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Abstract. In this paper we consider a class of many-body systems in a weak
homogeneous electric field. This class includes atoms and molecules with
infinitely heavy nuclei. It follows from one of the results of this paper and a
result of [S 3] that the bound states of such systems in the absence of electric
field turn into resonances (which we call the Stark resonances) as soon as the
electric field is switched on. (The stability part of this result was earlier proven
in [HeSi] (see also [Hu 2]) under an assumption of dilation analyticity.) The
main result of this paper is exponential bounds on the width (and therefore the
lower exponential bounds on the life-time) of the Stark resonances. These
bounds are given in terms of the Stark instanton action. In contrast to the usual
(one body) action the latter is not entirely classical but incorporates certain
quantum data (like ionization energies). The bounds give a partial general-
ization to the many electron case of the well-known Oppenheimer formula for
the hydrogen.
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1. Introduction

The purpose of article is to derive bounds on life-time of “unstable bound states”
(=(quantum) resonances in modern terminology) of many-electron systems
placed in constant electric fields. These bounds give a partial generalization of the
classical Oppenheimer formula [Op, LL] obtained for the hydrogen atom. The
latter formula was rigorously justified in [HaSi] who, after Oppenheimer, used
separation of variables in parabolic coordinates and an ODE technique. This
brings us to another task of this paper: to initiate a geometric theory of resonances
in many-body systems. The main characteristic of resonance is its life-time
(=1/width). In an important recent development the life-time of resonances in one-
body systems was estimated in terms of length of certain minimal geodesics
(between classical turning surfaces) in the Agmon Riemannian metric (see [BCD,
CDKS, HS, HisSig 1, S2]). (The latter is the Jacobi metric of an instanton and,
consequently, the length of minimal geodesic is the classical action of the
instanton.) The main point brought up in this paper is that the main contribution
into the resonance life-time in the many-body case comes from an instanton-type
action which depends on eigenvalues of subsystems and the geometry of many-
body configurations. This interplay between the geometry of potentials, many-
body geometry and many-body dynamics is the unique feature of quantum many-
body systems.

Finally, we mention two features of the many-body Stark effect which make it
an attractive model for studying the resonances: (a) There is a natural small
parameter — the electric field strength (in contrast to quasiclassical theories) and (b)
the corresponding perturbation theory is singular. Indeed, as the electric field is
switched on, the spectrum (as well as other parameters) changes dramatically: the
continuum fills the entire real axis, while the eigenvalues disappear. The fate of
these eigenvalues and the mechanism of their turning into the resonances are the
main objects of our discussion.

The results of this paper were announced and the proofs outlined in [S4].

2. Hamiltonian

Consider an N particle system in IR” with external interactions. Its Schrodinger
operator is N
H=% (p? + Vilx)) + ZV,x;—x;). 2.1

It acts on L*(R""). Here x;e R"and p;= —i(grad in x;). We interpret the N moving
particles as electrons and V(x;), as external potentials due to interactions with fixed
nuclei. In the case of atoms and molecules in the approximation of infinitely heavy
nuclei (in the latter case it is called the Born-Oppenheimer or adiabatic
approximation), V; and V;; are Coulomb potentials (attractive and repulsive,
respectively). We will not use a specific shape of these potentials but rather assume
the following general properties:

(I) V{(y) are analytic in Qn{{eC’| |Re{| >R} for [=i and in Q for [=ij as
4,-bounded operators. Here

Q0={{eC|Im{||Se|Rel]|(1+|Rel])""} (2.2)
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for some ¢>0 and 1>#=0 (see the figure below).
(IT) V(¢) and y-VV;(() are 4,-bounded with the relative bound 0. Here [ is
either i or ij and y=Re(. Besides V;(y) are bounded for y+0.

(IID) (F"V)()=0(|¢|™*™") at oo for n=0,1 and some x>0, on the domain of
analyticity of V,. Here [ is either i or ij.
(IV) V,; are repulsive along the direction e of the field in the sense that

ImV;(z,y")<0 and ReV(z,y")=20 if RezImz=0,

where y is written as (y - e, y*) with y*, the projection of y on e*.
Under these conditions H is self-adjoint on its natural domain and its spectrum
looks like

Spec(H)
2
* ——
N AN
1sol EV's cont. spec

If our N-particle system is placed in a constant (homogeneous) electric field, whose
strength is in the direction of a unit vector e in R”, then its Hamiltonian becomes

H,=H-F-x. (2.3)

Here F=f(q,e,...,qye), where f is the amplitude of the electric field strength and
—¢;<0, the charge of the i-th particle. One can again show (see [HeSi]) that H ; is
self-adjoint and its continuous spectrum fills the entire real axis (the latter result I
was able to locate only for one-body systems). Moreover, it has no bound states.
For the hydrogen atom this was proven by Titchmarsh ([T], see [AH] for a one-
particle generalization) and for N-particle systems satisfying somewhat more
general conditions than those of this paper, in [S 3].

3. Instanton Metric

In this section we define the Agmon-type Riemannian metric whose geodesics
control the tunneling. The lengths of these geodesics can be interpreted as an
instanton action. However, the corresponding instanton incorporates quantum
data (ionization energies).

We begin with describing the geometry of many-particle configurations (see
[Hu 2]). Let B, be the exterior of the sphere of radius f ~F centered at the origin:

B ={xeR"||x|>f""}.
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It is convenient for us to pick f> (1 +min <2, 5)) , Where p is the rate of decay
of potentials given in (IIT). Let a= {4, B} be an ordered decomposition of {1, ..., N}
into subsets (called also subsystems or clusters). We define the domains
Q, ;={xeBle-x;<nf P VYieA,
e-x;>(m+1)f " VjeB for some 1<n<N}. (3.1)
The collection of these sets together with the ball
{xeR"™||x|<2f ~#} (3.2)
forms an open covering on IR*". Indeed, for any x e IR*" one of the N + 1 intervals

(—Oo,f_ﬂ)’(f—ﬂazf;ﬁ)’""((N_l)f_ﬁ’Nf_ﬂ)a(Nf‘ﬁs OO)

containsno e - x;’s. Let 4 be the set of all indices i such that e - x; belong to one of the
preceding intervals. Then, clearly xe Q, .

We introduce some notation. Let H , , be the Hamiltonian of A in the electric
field and let H,=H, . Let E ,=info(H ;). We set

VA,fZ;I/;j(xi_xj)_ZA:Fixi' (3.3)

Due to the HVZ-theorem
2= min E, =info(H).

Ac{l,...,N}

Assume our system is in the region Q, .. This means that it is broken into
subsystems 4 and B, with A4, confined in the domain in which the electric field is
either negligible or pulls it toward the origin. The subsystem B is trying to escape
into the region where the electric field pulls it toward oo overcoming the attraction
by the nuclear potential. To give B the maximal kinetic energy, 4 is placed into the
ground state. Thus the potential barrier for B is

Ve (X)+E, if B+0

W)= 5 it B=0

(3.4)

The B=0 case is introduced for a notational convenience. The instanton action for
B is given by the geodesic length in the instanton (imaginary time) Jacobi metric

(W, (x)— E) 1 dx?,

where E is the total energy of the system. This is exactly the Agmon metric for the
potential W, ,. There is an ambiguity since the regions of overlap of different Q, ,
are equipped now with several Riemannian structures. This is resolved by taking
the smallest of the available metrics. Namely, introduce a partial order on the set of
partitions:

aCad <= A2A4'. (3.5
For each x e B; we define the collection of partitions:

Ax,f: {alx EQ",‘/‘} . (3.6)
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Since Q, , cover B, this setis not empty. ae 4, ,label different “gaps”in the linear
system e-x,...,e- xy. Hence the set A, , is completely ordered and therefore

alx)=a/x)=min{alac A, ,} (3.7

exists, and, of course, is unique. Now we can uniquely assign to each point the
Riemannian metric reflecting the picture described above:

ds? =Wy, f(x)—E) dx>. (3.8)

Denote by ¢ ,(x,y) the geodesic distance between x and y defined for this
structure:

g, #(x, y)=inf{LO)ly - x>y}, 3.9

where the infimum is taken over all L!-rectifiable curves from x to y (see e.g. [Ag,
HisSig 21]) and

L(y)= I aon, s ) —E){? (7] ds. (3.10)

The Riemannian metric above is discontinuous but bounded away from the
coincidence planes for subsystems B. Besides, it is degenerate: it vanishes on the
energetically allowed region. However, g , is Lipschitz as can be easily shown
using the triangle inequality and by replacing an intermediate geodesic by a
straight path (cf. [Ag, HisSig 2]).

Let g5, (x) be the geodesic distance of x to O in the metric above.

Proposition 3.1. The geodesic distance g, ((x) is differentiable almost everywhere
and

Vo, [0 < Wy, () —E)Y?. (3.11)
holds.
Proof. By a standard argument (see e.g. [Ag, HisSig 2]), ¢, , is Lipschitz and obeys

“hH ok, f(x+h) 9, f(x)|<( a(x), f(x) E)Y?.

By Rademacher’s theorem (see e.g. [Mo]) ¢ , is then differentiable almost
everywhere and by a result of [Ag] it obeys (3.11). []

4. Energetically Forbidden Region
Let E<2. Denote by K , the support of the instanton metric (3.8):
Kg ;={xeR™W,, >E}. “4.1)

We show in Sect. 7 that the “energy conservation law” breaks down on Kp .
Consequently, we call K , the energy forbidden region. In this section we study its
geometry. Let F=F/|F|| and introduce

I,={xeB,|F-x<y™'}. (4.2)
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We have the following embeddings:

,,CKg , for a suffic. large, 4.3)
Kp ;nQ;CIl,;, for f suffic. small. (4.4

Here .
Qaz{erRmimBm|xi—x}-[>5}. (4.5)

Here f depends on 0: f—0 as 6—0. To prove (4.3) we observe that IT,, is covered
by @, 11, with B+0. Since

Vg, p2 Vp—const/a = —const/u  on  Q, .NIl,,, (4.6)
where Vy ="V}, and since E,>E, we have that
W, (x)>E on &, Il forasuffic. large.

Hence (4.3) follows. To prove (4.4) let xe K ;n€Q;. Then there is a such that
xeQ, . and W, ,>E. Next, note that

Va(x)<const if mBin [x;—x;[>0.
This together with the previous inequality yields that
F-xp=<const/f.
Here (xp);=x; if ie B and =0 if i¢ B. Moreover, since xe Q, ,, we have that
e-x;<const/f? forall ieA.
Hence, if x eleft-hand side of (4.4), we have

F - x Zconst/f,
which implies (4.4).
Relations (4.3) and (4.4) show that K , separates the bounded interior region
B from an unbounded exterior region (lying outside of IT,, with o sufficiently
large). To get a feeling about the shape of K, , we consider one of its components

{xeB/la(x)=a}nKg ;. 4.7
Its exterior boundary is defined by the equation
F-xp=Vyx®)—E,+E, (4.8)

where x® stands for the set of interior coordinates for the subsystem B. Observe
that F - x,is the smallest when the particles in B are far apart from each other and it
is the largest, namely oo, if some of the particles in B coincide. As a result we have
the following picture (not to scale!).

=
W%
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We denote by i ; the exterior boundary of K, i.e. the part of the boundary
of Ky , lying outside I1,, for o sufficiently large. Denote by o, , the length of
minimal geodesic from the origin to S . A simple estimate based on (4.3) shows
that o ,=0(f"").

Finally we show that

dist(x, S, )=O0(E—E,|f ") VxeS; ,. 4.9)
To demonstrate this estimate we note first that
xeS; ;= xe€Q,, and W, (x)=E
for some a. Consider a point x, in the a-component of Sz, , with the same
xB-coordinates and with the same F*-projection of x,. In other words, we change
the F - xz-coordinate of x and keep the other coordinates fixed till the new point
X, obeys
xo€Q, , and W, (x,)=E,.
Thus x, €Sy, . By the construction
W, 1) = Wy (o) =F - (xg— g, )= | F]| [ x— ]|

On the other hand

E—Eo=W, (x)=W, (Xo).
The last two relations give

lx—xoll =O(E—Eo|f "),

which proves (4.9).

5. Spectral Deformations

A rigorous theory of resonances was started in [AC, BC, Sim 1] for dilation-
analytic potentials. A more general theory has been developed in [Sim 2, Sig1,
Hun 1, Cyc, HisSig 1, BCD]. In this section we outline a general framework for the
definition of resonances (for more details see the lecture notes [HisSig2]).

Let v be a smooth vector field in R obeying sup || Dv(x)|| < c0. Let g, be the
global flow generated by v or its first approximation, x + fuv(x), i.e. the shift by v.
Define the one-parameter family of unitary operators

U(9):1p—>]/£1€1pog(,, (5.1)
where Jac is the Jacobian of the map x— gg(x). If g, is the flow, then U(6) is a group:
U@+n=U@OU(n).

Note that U(f)) leaves D(A) invariant.
Given a Schrédinger operator H= — A+ ¥(x) we associate with it the one-
parameter family of self-adjoint operators

H(@O)=U@OHU6)™'
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[conjugation of H by U(f)], defined on the same domain D(H). We call H(f) a
deformation of H by the vector field v. It is easy to write H(6) out explicitly

H(O)=llpol*+ Vg, (5.2)

_(%&)\ L 020
pg—<ax> p+2l7<1ndet 6x>' (5.3)

Of course, the operators H(0), 0 IR, and H are entirely equivalent, they have the
same spectra, multiplicities, etc. However, this changes dramatically if 6 moves
into the complex plane. The latter is the case of interest for us and to tackle it we
impose the following restrictions on H(6):

(A) H(0),0€R,isarestriction of an analytic of type 4 family, H(6), defined on a
neighbourhood, A4, of 6=0.

(B) Thereis an open connected set, 2 C €, having non-empty intersections with
€™ and €~ and such that

QnC* o (HO)=0 forall 0eAnC",
Qo (H(Oy)=0 for some O,e AnC™.

where

Under these conditions, the discrete spectrum of H(0) with e AnNC™ has the
following properties:

(i) The discrete spectrum inside of Q is located in QnC .

(i) o (HO)NRNQ=0,,(H)NQ.

(iii) The discrete spectrum inside of Q is independent of 0, and of the vector
field v used, provided different analytic sets A, have a dense intersection.

Here Ay is the set of vectors analytic with respect to the family U(6). Thus, the
complex eigenvalues of H(#), Im0 >0, inside of Q2 lie in €~ and are intrinsic to H.
They are closely related to the embedded eigenvalues of H: under perturbation,
complex eigenvalues of H(0) might become embedded eigenvalues of H and vice
versa. The complex eigenvalues of H(0) with Im60> 0 (inside of Q) are called the
(spectral) resonances of H.

Now we define some concrete deformations H 4(0) of the Stark Hamiltonian
H,. Following the general procedure outlined above, the Stark resonances are
defined as complex eigenvalues of H;(0) with Im0> 0.

Let v;=w(x; - ¢), where w is a smooth bounded function obeying:

w"| <const f#"~7 for n=1,2,3, (5.4)
0 for s< !
= 2A
w(s)= 1f (5.5
f77 for s= 7

with y>1—p. Let E, be an eigenvalue of H under consideration. Denote by S,,
the geodesic sphere of radius o, ,—(af)*, centered at the origin. Here we use
instead of original metric (3.8), the metric defined with ¥;;(y) smoothed out inside
of a sufficiently small ball around y=0. This removes inessential difficulties
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caused by possible singularities of V;;. The following property of S, will play an
important role later:

S, lies inside of Sg  and dist(S,, Sz )=0(f "), (5.6)

provided E— Eq=o(f""#). This property follows from (4.9). Let x, be a smooth
cut-off function, 0 <y, <1 which is chosen so that

i
R )
and moreover it satisfies
V' =0(f"). (5.8)
Define the vector field
v=(vye,...,0n€));> (5.9

Denote by H ,(0) the deformation of H ; by vector field (5.9) through the shift
go=id+0v. A simple computation based on (5.2) shows that H(6) [see
Egs. (5.10)+5.13)] is of the form

H (0)=H ;+2"* order diff. opr. with comp. supported coefT.
+bounded multipl. opr.

Thus a result of [S 3] shows that H (6) have the same domain as H ;. Moreover,
an examination of the expression for H ,(0) reveals that H (0)u is analytic in 0 in a
neighbourhood of 0 =0 for any ue D(H ;). Hence H () i is an analytic family in a
vicinity of @ =0 of type A in the sense of Kato with the same domain as H .. We will
use the notation:

H(f, ¢)=H (i) (5.10)
A simple computation gives
H(f, ¢)=Ts+ 2V, () +2V|(9), (5.11)
where
Ty=1piyl® (5.12)
with p, defined by (5.3), (5.9), with g,=1id + 0v and
V, )=V, [(x;+idvjy ce), etc. (5.13)

We show that the spectrum of H(f, ¢) with ¢ >0 looks like

resonances Z

R
;i / ' X \ //f,cont spec
7T //

This picture holds without the cut-off function y , as well. The role of the latter is to
keep the deformed Hamiltonian real in the region in which we estimate the
tunneling.
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6. Main Result

Analytically the most difficult part of our analysis is an estimate on the resolvent of
H(f, ¢) in a neighbourhood of isolated eigenvalues of H. We call this estimate the
stability estimate since it plays the key role in the proof of stability of eigenvalues of
H(f, ¢), i.e. the existence of the resonances and bound states of H . This type of
estimates (and under similar names) was isolated in [K, VH] (see [Hu 2] for new
developments). To formulate this estimate we need some definitions and notations.
We consider the annulus

2f"Slz—Eg|<f7, (6.1)

in the energy plane, around a given isolated eigenvalue, E,, of the unperturbed
Hamiltonian H. Here v obeys

1—y<v<p.
Let E'=E,+ f* with

1-f<a<e, (6.3)
where

e=min(2f, uf, f—7,(1+w)p—1).
For a smooth function ¢ we define the norm
lully, = lull + [ p&ull.

In this section we assume the potentials obey the conditions (I)-(IV). We formulate

now the stability estimate theorem.

Theorem 6.1. Let &, |(| <1 be supported inside Sy. ;. Then for any ue C§,
I(H(f, §)—2)ull 2 01 [lull; ¢ (6.4)

for z in annulus (6.1), f sufficiently small and 6 >0, independent of z, f and u.

The proof of this theorem is given in Sect. 13.
Now we turn to an existence result which is a by-product of our estimates.

Theorem 6.2. Near each isolated eigenvalue E, of H there are eigenvalues and
resonances E(f) of H; so that

E(f)»E, as f—O0. (6.5)
Moreover, the total multiplicity of E{f) is equal to that of E,,.

This theorem extends to the class of potentials (I)—(I'V) the result of [HeSi] (see
also [Hu 2] for a different, geometric proof). Note that for this class of potentials a
result of [S3] says that H, has no eigenvalues. Thus the combination of both
results implies the existence of resonances for H . The proof of this theorem is
given in Sect. 9.

Our main result is the following.
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Theorem 6.3. Let E( f) be the resonances of H ; splitting from a given eigenvalue E,
of H; (see Theorem 6.2). Then their widths are bounded as

[ImE(f)| < Cf*~*exp[ 205, ,+0(f "] (6.6)
for all f sufficiently small and o <min(up, f—7).

The proof of this theorem is given in Sects. 7-13. The key ingredient in
estimating the resonances E,(f) is an exponential bound on the resonance states,
i.e. eigenfunctions of H(f, ¢). To derive the latter we compare H( f, ¢) in a region of
interest with an auxiliary self-adjoint operator HY. In our approach we use an
Agmon-type method to derive first exponential bounds on eigenfunctions of HY
and then use a perturbative argument to compare two sets of eigenfunctions and to
obtain exponential bounds on the resonance states.

7. Energy Inequalities

In this section we study the support K, , of the Stark instanton metric (3.8). First
we derive another representation for it and then we discuss its interpretation. We
begin with inequalities for the potential barriers.

Lemma 7.1. For xe Q, nQ, , and f sufficiently small,
W, 02 W, [(x) if add. (7.1)

Proof. Let B'#(. The case B'=() is simpler. Recall that the ordering a>a’ means
that ACA’ and B> B’. Hence

E,>E, and Vyx)=Vs(x). (7.2)

Next, since B\B'C A', the particles in B\B' are at the distance O(f ~#) from the
origin. Hence

F-xp=F xg+0(f17%). (7.3)
Thus (7.1) holds for f sufficiently small. []
Lemma 7.2 (energy inequalities). For f sufficiently small
H 2W, (x)+0(f'"%) onQ,;,. (7.4)
The inequality is understood in the sense of quadratic forms on Cg(2, ).
Proof. Let first B=0), i.e. we consider the left half of B,
{xeB/|F-x<NfF}. (7.5)

Since in this domain the electric potential, — F - x, is either O(f! ~#), and therefore
negligible, or positive, the N-body geometric analysis (see e.g. [CFKS]) yields

Hng—O(f”“) on (7.5). (7.6)
Now we consider the other half of B,:
{xeB/F - x2Nf "} ={xeR"™|F-x=Nf*#}. (7.7)
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It is covered by Q, , with B=+(. Consider cluster decompositions of the
Hamiltonian:
HszA,f®1+1®HB,f+Ia’ (7.8)

where a is the cluster decomposition {4, B} and I, is the intercluster interaction:

I,= 3% Vij(xi_xj)' (7.9)

ieA,jeB

Using that on ©, , (in the sense of quadratic forms)

H, ,2H,+0(f'7 "), (7.10)
Hy 2 Vy 4+ 0(f™) (7.11)

and H, > E, and
A= I,=0(f"™), (7.12)

and using that min(1 — 8, uf)=1— f (for f defined in Sect. 3), we arrive at (7.4). [
If H is localized around E, we obtain the energy inequality
EzW, ;+0(f'"%) onQ,,. (7.13)
This shows that on K , the energy conservation law breaks down.
Corollary 7.3 (combined energy inequality).
H;2W,, [x)—Cf'~" on B,.

Proof. Let {j, ,} be a partition of unity associated with the covering {Q, ,}:

Y (a)*=1 on B, (7.15)
and
SUppJa, s C&,, s (7.16)
Besides, since the scale of Q, ;is /~# we can arrange that
V. p =O(f"). (7.17)
Applying the IMS localization formula (see e.g. [CFKS]) with this partition yields
Hy =Y jutH o= 5|V, (7.18)

Applying Lemma 7.2 to each term in the sum and using estimates (7.1) and (7.17)
and the relation

min(1— B, uf,2p)=1—p
(for f defined in Sect. 3), we arrive at (7.14). [

8. Hamiltonian HY

In this section we construct auxiliary Hamiltonians H', with which we compare the
original Hamiltonian H(f, ¢). The operator H is sclf-adjoint. It agrees H(f, ¢) on
the interior region and on the energetically forbidden region excluding a small
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neighbourhood of the exterior boundary of the latter. Hence the contribution of
tunneling in both cases is almost the same. The Hamiltonian H'(f, ¢) agrees with
H(f, $) in the exterior of K , and is used to control the behaviour of the latter
operator there.

We begin with introducing the cut-off functions. Let 'Y be smooth functions
such that 0< <1 and

7?’=0 outside S, and =1 inside S, (8.1)
and
7'=0 outside B, and =11in Bj,. (8.2)
We introduce now the new total potentials
VO=V—F xy{, (8.3)
and
ViD=V, (8.4)
and the corresponding Hamiltonians
Hy=p*+VP. (8.5)
We denote by H'(f, ¢) the deformation of H', by the vector field (5.9). Hence
H'(f,¢)=Ty+ V(£ )y, (8.6)

where V(f, ¢) is the total deformed potential.

Proposition 8.1. The spectrum of HY in the disc |z—Eo|< " consists of discrete
eigenvalues p(f) obeying

1) —=Eo=0(f""7" 8.7)
for any £>0. Moreover, the total multiplicity of the u;’s is equal to that of E,,.

Proof. First we study the continuous spectrum. Let W, be defined in the same
way as W, , but with F - x replaced by F - xy{?.

Lemma 8.2. The following inequality holds on B, in the sense of quadratic forms
HYzE—Cf'F, (8.8)

provided f is sufficiently small.

Proof. We have exactly as in Corollary 7.3,

H9Z W2, ((x)—Cf " (8.9)
on B, (in the sense of quadratic forms). We have by the definition of 1Y,
Wit f(X)ZE" on suppy§. (8.10)

On the other hand
Wi ()=W2 o(x) on R™suppy} (8.11)
=2,
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Thus, since X > E'.
Wito. (X)ZE". (8.12)

a

Estimates (8.9) and (8.12) yield (8.8). [

Thus by the Weyl criterion and local compactness (see e.g. [CFKS, HisSig2])
H$ has no continuous spectrum in (— o0, E'—Cf'~#). Now the proof of the
proposition follows [Sim 3, HisSig1]: it uses the min-max principle and the
exponential bounds on eigenfunctions of H? proven in Sect. 10 and the known
DHSYV bounds on the eigenfunctions of H (see [CFKS]). [

9. Stability of Resonances

In this section we prove a stability result for eigenvalues of H(f, ¢). It implies, in
particular the existence of resonances or/and bound states of H, in a vicinity of
discrete eigenvalues of H. Recall, that a result of [S 3] rules out the latter possibility
(i.e. the bound states).

The stability estimate (Theorem 6.1) shows that annulus (6.1) is in the resolvent
sets of H(f, ¢). Proposition 8.1 shows the same for HY. Let I be a contour around
E, lying in this annulus. Define the Riesz projections

1
P(f, ¢)=ﬂ;§(Z—H(ﬂ P) ldz 9.1)

and
Po(f)= % ;&;(Z—H?)‘ldz. 9.2)

They project onto the eigenspaces corresponding to the eigenvalues in the disc
|z— Ey| <% f". The main result of this section is the following

Theorem 9.1.

IP(f; @)= Po(f)| =0 as f-0. 9.3)
Proof. First, we introduce a smooth partition of unity {¢;} normalized as
Sh, =1 9.4)

and localized as follows:
0o =0 outside S,
=1 inside S/, 9.5)
The localization of ¢, is corresponding. We also require that
7 =0(f"). (9.6)
By the definition
V=V, on supp¢;. 9.7)



Geometric Theory of Stark Resonances 301
In what follows we omit the arguments f and ¢. Let R and R; be the resolvents of H
and H', respectively. We use the geometric resolvent equation (see [CFKS, S5]):
R+2XR,WR=X¢,R;, 9.8)

where, due to (9.7),
Wi=[p* ¢=2p - V,—Ad,. 9.9)

Using this relation, estimate (9.6) and the stability estimate (6.4) with ¢=1"#V¢,,
we arrive at

IRWR| SCfP™Y|Ry| . (9.10)
A simplified version of the proof of Theorem 6.1 produces the following result:
[R(2)|SCf ™ for |z—E |l<f". 9.11)
Moreover, the spectral theorem implies
[Ro(z)| SCf ™Y for zin (6.1). 9.12)
The last two estimates together with (9.8) and (9.10) yield
IR=Z$:R;| <CfP=2 (9.13)

for z in (6.1). Moreover, due to (9.11), we have
§Rdz=0. (9.14)
r

Thus integrating Eq. (9.8) over I', using (9.13) and (9.14) and using that |I'| = O(f")
we arrive at

|P—¢oPyl—0. (9.15)
Finally, due to the exponential bounds proven in Sect. 10,
(1—¢o)Py—0 as f—O0. 9.16)

The last two relations imply (9.3). [J
Theorems 8.1 and 9.1 imply Theorem 6.2.

10. Exponential Bounds on Eigenfunctions of H}

In this section we derive exponential bounds on the eigenfunctions ¢; , of HY
corresponding to the isolated eigenvalues u,(f) (splitting from E,). This is the first
step in derivation of exponential bounds on the resonance states.

Recall, ¢, , is the geodesic distance from x to the origin [in the Riemannian
metric (3.8)]. From now on we use notation {A4),=<{u, Au). Whenever it does not
cause a confusion we omit the subindex u on the left-hand side.

Theorem 10.1. The eigenfunctions ¢; , of HY corresponding to the eigenvalues
splitting from E, verify the estimate

[ e20ro st OUT 1)“7"9{)1',[]2 Sconst f2/7%, (10.1)

provided f is sufficiently small, n=0, 1.
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Proof. The method we use is, essentially due to Agmon [Ag] (see also [Sim 37). The
key point of the Agmon method is a positivity estimate. In our case this is

CHp = Vnl> = )3z bf*ul?, (10.2)

for some b>0 (independent of f), provided u is supported in B, and, with
E’ =E0 +fa,
Vn(x)|* < (Wi, f(X) = E') s . (10.3)

Since E =infH , we have for any 1>0,
H,2E,+XH,—E,). (10.4)
Since p% is H -bounded there is ¢>0 such that
H,ZE,+Xpi—0) (10.5)

for any 1> 0. Replacing in the proof of Corollary 7.3 the inequality H ,> E , by
(10.5) and retaining pj in the Hy ~term and then adopting the resulting proof to
the operator H%, we obtain the following improvement of inequality (8.9): there is
¢>0 such that for any >0,

HyZ W0, [(x)+Ap>—de—Cf 7. (10.6)

Note that due to (5.6) and f>1—a, S, lies inside of Sy ;. Taking into account
the definition of 5’ and considering separately the interior of S5,  and the exterior

of S;. ;, we obtain
Wato s ZE'+ Wy r—E') s . (10.7)

1 .
The last three inequalities (with A= ic f“> combined with (8.7) produce, for f

sufficiently small, (10.2).

Now we show how positivity estimate (10.2)—(10.3) leads to exponential bound
(10.1). We drop the argument and subindex f for the rest of this proof. Let j be a
smooth non-negative function equal to 0 on B ; and equal to 1 on B} ,. Our task is
to prove that

[CH? = Vnl? — . < 2suplVj* [ 417, (10.8)

where u=je"¢,. Here # is assumed to be a smooth bounded function vanishing on
B,. Note that ¢, =e"¢$,;e D(H). We define the gauged Hamiltonian

H,=e"H ™", (10.9)
It can be written as
H,=H°—Vn>+i(Vn-p+p-Vn). (10.10)
Since ¢; is an eigenfunction of H® we have that ¢, is an eigenfunction of H,:
(H— )b, =0.
Commuting H, —pu; through j and using this equation, we obtain

<H;1_,ui>u:<j[H'l’j:|>¢n'
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Using representation (10.10) of H,, we compute
Re(j[H,.j1> =<, [p* 11 +iVn - Vi)

Computing the commutator on the right-hand side and using that

n=0 on supp(Vj), (10.11)
we obtain
ReCH,— ), =C2Vj1? Dy, (10.12)
Since, on the other hand,
Re{(H,—puy=<{H—=Vn> =, (10.13)

(10.8) follows.
Combining estimates (10.2) and (10.8) for u=je"¢; yields

bf*2|je"dll <2 sup Vil il - (10.14)

Take now 5(x) = ¢y, /(x). Then, due to Proposition 3.1, it obeys (10.3). Moreover, a
simple estimate on geodesic lengths shows

lQE'.f(x)_QEO,f(x)] <Cf~ 1lE/_E0| =Cf* L (10.15)

On the other hand, j can be chosen so that Vj=O0(f*). The last three estimates
imply (10.1). [

11. Exponential Decay of Resonance States

Recall that in our terminology the resonance states are eigenfunctions of H(f, ¢),
¢ >0, corresponding to isolated (complex) eigenvalues (E{f)). We obtain ex-
ponential bounds on these eigenfunctions in terms of the corresponding geodesic
length (instanton action). These bounds, imply, in particular, that outside of the
interior allowed region the resonance states decay exponentially as f—0. Our
method is patterned on that of [S2].
Let o, ; be the distance between the origin and S; ; in the geodesic metric
0, 7(x, ). Let .
dg, [(x)=min(eg [(x),0p /). (11.1)
Let ; be an ecigenfunction of H(f,¢) (resonance state) corresponding to an
eigenvalue E,f) splitting from E,. The main result of this section is

Theorem 11.1. Let QY be R™ for n=0 and be the set {xeR™||F-x|<R} for
n>0. Then

[, @O P S C 2 (112

Qr}

Jor any f sufficiently small, for any R>0, for n=0,1,2 and with Cy, independent
of f.
Proof. Our proof is based on comparing eigenfunctions of H(f,¢) and HY.
Henceforth we omit the arguments (subindexes) f and ¢. Let P, and P be the
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eigenprojections of H® and H, respectively, on the spans of eigenspaces corre-
sponding to the eigenvalues splitting from E,. Let {¢,} and {#,} be bases in RanP,,
and Ran P, respectively. The ¢,’s are chosen to be real eigenfunctions of H with
the eigenvalues ;. Due to (9.3), for f sufficiently small, bases in Ran P and Ran P,
can be chosen so that

s ¢j>_’5ij as f—0. (11.3)
By stability estimate (6.4), one we can choose a contour I Co(H)no(H°) of
order O(f") encircling E, and the eigenvalues of H splitting from E,. Then
1 1
0 27”,;@ odz an 2m’i dz,

where R, and R are the resolvents of H® and H, respectively.
Let h be a smooth cut-off function defined as: 0<h <1, h=11inside S ;, and =0
outside S, and obeying V""h=0(f"). We use the second resolvent equation

Rh=hR,—RWR,, (11.4)
where, since V°=V on supph,
W=[p*h].
Applying Eq. (11.4) to ¢, and integrating the result over I’ we obtain
Pho=ho + gy, (11.5)
where
1 dz
mir Z— Wy

By the definition, the geodesic distance from 0 to S,
QEg,f(Sf)=O-E0,f+O(fAB)~ (11.7)
Using that |y, — Eo|=o(|']), using stability estimate (6.4), using the relation
W= —2Vh-V—Ah,

and using exponential bounds (10.1) on ¢, and V¢, and inequalities o <v < f3, we
obtain

lgell SCfrPeor0r 00D, (11.8)
Next, since H(A,0)* = H(4,0) (complex conjugation), we have that
Po=Y. (i b1
Thus we can rewrite (11.5) as

Z<ﬁi’ hooni=ho+g. (11.9)

Due to (11.3) and the exponential bound on (1 — h)¢, which follows from (10.1) and
the localization of 1 —h we conclude that that matrix [{7;, h¢, )] is invertible for f
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sufficiently small and its inverse bounded, say, by 2. Then equations (11.8)—(11.9)
and (10.1) yield bound (11.2) for n=0 (remember that y, € RanP).

Next, using the eigen-equation we derive the exponential bounds on ;. In the
rest of the proof we omit all subindices and denote by y a smooth function
vanishing outside a small neighbourhood of Q" and =1 on QY. We show that

lle?x Ay <const eyl (11.10)

where the constant is independent of f. Due to the eigen-equation on y and the
definition of ¥
le®z Ay = C(llxe' Vipll + [eyl), (11.11)

where V is the (deformed) total potential for f=0. Next we use the infinitesimal
A-boundedness of V' (the Kato inequality, see [CFKS]):

e Vpll el A(zep)] + C.lley|| (11.12)
valid for any ¢>0. Now, we claim that
V"d is bounded on suppy for n=1,2. (11.13)

Indeed, this follows from the fact that the geodesics avoid the incidence planes for
the subsystems B (i.e. where x;=x; for some i,je B) (“the hiker looking for the
fastest pass would not climb over the pick of the mountain”). Using (11.13), and
using the Schwarz inequality integrating by parts, we obtain

eVl salye’dp| +Cylletyll. (11.14)
Taking into account (11.13) and (11.14) we arrive at
lzeVpll Selye’dpl +C.llep] . (11.15)

Combining this with (11.11), we obtain (11.10). Inequalities (11.2) for n=0, (11.10)
and (11.14) yield (11.2) for n=0,1,2. [

12. Width of Resonances. Proof of Theorem 6.3

Let y, be the eigenfunctions corresponding to the eigenvalues E,(f). Let Q, be the
interior of S, and observe that, due to the fact that the deformation begins
outside of €, we have

H(f,¢)=H/ (real) on Q. (12.1)
Consider the eigenequation
H(f, o= E( /vy - (12.2)
Multiplying it by ¥, and integrating over Q, we obtain
fo Vi H pp = E(f) fo il (12.3)

Applying Green’s theorem to the kinetic energy term, we obtain

EAD ] o= ] P02 T 50+ (Vi (124
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where n is the normal vector to the surface 6Q,. Taking the imaginary part of this
equation we arrive at

0
Im !) lpka—l':)l’f
ImE,(f)=—>F4 77 12.5
k(f) J" lwkIZ ( )
277
Lemma 12.1.
| eVl SCf e 20m0s HOUTE) (12.6)
o2,
Proof. We omit the subindices E, and f at ¢ and d. Denote
g=e*Vipp,. (12.7)
Then, due to the definition of d we have
[ lwrwd=e™ | lgl. (12.8)
02y 002y

Applying the Schwarz inequality, we obtain
gl= € p ey .
[ | |<[§ s qu”z[f o ;(IZJ”2 (12.9)
o9y 02 005

Let W, be the layer between S, and S, 2% <af <2. Let # be a smooth function
supported in W, and =1 on 0Q,. Since 0Q, is a regular surface of the
codimension 1, applying a Sobolev type embedding theorem to eju, one obtains

| ez"|u|2§C<j ul?+ | |l7e"u|2>, (12.10)
005 Wy Wy

where C is a numerical constant. Applying this inequality to v, and Vy,, using the
exponential bounds on V", with n<2 [see Eq.(11.2)], using W,CQy’; for R
sufficiently large and (11.13), we obtain

[ lgl<constf?/~=.
02y

Next, due to (11.2), for f sufficiently small,
[ lwl>=2/3.
Q

The last three relations imply (6.6). [

In the method above we have followed [S 2] (see [Av, HS] for earlier versions).

13. Stability Estimate

In this section we prove Theorem 6.1 which gives a bound on the resolvent of
H(f, ) which plays a crucial role in the stability result (Sect. 9). This is technically
the most demanding section of this paper. One should consult Sect. 6 for notation.
We estimate H( f, ¢) separately on different regions of the configuration space and
then patch the obtained estimates together.



Geometric Theory of Stark Resonances 307

Proposition 13.1. Let ue C§’ and be supported in the exterior of S,,. Then

—Im{H(f,d)> Zadf ' 7 lul®. (13.1)
Proof. Recall that y,=1 on the exterior of S,,. We introduce the domains
Ai,fz{xERVN|xi'e§fﬂ}- (13.2)

Clearly 4, ,, i=1,...,N, cover the exterior of S,,. Let {j; ;} be an associated
partition of unity:

2j? ;=1 on the exterior of S, , (13.3)
suppj; rC4; s, (13.4)
V", =Cf. (13.5)

A variant of the IMS localization formula with {j; ;} (see e.g. [CFKS]) and
Eq. (13.5) yield

ImCH(f, $)>, < 2 Im CH(f, §)>,, + Cf > Jull?, (13.6)

where u;=j; (u.
Next, we estimate each term under the sum on the right-hand side of (13.6). We
begin with the kinetic energy term (recall y,=1 now)

T,=2p}, on the exterior of S, , (13.7)
where p?, is the deformation of p? by the vector field ve. Let

oW =w"(x,e).

Since
o =0(f""""), (13.8)
we have due to Lemma A.1 given in the appendix that
—Imp?, = pqpig—Cf*, (13.9)

where g;=e - p;.
Now we proceed to the potentials:

V. AP)=V{(x;+idve)—f(x; e +iev)).

Using the mean value theorem, we write this as

Vi @)=V, y—idfo1-1), (13.10)
where (with 0< @ < ¢)
ov; _
Li=f7" ) (xFidue). (13.11)
Since
x;-ex=constf~ on suppu;, (13.2)

we have due to condition (III) that

I;=0(f"") on suppv;, (13.13)
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with &, =(1+p)f—1>0. Hence

—ImV, {$)= fpv1—Cf*)=0. (13.14)
Next, we consider V;(¢). Write
Vi) =Viflu), (13.15)
where u is the projection of x;—x; onto e* and
{=(x;—x))-e+id(v;—v)). (13.16)
Compute
Re(=x;-e—x;-e and Im{=¢(v;—v). (13.17)

Since w(s) is monotonically non-decreasing, we have

Re{Im{=0. (13.18)
Hence, due to condition (IV) on V,,

ImV(¢)<0. (13.19)

Now combining Egs. (13.9), (13.14), and (13.19) together with (5.11) we obtain
for ue Cg(4; ),

—Im{H(f, $)>u 2 2($qi0iq:>, + 301 <v;>,) — Cf * u . (13.20)
Since v;=0 for all j and v;=f "7 on 4, ;, we arrive at (13.1). [

Now we proceed to the next region.

Proposition 13.2. Let ue Cg be supported in K. ;. Then there is 6, >0 depending
only on the potentials such that

ReCH(f,¢)—z)> =, f*Ilull? (13.21)
Sfor all ws, all z in the disc |z| <f~ and for all f sufficiently small.
Proof. The proposition follows from representation (4.1) of K. ,, inequality a<e

[see (6.3)] and Lemma 13.3 below taken with A= ;—Cf"‘. ]

Lemma 13.3. There is ¢ >0 depending only on the potentials such that
ReCH(f; §)) Z { Wi, (X)) + Apull> —(Ae + Cf*) uf? (13.22)
for any 0SA<1, any ue C§(B,) and any f sufficiently small.

Proof. Tt follows from the definition of Q, , that on Q, ,
I()=0(f"). (13.23)
Furthermore, Eq. (13.10) and (13.13) imply that
Vil @)=V, j—igfv;+0(f™). (13.24)
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Next, we show that
Vild)=V;+¢f"770,(1), (13.25)

where O(1)is a A-bounded operator with the relative bound 0, uniformly in ¢ and
/- Indeed, by the mean-value theorem,

e, OV -
V;j((ﬁ): Vij+ ipf yUij (3e] (xij+l¢vij€)a (13.26)
for some 0< ¢ < ¢, where we use notation:
x;=x;—x; and v;=v;—v;. (13.27)

Applying the mean-value theorem again yields:

Using condition (II) on V;; we arrive at the conclusion (13.25).
Turn to the kinetic energy term. Lemma A.1 of Appendix implies that

Re(py 4) 2 45— Cof ! (13.29)
for ¢ sufficiently small and with C independent of ¢ and fpz= Y p?.
B

Collecting estimates (10.5), (13.23)—(13.25), (13.29) and using decomposition
formula (7.8), we obtain

ReCH(f,§)> 2 W, > +2llpul* = (e + Cf*) |lull® (13.30)

for any ue Cg’ supported in Q, .

Now we patch together the estimates given in Eq. (13.30). To this end we use a
partition of unity {j, ,} introduced in the proof of Corollary 7.3. Applying to
H({, ¢) the IMS localization formula with this partition yields:

Re(H(f, ¢)), =2 Re<H(f,¢)),— Cf*|lul?, (13.31)

where the subindex a stands for the mean with the function u,=j, u. Taking into
account (7.17) and applying inequalities (13.30) yields

ReCH(f, ¢)) = Zallpu,|* — (e + Cf) [ul|* + W, .. (13.32)

Using again the IMS localization formula but this time for p? and using (3.7) and
(7.1), we arrive at (13.22). [

Now we put together the local estimates on H(f, ¢) obtained above. Let {x;}3,
be a partition of unity normalized as

Syi=1, (13.33)

and having the properties
%1 is supported in the exterior of S, , (13.34)
%2 is supported on K. ,, (13.35)

%3 is supported in Bj),, (13.36)
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and
Vyi=0(f""). (13.37)
We proceed to the estimates. Using that
Xy, (13.38)

we obtain by sticking the partition inside of the norm
ICH(S, ¢)—2)ull* Z Z| 3 (H(f, ¢) —2)ull® . (13.39)
Commuting y; to the right we continue
3
I(H(f. ) —2)ul* = 2 lzAH(f; $)—2)pul* — R, (13.40)
where

R= ¥ Nl Tylul*. (13.41)

Rearranging the commutator on the right-hand side, we obtain

3
R<% .=ZI Gl Tyd + Do Ty Juull? + 31 Do Ui Tyd 1wl ? (13.42)
By (13.37) and (5.12),
e Lo T Qull > S CF P ul)?. (13.43)
By (13.33),
Y Gulxe T¢] +% T¢]Xi)=0- (13.44)

i=1

Thus we can exclude the first summand in the first term on the left-hand side of
(13.42). This leads to

3
R§2.=22 I Tydoaull> + Cf *lul?. (13.45)
Computing the commutator [;, T;] and using (13.37), we obtain
3
R=CS? 3 ppaull + Cf *lul?. (13.46)
i=2

Now we estimate the first sum on the right-hand side of (13.40). The Schwarz
inequality yields

I (H(f, @) —2)zqull lull =2 —Im{H(f, p)— 2,4 (13.47)
Using inequality (13.1) and the condition
Imz=—f" and v>1-—y, (13.48)

we obtain
i (H(f @) —2)gqull Null 2§ "7 xqul?. (13.49)
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Furthermore using the inequality

x? =2axy —a*y? (13.50)
valid for any a>0, with a=f2""1"? we conclude
1 (H(fs ) =2l > Z 56 2wl =27 ull?, (13.51)
where
o=2v—(1—y)>v. (13.52)

Next, we apply the Schwarz inequality again

lx2(H(f, @) —2)x2ull [ull 2 ReCH(f, ) —2) u-
Using inequalities (13.21) and (13.50) with a=/?""% and using that 2v—oa>2v
—(1—y)=0, we arrive at
12(H(S, @)= 2ot > 250 1 f 2 2ul F —f 27wl 2. (13.53)

Finally, commuting y, to the right and using (13.37) and that H(f, $)=H + O(f) on
suppys, we get

I73(H(f, ) —2)xsull 2 |(H — 2)x3ull — Cf | praull = Cf Pl yqul . (13.54)

Since for z in the annulus (6.1), the distance to the spectrum of H is =1, the
spectral theorem yields

|za(H(f, &) —2)xaull 220, £ x3ull,— Cf P pyaull (13.55)
for f sufficiently small. Here we have used that 2f>g¢. Next, the Schwarz
inequality gives

Ipaaull® < Jul 1 z3p*xaull - (13.56)

Commuting y5 on the right-hand side to the right, evaluating a simple commutator
and using (13.37), we get

Ipzsul < llull (Ip?3ull + £ lipxsul) + 12 ul?. (13.57)
This inequality with f sufficiently small implies that for any ¢>0,
Wellpraull —elull < p*x3ul - (13.58)
Combining this with (13.55) and using that f>v we arrive at the estimate
Ixa(H (S )= 2Vl 2 48,1/ e | 23ull, — 40,21 lull (13.59)

provided f is sufficiently small. Collecting estimates (13.40), (13.46), (13.51), (13.53),
(13.59), using that ¢>v and taking & appropriately small:

528 é%mln(éd/g» ‘/aa W) =0 s

3 1/2
we arrive at (6.4) with ¢ < ( Y xf) , provided f is sufficiently small. [
i=2
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Appendix

In this appendix we compute explicitly the distorted kinetic energy term. Since we
are interested in the exterior of S, , we can set y ,=11in(5.9). Thus due to the form of
the vector field v the computation reduces to the one-dimensional case. Namely, on
the exterior of S,

Pip=(1+iu(x;-e) ‘e p,pi),

where pi is the projection of p; onto the plane e* and u(s) = ¢pw(s) [see (13.7) for the
relation between T, and p; , and for the definition of p; ,]. Let

pu=1+iu)"'p, (A.1)
where p= — Z?x’ u=u(x), and xeR'. A simple computation yields
pZ=p(1+iu) " 2p+u'(1+iu) 3p. (A.2)
Taking the real and imaginary parts of this expression, we obtain further
1—u? 1—3u? 3—u?
Repi=p—55 T e s U .
epl= p(1+ 2)2p+Re<u (1+u2)3p>+<uu(1+u2)3>, (A.3)
and
3—u? 1 =3u? Y
Imp?Z = —2pup— Re<u u(1 )y p) + <u (1?42?) . (A4)
Lemma A.1.
—Impu >pup 81> (AS)
where
1(1—u?)?* 1/, 1-3u?
f= s o\ ) (0
and
Repy =2 3p(1+u®) *p+g,, (A7)
where
1 1+ 3u 1 3—u?r Y
= — —fu'——=1. A.
S e R (e ()
Proof. We demonstrate only the first estimate. We have
3—u? 3— u2
T < ' 1/2 1/2
A9)
1 3—142 2y (
< |2 e -
=2a (1+u2)3u w +2<pup>wa

which implies estimate (A.5). [
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