμ'j(z) will denote
the sum of the values of diagrams D°'α ) whose outgoing momenta below j have
been fixed at zero and we put:

μ%z) = f δμ}(z). (50)
7"=7+1

The analysis then yields a decomposition of R{1) of the form:

,z ' )= Σ Σ μ%z)ΘJ>*{k9z') + R™ϊk9z9z')9 (51)
α = l 7 = 2

where R{1)/ is a sum of diagrams that are renormalized by the subtraction of the
<5μ's described above.

Diagrams involved in δμ^z) are either diagrams in which 1, 2 arrive on two
different vertices or diagrams that already start with a vertex with coupling μβ(z)
and (besides 1,2) either 4 outgoing lines or 2 outgoing lines and a gradient acting
on (kί — k2)/2:

» H Σ Σ μΐ(z)Θιftί + K^z)9 (52)
l^j 0 = 1 , 3

where Kla{z) decreases at least like i/|z|2(i(*)-;)u-«) a s z->oo, λ r e n < 0 ( i μ o ε (λ0

small enough).
From (51), (52), one obtains in turn formulae of the form:

Λ ( 1 )(fc,z,z')= Σ l4(z)H1-a(k9z') + R<2Xk9z9z')9 (53)
α

where Hla and R{2) are shown in the same way as in Sect. 3.1 to be well defined in
the limit of infinite momentum cut-off ρ, and R{2) decreases at least like l/\z\2~ε as
z->oo, Vε>0, Λren<O(l)/l0ε. Formulae defining HliΛ and R{2) in terms of the
functions Θ and K are analogous to those of Sect. 3.1. [For α = 3, H1'3 reduces to

Σ#Λ3(M').]
j

Finally the behaviour of μ\(z) as z-± oo can also be evaluated as in Sect. 3.1, with
here:

μ« = μ°j+1+δμ*+1=μ«+ι(l+δJ2\nMλj+ι)+..., δa£l, (54)

and hence

μ\{z)κμΊ(z) Π (l+δJ2\nMλj), (55)
7 = 1

where / = i(z). Noting that μf(z) = δμ^z) contains factors λf (two couplings at least)
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and M~\ one checks that:

ώr^ (56)

at z large. This result allows one to complete the proof of Theorem 4:

Proof of Theorem 4 (Completed). The results above on μ\ and Ri2) show, in view
of (53), that R{1) decreases at least like l/|z| (and in fact like l/|z|ln|z|). From (43),
RN + 2 decreases itself like l/lzlQnlzl)1 ~σ, Q.E.D.

Equation (29) and (53) provide on the other hand an expansion of H(k, z, z') of
the form:

HN + 2(k,z,z') = λι(z)ΛW(Kz')+ i μ\{z)Hι»\Kz') + ΐϊ2\Kz,z'). (57)
x= 1

The passage to expressions of FN + 2 in terms of physical quantities can be made
in a way analogous to that presented in Sect. 3.1. Putting:

l r e n(z) = F4(0,z,0), (58)

/4ϋ(z) = F 2 - 4(0, z, 0) - F4(0, z, 0)Λ4(0,0), (59)

0 , (60)

μ\Vn(z)={K lF2-,2(0,z,z')-F4(0,z,0)Λ2(0,z')-]}\z, = 0, (61)

one gets:

FN + 2(k,z,z')= ' λren(z)ΛN(k, z')

+ Σ ̂ τ ? 4 fanWUk, z')+ΣN + 2(/c, z, z ), (62)
α CϋyK) Z)

where Σ^ + 2 is shown to decrease at least like l/|z|2~ε, ε > 0 for λren<O(l)λ0ε and
μren(z) t o behave like l/|z|(ln|z|)1"σ at large z. An analysis to third order would
allow one to remove restrictions relative to ε on ΣN + 2.

Remark. As in Sect. 3.1, the result (62) can be directly established in a way that
avoids the algebraic problems in the passage from (57) to (62) if "particle analysis"
(= cluster expansions of order 4 in all slices) are made from the outset, allowing one
to obtain direct expansions of amputated functions as also to define directly the
quantities λren(z\ μ?en(z) by one more step from λx{z\ μl^(z)-

4. "Non-Euclidean" Results (Outline)

In this section, we wish to explain how results of Sects. 2 and 3 on the behaviour at
large euclidean z can be extended to given non-euclidean, in particular Minkow-
skian, values of k, z'. We restrict ourselves here to the region s<16μ 2 — ε, ε>0,
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where s is the Minkowskian squared cm. energy, μ is the physical mass and ε can
be chosen arbitrarily small if λτen is sufficiently small. (Further results in higher
energy regions might be obtained similarly via a more detailed "particle analysis,"
i.e. the introduction of more general irreducible kernels and structural equations
[9,4,10].) For simplicity, we only consider below the 4-point function, but the
extension to (N + 2)-point functions is carried out with only minor changes (by
introducing a supplementary 2-> N 2-particle irreducible kernel). In the region
s < 4μ2 — ε, ε > 0 (fixed), all results on F are obtained without change, using the
analyticity of F itself in that region (due, by Fourier-Laplace transformation, to
exponential fall off properties in euclidean space-time). For the further analysis up
to s = lβμ2 — ε, it is convenient to consider the (4-point) Bethe-Salpeter type kernel
GM defined in [4] and shown there to be analytic up to s = 16μ2 — ε and to be linked
to F by the regularized B.S. equation, of the type introduced in [11]:

F = GM + GM0MF, (63)

where 0 M denotes a Feynman-type convolution with modified 2-point functions
on the two internal lines: these modified functions have a decrease at infinity in
euclidean directions in e~cstp2 so that there will be no ultraviolet problem. The
integration contour in 0M, which is initially euclidean space, is more generally a
locally distorted contour Γ(k), depending on the energy-momentum k, when k goes
to the Minkowski region, in order to avoid pole singularities of the 2-point
functions [11]. (It still coincides with euclidean space away from a bounded
region.)

The Neumann series:

F = GM + GMQMGM+... (64)

of F is convergent (at small enough renormalized coupling λren) for values of s
outside a given neighbourhood V of the 2-particle threshold s = 4μ2 (which can be
chosen arbitrarily small if /Lren is sufficiently small).

Large momentum properties of GM completely analogous to those of F are
established by the same methods as in Sects. 2,3, in view of its definition. They hold
for all values of k up to s = 16μ2 — ε; z or z can also be taken away from euclidean
space.

The cut-off factors arising from the decrease of modified 2-point functions on
internal lines in the definition of 0 M and the convergence in turn of the series (64)
(outside V) then allow one, by taking apart the factor in 1/lnlzl1 ~σ in the bounds on
the first factor GM on the left, to reobtain the analogue of Theorem 2.

Concerning Wilson expansion, a similar result holds again on GM (with
different functions Λ^, R{M)):

GM(k, z, z') = λ,{z)Λ%{K z') + K$)(fc, z, z'), (65)

and in turn, using the expression of λ^z) in terms of F4(05 z, 0) obtained in Sect. 2:

0M(k, z, z') = °^\ F4(0, z, 0)Λ;M) + R{M){k, z, z') (66)
OJK, Z)
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with again a decrease oϊR[M) in l/|z| as \z\ -• oo in euclidean space, k, z' fixed. On the
other hand, taking into account the behaviour with respect to z' yields at most
supplementary powers of \ζ\ in bounds on Λ[M)(k,ζ) and R[M)(k,z,ζ) [where ζ
denotes the integration variable in the convolution of Λ[M) or R[M) with the next
kernel GM in (64)]. In view of the cut-off factors in e~cstζ2 in 0M, Eq. (64) thus yields
factorization properties of the form (5) with suitable functions AN, RN + 2, &N + 2
satisfying bounds of the form (6). In view of the unicity of the terms ΛN, RN + 2

whenever RN + 2 satisfies such bounds (see remark below Lemma 2 in Sect. 3), the
functions ΛN, RN + 2 thus obtained do coincide with those obtained previously
when s < 4μ2 and thus appear as analytic continuations of the previous ones for
values of 5 up to 16μ2 — ε. In particular (7) also follows by analytic continuation.

Higher order expansions of F in the region s < 16μ2 — ε follow similarly.
We finally come back to the neighborhood of s = 4μ2 previously excluded

where the sum (64) is no longer necessarily convergent in view of kinematical
factors. Following [12], it is convenient to introduce the kernel U defined in terms
of GM by the equation:

U = GM + UVMGM, (67)

where V = 0M — \ * and * denotes on-mass-shell convolution. In contrast to 0M, VM

is completely regular in V. From (67), U is then shown to be locally analytic as GM

and satisfies analogous large momentum and short-distance properties, such as
(66). On the other hand, F is given in terms of U by the formula:

F = U + Uβ, z)B(s)ι U(k, z'), (68)

(k
where U = U(k,z,zr), U\ is the restriction of U to values of z' such that I - ±z'

+ μ2 = 0 (mass shell conditions on the right), | U is defined similarly and B is a
matrix depending only on s (see details in [12]).

The Wilson expansion of F then follows from that of U.
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