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Abstract. The general theory for cycling transformations in the group theoretic
approach to strings is presented. It leads to a simple physical interpretation of
the method which is discussed. We also demonstrate that twisting and sewing,
i.e. factorization are an inevitable consequence of the method. We show that
there exists a particularly simple choice of cycling transformations that leads to
very great simplifications in the results for excited string scattering.

1. Introduction

In spite of its spectacular developments, string theory remains ill-understood in
many respects. The existence of several approaches, each with its own starting
point and advantages is a sure sign that we have not yet reached the deepest level of
understanding. Of these approaches, light-cone [1] and covariant string field
theory [2] is the most complete and ambitious, since at least the latter can address
in principle non-perturbative effects; although formally elegant, it lacks practical
efficiency even to recover simple perturbation theory results which had been
derived 15 years ago by most primitive methods. The Polyakov approach stresses
the two-dimensional world-sheet conformal field theory features of the string. It
has led to deeper understanding of the critical dimension and of the role of the
Faddeev-Popov ghosts of two-dimensional reparametrization invariance, but
remains clumsy when one asks questions about excited state scattering and
does not include non-perturbative effects.

Two more approaches have been developed more recently; one, based on
Grassmanians [3] emphasizes elegant mathematical structures connected with
Riemann surfaces. The other one, which we have developed in preceding
publications [4-7], makes extensive use of the specific features of string scattering.
Basically the geometrical fact underlying the original idea of duality, that strings
interact by joining and splitting, from which overlap conditions can be derived,
and the realization that the multistring vertices transform simply under the two-
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dimensional conformal group. The multistring vertices are defined by these
transformation properties which involve cycling transformations that take
conformal operators from one external line of the graph to another, or around an
internal loop. In turn, these cycling transformations determine in a rather
straightforward way the vertex. The actual scattering amplitude is given by
integrating the vertex with an appropriate measure over the Koba-Nielsen
variables and internal loop moduli. The measure is determined by first order
partial differential equations obtained by imposing decoupling of zero norm
physical states. This decoupling is required for unitarity and is essentially a
statement of gauge invariance. We thus recovered very efficiently many known
facts of perturbation theory: tree level scattering of arbitrary excited states for
example [4]. We could also derive new results: the multiloop vertex with arbitrary
excited physical external states [6], tree level arbitrary excited Neveu-Schwarz
string scattering [7], and a one-loop L2 anomaly of the open bosonic string [5].
The last result was also independently found in [8] by other methods. We have
not yet applied our method to the general case of Ramond strings, and shall com-
ment on this problem at the end of this paper.

In the papers quoted above, the cycling transformations used were partly
guessed. Partly derived, and it was not clear what their admissible class is. We
realized [4] that given one choice which worked, then one could also take any other
choice related by the action of Ln,n^0 which was still cyclic in the Koba-Nielsen
variables. This fact was used to obtain particularly simple cycling transformations
[5,6]. As we will see, this is essentially the largest class, however, it is rather useful
to spell out the complete theory behind cycling transformations. To make this
paper self-contained, we shall explain again our approach, and then proceed to the
general theory of the cycling transformations. This addition makes our approach
completely systematic. In particular, out of this will come, for the bosonic and
Neveu-Schwarz strings, a specific choice of cycling transformation much simpler
than previous ones, which makes the tree measure trivial, clarifies the geometrical
meaning of the decoupling of zero norm states, and leads to a radical simplification
of the oscillator vertex. It also allows us to give a simple physical interpretation of
the overlap conditions.

In Sect. 4 we find what transformations implement the complete reversal of all
the external legs of a graph and demonstrate that they show that physical
scattering amplitudes are invariant under such a reversal. This generalizes the
previous result [9]. We also demonstrate how to interchange any two legs of the
vertex and show that apart from the integration limits on the Koba-Nielsen points
the open string is invariant under such permutations. As a consequence, the
extension of the approach to closed strings is trivial.

In Sect. 5 we demonstrate that the approach automatically leads to amplitudes
that factorize correctly in accord with unitarity. This is demonstrated in a few lines
by studying the overlap identities as a conformal operator, such as Qμ, passes
through the composite vertex.

In Sect. 6, we obtain simple results for the one-loop planar diagrams using this
method. Section 7 is the conclusion.
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2. Review of the Group Theoretic Approach

The essence behind this method [4-7] was the realization that multiloop
multistring vertices in string theory behave as group theoretic objects under the
conformal group. Here we review the method, but the reader is referred to the
above references for a more detailed discussion and to [10] for a review. We will in
this section concentrate on the group theoretic aspect of the approach, however,
the reader is referred to the next section for a simple physical interpretation of the
assumptions.

Given a vertex V which depends on the Koba-Nielsen variables zk,k=ί,...,N
and loop parameters, i.e., moduli vn r = 1,..., M, where N is the number of external
legs and M the number of loops, we specify its behaviour under the conformal
group by specifying the way it cycles. Namely there exist cycling conformal
transformations associated with cycling the external legs, Tk and going around
each loop Pι

n. The cycling of the external legs is achieved by

V(zl9...9zN;vr) Π lΊίkliΓ1 = V(z2,...9zN9z1,υr)9 (2.1)
fc=l

where the upper index o n ί H 1 indicates which leg of the vertex it acts on. For each
loop the vertex satisfies a relation of the form:

V(zp υr)Py = V(zj, υr)9 n = 1,..., M, (2.2)

where again the upper index refers to the external leg of V being acted on.
One need not specify the actual form of V, but to be concrete the most useful

representation, at least for perturbation theory is the usual oscillator represen-
tation of multistring vertices.

The cycling transformations are taken to factorize, meaning that they can be
written in the form

Ϊ.^K/)-^'- 1 ), (2.3)

and VJ is obtained from Vj~ ί by cycling its dependence on zk. This guarantees that
TNTN_1 ... T2Tγ = \ must hold as a result of applying Eq. (2.1) N times. This
factorization of 7} in the above equation will be motivated in the next section. The
loop cycling transformations P{ are arbitrary elements of SL(2, R), SL(2, C) for the
open and closed strings respectively. For Neveu-Schwarz strings, we use the
analogous graded groups. What are the most general external leg cycling
transformations is one of the subjects of this paper and will be discussed in the next
section. By cycling the external legs of Eq. (2.2) we may deduce that

Pi = (Vjy1PnV
j V7 , (2.4)

and hence there is in effect only one cycling transformation for each loop.
We also assume that the vertex obeys some overlap identities. These are

equations which relate the action of a conformal operator on one external line of
the vertex to its action on other external lines. From the existence of the generic
overlap we may use Eqs. (2.1) and (2.2) to deduce their specific form to be

1 z)}=0, ViJ, (2.5)

0, Vnfk. (2.6)
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We refer the reader to the previous papers of the authors for this derivation and the
overlap identities for other conformal operators.

Given the conformal transformations of the vertex of Eqs. (2.1) and (2.2), we
may consider a general conformal transformation s$x which may change the
parameters z{ and vr, namely

V(zhvr)=V(zbvr)f\^. (2.7)

In order to maintain the cyclic property of the vertex, stfί+1 is obtained from stf[ by
cycling its dependence on zr We find from Eqs. (2.1) and (2.2) t h a t ^ 1 must satisfy

and

(Pir^ψ^^ vί. (2.9)

The first of these equations is solved by taking

/^(FfVF1, (2.10)

where

FW(4), (2.11)

and the second equation now reads

P;VP>^. (2.12)

Taking si to be an infinitesimal conformal transformation

s/{z) = z + εf{z), (2.13)

where f(z) is single valued, we find that Eq. (2.12) becomes

^ ) . (2.14)

In particular, we can consider that set of transformations that leave the vertex
inert, i.e., Pn = Pn and V^V^ This occurs when

'V^ (2.15)

and Pn = s/~ ιPnsd ~ι or infinitesimally

d ^ (2.16)

The latter equation states that / is an automorphic form of degree — 1. More
concretely

Wί- (2-17)
oz

is invariant under the action of Pn. Any non-analytic behaviour of / must be
located at the Koba-Nielsen points. For a tree graph, there are no loop cycling
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transformations, and one finds that the solution of Eq. (2.15) implies that / must
have a pole of degree one or more. For a M loop graph, Eq. (2.16) means that f(z) is
defined on the Riemann surface itself and by the Riemann-Roch theorem, if it is
analytic everywhere except at one point, it must have a pole of at least degree
3M — 3 + 1 there. The exception to this is when the number of loops M is one, in
which case it must have a pole of at least order two. In this case, we recognized that
the solution of (2.15) and of the associated reality condition on / is a doubly
periodic vector field which can be constructed from the Weierstrass SP function and
its derivatives. For a more extensive discussion of this point see [10]. Here we
make contact with the coset construction of moduli space of [11] which has also
been exploited by the Grassmannian approach [3].

It is instructive to write the dependence of the vertex on zn and υr directly in
terms of the corresponding group elements:

V(zk,vr)=V(VhPn). (2.18)

We may then write the conformal transformations of V as

V(VbPn) Π s/^ViVW,*/-^^, (2.19)
ί 1

where stf'1 = (Vi)~ ls0Vl. We could have started from this equation and deduced the
particular cases of Eqs. (2.1) and (2.2). There is much here in common with the
theory of induced representations and it is similar to the theory for coherent states
of groups (see [12]).

The actual scattering is of the form

W=SYldZiTldvJMV. (2.20)
i r

We may deduce the measure / by demanding that zero-norm physical states
decouple. This is necessary for unitarity, and is a statement about the gauge
symmetries of the theory.

Any of the above discussions could be implemented to deduce a vertex which
involves anticommuting as well as the usual α£ oscillators. For example, the ghost
contribution to the three-string scattering vertex was first given, using the present
method, in [13]. However the techniques discussed here can be used to find this
contribution to all vertices and this will be given shortly.

The demand of decoupling of zero-norm physical states inevitably leads to a
first order differential equation which determines the measure / This comes about
as follows, zero-norm physical states involve L_JΩ>, or in BRST language are of
the form Q\A). For such states to vanish, we are required to move L_n or Q
through the vertex in such a way that we obtain Lm, m ̂  0 or Q on the other legs.
Studying the above equations, one realizes that this can only be achieved by using
moduli changing transformations, i.e., derivatives of the vertex with respect to the
moduli (i.e., υr

9s or zf's). Such derivatives can only vanish, after integration by parts,
if certain first order differential equations for the measure are satisfied. We refer to

for specific examples of this very general procedure.
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Given a choice of cycling transformation we can compute the vertex using the
overlap equations (2.5) and (2.6), or more conveniently the integrated form of the
Pμ overlap, namely

Σ § ψpnU)(ξj)Φ(ξd\=o, (2.21)
-1 ξj-0 ζj J

where ξj = (Vj)~ι(Vi)ξi. The function φ(ξi) must be analytic everywhere except at
the Koba-Nielsen points (ξj = O,VJ) where it may have poles. In the case of the
multiloop vertex, one must also satisfy certain automorphic relations and reality
conditions (see [7]). For trees there are no further restrictions, and taking φ(ξi)
= (ξi)~n we find the vertex to be

ί N

0=1 .

+ (ai\Γ(ViΓίVj(0)H

+ aoi(Γ(Vjy1Vi(0)\aj)

d
(2.22)

The reader is referred to [4-7] for more details, in particular the determination of
the aι

oa
j

o term from the Qμ overlap and the multiloop vertices. This concludes our
review of previous work.

3. Cycling Transformations

In the previous section, we saw how multistring vertices were determined by their
conformal properties which required cycling transformations for loops and
external legs. For the former we are required to specify conformal transformations
{yj)~ι. These transformations {Vj)~ι must be of the form

\z) = {z-Zj)f\z), (3.1)

where fj(z) is any function that is analytic and non-vanishing at z = zjt As
mentioned above Vj+1 is obtained from Vj by cycling its dependence on the Koba-
Nielsen variables zk->zk+1. We may write

f\z)= Σ ai{z-Zj)\ αiΦO, (3.2)
n = 0

where a{ may depend on zk and satisfies

) = ai(z2,...,zN,zί). (3.3)

In terms of the Ln's, {Vj)~ι has the form

Σ # π L ^ L l n β H r * ' L S (3.4)
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where a{ are functions of the a{. The form of (Vj) x of Eq. (3.1) has a simple
interpretation; (Vj)~1 is the most general analytic transformation which maps the
point Zj to zero. The object QμU) is naturally associated with its Koba-Nielsen point
z = Zj, and so Qμj((Vj)~1z) is naturally associated with the point zero. The Qμ

overlap of Eq. (2.5) then states that Q μ 0 ) when conformally mapped to the point
zero is the same as Qμ{i) when also conformally mapped to zero. Thinking about a
string emitted from a Riemann surface, this is of course most natural; see Fig. 1.
The factorization, Eq. (2.3), of the cycling transformations is particularly appa-
rent from this viewpoint. For the loops we recall that Eq. (2.6) simply states that
when we take a Qμ around a hole in the surface, and compare it with the Qμ

already there, it is the same (see Fig. 2). What is remarkable is that this seemingly
timid requirement determines the scattering amplitude completely when one also
demands the decoupling of zero-norm physical states.

Of course one's choice of reference point is arbitrary and can be any point on
the surface. Below we give an explicit discussion of this arbitrariness for the case of
trees. One can also consider other conformal operators such as Pμ(z) which, having
conformal weight one, is naturally written as Pμ(z)dz/z, and one interprets their
overlaps in a similar way.

From the point of view of two-dimensional field theory, we can interpret the
overlap identity as propagating Qμ from z7 to 0 using (Vj)~ * and on to zt using (V1)
to find Qμ at that point zf. [At first sight, the order of the factors (Ff) and (Vj)~x is
puzzling, but the order becomes inverted when we consider what change we must
make to a physical state on the right which induces this change on the vertex, and
so on the overlap.] The large freedom of choice (3.1) for Vj can be interpreted as
reflecting the arbitrariness in the choice of a local evolution operator (Hamil-
tonian) in the reparametrization invariant two-dimensional world-sheet.

In the past, for the bosonic string we took

oo 0 1
(3.5)

Fig. 1. Interpretation of an external leg cycling transformation

Fig. 2. Interpretation of a loop cycling transformation
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as it was this choice that led to the Caneschi-Schwimmer-Veneziano vertex [9],
when twisted, and the Lovelace-Olive vertices [14]. This corresponds to taking

{VJyi{z)JplΆμZli^A (3.6)
Z Z ) Z Z )\Z~Zj-l)\Zj+l~Zj)

or

There is, however, a more obvious and considerably simpler choice, namely

( ή - ' ( z ) = ( z - Z j ) or fj = \. (3.8)

We now demonstrate some of the theory given in the previous section for this
choice. Using Eq. (2.10), we find that

N ίV{zk)=V(zk) Π [F1z t)]-'[F(4)]

= V(zk)Y\e~^-^Li-\ (3.9)
7 = 1

Infinitesimally this equation becomes

dV
= + VL{k}ι. (3.10)

CJZk

This has the very simple geometrical interpretation that IΪ_1= + d/dzk generates a
translation of the Koba-Nielson point zk. Of course, such a geometrical
interpretation exists for arbitrary Vks, but is obscured by gauge transformations.

Computing the measure is now trivial. From (3.9), we immediately deduce that
zero-norm physical states of the form ίίΪL\|Ω) decouple from the physical vertex W:

WLik}1\Ω) = 0 (3.11)

for

W=\\\dziV, (3.12)
c

that is, the measure is a constant.
For the previous choice of cycling transformation, Eq. (3.5), one has:

)-], (3.13)

if g is a member of SL(2, R), and hence the vertex [see Eq. (2.21)] itself is SL(2, R)
inert. In this case, the measure [4] is also found by inspection to be SL(2, R) inert.
Demanding separate invariance of the vertex and measure is, of course, not
necessary as it is only W which should be invariant. It is this over-concern to
incorporate SL(2, R) which was probably responsible for the appearance of the VJ

of Eq. (3.5) in previous string vertices.
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We now discuss the SL(2, R) invariance for the new choice. We will require a
knowledge of the transformations which leave the vertex inert and according to
Eq. (2.15) are given by

jtfJ = e{z*~Σj)L-1^ie-{Zί~Zj)L-1. (3.14)

Under a translation of the Koba-Nielsen variables zk-+zk + a Vfc, we have

V(zk+a)=V(zk)

= V(zk)fle-°Lφ* = V(zJ. (3.15)
. 7 = 1

For the last step we used Eq. (3.14) with j / ι = exp( — alSιl 1). Under an infinitesimal
dilation we have

V(zk + λzk)=V(zk) Π

(3.16)

Taking j / ' = exp/l(L$-f ^-lί-i) in Eq. (3.13), we find that a transformation which
leaves the vertex inert is

J ^ } . (3.17)

Consequently, for infinitesimal λ we find that

V(zk + λzk)=V(zk) Π ( l - λ ί t f ) (3.18)
; = i

which on-shell becomes

V(zk + λzk)=V(zk)(l-λf. (3.19)

For the action of Lx that is zk->zk + εzl, one can show straightforwardly that, for
on-shell states

V(zk + εz2

k)=V(zk)γ\(\-2εzk). (3.20)
fc= 1

Iterating these infinitesimal results, we conclude that for finite SL(2,R)
transformations

V(zk)=V(zk) n fej, (3.21)
k = i l ^ z f c j

where zM = g(zπ) for g e SL(2, Λ). However, this is precisely what is required to cancel
the change in Πkdzk, and so on-shell we find that the results of physical states
scattering is the same:

W= j Π dzkV(zk) =W=\γ\ dzkV(zk). (3.22)
k k
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Let us now evaluate the vertex for N string scattering at tree level which was
given for a general cycling transformation in Eq. (2.21). Substituting (Vj)~1(z)
= {z — Zj), we find that

!*«» Uί--ι \β (m-
μ(i) aJμ (j)μ a(i)μ

+ y <;-" ° h — -

}} (3.23)

It is obvious that one recovers the well-known scattering formula [15] for N
tachyonic states from this very simple formula which is much simpler than the
previous ones. We observe that V is invariant under the exchange of α^<-»α^,
zl<^zj; that is the interchange of two legs. Such an in variance had not been
established beyond tachyonic external states for the other vertices in particular the
Lovelace-Olive vertex [14] which one finds from the cycling choice of Eq. (3.5).

It is instructive to consider the relation between the simple vertex denoted V
above and vertices denoted V, obtained with other choices of cycling transfor-
mations (i.e., / 0 ) 's). The relation is given by Eq. (2.10) to be

V=VU {iV\zn)rlVj(zn)}

= V Π exp { Σ W exp {Woί/}.

Hence for on-shell external physical states, we find that

V=VY\ exp{-lnαj}. (3.25)

Consequently, in order for W and W to agree on-shell, the measure / associated
with V must be given by

(3-26)
j

For the choice of Eq. (3.8) we find the measure is

/= Π , {Zj-\,Zj+l) (3.27)

in agreement with [4]. It is clear that as W and W agree on-shell, then W will
decouple zero-norm physical states as W did. Since the measure is determined
uniquely by decoupling, it follows that the measure must be given by the above
equation. However, one can compute from Eq. (3.24) the analogue of Eq. (3.10) by
gauge transforming the latter and then explicitly compute the measure from
decoupling to find the above result of Eq. (3.26).

One can also consider whether the cycling transformation of Eq. (3.1) is the
most general one allowed. As the above argument shows, all the allowed choices of
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/ lead to the same scattering amplitude, as they must. Given a vertex V related to V
by V= VG, then any factors such as eL~1 in G which do not annihilate on physical
states, unlike Ln — δn0, n^O must be in effect not there, due to some identity
satisfied by V. This can only happen if such factors correspond to transformations
that leave the vertex V inert, that is, one of the form of Eq. (3.13). Given any G, one
can easily verify whether this is the case or not. When it is the case, these factors can
in effect be eliminated, so that indeed the cycling transformations of Eq. (3.1) form
the most general class leading to the same S matrix.

The extension of these ideas to the Neveu-Schwarz sector is completely
straightforward. The tree scattering of excited Neveu-Schwarz strings has already
been considered by the authors [7] within the framework of the graded extension
of SL(2,R) whose generators are L0,L±1, G ± 1 / 2 . We used for (Vj)~ι the graded
extension of the invariant cross-ratio of Eq. (3.6). But we see now that there is a
much simpler choice, which generalizes Eq. (3.8) to include the anticommuting
variables θ and θy.

(Vj)-\z) = Zj = z-Zj-θθj9 (3.28)

(Vjy1(θ) = Θj = θ-θj. (3.29)

The differential equations (3.10) obeyed by the vertex are unchanged, and there is a
new one, related to an infinitesimal change in θj. Using Eqs. (3.28) and (3.29), it
reads:

w + VίG<i\l2 + θJLLιl=0. (3.30)

Combining with Eq. (3.10), this can be written

Q V + θ v ( 3 J 1 )

This has the natural geometric meaning that G(Z\/2 generates a supertranslation of
the Koba-Nielsen variable (zj9 θj).

The vertex V can be written in completely explicit form. First, one expands in
powers of 0f:

V=V0+ΣθiVi+ΣθiθjVij+ Σ OβfikVijk+... (3.32)
i i<j i<j<k

From the overlap of the Neveu-Schwarz field when all θt are taken to be zero, one
finds that Vo is obtained by multiplying the orbital part of Eq. (3.23) by the
following analogous contribution of the anticommuting oscillators b{

r

j):

ί\4 r IV
<0|exp Σ Σ b®b<P(zj-zy'-' K 7 i , , ( - l Γ 1 / 2 . (3.33)

s = l / 2

We note that the coefficient of b^bψ in this expression is antisymmetric in the
interchange (ί, r)<-̂ (/5 5), as it should be. The Vb Vij9..., vertices are obtained trivially
from solving Eq. (3.29); one finds

0 m , ^ ^ 1 / 2 0 % 2 1 / 2 ,

Vm = - K 7 G % 2 = V0G®ll2G%2G*\l2,... etc.
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The physical S matrix element, from which zero-norm physical states decouple, is
obtained by integrating over the θt variables, as well as the zi variables. Here, we
have two choices: for the N point function, one may integrate over all Nθi
variables, or, using the graded part of super SL(2, R), only over N — 2 of them,
dividing out the super SL(2, R) invariant measure {zh—zQdθiιdθi2, for some ί1 and
ί2. In the first case, the S-matrix element is

J Π dZiV0G%2G%2 ... G%2, (3.35)
ί

while in the second case, it is (up to a sign)

/ ~ ^ ^ 0 ^ - 1 / 2 ^ - 1 / 2 ^ - 1 / 2 ̂ - 1 / 2 ••• ̂ - 1 / 2 ^ - 1 / 2 • L r - 1 / 2 I A ^°)

i \Ziι Zi2)

These two possibilities correspond to the old Fγ and F2 formulations of the Neveu-
Schwarz sector, and lead to identical results on-shell. This can be shown by using
repeatedly the overlaps for G gauges together with Eq. (3.10) and the proof is left to
the reader.

Of course, as in the bosonic case, three of the z{ integrations must be removed
by S£/(l, 1) invariance from either forms (3.35) or (3.36). For (3.36), zh and zh may
or may not be part of this set of three, without affecting the resulting answer.

4. Twisting

One feature of open string scattering is the ability to reverse all the variables of an
amplitude A(l,2, ...,N) and obtain the same result. That is

A(1,2,...,N) = A(N,N-1,...,2J). (4.1)

We recall that the actual scattering amplitude was made up of the sum, with unit
weight, of all such contributions A which were not related by cycling or reversing
the order. This gives (JV—1)/2! terms for an N leg graph. For example, the
scattering of N tachyons is left the same if we change zt-^zN_i+1 and at the same
time change Pi^pN-ί+ί.

We now find the transformations which implement such changes on the vertex
and verify that they vanish on-shell. As with all computations in the new approach,
it is an exercise in conformal group theory. Changing the external momenta
Pι^>pN_i+ί and the oscillators α£(N)->α£(iV~i + 1 ) is implemented by relabelling the
legs by i -» N — i +1 of the vertex. We must also exchange zi-^zi = zN_i + 1. We could
carry out this change directly on the vertex using its conformal definitions, but a
change is as good as a rest, so we perform these manoeuvres on the Qμ overlaps. We
start with a vertex V which satisfies

Q, (4.2)

and we would like to obtain a vertex V which satisfies

1z)}=0, (4.3)
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where

F'ΞF^ΞFW^,). (4.4)

The last equation can be written as

^ Λ ' ^ 1 ) - 1 ( z ) ) } = 0 , (4.5)

since it holds for all i and) and in particular i-+N — i+l and)-*N — j + 1 . Taking V
and V to be related by a conformal transformation jtf1, i.e.,

JV

Ϋ=V\\sί\ (4.6)
i = l

we find that V satisfies

O=V{Qi((s/iy\Vi)-1z)-Qj(jι/j)-1(VJ)-ίz)}. (4.7)

Comparing this last equation with Eq. (4.2), we find that

^ = ( 7 0 " ^P*"1 '"*"1). (4.8)

Now for the choice of cycling transformations of Eq. (3.5), we find that

- - ( ? I L)
namely

^ = (-l)^- L l , (4.10)

while for the choice of cycling transformation of Eq. (3.8) we find

^ = 1. (4.11)

The above results look unfamiliar due to the appearance of ( —l) L o rather than
exp/π(L0— p2/2) as for example discussed in [16]. This somewhat subtle point is
related to the fact that in our vertex we have pιpj\n(zι — zj), while in previous
discussions one used pιp} In \zι — z\ For the usual evaluation of the amplitude, there
is no distinction due to the ordering of the z/s, however, for twisting we reverse the
order of the legs and z s and so must take account of the distinction. Explicitly
examining the vertex, one can readily confirm that the above twists are correct. We
could have adopted a vertex with pipjln\zi — zJ\. Then we would find a factor of
expiπ(pι)2/2 when twisting as compared to before. Hence the twist for this
alternative prescription for the vertex would be (— l)Ne~Ll and (—1)N, where
N = L0 — ^p2 to replace Eqs. (4.10) and (4.11) respectively. For the case of Eq. (4.1),
one can see the entire result by inspection of the vertex of Eq. (3.23). The twist for
the new vertex of Eq. (4.11) is, however, simpler than that of Eq. (4.12). We can also
consider the interchange of only two legs and their corresponding variables. It is
straightforward to find the conformal transformations one must apply to the
vertex to induce such a change. One can show that on-shell these conformal
transformations yield factors which are precisely cancelled by the corresponding
change in the measure. For the vertex of Eq. (3.23), as we have already mentioned,
this is obvious. For the open string, of course, the limits of integration and the



598 A. Neveu and P. West

Chan-Paton factors mean the final result is not invariant under an interchange.
However, for the closed string, we have no such obstruction and so the
generalization of our approach to closed strings is obvious and will be discussed
elsewhere.

For the case of Neveu-Schwarz strings, the theory above applies and for the
cycling transformations of [7] we find that the twist is given by

^J = (e-
Ω^S-l)G/2e~L'(-l)Lo), (4.12)

where Ω{j) is the super SL(2, R) invariant discussed in [7] and is given by

θj. fa -zJ+1- Ojθj+,)

(4.13)

5. Sewing

In a quantum theory based on a Feynman path integral or in an S-matrix theory
unitarity and in particular factorizability is guaranteed [17]. However, in the
approach advocated by the authors, this is not the case and must be verified
explicitly. We will now demonstrate that the amplitudes do factorize correctly and
this is a simple consequence of the method. The problem one faces has much in
common with the old dual approach where the vertices were shown [15,18] to
factorize by direct calculation using oscillator algebra. What was actually shown
was that one could sew two vertices together in such a way so as to yield a third
vertex which was of the same type. One then realized that factorization
corresponded to reversing these steps.

Let us first consider sewing together two tree vertices to yield a third. In the
group theoretic approach, the vertices are determined by their overlap relations,
and it therefore suffices to show that the final vertex has the correct overlap
identities if the original two do. In sewing we will take the adjoint of a vertex, and
since

(^ (5.1)

we find that V+ has the overlap

= 0. (5.2)

E + 1 F-1

Fig. 3. Sewing two vertices to form a third
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Let us sew legs E and F together of vertices with Nλ and N2 external legs as in
Fig. 3. We join Vί and V2 with a propagation which when written in parametric
form is an integration which we discuss later, times a conformal factor 3P. Thus the
composite vertex Vc is of the generic form Vc=V10

>{E)V2

+. In what follows, we will
often take the adjoint with respect to the remaining legs of V2 to get the final vertex
in standard form.

Let us assume that (Vj)~ * depends only on Koba-Nielsen variables Zj_ί9 Zp and
zj+1 as does the cycling choice of Eq. (3.5). The choice of Eq. (3.8) only depends on
Zj and so is included as a special case of this assumption.

Consider first the overlap identities on the remaining legs of the first vertex; all
identities are correct for the new vertex except for those involving legs E—\ and
E+\. However, we may choose zE in two ways, either

a) ZE = ZF-I (5.3)

or

b) z E = z F + ι . (5.4)

For these choices we find that identities involving legs E + 1 and legs E — 1
respectively are now correct for the composite vertex.

With choice a) we must perform a conformal transformation on leg E — 1 the
identity

- l , (5.5)

must become

i i 1 E 1 E 1 1 - l , (5.6)

where (VQ) are for the original vertex Vu and V1 are for the composite vertex Vc.
Clearly Fo

ι = V\ and so the conformal transformation one must apply to V1 on leg E
is

GE'ι={VE-ι)~ιVE'1. (5.7)

Cycling transformations of Eq. (3.5), we have

γ)( , (5.8)
oo 0 1 J\z z z J

where

_ ( Z F-1 ~ZE-2) (ZE-1 ~ZF+l) / ^ QX

\ZF-l~ZE-l) \ZE-2~ZF+ί)

For choice b) we must make the gauge transformation (VE + *)~ x VE+1 on leg E + 1 .
However, for the choice of cycling transformation of Eq. (3.8) [i.e., (Vj)~ι(z)
= z — zj], no gauge transformations are required.

To ensure the overlap relations between the legs of the second vertex are
correct, we must carry out an equivalent discussion which is the same as above
provided we make the replacements E<-+F everywhere.
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To find the propagator we consider the overlap identities between legs on the
composite vertex which originated from the vertices Vί and V2 before sewing. We
have

and so

The latter factor now faces V2 on leg F, and so can be considered as a factor

V2Q
F(Γ<?-1(VE)-1z), (5.12)

after taking the Hermitian conjugate. From Eq. (2.5), we have that

o=v2{QF(Γ0>-1(vEy1z)-Qk((vky1vFr&-1(vEy1)}. (5.13)

However, the composite vertex must satisfy

KiQWT'^-QMvT'z)}^, (5.14)

and so we must conclude that

VFΓ^-ί{VE)~ί = ί or 0>=VE~ίVFΓ. (5.15)

What one finds for the propagator 0* depends in general on the identifications
made. For the choice of cycling transformation of Eq. (3.5), we find for choice a)
that

(5.16)

where

^_(ZE-l~ZE+l) (ZF+l~ZF-ί) / ς iΊλ

(5.18)

while for choice

For the cycling

b)

choice

0

c =

(Vj)

ψ = i

'(zE-

~ιz =• z —

( - 1

•F-

(

V
Zj,

1/ \ZF+ 1 ZE+ l)

c γ° L

- i ) e •

we find

>e2ln(zE-zF)LoezF-zE

We note that also in this case we are obliged to make one of the identifications a) or
b) above. For Eqs. (5.16) and (5.17) the propagator is obtained by integrating over
dc and that of Eq. (5.19) over ds where s = zE — zF. Here we have glossed over any
additional factors of c and s respectively which may be needed in order to obtain
the correct measure. Such factors follow from ensuring that zero-norm physical
states decouple from the composite vertex.



Group Theoretic Approach to Strings 601

As mentioned above, what we must really guarantee is factorization. Here we
look at the residue of the pole in

where p and q label the momenta of the vertices Vγ and V2 respectively. Such a pole
occurs when all the remaining Koba-Nielsen variables on a leg coalesce. On Vu

say, this means

(z; - Zj) = ε(Zf - Zj) Vi J ; ίj + E,

where c->0. Due to the ordering of the z's this is enforced by taking zE_ ί -+zE+1.
Reversing the above steps, we may rewrite Vc in terms of Vu V2, and 3P. However, 0>
contains a uLo factor which for w->0 implies the poles discussed above in the
momenta squared. The residue is then recognizable as Vί times V2 augmented by
conformal transformations which vanish on-shell.

It is in order to make a comment on how SL(2, R) has been fixed. The above
procedure has implicitly assumed that on V1 we used SL(2,R) to fix z £ _ l 5 zE and
zE+1 and similarly on V2. We also inserted one integration over a combination of
three variables. After sewing, only four of these legs are left as well as the one
integration. Hence in effect only three legs on the composite vertex have had their
Koba-Nielsen variables fixed by SL(2, R) in variance.

We now consider sewing two legs so as to form a loop. To treat the most
general situation, it suffices to consider an N string vertex V with M loops and we
sew two external legs to form an N — 2 string vertex V with M + l loops (see Fig. 4).
We recall Eq. (2.5)

V{Q%Vr^)~Q\{Vr^)} = ̂ , (5.20)

which is the same overlap as for trees. On legs E — 1, E + 1 and F — 1, F + 1 , the new
transformations Vj do not coincide with those of the old vertex V(j, and hence we
make gauge transformations stfE~1 = (V0)

E~1 VE~1, etc. Unlike for the tree case, we
cannot identify zE to be zE_u since although it makes VE+1 = VQ+1, it reduces
VE~ι to be non-invertible.

To find the loop cycling transformation, we transport Qμ from leg i through the
sewn legs E and F and back to leg ί. We have

V&>{Qi((Vi)-ιz)-QE(&>-1(VEyίz)}=0, (5.21)

which becomes a factor

\VE)-ιz) (5.22)

F
Fig. 4. Sewing to create an extra loop
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on line F. However, using the original overlap we have

v{QF(Γ0>~1(vEyιz)-Qi((viy1vFr0>~i(vEyι)}=o, (5.23)
and so

Comparing with the result of Eq. (2.6) we find

or

Factorization implies that we must sew the legs above with the same propagator
corrections which were used to sew the three graphs. Since zE and zF are
unconstrained and we gain one new variable from the propagator, we have a Pn

which depends on three variables as should be for an arbitrary element of SL(2, R).
To find the correct measure for the composite vertex one must in general sew

with vertices which include their ghost contributions. However, this is ensured by
demanding that the corresponding anticommuting conformal operators are
correctly transmitted around the graph. This discussion, at least in outline, is the
same as above and will be considered elsewhere. We note here that the BRST
invariant propagators are easily obtained from those given above by letting
L0,L±1 include their ghost extensions and inserting appropriate factors of
βo,β±ί next to the corresponding L0,L±ι. For example, & of Eq. (5.16) becomes

c-ί

The propagator for Neveu-Schwarz strings is computed as above and for the
cycling transformation of [7] and the identification (a) is the super SL(2,R)
invariant extension of Eq. (5.16).

6. One Loop Amplitude

The one loop amplitudes for the open bosonic string were computed using the
group theoretic approach for arbitrary number of external strings in [5,6]. Here
we repeat this computation using the particular simple choice of cycling
transformation discussed above and for the torus when mapped onto a rectangle
rather than in the Schottky representation which was used before. We consider the
rectangle (see Fig. 5) to have length In w and width 2iπ. The section of the rectangle

Inω

Fig. 5. Mapping the torus to the rectangle
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above the real axis is mapped onto the open string, and the section below is
mapped onto its double [19].

We may perform the calculation by conformally mapping from the results in
the Schottky representation, however, it is quicker to begin at the beginning. For
the torus we require two loop cycling transformations rather than just one in the
Schottky approach, where going around a B cycle is the condition single
valuedness. We can take these to be

Pn(z) = z + lnω; Rn(z) = z + 2πi. (6.1)

The external cycling transformations are taken to be (Vj)~1(z) = (z — zj). Using
Eq. (2.4) we find that PJ

n = Pn and R{ = Rn.
It is important to realize that although Pμ(z) and L(z) = ΣnL_nz~n overlaps exist

for both types of cycling transformations, the Qμ(z) overlap is only valid for Pn(z)
and not for Rn(z). The reason is that Qμ(z) contains a lnz term which measures the
distance around a B cycle which is clearly not zero.

Following the discussion on moduli changing [i.e., ώ = ω(l +ε)] in particular
Eq. (2.14), we find that this is achieved by the infinitesimal transformation srf(z) = z
+ εf(z), where f(z) obeys the relations

f(z + 2iπ) =f(z), f(z) = 1 +/(z + lnω). (6.2)

The solution to this equation

f(z) = ΣCiζ(z-Si)9 (6.3)

where ct and sf are constants and X cf = 1 and

ζ(z) = ζ(z)-^; η = ζ(πi), (6.4)
πi

and the periods of the Weierstrass ζ function are 2ωγ = ίπ, 2ω2 = lnω. Taking only
one ^function and adjusting s, , as we must, such that its pole occurs at the point zj9

where string j is "emitted", we have the equation

Γ(2-;J+zJ* 4 (6.5)
z z )

where c is a constant.
We may also shift one of the Koba-Nielsen points, say, Zj->Zj-\-δjk(x = Zj.

Following Eq. (2.10) this is achieved by

= K(z J.,ω)exp(-L_1α). (6.6)

Demanding that the zero-norm physical state of the form L_1\Ω) decouple from
W, we find that the measure / is independent of Zy
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Equation (6.5) can be written as

u+j J

+ {terms with Ln n ̂  1} >. (6.7)

We now demand that the zero-norm physical state of the form (L_ 2 + 3/2L2_ JJΩ')
decouple from PK Using the fact that the measure is zj independent, Eq. (6.6), and
that L{J

0

}\Ω'}j= — \Ω'}j, we find the differential equation for the measure / to be

ω^-ln/=-c---l. (6.8)
oω in

The value of c can be found by acting on equation with the vacuum at zero
momentum

0 = c+V
2

From the oscillator form of V given shortly, we find that

0,0 . (6.9)

and as a result we find that

T-1- 'D-2 Γ oo ~\D-2

ω 2 4

which shows the well-known reduction in the powers of the partition function
[20].

Let us find V itself by using the equation

y Σ { § ~γ- φPμ{ζj)\ = o J (6.12)
j=l\ξj = O ξj J

where ξj=ξi — zj + zi, and where φ is an arbitrary function which only has poles at
the Koba-Nielsen points zf. Following the discussion of [6], we find the above
result holds if

φ(z + lnω) = φ(z), (6.13)

and
φ(z + 2πϊ) = φ(z) + constant. (6.14)

Such a set of function which have poles at only one point are provided by

n\ \dzj

• — + y E z



Group Theoretic Approach to Strings 605

In this equation

^ ^ } (6.16)

where σ(z) is the Weierstrass σ function [i.e., ζ(z) = d/dz\nσ(zj]. We note that σ(z)
only has one zero in the fundamental domain at z = 0, and so lnψ(z)/z is an
analytic function. We may write

^ I + Σ EUξr,
n Khi~Zj ' Zί)

and we find that

n = l , 2 , 3 . . .

m = 0,l,2,..., (6.17)

where

Gάzt-zj)=Σ Q

 ί

 y (6-18)
i Z ^ Z )

Ωpq = 2pωί+2qω2 and £ ' means sum over all integers p and q except p = q = 0.
p,q

We note that Gk(0) = 0 if k is odd, but if/c is even these are the Eisenstein series [21]
which are usually labelled slightly differently. Substituting in Eq. (6.12), we find
that the vertex V is given by

Σ 7 ι / as' + Σo/s^Ul1 • (6 i9)
«=1 \Zj~Zi) J i.J J
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This result has a simple interpretation in that Inψ of Eq. (6.15) is the "energy"
between all pairs of Koba-Nielsen points and their images. The Eisenstein
coefficients have well-known modular properties, and this should be useful in the
analogue formula for the closed string.

7. Conclusion

We have given above an account of the theory of the cycling transformations used
in the group theoretic approach of the authors. It allows a simple physical
interpretation of the method, namely two conformal operators which act at two
points on the world-sheet of the string have the same action after being
conformally mapped to the same point. This also applies to mapping a conformal
operator around a loop. The corresponding equations, i.e. overlap identities and
the decoupling of zero-norm physical states, i.e., gauge invariance completely
determine the string s-matrix.

It is now recognized that there is a number of problems in the computation of
string scattering that involves Ramond strings. Following the discussion on
cycling transformations, we may search for a (Vj)~1(z,θ) which is a Ramond
transformation and vanishes as z-*Zj and θ-^θj. One easily sees that such a
transformation is not possible due to the square roots required by it being a
Ramond transformation. This result is perhaps to be expected as any point zp θj is
related by a branch cut to some other point where a Ramond string is emitted.
Should one not require a knowledge of the part of the transformation that depends
on the anticommuting Koba-Nielsen, then there is no problem. For example, one
can compute the part of the vertex which is independent of θjt

It is straightforward to show that one must perform / + B — 2 θj integrations on
a graph with 2/ fermionic and B bosonic external strings. Hence the vertices with
one bosonic and two fermionic lines and four fermionic lines do not require any θj
integrations and so can be computed without any difficulty from the usual overlap
equations. For the former we recover, at least for a certain choice of cycling
transformations, the vertex of Corrigan and Olive [22] while the latter generalizes
the known four fermion ground state scattering [23]. For higher vertices, we must
perform the θj integration, and so in effect bring down factors from V(zj9 θj). This in
fact amounts to the picture changing operation of [24]. However, here we see that
picture changing is the result of quite a number of manoeuvres which begin from a
simple starting point. This process is illustrated for the Neveu-Schwarz string
scattering in [7]. We will return to these points and to the closed string in a future
publication.
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