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Abstract. In this paper we consider a class of many-body systems in a weak
homogeneous electric field. This class includes atoms and molecules with
infinitely heavy nuclei. It follows from one of the results of this paper and a
result of [S 3] that the bound states of such systems in the absence of electric
field turn into resonances (which we call the Stark resonances) as soon as the
electric field is switched on. (The stability part of this result was earlier proven
in [HeSi] (see also [Hu 2]) under an assumption of dilation analyticity.) The
main result of this paper is exponential bounds on the width (and therefore the
lower exponential bounds on the life-time) of the Stark resonances. These
bounds are given in terms of the Stark instanton action. In contrast to the usual
(one body) action the latter is not entirely classical but incorporates certain
quantum data (like ionization energies). The bounds give a partial general-
ization to the many electron case of the well-known Oppenheimer formula for
the hydrogen.
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1. Introduction

The purpose of article is to derive bounds on life-time of "unstable bound states"
( = (quantum) resonances in modern terminology) of many-electron systems
placed in constant electric fields. These bounds give a partial generalization of the
classical Oppenheimer formula [Op, LL] obtained for the hydrogen atom. The
latter formula was rigorously justified in [HaSi] who, after Oppenheimer, used
separation of variables in parabolic coordinates and an ODE technique. This
brings us to another task of this paper: to initiate a geometric theory of resonances
in many-body systems. The main characteristic of resonance is its life-time
(= I/width). In an important recent development the life-time of resonances in one-
body systems was estimated in terms of length of certain minimal geodesies
(between classical turning surfaces) in the Agmon Riemannian metric (see [BCD,
CDKS, HS, HisSigl, S2]). (The latter is the Jacobi metric of an instanton and,
consequently, the length of minimal geodesic is the classical action of the
instanton.) The main point brought up in this paper is that the main contribution
into the resonance life-time in the many-body case comes from an instanton-type
action which depends on eigenvalues of subsystems and the geometry of many-
body configurations. This interplay between the geometry of potentials, many-
body geometry and many-body dynamics is the unique feature of quantum many-
body systems.

Finally, we mention two features of the many-body Stark effect which make it
an attractive model for studying the resonances: (a) There is a natural small
parameter - the electric field strength (in contrast to quasiclassical theories) and (b)
the corresponding perturbation theory is singular. Indeed, as the electric field is
switched on, the spectrum (as well as other parameters) changes dramatically: the
continuum fills the entire real axis, while the eigenvalues disappear. The fate of
these eigenvalues and the mechanism of their turning into the resonances are the
main objects of our discussion.

The results of this paper were announced and the proofs outlined in [S4].

2. Hamiltonian

Consider an N particle system in Rv with external interactions. Its Schrόdinger
operator is N

H=Σ(PΪ + Vfa)) + ΣViJixi - xji. (2.1)

It acts on L2(RvN). Here Xj e R v and pj = — /(grad in Xj). We interpret the N moving
particles as electrons and Vt{x^ as external potentials due to interactions with fixed
nuclei. In the case of atoms and molecules in the approximation of infinitely heavy
nuclei (in the latter case it is called the Born-Oppenheimer or adiabatic
approximation), Vi and Vtj are Coulomb potentials (attractive and repulsive,
respectively). We will not use a specific shape of these potentials but rather assume
the following general properties:

(I) Vt(y) are analytic in Qn{ζe(Cv\ ||Re(|| >R} for / = / and in Q for l = ij as
zly-bounded operators. Here

Ί} (2.2)
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for some ε > 0 and 1 > η ̂  0 (see the figure below).
(II) Vt(ζ) and y- VVi3{ζ) are zly-bounded with the relative bound 0. Here / is

either i or ij and y = Re£. Besides Vi3{y) are bounded for y + 0.

(III) (VnVι){ζ) = O(\CΓμ~'n) at oo for n = 0,1 and some μ>0, on the domain of
analyticity of Vv Here / is either i or ij.

(IV) Vij are repulsive along the direction e of the field in the sense that

ImJ/ / z , / ) ^ and Rel/ / z , / ) ^ 0 if RezImz^O,

where y is written as (y • e, y1) with y1, the projection of y on e1.
Under these conditions H is self-adjoint on its natural domain and its spectrum

looks like

Spec(tf)

I
4=

\ \ / \
isol EV's cont. spec

If our iV-particle system is placed in a constant (homogeneous) electric field, whose
strength is in the direction of a unit vector e in 1RV, then its Hamiltonian becomes

Hf = H-Fx. (2.3)

Here F =f(q1e,..., qNe), where / is the amplitude of the electric field strength and
- q{ < 0, the charge of the i-th particle. One can again show (see [HeSi]) that Hf is
self-adjoint and its continuous spectrum fills the entire real axis (the latter result /
was able to locate only for one-body systems). Moreover, it has no bound states.
For the hydrogen atom this was proven by Titchmarsh ([T], see [AH] for a one-
particle generalization) and for Λf-particle systems satisfying somewhat more
general conditions than those of this paper, in [S3].

3. Insίanton Metric

In this section we define the Agmon-type Riemannian metric whose geodesies
control the tunneling. The lengths of these geodesies can be interpreted as an
instanton action. However, the corresponding instanton incorporates quantum
data (ionization energies).

We begin with describing the geometry of many-particle configurations (see
[Hu2]). Let Bf be the exterior of the sphere of radius f~β centered at the origin:

Bf = {xeTR.vN\\x\>f-β}.
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It is convenient for us to pick β > I 1 + min I 2, — j I , where μ is the rate of decay

of potentials given in (III). Let a = {A, B) be an ordered decomposition of {1,..., N}
into subsets (called also subsystems or clusters). We define the domains

aif = {xeBf\e-xi<nf-β

j f~β Vjeβ for some l^n^N}. (3.1)

The collection of these sets together with the ball

{xeWN\\x\<2f-β} (3.2)

forms an open covering on ]RvN. Indeed, for any xeR v 7 V one of the N +1 intervals

contains no e x/s. Let A be the set of all indices i such that e xt belong to one of the
preceding intervals. Then, clearly xeΩatf.

We introduce some notation. Let HAf be the Hamiltonian of A in the electric
field and let HA = HA0. Let EA = mίσ(HA). We set

Due to the HVZ-theorem

Σ = min EA = inf σeJH).
A C { 1 N }

Assume our system is in the region Ωaf. This means that it is broken into
subsystems A and B, with A, confined in the domain in which the electric field is
either negligible or pulls it toward the origin. The subsystem B is trying to escape
into the region where the electric field pulls it toward oo overcoming the attraction
by the nuclear potential. To give B the maximal kinetic energy, A is placed into the
ground state. Thus the potential barrier for B is

if

The B = Φ case is introduced for a notational convenience. The instanton action for
B is given by the geodesic length in the instanton (imaginary time) Jacobi metric

(WaJx)-E) + dx2,

where E is the total energy of the system. This is exactly the Agmon metric for the
potential Waf. There is an ambiguity since the regions of overlap of different Ωaf

are equipped now with several Riemannian structures. This is resolved by taking
the smallest of the available metrics. Namely, introduce a partial order on the set of
partitions:

aQa'oA2A'. (3.5)

For each JCGB f we define the collection of partitions:

ΛXtf={a\xeΩatf}. (3.6)
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Since Ωa f cover Bf, this set is not empty, a e AXtf label different "gaps" in the linear
system e-x1,...,e xN. Hence the set Axf is completely ordered and therefore

a(x) = af(x) = min {a\a e Ax f} (3.7)

exists, and, of course, is unique. Now we can uniquely assign to each point the
Riemannian metric reflecting the picture described above:

ds2 = (Wa{x)Jx)-E)+dx2. (3.8)

Denote by ρEtf(x,y) t n e geodesic distance between x and y defined for this
structure:

ρE,f(x,y) = mϊ{L(y)\y.χ^y}, (3.9)

where the infimum is taken over all iZ-rectifiable curves from x to y (see e.g. [Ag,
HisSig2]) and

L(γ) = \(Wa{γhf(y)-Eyj2\\y\\ds. (3.10)
o

The Riemannian metric above is discontinuous but bounded away from the
coincidence planes for subsystems B. Besides, it is degenerate: it vanishes on the
energetically allowed region. However, ρEf is Lipschitz as can be easily shown
using the triangle inequality and by replacing an intermediate geodesic by a
straight path (cf. [Ag, HisSig 2]).

Let ρEtf(x) be the geodesic distance of x to 0 in the metric above.

Proposition 3.1. The geodesic distance ρEif(x) is differentiable almost everywhere
and

\VρE,f(xM(Waixhf(x)-E)r- (3.H)

holds.

Proof By a standard argument (see e.g. [Ag, HisSig 2]), ρE f is Lipschitz and obeys

By Rademacher's theorem (see e.g. [Mo]) ρE>f is then differentiate almost
everywhere and by a result of [Ag] it obeys (3.11). •

4. Energetically Forbidden Region

Let E<Σ. Denote by KEf the support of the instanton metric (3.8):

N (4.1)

We show in Sect. 7 that the "energy conservation law" breaks down on KEf.
Consequently, we call KE f the energy forbidden region. In this section we study its
geometry. Let F = F/| |JF| | and introduce

1}. (4.2)
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We have the following embeddings:

Πaf C KE f for a suffic. large,

KE^fr\ΩδcΠβf for β suffic. small.

Here

Ω, = )xeWίyι
B

(4.3)

(4.4)

(4.5)

Here β depends on δ: /}-*0 as (5->0. To prove (4.3) we observe that Πaf is covered
by ΩafnΠaf with B + φ. Since

VBtfέ± VB — const/αg; — const/α on ΩatfnΠaf, (4.6)

where Fβ = F# 0, and since EA > E, we have that

Wa,f(x)>E on ΩatfnΠaf for α suffic. large.

Hence (4.3) follows. To prove (4.4) let xeKEj nΩδ. Then there is a such that
xeΩOtf and Wa^f>E. Next, note that

VB(x) ^const if min|x f —Xj|><5.

This together with the previous inequality yields that

F xB ^ const//.

Here (x^X^Xj i f / e 5 and = 0 if i ^ 5 . Moreover, since xeΩ f l > / 5 we have that

e xf < const//^ for all ί G A.

Hence, if x e left-hand side of (4.4), we have

F x S const//,

which implies (4.4).
Relations (4.3) and (4.4) show that KEf separates the bounded interior region

Bc

f from an unbounded exterior region (lying outside of Πaf with α sufficiently
large). To get a feeling about the shape of KE f we consider one of its components

{xeBf\a(x) = a}nKEtf. (4.7)

Its exterior boundary is defined by the equation

(4.8)

where xB stands for the set of interior coordinates for the subsystem B. Observe
that F xB is the smallest when the particles in B are far apart from each other and it
is the largest, namely GO, if some of the particles in B coincide. As a result we have
the following picture (not to scale!).
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We denote by S^f the exterior boundary of KEf, i.e. the part of the boundary
of KEf lying outside Πaf for α sufficiently large. Denote by σEf the length of
minimal geodesic from the origin to SEf. A simple estimate based on (4.3) shows

1

Finally we show that

dist(x,S+0f/) = O ( | £ - £ 0 | / - 1 ) VxeS+f. (4.9)

To demonstrate this estimate we note first that

xeSEff => xeΩaf and Wa f(x) = E

for some a. Consider a point x0 in the α-component of SEθίf with the same
^-coordinates and with the same F1-projection of xB. In other words, we change
the F xβ-coordinate of x and keep the other coordinates fixed till the new point
x0 obeys

xoeΩaJ and Waifix0) = E0.

Thus XO^SEO,/- By t n e construction

WaJx)-WaJxo) = F.(xB-xOtB)=\\F\\\\x-xo\\.

On the other hand

E-E0 = WaJx)-WaJx0).

The last two relations give

which proves (4.9).

5. Spectral Deformations

A rigorous theory of resonances was started in [AC, BC, Siml] for dilation-
analytic potentials. A more general theory has been developed in [Sim 2, Sigl,
Hun 1, Cyc, HisSig 1, BCD]. In this section we outline a general framework for the
definition of resonances (for more details see the lecture notes [HisSig 2]).

Let v be a smooth vector field in R v N obeying sup ||Dφc)|| < oo. Let gθ be the
global flow generated by v or its first approximation, x + θv(x), i.e. the shift by v.
Define the one-parameter family of unitary operators

ogθ, (5.1)

where Jac is the Jacobian of the map x-^>gθ(x). If gθ is the flow, then U(θ) is a group:

)=U(θ)U(η).

Note that U(0) leaves D(Δ) invariant.
Given a Schrόdinger operator H = — A + V(x) we associate with it the one-

parameter family of self-adjoint operators

H(Θ)=U(Θ)HU(Θ)- i
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[conjugation of H by t/(0)], defined on the same domain D(H). We call H(θ) a
deformation of H by the vector field v. It is easy to write H(θ) out explicitly

H(θ)=\\pθ\\2 + Vog09 (5.2)

where

Of course, the operators H(θ), θeIR, and H are entirely equivalent, they have the
same spectra, multiplicities, etc. However, this changes dramatically if θ moves
into the complex plane. The latter is the case of interest for us and to tackle it we
impose the following restrictions on H(θ):

(A) H(θ), θ e R, is a restriction of an analytic of type A family, H(θ\ defined on a
neighbourhood, A, of θ = 0.

(B) There is an open connected set, Ω C (C, having non-empty intersections with
C + and <C~ and such that

) = 0 for all θ ,

Ωnσess(H(θo)) = 0 for some θ0eAn<E+.

Under these conditions, the discrete spectrum of H(θ) with θeAn(£+ has the
following properties:

(i) The discrete spectrum inside of Ω is located in Ωn(C~.
(ϋ) σάH(θ))nRnΩ = σpp{H)nΩ.

(iii) The discrete spectrum inside of Ω is independent of θ0 and of the vector
field v used, provided different analytic sets Aυ have a dense intersection.

Here Av is the set of vectors analytic with respect to the family U(θ). Thus, the
complex eigenvalues of H(θ), ImO>0, inside of Ω lie in (C~ and are intrinsic to H.
They are closely related to the embedded eigenvalues of H: under perturbation,
complex eigenvalues of H(θ) might become embedded eigenvalues of H and vice
versa. The complex eigenvalues of H(θ) with Im0>O (inside of Ω) are called the
(spectral) resonances of H.

Now we define some concrete deformations Hf(θ) of the Stark Hamiltonian
Hf. Following the general procedure outlined above, the Stark resonances are
defined as complex eigenvalues of Hf(θ) with Im0>O.

Let Vι = w(Xi' e), where w is a smooth bounded function obeying:

|w(w)| ^ const fβn~γ for n = l,2,3, (5.4)

0 for s^^Ti
w(s)= J (5.5)

Γγ for sZJf,

with y > 1 — β. Let Eo be an eigenvalue of H under consideration. Denote by Saf

the geodesic sphere of radius σEo?/ — (af)~β, centered at the origin. Here we use
instead of original metric (3.8), the metric defined with V^iy) smoothed out inside
of a sufficiently small ball around y = 0. This removes inessential difficulties
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caused by possible singularities of Viy The following property of Sf will play an
important role later:

Sf lies inside of Slf and dist(Sf9Slf) = O(f-β), (5.6)

provided E — E0 = o(f1~β). This property follows from (4.9). Let χf be a smooth
cut-off function, 0 ̂  χf ^ 1 which is chosen so that

0 inside Sf

Xf= 1 outside S2/ ^

and moreover it satisfies

rnχf=θ(fn'). (5.8)

Define the vector field

v = (vίe9...,vNe)χf9 (5.9)

Denote by Hf(θ) the deformation of Hf by vector field (5.9) through the shift
gθ = id + θυ. A simple computation based on (5.2) shows that Hf(θ) [see
Eqs. (5.1O)-(5.13)] is of the form

Hf(θ) = Hf + 2n d order diff. opr. with comp. supported coeff.

+ bounded multipl. opr.

Thus a result of [S 3] shows that Hf(θ) have the same domain as Hf. Moreover,
an examination of the expression for Hf(θ) reveals that Hf(θ)u is analytic in θ in a
neighbourhood of θ = 0 for any u e D(Hf). Hence Hf(θ) is an analytic family in a
vicinity of θ = 0 of type A in the sense of Kato with the same domain as Hf. We will
use the notation:

Hf(iφ). (5.10)

A simple computation gives

H(f,φ)=Tφ + ΣViJφ) + ΣVij{φ), (5.11)

where

Tφ=\\pίφ\\2 (5.12)

with pθ defined by (5.3), (5.9), with gθ = id + θv and

vJ,AΦ)=vJ,Mj+iΦυjzA e t c ( 5 1 3 )

We show that the spectrum of #(/ , φ) with φ > 0 looks like

resonances

spec

This picture holds without the cut-off function χf as well. The role of the latter is to
keep the deformed Hamiltonian real in the region in which we estimate the
tunneling.
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6. Main Result

Analytically the most difficult part of our analysis is an estimate on the resolvent of
H(f φ) in a neighbourhood of isolated eigenvalues of H. We call this estimate the
stability estimate since it plays the key role in the proof of stability of eigenvalues of
H(f φ), i.e. the existence of the resonances and bound states of Hf. This type of
estimates (and under similar names) was isolated in [K, VH] (see [Hu 2] for new
developments). To formulate this estimate we need some definitions and notations.
We consider the annulus

y^\z-E0\^f\ (6.1)

in the energy plane, around a given isolated eigenvalue, Eo, of the unperturbed
Hamiltonian H. Here v obeys

\-y<v<β.

Let E' = E0+fa with

l-β<oc<ε, (6.3)

where

ε = min(2β9μβ,β-y9(ί+μ)β-i).

For a smooth function ξ we define the norm

In this section we assume the potentials obey the conditions (I)-(IV). We formulate
now the stability estimate theorem.

Theorem 6.1. Let ξ, \ξ\^l be supported inside S^>tf. Then for any

\\(H(fφ)-z)u\\^δr\\u\\Uξ (6.4)

for z in annulus (6.1), / sufficiently small and ό>0, independent of z,f and u.

The proof of this theorem is given in Sect. 13.
Now we turn to an existence result which is a by-product of our estimates.

Theorem 6.2. Near each isolated eigenvalue Eo of H there are eigenvalues and
resonances Et(f) of Hf so that

E0 as /->0. (6.5)

Moreover, the total multiplicity of E((f) is equal to that of Eo.

This theorem extends to the class of potentials (I)-(IV) the result of [HeSi] (see
also [Hu 2] for a different, geometric proof). Note that for this class of potentials a
result of [S 3] says that Hf has no eigenvalues. Thus the combination of both
results implies the existence of resonances for Hf. The proof of this theorem is
given in Sect. 9.

Our main result is the following.
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Theorem 6.3. Let Et(f) be the resonances of Hf splitting from a given eigenvalue Eo

of Hf (see Theorem 6.2). Then their widths are bounded as

o / 0] (6.6)

for all f sufficiently small and α<min(μ/?, β — y).

The proof of this theorem is given in Sects. 7-13. The key ingredient in
estimating the resonances Et(f) is an exponential bound on the resonance states,
i.e. eigenfunctions of H(f φ). To derive the latter we compare H(f φ) in a region of
interest with an auxiliary self-adjoint operator H°f. In our approach we use an
Agmon-type method to derive first exponential bounds on eigenfunctions of H°f

and then use a perturbative argument to compare two sets of eigenfunctions and to
obtain exponential bounds on the resonance states.

7. Energy Inequalities

In this section we study the support KEf of the Stark instanton metric (3.8). First
we derive another representation for it and then we discuss its interpretation. We
begin with inequalities for the potential barriers.

Lemma 7.1. For xeΩaifnΩa,tf and f sufficiently small,

WaJx)^Wa.tf(x) if a-Dά. (7.1)

Proof Let B'φ0. The case B' = 0 is simpler. Recall that the ordering aja' means
that AC A' and BjB'. Hence

EA>EA. and VB{x)^VB{x). (7.2)

Next, since B\B'CAf, the particles in B\B' are at the distance 0{f~β) from the
origin. Hence

F.χB = F.χB. + O(fι-β). (7.3)

Thus (7.1) holds for / sufficiently small. •

Lemma 7.2 (energy inequalities). For f sufficiently small

Hf^WaJ{x) + O{p-V) onΩaJ. (7.4)

The inequality is understood in the sense of quadratic forms on C^(Qaf).

Proof Let first # = 0, i.e. we consider the left half of Bf:

{xeBf\F x^Nf~β}. (7.5)

Since in this domain the electric potential, — F x, is either O(fι~β), and therefore
negligible, or positive, the JV-body geometric analysis (see e.g. [CFKS]) yields

Hf^Σ-O(fβμ) on (7.5). (7.6)

Now we consider the other half of Bf:

{xeBf\F x^Nf~β} = {xeΈivN\F x^Nf~β}. (7.7)
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It is covered by Ωaf with B + φ. Consider cluster decompositions of the
Hamiltonian:

f + Ia9 (7.8)

where a is the cluster decomposition {A, B) and la is the intercluster interaction:

h= Σ ViMi-Xj)
ieAJeB

Using that on Ωaf (in the sense of quadratic forms)

= Σ ViMi-Xj) (7.9)
ieAJeB

, (7.10)

(7.11)

and HA > EA and
β (7.12)

and using that min(l -β,μβ) = \—β (for β defined in Sect. 3), we arrive at (7.4). Q

If Hf is localized around E, we obtain the energy inequality

E^Wa,f + O(fι-P) onΩ f l J. (7.13)

This shows that on KEf the energy conservation law breaks down.

Corollary 7.3 (combined energy inequality).

Hf^Wa{x),f{x)-Cfι-t onBf.

Proof. Let {/α?/} be a partition of unity associated with the covering {Ώα,/}:

ΣUa,f)2 = l o n ΰ / 5 (7.15)

and

s u p p l y CΩ f l > /. (7.16)

Besides, since the scale of Qaf is f~β we can arrange that

na,f = O(fnβ). (7.17)

Applying the I M S localization formula (see e.g. [ C F K S ] ) with this par t i t ion yields

\2 (7.18)

Applying Lemma 7.2 to each term in the sum and using estimates (7.1) and (7.17)
and the relation

min(l-j8,μj8,2j8) = l- j8

(for β defined in Sect. 3), we arrive at (7.14). •

8. Hamiltonian H°f

In this section we construct auxiliary Hamiltonians Hι

f with which we compare the
original Hamiltonian //(/, φ). The operator H°f is self-adjoint. It agrees //(/, φ) on
the interior region and on the energetically forbidden region excluding a small
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neighbourhood of the exterior boundary of the latter. Hence the contribution of
tunneling in both cases is almost the same. The Hamiltonian H'(f φ) agrees with
H(f φ) in the exterior of KEf and is used to control the behaviour of the latter
operator there.

We begin with introducing the cut-off functions. Let χf be smooth functions
such that 0^χfg>ί and

χψ = 0 outside Sf and = 1 inside Sf/2, (8.1)

and

χ{P = 0 outside Bf and = 1 in Bf/2. (8.2)

We introduce now the new total potentials

and

V}" = V,tf\ (8.4)

and the corresponding Hamiltonians

Hif = p 2 + V ( i ) . ( 8 > 5 )

We denote by if'(/, φ) the deformation of H'f by the vector field (5.9). Hence

HUΦ)=Tφ+V(f9φ)^\ (8.6)

where V(f φ) is the total deformed potential.

Proposition 8.1. The spectrum of H°f in the disc \z — E 0 | < / v consists of discrete

eigenvalues μt(f) obeying

μι(f)-E0 = O{f1'ε) (8.7)

for any ε>0. Moreover, the total multiplicity of the μf's is equal to that of Eo.

Proof First we study the continuous spectrum. Let W£f be defined in the same
way as WaJ but with F x replaced by F xχfK

Lemma 8.2. The following inequality holds on Bf in the sense of quadratic forms

H°f^E'-Cfι-β, (8.8)

provided f is sufficiently small

Proof We have exactly as in Corollary 7.3,

H°fZWZx),j(x)-Cf1-ι> (8.9)

on Bf (in the sense of quadratic forms). We have by the definition of χ°f,

Wa°{x)J(x)^E' onsuppχ?. (8.10)

On the other hand

W&)./(*) = tC) .oM on RΛsuppχ? (8.11)
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Thus, since Σ>E.

W*xhf(x)ZE'. (8.12)

Estimates (8.9) and (8.12) yield (8.8). •

Thus by the Weyl criterion and local compactness (see e.g. [CFKS, HisSig2])
Hf has no continuous spectrum in (— oo,£' — C/ 1 - / ? ) . Now the proof of the
proposition follows [Sim 3, HisSigl]: it uses the min-max principle and the
exponential bounds on eigenfunctions of H°f proven in Sect. 10 and the known
DHSV bounds on the eigenfunctions of H (see [CFKS]). •

9. Stability of Resonances

In this section we prove a stability result for eigenvalues of H(f, φ). It implies, in
particular the existence of resonances or/and bound states of Hf in a vicinity of
discrete eigenvalues of if. Recall, that a result of [S 3] rules out the latter possibility
(i.e. the bound states).

The stability estimate (Theorem 6.1) shows that annulus (6.1) is in the resolvent
sets of H(f, φ). Proposition 8.1 shows the same for H°f. Let Γ be a contour around
Eo lying in this annulus. Define the Riesz projections

γ π ' d z (9.1)

and

Po(f)=^H^-H°fΓ
1dz. (9.2)

They project onto the eigenspaces corresponding to the eigenvalues in the disc
\z — E0\<^fv. The main result of this section is the following

Theorem 9.1.

||P(/,0)-Po(/)ll->O as / - 0 . (9.3)

Proof. First, we introduce a smooth partition of unity {φt) normalized as

Σφt=ί (9.4)

and localized as follows:

φo = 0 outside Sfj2

= \ inside Sf/4. (9.5)

The localization of φι is corresponding. We also require that

Vnφ{ = O{fn*). (9.6)

By the definition

V}i)=Vi o n s u p p ^ . (9.7)
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In what follows we omit the arguments / and φ. Let R and Rt be the resolvents of H
and H\ respectively. We use the geometric resolvent equation (see [CFKS, S5]):

φiRi, (9.8)

where, due to (9.7),

Wi = lp2,φi] = 2p.Vφi-Aφi. (9.9)

Using this relation, estimate (9.6) and the stability estimate (6.4) with ξ=f~βVφb

we arrive at

WRth (9.10)

A simplified version of the proof of Theorem 6.1 produces the following result:

| |K 1(z)| |gC/- v for | z - E o l < / v . (9.11)

Moreover, the spectral theorem implies

\\R0(z)\\^Cf~v for z in (6.1). (9.12)

The last two estimates together with (9.8) and (9.10) yield

WR-ΣφiRiW^Cf-2* (9.13)

for z in (6.1). Moreover, due to (9.11), we have

§R1dz = 0. (9.14)
r

Thus integrating Eq. (9.8) over Γ, using (9.13) and (9.14) and using that \Γ\ = O(fv)
we arrive at

\\P-φ0P0\\^0. (9.15)

Finally, due to the exponential bounds proven in Sect. 10,

( I - Φ o ) n - O as /->0. (9.16)

The last two relations imply (9.3). •

Theorems 8.1 and 9.1 imply Theorem 6.2.

10. Exponential Bounds on Eigenfunctions of H^

In this section we derive exponential bounds on the eigenfunctions φUf of H°f

corresponding to the isolated eigenvalues μf(/) (splitting from Eo). This is the first
step in derivation of exponential bounds on the resonance states.

Recall, ρEf is the geodesic distance from x to the origin [in the Riemannian
metric (3.8)]. From now on we use notation (A)u = <M, AU). Whenever it does not
cause a confusion we omit the subindex u on the left-hand side.

Theorem 10.1. The eigenfunctions φitf of H°f corresponding to the eigenvalues

splitting from Eo verify the estimate

provided f is sufficiently small, n = 0,1.
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Proof. The method we use is, essentially due to Agmon [Ag] (see also [Sim 3]). The
key point of the Agmon method is a positivity estimate. In our case this is

f b f ' \ \ u \ \ l (10.2)

for some έ>>0 (independent of /), provided u is supported in Bf and, with

\rη(x)\2ύ(Waix)Jx)-E')+. (10.3)

Since EA = inϊHA we have for any λ > 0,

HA^EA + λ{HA-EA). (10.4)

Since p\ is //^-bounded there is c>0 such that

-c) (10.5)

for any λ>0. Replacing in the proof of Corollary 7.3 the inequality HA^EA by
(10.5) and retaining pi in the HB,/-term and then adopting the resulting proof to
the operator H°f, we obtain the following improvement of inequality (8.9): there is
c>0 such that for any λ>0,

^ - C / 1 ^ . (10.6)

Note that due to (5.6) and β>\—a,Sf lies inside of 5^ χ . Taking into account

the definition of χf] and considering separately the interior of S^y and the exterior

of $£,/, we obtain

W°xhf^E' + (Wa(xhf-E')+. (10.7)

The last three inequalities ( with λ= — / α ) combined with (8.7) produce, for /

sufficiently small, (10.2).
Now we show how positivity estimate (10.2)—(10.3) leads to exponential bound

(10.1). We drop the argument and subindex / for the rest of this proof. Let j be a
smooth non-negative function equal to 0 on Bc

2f and equal to 1 on Bc

f/2. Our task is
to prove that

μ ; [ j 2 , (10.8)

where u =jeηφi. Here η is assumed to be a smooth bounded function vanishing on
Bf. Note that φη = enφieD{H()\ We define the gauged Hamiltonian

Hη = eηH°e~η. (10.9)

It can be written as

Hη = H°~\Vη\2 + i{Vη p + p Vη). (10.10)

Since φt is an eigenfunction of H° we have that φη is an eigenfunction of Hη:

(IT>-μi)φη = 0.

Commuting Hn~μi through; and using this equation, we obtain
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Using representation (10.10) of Hη, we compute

Computing the commutator on the right-hand side and using that

η = 0 onsupp(Fj), (10.11)

we obtain

RQ{Hη-μίyu = (2\Vj\2yφί. (10.12)

Since, on the other hand,

-μiy9 (10.13)

(10.8) follows.
Combining estimates (10.2) and (10.8) for u=jeηφi yields

bf«i2 Wje'φiW ̂ 2 sup I Vj\\\Φi II (10.14)

Take now η(x) = ρE,f(x). Then, due to Proposition 3.1, it obeys (10.3). Moreover, a
simple estimate on geodesic lengths shows

On the other hand, j can be chosen so that Vj = O(fβ). The last three estimates
imply (10.1). •

11. Exponential Decay of Resonance States

Recall that in our terminology the resonance states are eigenfunctions of H(f </>),
φ>0, corresponding to isolated (complex) eigenvalues (E^f)). We obtain ex-
ponential bounds on these eigenfunctions in terms of the corresponding geodesic
length (instanton action). These bounds, imply, in particular, that outside of the
interior allowed region the resonance states decay exponentially as /->0. Our
method is patterned on that of [S2].

Let σEf be the distance between the origin and S^f in the geodesic metric

QE,Ax>y)- Let
dEtf(x) = πύn(ρEtf(x)9σEtf). (11.1)

Let ψi be an eigenfunction of H(f,φ) (resonance state) corresponding to an
eigenvalue Et(f) splitting from Eo. The main result of this section is

Theorem 11.1. Let Ω<g]f be WN for n = 0 and be the set {xeΈivN\ \F-x\^R} for
n>0. Then

f e2dj^f + Oif'β)\Vnψί\
2^CRf2β-a (11.2)

for any f sufficiently small, for any R>0, for n = 0,1,2 and with CR, independent

off-
Proof Our proof is based on comparing eigenfunctions of H(f φ) and H°f.
Henceforth we omit the arguments (subindexes) / and φ. Let Po and P be the
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eigenprojections of H° and H, respectively, on the spans of eigenspaces corre-
sponding to the eigenvalues splitting from Eo. Let {φk} and {ηk} be bases in R a n P 0

and RanP, respectively. The φks are chosen to be real eigenfunctions of H° with
the eigenvalues μk. Due to (9.3), for / sufficiently small, bases in RanP and R a n P 0

can be chosen so that

(fjuφjy^δij as /-+0. (11.3)

By stability estimate (6.4), one we can choose a contour ΓCρ(H)nρ(H°) of
order O(/v) encircling Eo and the eigenvalues of H splitting from Eo. Then

po = _ _ I RQdz and P= — : I Rdz,
2ni r 2πi r

where Ro and R are the resolvents of H° and //, respectively.
Let h be a smooth cut-off function defined as:0^/ι^l,/ι = l inside Sf/4 and = 0

outside Sf and obeying F"Λ = O(fnβ). We use the second resolvent equation

Rh = hR0-RWR0, (11.4)

where, since F° = F on supp/z,

W=[p2

9h].

Applying Eq. (11.4) to φk and integrating the result over Γ we obtain

Phφk = hφk + gk, (11.5)

where

By the definition, the geodesic distance from 0 to Sf,

QEo,ASf) = °Eo,f + 0(Γβ). (11.7)

Using that \μk — E0\ = o(\Γ\), using stability estimate (6.4), using the relation

W=-2Vh-V-Ah,

and using exponential bounds (10.1) on φk and Vφk and inequalities oc<v<β,WQ
obtain

). (11.8)

Next, since H(λ,θ)* = H(λ,θ) (complex conjugation), we have that

Thus we can rewrite (11.5) as

(H.9)

Due to (11.3) and the exponential bound on (1 — h)φk which follows from (10.1) and
the localization of 1 — h we conclude that that matrix [<^ , hφk}~] is invertible for /
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sufficiently small and its inverse bounded, say, by 2. Then equations (11.8)—(11.9)
and (10.1) yield bound (11.2) for n = 0 (remember that \pkERanP).

Next, using the eigen-equation we derive the exponential bounds on ψt. In the
rest of the proof we omit all subindices and denote by χ a smooth function
vanishing outside a small neighbourhood of Ωil) and = 1 on Ω{1\ We show that

\\edχAψ\\^const\\edψ\\, (11.10)

where the constant is independent of / Due to the eigen-equation on ψ and the
definition of χ

\\έdχAψ\\^C(\\χέdVψ\\ + \\έdψ\\)9 (11.11)

where V is the (deformed) total potential for / = 0 . Next we use the infinitesimal
zl-boundedness of V (the Kato inequality, see [CFKS]):

\\χedVψ\\^ε\\A(χedψ)\\+Cε\\edψ\\ (11.12)

valid for any ε>0. Now, we claim that

Vnd is bounded on supp χ for n = 1,2. (11.13)

Indeed, this follows from the fact that the geodesies avoid the incidence planes for
the subsystems B (i.e. where Xi = Xj for some iJeB) ("the hiker looking for the
fastest pass would not climb over the pick of the mountain"). Using (11.13), and
using the Schwarz inequality integrating by parts, we obtain

\\χedVψ\\^a\\χedAψ\\+Ca\\edψ\\. (11.14)

Taking into account (11.13) and (11.14) we arrive at

\\χedVψ\\^ε\\χedAψ\\+CB\\edψ\\. (11.15)

Combining this with (11.11), we obtain (11.10). Inequalities (11.2) for n = 0, (11.10)
and (11.14) yield (11.2) for n = 0,l,2. •

12. Width of Resonances. Proof of Theorem 6.3

Let ψk be the eigenfunctions corresponding to the eigenvalues Ek(f). Let Ωf be the
interior of Sf/2 and observe that, due to the fact that the deformation begins
outside of Ωf we have

H(f,φ) = Hf (real) on Ωf. (12.1)

Consider the eigenequation

H(f,φ)ψk = Ek(f)ψk. (12.2)

Multiplying it by ψk and integrating over Ωf we obtain

SψkHfΨk = Ek(f)ϊ\ψk\
2. (12.3)

Ωf Ωf

Applying Green's theorem to the kinetic energy term, we obtain

Uf) ί \ψk\
2= ί \Vψk\

2- ί ψ k ^ + J Vf\ψk\
2, (12.4)

Ωf Ωf dΩf On Ωf
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where n is the normal vector to the surface dΩf. Taking the imaginary part of this
equation we arrive at

I m J " ' ¥
lmEk(f)= γm2

tin . (12.5)

Lemma 12.1.

J | % F % | ^ C / 2 " - a e - 2 ^ + O ( / ^>. (12.6)
dΩf

Proof. We omit the subindices Eo and / at σ and d. Denote

g = e2dVψkψk. (12.7)

Then, due to the definition of d we have

I \ΨkVΨk\^e-2° f |g|. (12.8)
0β/ 0β/

Applying the Schwarz inequality, we obtain

J | g | ^ Γ j e2d\Vψk\
2f2\ I e2d\ψk\

2Ύ*2 (12.9)

Let Wf be the layer between Sf and Sy/fl, 2
β<aβ<2. Let 77 be a smooth function

supported in Wf and = 1 on dΩf. Since δΩy is a regular surface of the
codimension 1, applying a Sobolev type embedding theorem to edηu, one obtains

J e2d\u\2^C( I e2d\u\2+ J \Vedu\2\ (12.10)

where C is a numerical constant. Applying this inequality to ψk and Vψk, using the
exponential bounds on Vnψk with n ^ 2 [see Eq. (11.2)], using WfcΩ(^f for R
sufficiently large and (11.13), we obtain

ί \g\s
dΩf

Next, due to (11.2), for / sufficiently small,

I
The last three relations imply (6.6). Π

In the method above we have followed [S 2] (see [Av, HS] for earlier versions).

13. Stability Estimate

In this section we prove Theorem 6.1 which gives a bound on the resolvent of
H(f, φ) which plays a crucial role in the stability result (Sect. 9). This is technically
the most demanding section of this paper. One should consult Sect. 6 for notation.
We estimate H(f, φ) separately on different regions of the configuration space and
then patch the obtained estimates together.
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Proposition 13.1. Let ueC^ and be supported in the exterior of S2/> Then

^Wl~y\\u\\2. (13.1)

Proof. Recall that χf=\ on the exterior of S 2 / . We introduce the domains

ΛUf={xeWCΉ\xi e^Γβ} (13.2)

Clearly Λitf, i=l,...,N, cover the exterior of S2f. Let {jitf} be an associated
partition of unity:

Σjftf=ί on the exterior of S 2 / , (13.3)

C ί̂f,/, (13.4)

Cfnβ. (13.5)

A variant of the IMS localization formula with {ji f} (see e.g. [CFKS]) and
Eq. (13.5) yield

Im (H (/, φ)\^Σ Im (H(f φ)\ + Cf2^\\u\\\ (13.6)

where Uι=jifu.
Next, we estimate each term under the sum on the right-hand side of (13.6). We

begin with the kmetic energy term (recall χf = 1 now)

Tφ = Σpftφ on the exterior of S 2 / , (13.7)

where p]φ is the deformation of pf by the vector field vte. Let

Since
Ό(n)

we have due to Lemma A.I given in the appendix that

φZφqM-Cf2", (13.9)

where q^e- pt.
Now we proceed to the potentials:

Vj, f(φ) = Vj(Xj + iφvj e) -f(xj - e + ievj).

Using the mean value theorem, we write this as

Vj,AΦ)=Vj.f-iΦMί-Ij), (13.10)

where (with O^φ^φ)

dV-
I^f-'^ixj + ίφvje). (13.11)

Since

on supp^ , (13.2)

we have due to condition (III) that

εi) o n s u p p ^ , (13.13)
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with εί=(ί+μ)β-l>0. Hence

-lmVhf(ψ)^fφvj(l-Cfε^0. (13.14)

Next, we consider Vi}{φ). Write

ViJ{φ)=Vijiζ9u)9 (13.15)

where u is the projection of Xi~Xj onto e1 and

ζ = (xi-xj) e + iφ(vi~-vj). (13.16)

Compute

Reζ = xi e-xj e and lmζ = φ(vi~vj). (13.17)

Since w(s) is monotonically non-decreasing, we have

ReCImC^O. (13.18)

Hence, due to condition (IV) on VVp

Im Vijiφ)^. (13.19)

Now combining Eqs. (13.9), (13.14), and (13.19) together with (5.11) we obtain
for ueC%(ΛjJ,

- Im (H (/, φ)\ ̂  Σ(φ(qiv'iqi)u + W<Vi>u) -Cf2β\\u\\2. (13.20)

Since ι ^ 0 for ally and υ^f~y on Λup we arrive at (13.1). •

Now we proceed to the next region.

Proposition 13.2. Let UECQ be supported in KE,f. Then there is δi>0 depending
only on the potentials such that

(13.21)

for all u's, all z in the disc \z\ <fv and for all f sufficiently small.

Proof. The proposition follows from representation (4.1) of KE> j , inequality α < ε

[see (6.3)] and Lemma 13.3 below taken with 2 = —-/α. •
2c

Lemma 13.3. There is c>0 depending only on the potentials such that

R^H(fφ))^(Waix^f(x)) + λ\\pu\\2-(λc + Cfε)\\u\\2 (13.22)

for any 0^/1^1, any ueCg{Bf) and any f sufficiently small.

Proof It follows from the definition of Ωaf that on Ωaf

Ia(Φ) = O(Γβ). (13.23)

Furthermore, Eq. (13.10) and (13.13) imply that

. (13.24)
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Next, we show that

Vij(φ)=Vij + φfβ-yθi(l), (13.25)

where Ox(l) is a J-bounded operator with the relative bound 0, uniformly in φ and
/ Indeed, by the mean-value theorem,

dV
VtjiΦ) = Vij + iφf - %j -£ (xtj + iφvtje), (13.26)

for some O^φ^φ, where we use notation:

xij = xi-xj and vij = vi-Vj. (13.27)

Applying the mean-value theorem again yields:

efV). (13.28)

Using condition (II) on Vi} we arrive at the conclusion (13.25).
Turn to the kinetic energy term. Lemma A.I of Appendix implies that

φ (13.29)

for φ sufficiently small and with C independent of φ and fpl= ΣPΪ-
B

Collecting estimates (10.5), (13.23)-(13.25), (13.29) and using decomposition
formula (7.8), we obtain

Re(H(f,φ))^(Wa,f)+λ\\pu\\2-(λc + CΓ)\\u\\2 (13.30)

for any ueC£ supported in Ωaf.
Now we patch together the estimates given in Eq. (13.30). To this end we use a

partition of unity {jaff} introduced in the proof of Corollary 7.3. Applying to
H(f,φ) the IMS localization formula with this partition yields:

Re <//(/ φ)}u^ Σ Re <if(/9φ)>β -Cf2β || u | | 2 , (13.31)

where the subindex a stands for the mean with the function ua =jatfu. Taking into

account (7.17) and applying inequalities (13.30) yields

,f)a. (13.32)

Using again the IMS localization formula but this time for p2 and using (3.7) and
(7.1), we arrive at (13.22). •

Now we put together the local estimates on H(/, φ) obtained above. Let {χji,
be a partition of unity normalized as

Σχf = l, (13.33)

and having the properties

χ t is supported in the exterior of S2f, (13.34)

χ2 is supported on KE.%f9 (13.35)

χ3 is supported in Bc

f/2, (13.36)



310 I. M. Sigal

and

rXi = O(fnβ). (13.37)

We proceed to the estimates. Using that

Σχf^l, (13.38)

we obtain by sticking the partition inside of the norm

\\{H(f,φ)-z)u\\2^Σ\\χf{H(f9φ)-z)u\\2. (13.39)

Commuting χt to the right we continue

\\(H(f,φ)-z)u\\2^ Σ \\χi(H(fiφ)-z)χiu\\2-R, (13.40)
i = l

where

Rearranging the commutator on the right-hand side, we obtain

R^λ2 Σ \\(χ{[χbτΦl + [χbτΦiχM2+ί\\lxt,[χbτφJ]u\\2 (13.42)

ί = 1

By (13.37) and (5.12),

ΣWίxΛx.Tφ^uW^Cf^WuW2. (13.43)

By (13.33),

Q. (13.44)φ φ
i= 1

Thus we can exclude the first summand in the first term on the left-hand side of
(13.42). This leads to

R^2 ijlxbT^Xiu\\2 + Cf^\\u\\2. (13.45)

Computing the commutator [χi5 Tφ] and using (13.37), we obtain

Σ \2. (13.46)
i = 2

Now we estimate the first sum on the right-hand side of (13.40). The Schwarz
inequality yields

\\χ1(H(f,φ)-z)χ1u\\\\u\\^-lm<H(f,φ)-z)χιU. (13.47)

Using inequality (13.1) and the condition

I m z ^ - / V and v > l - y , (13.48)

we obtain

\\χ1(H(f,φ)-z)χxu\\\\u\\^iΦf1-y\\χ1u\\2. (13.49)
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Furthermore using the inequality

x2^2axy-a2y2 (13.50)

valid for any α>0, with α = / 2 v ~ ( 1 ~ y ) , we conclude

\\χx{H{fA)-^lM\2^W2v\\lM2-f2σ\\u\\\ (13.51)

where

σ = 2v-( l-y)>v. (13.52)

Next, we apply the Schwarz inequality again

\\χ2(H(f,ψ)--z)χ2u\\\\u\\^RQ(H(f,φ)-zyχ2U.

Using inequalities (13.21) and (13.50) with a=f2v~a and using that 2v —α>2v
— (1 — y) = σ, we arrive at

\\χ2(H(f,φ)-z)χ2u\\2^δJ2v\\χ2u\\2-f2σ\\u\\2. (13.53)

Finally, commuting χ3 to the right and using (13.37) and that H(f, φ) = H + O(f) on
suppχ3, we get

^)Zit/|| ^C/^||jpZ3t.|| -C/2^||Z3^il - (13.54)

Since for z in the annulus (6.1), the distance to the spectrum of H is ^ i / v , the
spectral theorem yields

\\7AH(f,φ)-z)χ3u\\^iδ2r\\χ2u\\2~Cfβ\\pχ3u\\ (13.55)

for / sufficiently small. Here we have used that 2β>σ. Next, the Schwarz
inequality gives

\\PX3u\\2S\\u\\h3p
2x3u\\. (13.56)

Commuting χ3 on the right-hand side to the right, evaluating a simple commutator
and using (13.37), we get

\\pχ3u\\2^\\u\\ (\\p2χ2u\\ +fβ\\pχ3u\\)+f2β\\u\\2. (13.57)

This inequality with / sufficiently small implies that for any ε > 0,

(13.58)

Combining this with (13.55) and using that β>v we arrive at the estimate

δ2εΓ\\uh (13.59)

provided / is sufficiently small. Collecting estimates (13.40), (13.46), (13.51), (13.53),
(13.59), using that σ>v and taking ε appropriately small:

l/2

w e a r r i v e a t (6.4) w i t h ζS[ Σ χ2 ) , p r o v i d e d / is suf f ic ient ly s m a l l . •
= 2
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Appendix

In this appendix we compute explicitly the distorted kinetic energy term. Since we
are interested in the exterior ofS2f we can set χf = 1 in (5.9). Thus due to the form of
the vector field v the computation reduces to the one-dimensional case. Namely, on
the exterior of S2f

{ { \ i { ) ) ι i )

where pj- is the projection of p ; onto the plane e1 and u(s) = φw(s) [see (13.7) for the
relation between Tφ and pLφ and for the definition of p i > ψ ]. Let

ιV, (A.I)

where p = —i-r-, u = u(x), and x e R 1 . A simple computation yields
ox

Pu=P(^ + iu)'2p + M'(1 + iu)~ 3p. (A.2)

Taking the real and imaginary parts of this expression, we obtain further

V
and

Lemma A.l.

where

and

where

l = — 2pup — Re u'u
3 - ι

(l+M2

, 1 - 3 M 2

(l+M2)3

gi = 4 (l+M
2 ) 6

,2 l/J-3" 2

UU-2{U(ΐ^uψ

\( , ί+3u2Y

2

3 - M 2

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

Proo/ We demonstrate only the first estimate. We have

3-M2 3-M2

(l+M 2 ) 3

1

2a

3-M2

(l+M2

(A.9)

which implies estimate (A.5). •
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