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Abstract. We consider the interplay of infinite-dimensional Lie algebras of
Virasoro type and moduli spaces of curves, suggested by string theory. We will
see that the infinitesimal geometry of determinant bundles is governed by
Virasoro symmetries. The Mumford forms are just invariants of these
symmetries. The representations of Virasoro algebra define (twisted)
^-modules on moduli spaces; these ^-modules are equations on correlators in
conformal field theory.

Introduction

0.1. Let X be a smooth (complex, or algebraic) variety, and E a vector bundle on
X. The Atiyah (or current) algebra j/£ of E is the algebra of infinitesimal
symmetries of £ which is the extension of the tangent sheaf 2ΓX by EndE. Now let
π: X-+S be a proper smooth map with 1-dimensional fibers (so X is a family of
curves); then, according to Grothendieck, we have a determinant line bundle
λE = άQiRn^.E with fibers

First problem: find J/AE. It appears that this may be done in a very simple way,
using s&E only. Namely, we construct (purely locally) a canonical differential
graded Lie superalgebra trj/£ on X such that ff(tr^£)-0 for ίφO, -2, #0(trj/£)
= π~1^s, H~2(ir^E) = <C (in the classical topology of X). Then
π(trs/E): = R°π^ tr,s/£ is the extension of 3~s by Gs- and it is canonically isomorphic
to stfλE. This subject is treated in Sect. 2. In fact, π(trj/£) is determined by a certain
quotient of tr^/£: this is how the Virasoro algebra, the canonical central extension
of <$/& arises.

0.2. In Sect. 3 we show that this construction gives the differential equations for
Mumford discriminant forms. More precisely, the natural action of vector fields
(Lie derivative) on the sheaf ωj of relative j-differentials on X extends to the
isomorphism between certain canonical subalgebras of <s/ωJ and jtfΘχ. This
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isomorphism has "central charge" c/ = 6/2 —6/+1, thus it defines the canonical
integrable connection on λj/λcj (here λj = λωJ); the Mumford forms μ7 are just the
horizontal sections. This local definition of μ7 as opposed to the usual global one is
quite convenient for calculations.

0.3. Section 4 is devoted to the Virasoro action on moduli. Consider the moduli
space Jl of triples (X, x, ί), where X is a (compact smooth) curve, x 6 X a point, and
t a (formal) parameter at x. A version of Kodaira-Spencer construction shows that
the Lie algebra JS? = (C((ί))δt of formal vector fields acts naturally on Jl, so that
<£?+ =C[[f]]fdί changes the parameter t leaving (X, x) fixed, dt moves x, and the
fields with poles may change the complex structure on X. In fact, this action is
transitive (i.e. the Lie algebra is mapped surjectively onto the tangent space to any
triple) with the stabilizer of (X, x, f) being equal to the image of the expansion at x
map 3~χ(X\{x})-+&. This "Virasoro uniformisation" complements in some
strange way the Teichmϋller one.

A variant: we may consider n different points x 1 ; . . . ,x n with parameters
ί l 5 . . . , tn at them to get the action of 5£n on the corresponding moduli spaces. We
may also add to our considerations a bundle (together with trivialisations at x;).
Now the result of Sect. 2 implies that this ^-action on the moduli space lifts
canonically to the ^-action on the determinant bundle with central charge 1.

This construction was also (simultaneously) found by Kontsevich [15]; the
case of deformation of a vector bundle (with the curve fixed) was considered
extensively in the soliton theory [19]. Note that the central charge of Virasoro
action on λj/λy vanishes (cancellation of anomalies), and μ; are just the Virasoro
invariant sections (hence the Polyakov measure is completely determined by its
invariance properties: first by invariance with respect to the conformal group, and
then by Virasoro invariance). See also [25-28] for closely related subjects.

More generally, any ^-module defines a (twisted) ^-module on Jί\ this way
one gets the differential equations for correlators [6] from the equations for
singular vectors in a Verma module (this was explained to us by V. Drinfeld). In the
degenerate case these ^-modules are, as Drinfeld has shown, just the bundles with
(twisted) integrable connections; it would be very interesting to find the
corresponding (projective) monodromy representations of the Teichmϋller group
explicitly. Compare with ideas of Manin [16] that were a starting point for our
paper.

0.5. In Sect. 5 we describe how a pair of C°°-connections, one on E, another on
ΩχfS, determine a connection on the determinant bundle with the curvature
calculated by the Riemann-Roch-Grothendieck formula.

0.6. In Sect. 6 we describe the algebras trj/£ for a bundle equipped with a
connection having logarithmic singularities. In fact, we prove a more general
assertion that describes the functoriality of these algebras with respect to
morphisms of Atiyah algebras "with logarithmic singularities." As a consequence
we will see how the determinant sheaves λj behave with respect to ramified
coverings.

0.7. Finally, in the Appendix we prove a local Riemann-Roch theorem for Atiyah
algebras inspired by Deligne's paper [11]. This result generalizes the "cancellation
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of anomalies" isomorphism of Sect. 3. It seems that, by analogy with Sect. 6, the
appropriate generalization of Sect. 5 should describe the functoriality of the
RR-isomorphism A 3.3 with respect to <C°°-morphisms of Atiyah algebras.

Note in conclusion that it would be very natural to "integrate" the results of the
present paper and construct some objects of Lie group type on X that after
integrating along the fibers should give determinant bundles themselves and not
only their algebras of infinitesimal symmetries. The corresponding local Riemann-
Roch isomorphism should give after integrating the Deligne isomorphism [11],
cf. 2.7, 6.3.7.

1. Ω-Extensions of Atiyah Algebras

ϊ.ί. Atiyah Algebras - a Dictionary

From now on X will be a smooth variety, ̂ x the tangent bundle.
1.1.1. Let E be a vector bundle on X. Put 9E = Diff(E, E) = Ό9b @i = @Eί is the set
of differential operators of degree rgί; we have 2^2)^^ = EndE®Sl(^~x). Define
the Atiyah algebra of E setting j/E = {de@ι :ε(d):= symbι(d)e£~x = idE(8)£~x

C EndE®^} we have ®0 = EndEc^EC@1,^E/EndE^> *ΓX. Clearly j/£ is just
the Lie algebra of infinitesimal symmetries of (X,E): its elements are pairs (τ,τ),
where τ e ̂ x is a vector field, and τ is the action of τ on E [we have (τ, τ) = (ε(3), δ)].

This basic example motivates the following general

1.1.2. Definition. An Atiyah algebra on X consists of
- a sheaf of associative $x-algebras &'•>
- a Lie algebra extension 0->RLie-^ j/ -̂  3ΓX-^0 (here KLie is R endowed with

the bracket [α, b~\ = ab — ba, and 2ΓX with the usual Lie bracket);
- a left @x-modu\Q structure on j/ compatible with the (9x-module structures

on R and 2ΓX.
For these structures the following identities should hold: [α, ab'] = [α, a]b

+ α[α,fc] for any αej/ and either a,beR or a<E@x, b<E^/; [α,/] = ε(α)(/) for
feΦxCR.

We will call Atiyah algebras with given R simply #-Atiyah algebras; hence s#E

is End E- Atiyah algebra. Note that an Atiyah algebra has also natural right
^-module structure given by the formula α/: = /α + ε(α) (/). The Atiyah algebras
form a category in an obvious way (so we have a forgetting functor (jR, s#)~^>R).
1.1.3. The following definition and lemma, though not of much use in what
follows, help one to feel at ease with 1.1.2.

Definition. An algebra of differential operators, do-algebra for short, is a sheaf of
associative rings @ on X together with an increasing filtration ® 0 C^/C ...,^
^u^j, and a ring morphism ΘX-

L>20 such that:
(i) i maps &x into the center of ^0(i.e. <3)0 is d^-algebra).

(ii) For aeQsl and fe&x one has ε(α)(/): = [α,ϊ(/)]e^OJ and this map
ε:@l/@0-+Όeτ(Θx,@0) = &'x®@0 is an isomorphism.

(iii) ε defines an isomorphism Gr:£^S'(^)(x)^0.
For an .R-Atiyah algebra j/ let *3)^ be the quotient of the I(j/), the universal

envelopping algebra of j/, by the relations a-b = ab, where either a,b£R,orae Θx,
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b £ s$ [here the left-hand side is the product in U(«s/), the right-hand side is either
the product in R, or comes from the &x-modu\Q structure on stf\ and /U(^) = /Λ.
Clearly 2^ is a do-algebra with 3)0 = R, @l = stf - jR, 3) t = stf - 2i _ t. Conversely, if ®
is a do-algebra, then sέ ' 2 ^3~x x ^ [the morphism ^Γx-^^l/^0 comes from (iii)]

Q>IS> o
is the ^0-Atiyah algebra.

Clearly, both the Atiyah algebras and the do-algebras form categories,
£# ~ -+@}tf, £^~ -»e£/^ are functors between them, and we have

Lemma. These functors are inverse to each other.

So the Atiyah algebras are the same as the do-algebras. We have &E = @^E.
1.1.4. Let si be an JR- Atiyah algebra.

Definition. A connection V on s$ is an (^-linear maP V'-^x-*^ such that
εF = id^χ. A curvature cveΩ2®R is defined by the formula c p ( τ 1 Λ τ 2 )

&χ

= [P(τι)> P(τ2)] - P([τiίτ2]) The connection V is integrable if cp^0.
The connections of j/ form a Hom0x(^,#) = Ω^®jR-torsor
To give an integrable connection is the same as to give a morphism of Atiyah

algebras £/&x-*&/ [V corresponds to a morphism τ + /ι—» 7(τ) + f,τe^X9 fεOx~\
Or it is the same as to give a ^-action on R together with the isomorphism
j/ ~ £ΓX ex R ( = the semi-direct product with respect to this action).

A connection V defines the ^-derivative (that we will also denote V] of the
graded algebra Ω' ® R, F(ω®r) = d(ω)®r + ω F(r), F(r)(τ) = [F(τ),r], where

ωeΩ', ΓG.R, τe^, P^eΩ1®^. We have P2(*)-Cp *.
A connection on jtfE is the same as a usual connection on E.

1.1.5. Standard Operations on Atiyah Algebras. These are the following ones.

(i) Push forward φ^. Let j/ be an .R-Atiyah algebra, and R' an d^-algebra.
Consider a pair φ = (φ^,φR) of ίP^-linear Lie algebra maps
φR:RLίe-^R'Lie. Assume that ad^φR = φ^\R and φ^(d) (/) = ε(α) (/) for
fE&x-^R'. Define the .R'-Atiyah algebra φ^(^) to be the semi-direct product
R' x s$ modulo the relations (φR(a\ 0) = (0, α), a e R. One has canonical d/x-linear
Lie algebras map sέ-^φ^ .

(ii) Tfte product. If j/f are ΛΓAtiyah algebras we get an Rγ x ^-Atiyah
algebra j/ t x s$ '2.

Fx

(iii) T/ie opposite algebra for an .R-Atiyah algebra j/ is the R°-Atiyah algebra
j3/° such that ̂ o = (^tfi/)°; here K0, (^^)° is JR,^ with reversed multiplication.
Explicitly, j/° = s$ as a sheaf, [ , ] 0̂ = — [ ]̂ , ε^o = — ε^, and the left ίP
structure for j/° is the right one for j/.

(iv) Let j/j be KΓAtiyah algebras. Define the Rγ ® K2-algebra
&x

to be « β / X « β / » where

Lemma. Let Et be vector bundles. We have canonical isomorphisms
— <^Ei®E2 (it corresponds to the ̂ l x ^\-action on £1®E2

given by Leibnitz rule (d^
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dl~sίEo, where E°:= Hom(£,ω^), ωx: = detΩi (for eeE, e°e£°,
°E = ̂ E one has (de°}(e) = e^δe}-Ueε,(δ)(e°(e))).

(v) X-functoriality. Let j/ be an Λ- Atiyah algebra on X. If /: Y-+X is a
morphism of smooth varieties, then we get f*(R) = f~ 1R (x) &γ- Atiyah algebra

/ - ' t f x

x /*CO. If π:X-^-Z is etale finite map, then
*^x

is π^jRJ-Atiyah algebra.

1.1.6. An important class of Atiyah algebras are (P^- Atiyah algebras. They form a
groupoid which is a "(C- vector space in categories": the tensor product gives the
sum of objects, and the multiplication by λ e C is the push-forward by (9X

 λld > Θx.
The corresponding (C-vector space of isomorphism classes of objects is
H2(X,σ^1Ωx) = H2(X,Q-^Ω1

x-*Ω2

x-*Ω%); this space coincides with HζR(X) when
X is affine and with F1H^(X] when X is proper. Here is a Cech construction of the
characteristic class c(^)EH2(X,a>^x) of an Θx- Atiyah algebra ,j/: for an
open covering 17 f choose some connections V{ on sέ\v.\ then c(j2/) = (c^, P^— P}).
The locally trivial (9X- Atiyah algebras are just twisted differential operator rings
from [3]. Note that the functor Li— KQ/L, where L is an invertible sheaf, is a mor-
phism of "groups in categories" ( = Picard categories); on the level of isomorphism
classes of objects this is just c^ in de Rham cohomology.

1.1.7. Traces and Determinants. Let ̂  be an Λ-Atiyah algebra. A trace on j/ is an
(^-linear maP Tr:Λ-»$x such that Tr([ίz,r]) = ε(α)(Trr) for aεstf.reR. Accord-
ing to 1.1.5(i) we get an (^-Atiyah algebra Ύτ^(sί).

Example. Let E be a vector bundle. The ordinary trace tr: EndE-+(9x is a trace on
j3/£. We have a canonical isomorphism

that corresponds to the action of s$ E on detE given by the formula d(e1 Λ . . . Λ ej

— Σ βl Λ Λ ^(βi) Λ Λ en

1.2. π-Algebras, Integration Over the Fiber

From now on π: X->S will be a smooth morphism of relative dimension 1 between
smooth varieties (hence X is a family of curves parametrised by S). We have a
canonical exact sequence 0->^x-/s-^e^"A:-^L>π*e^-^0, where ^/s is the relative
tangent bundle. The sheaf π*&'s = &x®π~1^~s contains the subsheaf π"1^. Put
,rπ: - (dπ) ~ 1 (π ~ 1 &~s) C Fx clearly [̂ π, «Tπ] C ̂ π, π "1 C?s ^π C ̂ π, and we have the
exact sequence O-^^s-^^-^π"1^-^ of Lie algebras. Denote by « "̂π* the
differential graded (dg-for short) Lie superalgebra with SΓ°: = &~π, 3~~1: = &~χ{S,
^ = 0 for iΦO, — 1, the differential 5r

π~
1->^Γ

π° is a canonical embedding, the
bracket on ^~π° is the Lie one. Our ZΓ^ has also a π~ 1 (^s-module structure together
with the morphism ε ^'-^π"1^ ( = H°(^)9 ε = dπ) of π"1^^ modules compati-
ble with brackets such that [α,/fc]=ε(α)(/)fc + /[fl,ft] for fεπ~l(9s, a,bε^

Consider the relative de Rham complex Ωx/s = (&x-+ω), ω:=Ωx/s. It is
naturally a dg — ̂ '-module: the action of ?Γ'n is the Lie derivative on 5~π°, and the
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obvious convolution 3~~1 (x) ω = ̂ x/s (x) Ωx/s -*@xon ?Γ~1. Also, Ωx/s is a complex
of π~ ̂ s-modules, and we have the obvious compatibility between π~l@s and $~ή
actions.

1.2.1. Definition, a) An $s-Lie algebra jtf' on X is a dg-Lie superalgebra together
with a π~ ̂ -module structure and a morphism ε^ :^'^^~π, compatible with the
above structures such that [fl,/fe]=ε^ (α)(/)2> +/[#, fc], where ε^ : — ε°ε,^ .

b) A π-algebra j/' is an 0s-Lie algebra together with a 3 step filtration 0 = j/'_ 3

C«s/'_ 2C .β/'-i C^Q = ̂ ' and an isomorphism j/'_2^i2x/s [2] of $s-complexes
such that

(i) D^ij^j]C^i+yj ^ s-^/jC^/j.
(ii) j/'_!/«$/'_ 2 is acyclic.

(iii) ε^: j/'-^'/j^L^^.'.
(iv) The ad action of J/'/J^L! on j/'_2 coincides with the above action of ̂

on Ω j/s.
We will say that <$/' is an Ω-extension of the 0s-Lie algebra j/'/t$/'_2.
Clearly the π-algebras form a category (the morphisms induce the

identity maps on ^ and Ω^/s). For two π-algebras s$\ ,9$'' put
s/'x^'': = s/'^πX£/f'/(ω,—ω)E(Ωx/sxΩx/s) [2]: this is the Ω-extension of

cζ/'/j/'_2

 x £0'/£#'-2 For a fixed (^s-Lie algebra '̂ consider the category of

Ώ-extensions of 3$'. This is a groupoid which is a (C-vector space in categories with
the sum j/' + j/'': — s$' x j/''/(ω, — ω), ωeΏxls [2] (this is a sub π-algebra of

m
s$' x £#''} and multiplication by Ae(C defined as /I j/' = push forward of j/' by

If S7 -̂ -> 5 is a morphism of smooth varieties, we have an obvious base change
functors φ* from $s-Lie algebras, or π-algebras, on X, to the ones on X x S\
compatible with the above operations.
1.2.2. We will use π-algebras that are related to Atiyah algebras. So let ̂  be an R-
Atiyah algebra on X. Put ^/s: = ε^1(e^/s)Ceβ/π: = ε^1(ί^E)CJ^. Clearly j/π is a
Lie subalgebra in j/, j//s an ideal in j/π, j<//s(j/π) an Θx~ (respectively π~^Θ8]
submodule of s#. Denote by j/π an 0<j-Lie algebra with j/°: = j/π, ̂ ~1: = j//s,
j/' = 0 for j Φ 0, — 1, the differential j/~ 1 -> j/° is inclusion j//s-^ j/π, the bracket
comes from j/, and the projection ε^n: stf'π-*?Γπ is ε^. Thus ε^n is surjective and
Kerε^π is Cone(id^).

Definition. An Ω-extension *j/' of (j/5 K), is an Ω-extension of j</π together with
an ^-module structure on *j/-1 such that

- this $x-action is compatible with the actions on jtf ~1 = j//s and ω.
- the component [ , ] _ ι , _ ι : *j/~1® *^"1->*J/~2 = ̂ X is a differential

operator along the fibers (i.e. for any a ε * ̂  ~1 the map ad f l: * jtf ~l -> Ox is a d.o.).

Remark. [,]-ι,-ι is completely determined by [,]0 _ ! : *j
(since any two [5]-ι,-ι's differ by a map *j/~1(χ) *^/"1-^π~1d?s

= Ker(d:0Λ—>ω) which has to be zero being a differential operator).
The Ω-extensions of Atiyah algebras form a category; we have a forgetting

functor on it with values in π-algebras. The standard operations X, +,/Γ on
π-algebras extend literally to the present situation.
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1.2.3. Assume that π is proper. Let si' be a π-algebra. Then R°π^ applied to
Ω'XjS\2~] ->£/' ' -*2Γή > together with the trace isomorphism R0n^Qx/s[^2]^(9S7 gives
the exact sequence

The bracket and π~ -^-action on si' define the Lie algebra and $s-module
structure on RQπ^'. It is easy to see that they form an $s-Atiyah algebra
structure on RQπ^sί'\ denote this algebra by π(si'\

Remark. If the fibers of π are not connected, then R°π^' is a π^
algebra, and π(j/): = tΐR°π^, where tr:π^.(9x-^(Ds is the trace map.

This way we get the "integration along the fibers" functor from π-algebras to
$s-Atiyah algebras. It is compatible with base change, and we have π(si' x <$/'')

13. Central Extensions of Atiyah Algebras

Here we will work in Zariski topology, at least fiberwise.
1.3.1. Let si' be any dg-Lie superalgebra. Put F(j/'): = j/"1/^"2- Define the
new bracket [ ~\v on F(j/') by the formula [α,/?]κ: = [dα,/Γ|. Let J denote the
image of the differential d\si~γ-+si®\ this is a subalgebra of j/°. We have

Lemma. [,]F is a Lie bracket; V (.$/') with [,]F is a central extension of J by
-

1.3.1. Let j/' be any dg-Lie superalgebra. Put V(si'\. = ̂ /~l/d^~2. Define the
construction gives us a central extension of si js by the π-1^s-sheaf
#e = Jtf^s : = ω/d(Θx\ In the case S = point we have JT(L7) - H^R(U) for a (Zariski)
open j : U c> AT, and there is a canonical exact sequence

where res(v) = (resXi(v)), Σ(al9 . ..,αn) = α1 4- ... +αn, and {x l 9 . ..,xn}: = AΓ\[7.
Clearly, F(*tί3/')->j/π is a dg-Lie superalgebra quotient of *^/', and π(*j/')

^K°π,(F(*^ )->^π)
The rest of this subsection will be used only in Appendix, A 5.

1.3.3.1. Definition. A π-algebra si' on X is an ^s-Lie algebra together with
three step filtration 0 = j/13 C ̂ 12 C ̂ 1 ιC^0 = ̂  and the isomorphism
j/l2^(β?^->ω-^^f) of π~1C/s-complexes (ffl stands in degree 0, oj-^Jf is the
canonical projection) such that the properties 1.2.1.b(i)-(iv) hold.

Clearly, J^C^-2C^' is an abelian ideal, and * si' : = si'lffl is a π-algebra.
We will say that & is an #e-extension of * si\ We have ̂ ^^^ for i Φ 0, and jtf°
is the J^-extension of *^° that coincides with V(jtf') over Jc *.̂ °.

The projection ε^~:^-^^π defines the ^s-linear isomorphism
R°πή;(ε^): RQτι^' -+R°π^π = £ΓS of Lie algebras. Hence s4 defines the integrable
connection Vά = RQπJ3)(R*πJ(εj)Γl :«^-*π(*^ ) on π(*j^'); here \\st'-+*s4'
is the projection.
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Let Ωcl C π ~ l Ωl

s (x) JT be the sheaf of closed jT-valued 1 -forms (recall that 3?
π-l&s

has a natural π"1 ̂ -action). For any π-algebra ,S/' we may identify Ω$ with the
sheaf of automorphisms of Si' that induce the identity transformation on * j / ' : a
form v e Ώc<! acts by the formula α e <£?' \—> α + vε(α). Hence the Jf'-extensions of * j/'
that are locally isomorphic to j/' are in 1 — 1 correspondence with β^-torsors; for
v^Hί(X,Ωc

s

1} denote by j?' + v the corresponding isomorphism class of
Jf-extensions. We have a trace map Hl(X, Ωcs)-+Ωgcl. It is easy to see that V^ +v~,

2. Trace Algebras and Atiyah Algebra of a Determinant Bundle

2.1. Trace Ω-Extension of s$'E

Assume we are in the situation of 1.2.

2.1.1. Residues at the Diagonal. Let P1,P2:X x X-+X be projections,
s

A : X c> X x X the diagonal; the sheaves on X x J£ with support at Δ(X) will be

identified with sheaves on X via A'1. Put 0^= l im^ γ x y/^ γ x γ( — iA).
ί

2.1.1.1. Consider the sheaf ω[x]ω(oozJ) on X x X. We have two residue maps

Res1, Res2: ω[x]ω(oozl)->ω, where Res1 (Res2) is the residue along the first (second)
coordinate with the other one fixed.

The formula: let t be a coordinate along the fiber, Z l 5 z 2 the corresponding
coordinates on X x X, f(tl912, s) e Θx xχ, φ = f ( t l y t 2 , s ) (ti—ί2)'ί~ldt1dt2

eω[x]ω((ϊ + l)zl), then

Clearly Res1 maps ω[x]ωCω[x]ω(ooz]) into zero.
For φ as above put

(&sφ)(t,s)=^ Σ (-Vb^—&

Lemma, a) Res is a correctly defined map ω^ω(coA)-^ (9x (i.e. Res does not depend
on the choice of coordinates).

b) One has dRes(φ)-Res1(φ)-Res2(φ).
c) Res vanishes on ω[x]ω(zl), and is symmetric with respect to transposition of

coordinates.

Proof, b), c) are clear; b) => a), since Res may be characterised as a unique
differential operator (along the fibers) such that d Res = Res1 — Res2 (if Res, Res' are
two such operators, then Res— Res7 maps φ's into constants π~l@s, but any such
differential operator is zero).
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2.1.1.2. For a pair of integers α,fc, α^fo, put

The sheaf ^ has a natural ^/s-bimodule structure [for d = A(i)dt

Ψ = ψ(tι,t2)dt2, one has δτp = (A(ί1)3tl + β(ί1))φ(ί1,ί2)Λ2, ιpd = (ψ(tί,
— d t 2 ( ψ ( t ί , t 2 ) A ( t 2 ) ) d t 2 ] ] : > ίP-ίCέP is a subbimodule, and one has canonical iso-
morphism "pole at A": δ:^/^l-^9x,s, διp(f) = Rest2 = tψ(t,t2)f(t2)dt2 for

For a vector bundle £ put &E,a,b = E®<!)x0
>ab®ΦX

E*> 0>E = ... ^£ is a ̂ £/s

bimodule, and <5£ : &EI&E, - 1 -^E/S is isomorphism. Let ^^^ denote &E/S consid-
ered as a Lie algebra ([_Sl,82] = dΐd2 — d 2 S ΐ ) .

The bimodule structure determines a ^j|-action on 3PE by the formula
Lie (d) (ψ) = dψ — ψd,de @EfS, Ψ e ̂ E In ̂ act ̂ is action extends to an action of the
Lie subalgebra j/£> π 4- ®|/| C ̂ ie [where ^/£ π acts as Lie algebra of infinitesimal
symmetries of (X, E, S, π)]. The transposition of coordinates * defines an isomorph-
ism 'i^A^o, where E°:^£*ω, compatible with the bimodule structure via
isomorphism ^£/S = ̂ JEO/S.
2.1.1.3. Define the pairing < , > :^(χ)^-»$x by the formula <tpι ?^2>

= tfes(v?1

fv>2) We have <ψι,/V2> = <V ? ι / 5 V2> for /^^, <Vι J ^2> = < V 2 S V ι λ
<ι/) l5t/;2) — 0 for t/;t e^+1, ip2£&-a. The same formula (joined with convolution
£(x)E°-^ω) defines the pairing < , >£ : ̂ E®^-^(PX which is ^-invariant. Let tr
denote the composition &E _ j ->^E! _ !/^s _ 2 = ω End£ -̂ -> ω.

Clearly, Lie^(tp1)(tp2) + Lie(5(tp2)(φ1)e^E > _ 1 for ψι,ψ2e0E,-ι an<i we

2.1.2. Construction of Trace Ω-Extensίon. For a bundle £ define an Ώ-extension
tr,<E of ̂  (see 1.2.2) - the trace algebra of E - as follows. We have tr^ = ̂ ,π,
tr^£2 = $x. To define tr^E^ consider the exact sequence 0-»^£ _ t

-> £̂ Λ ^£/s->0. Now use the embedding ^E/s-+@E/s and the trace tr : 0>E _ t ->ω
to push this sequence into

O-^ω-VXpT1-*^/^.

Hence tr^ 1 is the subquotient of E^E°(2A)/E\^E°(-A) that consists of
sections that map into j/£/s modulo the traceless ones in (End£)®ω. It has the
natural (left) $x-action.

The above projection tr<$/E

ί->£/E/s = £/E

ί determines the projection
trj/E-^j/E and also the differential on tr^£.

Brackets. The bracket [ 5 ]o.o tΓ'^£®tΓ^£^tΓ'^£ should be the usual one;
[ ' 5 ] o. - 1 ̂  the Lie action of j/£ π on the (invariant) subquotient of g?E (see 2.1.1.2);
[•> ]o, - 2 comes from £ : j/£ >π-^^ζ; [ , ]-ι, -i ^^E1®1^^1-^^1^ is the pairing
< - , - > £ Mm 2.1.1.3 on the subquotient on 0>E. Now 2.1.1.3 implies

Lemmaβ The algebra tτ^E defined above is an Ω-extension of .stf E.

Remarks, a) One may construct the trace extension for an arbitrary Atiyah
algebra with trace, see Appendix, A 2.

b) Clearly E^ -^ίr&/E is compatible with base change.
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Formulas: Let ί be a local coordinate (along the fiber), and I\Θn

x^E a
trivialisation of E; we will call the pair (£,/) a gauge for (X,E). It determines the
isomorphisms

°
'X? = <_π, s/°(τ, /t) = (τ, A), .

We have [here τ = τ(t,s)dt + μ(s)ds; we write for brevity χ' = dt(χ(t,s)),
τ' = dtτ(t,s), etc.].

T/ie Formulas. Brackets:

[(τ, /I),, (χ, B, v)((>/)]0, _ ! =([τ, χ5f] Λ, τ(β) - χ/t'

C(χι,-Bι,v1) (,. / ),(χ2,β2,v2) ( r ι J )]_1 >_1=Tr(-β1B2

Gauge Change: for gεGLn((ίί

A.) one has

(τ, A)Iβ = (τ, - τ(g)g- J + g^g- '),, (χ, B, v)(ti/e)

if j; = y(ί) is another coordinate function, then

- .

Proof is a direct calculation. Clearly, these formulas completely define tr^£.

2.2. Virasoro Algebras

In this subsection, and the next one, we assume that S = point for brevity. Consider
the Lie algebra s$E : = V(lr^E) the central extension of £/E by ffl (we work in
Zariski topology, see 1.3.2) and call it the Virasoro algebra of E. For a gauge (ί,/)
we have an isomorphism

S(t,i)(a) = a(ΐ,i), so that

[(Xi^vJ^fe,^^^
Trίβ^ + ift^-χ^

(see 2.1 .2). So we see that for AT = (C\{0) (here ®x/dt(9x = <C) the restriction of
End(^^) = Matn((^x) coincides with an affine, or Kac-Moody, algebra, an

n on
and thei^iiu^c/^; — L\iό.ιn{wx} uum^mcί) wiui an ctiiiiic, ui rva^-iviuuuj', αi^cuiα, αiiu LI

restriction on yx coincides with the usual Virasoro algebra (hence the name).
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In fact, s$E comes from the central extension <SE of ®|ie by Jtif (via j/£ c» ̂ ie).
Let tr denote the composition @>E ̂  1 -̂  ω -> J^, tf : = ker tr. Put SE = ̂ _ v j Jf so
we have the exact sequence

0-Of -̂ ~» ̂ £ — — > ̂ £-»0 . (2.2.1)

For a,be^E put [α, b]F : = Lie(<5α)(5) mod JΓ e ̂ £, where be £̂, Fmod Jf = ft,
and 2.1.1.3 implies the following statement

2.2.2. Lemma. [ , ]F is a well defined Lie bracket on &E; so &E becomes a central
extension of @\ίe by Jίf.

Now assume that X is compact. Then H1(X,jtf>) = HvR(X) = (C, hence the
boundary map in 2.2.1 defines the linear function \x\H\X,9f^-*Hl(X, JfH<C.

2.2.3. Lemma, tr = tr# (X>E^ i.e. tr(d) is the alternating sum of traces of d's action on
H'(X, E) for a differential operator d.

Proof. Consider the exact sequence 0-^E^E°-^E^E°(ooA) ^^E^0 of sheaves
on XxX. We have H' + 1(XxX, E^E°) = H*(X,E)®Hί-* + '(X,E°)
= H*(X,E)®H'-*(X,E)* = End(H'(X,E)) by Kunneth and Serre's duality. The
map End°(H'(X,E)) = H\XxX, E^E0)^^ Hί(X,Ω1) = C coincides with the
trace of the action on H'(X,E). The boundary map H'(X,S)Έ)-^H' + l(X x X,
EffiE°) = End'(H'(X, E)} coincides with the map induced by the action of Q)E on E.
These two easy facts imply the lemma.

Remark. This lemma implies the Riemann-Roch formula for χ(X,E): one has
χ(X, E) = trH (£) id£, and this may be computed in Cech cohomology using gauge
change formulas for irj/~ί from 2.1.2 (this is a one-dimensional version of Toledo-
Tong's proof of Riemann-Roch, [24]).

2.3. Atiyah Algebra of Determinant Bundle

The principal point of this section is the following

2.3.1. Theorem. There is a canonical isomorphism between Θs- Atiyah algebras,

where λE : =- dztRπ^E is the line bundle on S defined by Grothendieck, see [14, 1 1, 7].

Remark. In [14] dstRn^E was defined as a graded line bundle; we omit the
grading since the sign problems are irrelevant for us.

The proof of 2.3.1 will occupy the rest of the subsection.
2.3.2. We will start with the list of compatibilities that, in fact, determine IE.

(i) Let 0->£1-^£->E2"^>^ be a short exact sequence of vectors bundles. Then

where we identified jtfλjL with J/Λ£ + J/A£ by means of the canonical isomorphism
λE = λEί®λE2 and the identification π(tr^E) = π(tr^El) + π(tr^/E2) is defined as
follows. Let tτ^Eι,E2 ^ir^E be the π-subalgebra with ir^E,,E2

= {de^E^π:d(Eί)cE1}. We have canonical projection t rXE l ) j B 2Ά t l

t5/E ι x trj/£2:
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here p° is the induced action on El9 E2, and p~1 comes from the identification of
&EI x &E2 with the subquotient of 0>E [namely, 0>El x 0>E2 is the quotient of

, where L: = Ker(E*[x]E-+£*[x]E2). The diagram of π-algebras

gives the desired isomorphism

π(p) π(ί) - * : π(tr^) - π(tr^£l) 4- π(tr^£2) .

(ii) Let D <-+X be a divisor etale over S. Consider the exact sequence
Q-^E( — D)^E-^i^E\D^0; put ED := π|D*(£|D). The isomorphism
^jE = A£(_1))®detE jD identifies J</A£ with J/Λ£( _ D) + ̂ detED In a moment we will
define the isomorphism n(irj^E)c^π(tτj^E^_D))-{-^/deiED9 and our second compati-
bility claims that _ id

*E — *£(-£) + ^det£D

So let tr^£,DCtr^£ be a π-subalgebra such that iτ3f$tD={dE3/Etπ:ε(d) is
tangent to D}; one has projections p:iτ£/E D^^E(-DΫ ^' ir^ε D ~^^D*^E\Ό- Let
&' C trJ^>jD be the dg-ideal with J^ = t rj45jDfor z φ - 1, JSf ~ 1 =Ker^fd~ ^ Then/?, ̂
extend to dg-maps p : ̂ ' -^^^(-D), <2 : ̂ ^D^E (P\X\D ^s the identity map). Then
^°π*(P + 4):^°π*(^ Ί^(tT^E(-D)) x ^s

πlz)(^£|D) is an isomorphism, and the cor-
responding map α : π(trj/£(_D)) x ^sτr|D(tβ/£|D)->JR

0π;iί(^f' ) gives the desired isomor-
phism π(tW£)Aπ(tΓ.δ/£(_J))) + «5/det£D [since eδ/det£jD = trπ|D(eβ/£|jD) and
α on πj^EndEI^) coincides with tr by 2.2.2].

(iii) Assume that RΌπ^E = R1π^E = 0. Then detKπ^E = @s, hence IE is just the
trivialisation of π(tr^/£), i.e. the integrable connection F:«^->π(trefiQ. Now recall
that trj/£~

 1 is a quotient of a subsheaf ^ECE^EQ(2A) [here J*£ consists of sections
that are mapped into «β/£/s C ̂  2 under the "pole at J" map: £[xl£0(2zl) -̂  ®JBj J,
so we get a morphism of complexes j8:Cone(Jf

£-^ eβ/Ejπ)-^tW£. The exact tri-

angle ^^J^π-1^ (2.3.2.1)

shows that R°π^ Cone = ̂  in our case [since JRπ;fc(£[x]£0[l]) =
hence R°π^β is just the section &~s^>π(tr£#E) and (iii) claims that

(iv) Compatibility with base change. Both assignments £~->/l£j E~-+trjtfE

are compatible with base change (change of S), hence so should IE

Now we can give a precise formulation of 2.3.1 :

Theorem. There exists a unique system of isomorphisms IE such that compatibilities
(i)-(iv) above hold.

Note that the uniqueness is clear: by (iv) the problem is local in S, so by (i) we
may assume that £ is a line bundle, and, using (ii), we may reduce the arguments to
the situation described in (iii). It remains to construct IE.
2.3.3. Construction oϊIE in case Rlπ^E = Q. Here π^E is a vector bundle on S and
λE = detπχE hence ̂ λε = tΐ^π E. Consider the exact triangle 2.3.2.1; it gives the
short exact sequence

3r

s-+Q, (2.3.3.1)
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since R(π x π)ή:(EE<\E()) = Rπ^E(S)(Rπ^E)* = Endπ^E by Kunneth and Serre's
duality. We will construct the natural isomorphism IE : ^/π^E ^R°(π x π)# (Cone),
compatible with 2.3.1. Since tr. Endπ^E-^ coincides with Tr R(π x π)# (φ\
where Δ*

>E®E° — >ω,

and i τ j t f E

1 = jyKerφ, the morphism /J:Cone-»tιχE and ΊE define the desired
/£:tr^£Aπ(tr^£).

To define ΊE one proceeds as follows. The problem is local in 5, so let us choose
some relative divisor T C X, T is finite over S; put T(2) : = XxsTcXxsX. Then,
since Rlπ^E — 0, the sheaves ^57r(oo T) (: = sheaf of sections of j/£ π that may have
a singularity at T), E^E°(ooT(2)) and J*£(ooΓ(2)) are acyclic with respect to
projection on S. Hence R°(π x π)^ Cone may be calculated using the Cousin
resolution of Cone:

0 0

(2.3.3.2)

0 0
Namely,

K°(π x π)* (Cone) - {(τ, b) e π^Et π(oo T)

x π+(^£(oo T(2))/^£) : μ(τ) - (5(b)}/Image of π^E(oo T(2)) . (2.3.3.3)

Define the inverse to TE by the formula

IE \τ9 b) (e) = τ(e) + Resr(2) b - p\e , (2.3.3.4)

where βEπ^E, b p^ee(E^ω)(2A + coT(2))/E^ω(2A), and the residue is taken
along the second variable. Note that the condition on (τ,b) implies that
singularities at T of the two terms in the right-hand side of the formula cancel. It is
easy to see that TE

 r so defined is an isomorphism (it induces the identity maps on
the left and right terms of 2.3.3.1) that does not depend on the choice of T (it is
obvious for Ti C T2, the general case reduces to this one).
Remark. Note that the Cousin resolution for trj/E gives (for arbitrary El) the
isomorphism

π(iτ^E)= {(τ, a)eπ^E,τr(°° T) x π^Wε HOOT)/V£~
 ί '

μ(τ) = <5(α)}/Image of π^ V^HooΓ)). (2.3.3.5)
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So to calculate I^l(τ,d) one should choose (τ, b) in 2.3.3.3 so as β(b) = a, then
/E 1(τ,α) = trfί1(τ,6).

2.3.4. IE Commutes with Brackets. For αf e π(l!;5/£), z = l,25 in (2.3.3.5) choose the
representatives (τί5 α f) of αf with respect to divisors 7] such that Ti n T2 = 0 and the
corresponding (τ^) such that /?(&.) = α . Then ([τ l5τ2], [τι,α2] — [τ25

αι]) is
T1uT2-representative of [αl5α2]. Since

[Tί^AίΛ'foA)]

= fjE ^L1!̂ ] !̂ b2-b2τl + bίτ2-τ2bί + bΐ *b2 — b2*bl)

[here τ^ , b/Γ; are taken with respect to the AE π-bimodule structure on £[x]£0 and
* is a convolution, so b1 * b2 is a section of ^£(ooT2

(2))/^£ perhaps with a pole at
T! x T2), then we have 7£ ' [α1? α2] - UE ^iJε ^2] = Res^GS^ * fe2))
— Res Γ 1(j8(b2 * £>ι)). These residues are traces of finite rank operators
j4bl>ί,2 e End^s£T25 ^4b2,bl e Endc,s£Tl (where £Tϊ is formal completion of £ along 7])
defined by the formula Ab.b(ej) = RQSTj(bi^bj' pζej) (see 2.3.3.4). Clearly Abιbj

= AbιΆbj, where AbιeHom&s(ETι,ETj) are finite rank operators defined by the
formula Abι(e^ = the expansion of Res^^^fβj ) at 7]. Hence /£1[α1,α2]

2.3.5. Cαs<? o/ Arbitrary E. The above defined 7£ satisfies 2.3.2 (iii), (iv), and also
2.3.2 (i), (ii) in cases Rlπ^Ev=Rlπ^E'2 = ΰ, Rlπ^E(-D} = 0 respectively. Now for
arbitrary E choose D as in 2.3. 2 (ii) so as Rlπ^E(D) = 0, and define IE by means of
IE(D} via (2.3.2) (ii). By the previous remark this IE does not depend on D and
satisfies 2.3.2 (i)-(iv). So we are done. Π

The rest of the section contains some complements that will not be of much use
in what follows.

2.4. Relation with Tales Construction

In this subsection we also assume for brevity that S = point and TcX((C) consists
of a single point x. Let t be a parameter at x, ί(x) = 0, U be a formal neighbourhood
of x, fi?t/ = (C[[ί]] and U = U\T is a punctured neighbourhood of x, β/ l/ = C((ί)).
Then Res^ Jf^^AC, hence 2.2.1 gives a central extension ^(17) of ^(17)
= ®£(8)0C7 by (C. We will see that £ϊ(U) is canonically isomorphic to the extension
constructed by Tate [20] by means of the linear algebra.

Remark. This construction became famous since it was rediscovered by the Kyoto
school in connection with soliton theory and representations [10, 19, 12].
2.4.1. Recall Tate's construction. Put F = E(U), so F w(C((ί))" DE(U)«C[[ί]]π. We
say that a (C-vector subspace VcF is open iff V^>tNE(U) and F is bounded iff
Vc t~NE(U] for N ^> 0; a subspace both open and bounded will be called a lattice.
Let ̂  C End^F be the subring of continuous operators \_Ae& if and only \iA~l(V]
is open for any open FcF], 70:= {A<E&:ImA is bounded), 7t := {Ae&:KerAis
open}, 701: = 70n71; these are two-sided ideals in 3fc such that 70 + 7!=^. If
Aεlol, then dimIm^2 < oo, so trA is well defined and tr[α,b~\ = 0for αe7 0 , bε7^
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Put Q: = I0@Iιi we nave tne exact sequence

0—^f > Q v ^-»0 ( 9 4 1 1)W ^,£ Q 1 r \/ T tSl, 7 \J ? \^ί*.^. jl . 1 J

i(A] = (A, — A), δ(A, B} = A+B. Now Q is an ^-bimodule in an obvious way, hence
^Lie acts on Q by the formula LiQ(r)(q) = rq — qr. Put Jf = Kertr:/0 1-»(C, and
J> r^ Q/f(jΓ), so that we have the exact sequence

0-+C t ' t r ' 1 ) ̂ -^ ̂ ->0. (2.4.1.2)

The formula [α,έ>] : = Liec)(a)(S), a.be&.b^Q, b = bmodι(JΓ), defines the Lie
algebra bracket on ̂ , therefore (2.4.1.2) is a central extension of ̂ Lίe by C. Note
that (2.4.1.2) canonically splits over /0 and I γ (by the definition of Q); let s0: /0-^^,
S!:/!-*^ be these sections. Then 5,-(/j) are ideals, and 50(^4) — 51(/4) = tr^4 for

2.4.2. To relate this to Virasoro algebra, consider the local ̂ £'s : 0>E _ ^ ( U) C 0>E( U\
&E,-ι(U) = E(U)®&[Ltl,t2]']®E0(U), &E(U) is the localisation of &E^£y}
by (t^ —t2}~l° We have the exact sequence of ^£([/)-bimodules,

0-*^ _ ,(U}-^0>E(U] -Λ ^£((7)->0 . (2.4.2.1)

Let R : 2E(U)-+$ denote the action oϊS>E(U) on £(ί/); this is an embedding of
C-algebras. For ψ = ψ(t^t2)dt2E^E(U) define Res0(φ), Res^^e^ by the
formulas

(Res0 (ip) (/)) (t) = Resί2 = 0 ψ(t, t 2 ) f ( t 2 ) dt2 ,

(Res^ (ψ) (/)) (t) = Resr2 = ίφ(ί, ί2) /(ί2)dί2 .

One has
(i) Res^ = R ,̂ and Res0, Res^ \&E(U)^>9t are ^-morphisms of 2E(U)-

bimodules.
(ii) ReSoί^C/!, (Res0 + Resz,)(^E)C/0, hence we may define an .R-morphism

of bimodules

Res : &>E( U) -> Q, Res (ψ) = (Res0 + Res^, - Res0) .

(iii) R<5-<5Res, so (Res,R) defines the embedding (2.4.2.1) c> (2.4.1.1).
(iv) Res|^E _l(U):0>

Et.l(U)-*Iol is an isomorphism compatible with traces
from 2.2.1 and 2.4.1.

So Res modulo Kertr identifies &E(U) with a subalgebra of J>.

2.5. Shifted Virasoro Algebras

For an integer i consider the sheaf ^E(i): = ω®ί(χ)(5)χ^E(x)(?χω®ί filtered by
&Eωa:= ω®^£ £ J_ 2 ίω

Θ ί . Clearly, j/£ π [being the algebra of symmetries of (£,π)]
acts naturally on ^(ΐ), and Gΐa^E(ί) = ω® ~a End£. Put

e ω"1 Id£],
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hence we have a short exact sequence 0->EndjE->j/£/s(z)-^ &~χ/s-*®

^E/s(ί): = {/e^(Oι/^(0- 2 : δ(f): -/

where tr is a composition j3/£/s(/)_1/^/£/s(i)_2 — ω End£-^ω-+ω/d$ — Jf. So
^E{S(i) is an extension of ^£/s(0 by Jf. Given a gauge (ί, /) for (X, E) (see 2.1) we
have compatible isomorphisms s(ί /):^/s©Matn((^Λ:)A;^/E/s(ί),

(z) defined by the formula

,v(ί)Λ) =

same for

, + ̂ 1*'.̂ '

Lemma, a) We have canonical isomorphisms ^E/s(i) = ̂ E/s(ty = ^E/s>
(τ9B)$j)ϊ-+(τ,B)(tίI}9 that commute with the s^EjS-action.

b) Define the bracket on ^E/s(ΐ) by the formula [α, )8] = Lied(α)(jS). T/iis bracket is
skew-symmetric, hence defines a Lie algebra structure on jtfE/s(ϊ); so ^E/s(ί) is a
central extension of ^E/s(i) by Jf . The explicit formula for [•,•]•

1? B19 Vif 7), (τ2, 52? v2)g}7)] -

Lemma follows from the direct calculation cf. [4].
Note also that we may take i to be half-integer if the ^-characteristic ω1/2 is

chosen. The formula for the bracket above means that we have a canonical
isomorphism ^E/S(^ = ̂ E/S + ̂  (τ>B9v)$j)^(τ9B9v\ttI) + (τ9Q9ϋ)t. Here Vc^&x

is Lie subalgebra of elements that project to ^X/SC £?&x (so Fis a central extension
of 3~xjs by Jf , and the sum of extensions is defined similarly to π-algebras case).
Hence the corresponding $s-Atiyah algebra R°π^(jtfEjS(i) — >j/£ π) coincides with

2.6. Modular Families

Let π : JSί->S, £ be a (locally) universal family of genus g curves (g> 1) and vector
bundles of rankrc. This means that the Kodaira-Spencer map KS: 3~s-^Rlπ^E/s

is isomorphism and R°πή:£/E/s = R()πή:EndE = @S'idE. Assume that χ(XS9Es) = 09

i.e. degE = rc(g — 1). Then, according to 2.2.3, the exact sequence 0-+^ -*j5 /̂s

->j</£/s->0 gives the exact sequence oίRlπ^s: Q-+@s-+Rlπ^E/s-^3r

s-*Q, here we
identified JR

1π sHJf, R1n^E/s with C?s, ^~s by means of Tr and KS. So the canonical
map irjtfE-+σ^-ι trj/£ = Cone(t"5/£"

2-^t^jE"1)[l]-^^ί;/s defines the isomorphism
Rlπ^E/s of (Ps-modules that extends KS.

The Dual Statement. Put QEi:= Ker^-^^/^^j =ω" ί + 1 EndE-^ω"/ + 1)
C^,^ = ̂ α/β£fe + ι, so ^£flb is extension of ̂ b+ί by ω"5. The Serre duality
together with t : ̂ E^ ̂ Eo identifies the dual to Rlπ^Eab with π^E ^_bΛ _ Λ . Hence
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the dual to KS identifies Ω| with π^Eo, -2 and the dual to KS is C(λE) (: - the Ω^-
torsor of connections on λE)~{φeπ^Eίί_2:φmodπ^EίQ = idE}. Using the
shifted algebras we may identify Ω$ with π#(a)2$E2ίt2i-2ω

l) and C(λEλf^) with
{φEωl^E2ί ι2i,2ω

l:φmodπ^ωl^E2i ,2i-2ωl=rid£}. In particular, if ί=l, then
Ω| = π* Diff= 1 (Eω~\ Eω\ C(λEλ&x) = {δeπ* DiffJ 2(Eω~ \ Eω) : symbδ = id£}.

Example. Let n = 1, so S is moduli of genus g curves with line bundle of degree
g — 1. Denote by ^v the moduli of pairs (X, ω1/2), X is a curve, ω1/2 is
^-characteristics. We have the obvious embedding j : Jί v c> 5; put JΓV =X|^V .
Recall that ^ωι/2/^v is the subquotient of ̂ ωι/2; since ω1/2 ° = ω1 /2, ̂ ωι/2 carries the
involution f; let j/1/2

 c^^ωι/2/t^v be invariants of f (cf. 3.1): this is extension of
^*v W by Jf . The same reasons as above show that Rΐπ^ί/2 = jtfλωι/2, and i
induces the usual embedding jtfλωι/2 c» j*£/λ]E.

One may translate this to 1 -shifted language. We have Ω^v =π*&>2 and

C(λωl/ΛJ = {3eπ*Dif^^

Here r is the conjugation of the differential operator [note that (ω3/2)° = ω~ l /2].
In 3.1 we will see that λωj = λc^9 C = 6j2 — 6j + l. Hence

This fact is closely related to Tjurin's results [21]; cf. also [4].

2.7. Problem

It would be very interesting to "integrate" 2.3. In a sense Deligne's Riemann-Roch
(RR) theorem [11] performs implicitly this, but we would like to have a direct
construction as well as a local construction of the RR isomorphism itself. More
precisely, the "characteristic classes" in the right-hand side of Deligne's RR, say
1C 2, may be constructed as follows. Consider the central extension GLn of GLΠ by
JΓ2 x that corresponds to c2. Let E be a rank n vector bundle, and $ = Isom ($",£)
its GL-torsor. One has a presheaf ^(E) defined by formula ^(E)(U) =
structures on E\u} = {($u,i); ^v is GLn-torsor on U,i:$/yf2~*<$> UP
isomorphism}. Let IC2(£) be the sheaf that corresponds to the presheaf π
Since π is proper of relative dimension 1, IC2(E) is Rlπ^Jf2-torsoτ. The trace map
tr:R^Jf2->0* transforms IC2(E) into d?*-torsor IC2. We would like to have a
similar construction for det^π^E. Certainly, the corresponding extension of GLΠ

is functorial for etale maps only, so one should also vary X and add to the gauge
group GLn the "diffeomorphisms," as is indicated by the Lie algebra analogue. For
example, one may consider the category G whose objects are pairs (17, ί), where U
is a smooth curve and tε&(U) is a coordinate function (i.e. at is invertible); a
morphism φ:(U, t)-*(U', ί') is a pair (φv, φg\ where φv : U-+U' is an etale map and
φg e GLn(Θ(U)); we have φf φ = (φ'v, - φυ{φ'g - φυ] - φg). We would like to have the
extension G of this category by JΓ2 [or rather by ^2/K2 (constants)], so as its Lie
algebra would coincide with the Virasoro algebra. If one has a curve X with a
vector bundle £, then we may take an atlas Ub (JU^X with coordinates tt e @(Ut)
and trivialisations of #1^.. These data determine the morphisms φ^'^V^t^
-+(Uij, tj) in G such that φ^φjk = φik for any ij, k. The liftings φ0 of φtj to G with the
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same cocycle property form a H1(X9 JΓ2/K2((C))-torsor, which should be canoni-
cally isomorphic to detRπ^E (or rather to its 12-th power); the tangent map to this
isomorphism should be 2.3. The RR-isomorphism should come just from the
isomorphism between G and the sum of GLΠ above with the analogous extension
of (9* x (9* that corresponds to cΐ-cΐ in the right-hand the side of RR.
Unfortunately, at a moment we can only perform this on the Lie algebra level, see
Appendix.

2.8. Higher- Dimensional Version

Now we will sketch very briefly the higher-dimensional version of 2.3; unfortu-
nately, no canonical complexes are known here, so one should swamp in the
derived category. For brevity, we assume that E = Ox.

So let π:X-*S be a smooth proper map of relative dimension n; denote
ω = Ωn

x/s, and let A:X-^XxsX be the diagonal map. Then, following Gro-
thendieck and Sato, we may identify &x/s (= the differential operators along the
fibers of π) with Hn

Δ(X x X, p%ω).
In particular, we have the canonical morphism ^χ/s-*P*ωW? hence the

triangle ̂ ^^x/s— >p*ωM Let ̂  be the one of the composition ^-^^χ/s~^^x,n >
so that we have the triangle pfω[n]->^-^^r

π. Then one has the canonical
isomorphism R(πxπ)^ = ̂ Rπ Θχ [where stfRπ &χ is an appropriately defined
2-step filtered object, the extension of ̂  by R Endj^Rπ^x)]. The role of & is now
played by the cone of ̂ x/s->pf ω[n], completed at A : so one has the exact triangle
P*ωALn~^~*^~*^x/S' The appropriate subquotient of & is an analogue of
Virasoro algebra ^χjs[β — 1 ] -^x/s ~~^x/s> and one has a canonical isomorphism

For the higher-dimensional version of Tate's construction see [2].

3. Differential Equations on Mumford Forms

3.1. Mumford Forms

Note that &~π acts on Ωxfs

j = ωJ via Lie derivative: we have a Lie algebra
homomorphism Lie^:^-^^ >π, ε ° Lie; = id<rπ. Define ^ Ctτ^ωJ to be the
π-subalgebra that coincides with Lie/^J in degree 0. Hence ̂  is an Ώ-extension
of y^ and 2.3 identifies n(^j) with j/; , , where λj\ = λωj. Here is an explicit
description of ^/j.

A local coordinate ί (along the fibres) determines the isomorphism

_*ιL_ + Mίil

One has the formulas for bracket [here τ^yπ = ̂ f, τ = τ l ( l , s ) d t + τ2(s)ds,

[τ,(χ, v)jt] = ([τ, χ3J, τ(v) + vτ' — l/6Cjχ'τ")jt,
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Change of coordinates: let y = y(t) be another coordinate. Then

These formulas determine j/7 completely, and imply

3.1.1. Lemma-Construction. We have a canonical isomorphism of π-algebras
*μ7 : jtf'j ^Cjg&l such that *μ/χ, v)jt = (%> V)ι7): — the image of (χ, v) l f under the map

Hence we get a canonical isomorphism ό^λ=c^λ^ or, equivalently, the
integrable connection I/J. on λj®λ^Cj.

3.1.2. Vj corresponds to Mumford's trivialisation of this bundle: it has a non-zero
horizontal section μ7 which is just Mumford's discriminant form [17].

To see this (the following arguments are parallel to those from [17]), note that
we may assume, since our connection is natural, that X is a universal family of
genus g curves, so S = MQ — moduli space of genus g curves. For g ̂  ̂ Jίg admits a
compactification Mg (the closure of Jίg in Satake compactified moduli of abelian
varieties) such that codim<Jy\^^2, and Hί(Jίg,%) = Q. Hence, by Deligne's
theorem, any integrable connection on a bundle on Jίg has regular singularities at
infinity, and so is determined by a global monodromy. Since H1(^,Z) = 0, any
rank 1 vector bundle with integrable connection is trivial (and any of its global
section is horizontal). This proves our assertion for g^ 3. If g = 1,2 any curve is
hyperelliptic, and we will calculate μ; in the next subsection.

3.1.3. Remark. The transposition of coordinates defines a canonical isomorphism
j/7 = e s/i_ 7 [it maps (χ,v)jt into (χ, v^.^J the corresponding isomorphism

t^λ. = ̂ λί_j comes from Serre's duality isomorphism λj^λί-j.
Lemma 3.1.1 is a particular case of general Riemann-Roch isomorphism for

Virasoro algebras, see Appendix, A 3.3.
3.1.4. Let τ be a vector field on S. To calculate P7(τ) one may proceed, according to
2.3.3, as follows. We will work locally on S. Choose a section q = q(s) of π
(= 5-point ofX); let U be a neighbourhood of q with a coordinate function ί [along
the fibers; f(g) = 0]; put X: = X\q(S), U:= U\q(S). Fix some liftings τxe^~π(X),
τ [ /e^Γ

π(L/)ofτto Jί, C7 respectively: rfπ(τ) = τ ; p u t τ v : = τx — τve&~xιs(U). Forj^l
choose a section rjEωj$Qω1~j(2A)(X x SU) such that δ(rj) = LiQj(τv)e^ωj/s(U)
C^ωJ,π(U). Then (τx, r; ) is a cocycle from (2.3.3.3), which acts on the vector bundle
πjω 7)' by formula (2.3.3.4):

where φ(j} E τc^(ωj) and the residue is taken over the second coordinate. The trace
action of τ7 on detπ^(ωj) = λj is given by the formula

)Λ ... + . . .= a,- det φ^,
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is a basis of π^(ωj). Thus trτ,- corresponds by 2.3.3.5 to the cocycle (τX9β(rj))
of j/j. Consider the expansion of rj in a neighbourhood of A :

Then for the generator φ = dQtφi

(j)/(dQtφί

(1})
Cj of λ Jλc{, one has

3.2. Hyperelliptic Case

Let J*ία be a hyperelliptic curve

20 + 2

/ = Pβ(x)= Π (x~α ί),fl = (α£)

for /φj; σ:Xα->J^α the involution σ(y, x) = ( — y, x). So Jfα is a covering of P1

ramified at {αj and Jf is a universal family of hyperelliptic curves parametrized by

S = <D20 + 2\{diagonals}. Put φ=—εω(X), divφ = (g-l)divαo(x). We have the

following explicit base Bj in ωj(X):

Bj={φj,xφj,...,xj(9~ί)φj; yφj,yxφj, ...,yx(j~l](9~l]~2φj} for ;>!.
j (j-i)

3.2.1. Lemma, μ, - const Π (ai~ak) 2 deiBMetB^.
(ί.fc)
iφfc

Proof. We will follow the lines of 3.1.4. We have to show that the μj so defined
satisfies V3{da) (μ7 ) = 0 (for any i).

Put τ = δfl£, fl = (ab 0) e Jf , so y is a coordinate at q, τx E 3~π(X] is the lifting of τ

such that τx(x) = 0 : τx= - -9 τ* : = - dy= - δx ^here P'(α,
r̂ Λ tZ; 3^

= π (fli-« ^=fx-TB= Π (χ-flk)+ Π (β(-«kA
Formula for r; :

2P'(x2)(x2-x1)
2

4 P(x2)P(x2)
2(x2-xl)

This formula may be found as follows. Let A': = (1, σ) (A). The function y1 + y2

equals 2y on A and vanishes on A'. Hence the first summand of the formula has
pole of order 2 at A with the right higher term, and the pole of order 1 at A'. The
second summand kills the pole at A'. The third summand is regular at A' and
corrects the first order pole component at A to have δ(rj) = τ°. Finally, it remains to
note that rj is regular at xl = oo.
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Now we may use the formula

P"(x2)

V4 P(x2) 8 P(Λ

to calculate the expansion of rj at A:

(x2) fe-Xi)2 υ ' F(x2)
2

J 3 \ r(aύ r(xύ j2 j t
8 8 ό F(x2)

2 2

Hence

7 2

since

+ -(2/-1)2 T + exact form,
4 icΦ ίZ — fl

P' P" 4 1
Res-jdx = 0, Res dχ= ΣP2 ' PP' P'(al)kϊiai-ak

So

(see 3.1.4.1).

Action of τ; on π^ω7: we have τx(y)= --- - — , f^(χ) = 0;
^ X — £2
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These formulas imply that the trace of the matrix that gives the action of τ_y in
basis BJ is 0. Hence tr τ^det Bj) = 0. This, together with the above formula for Res Γ,
gives the differential equation for the Mumford form

which implies the lemma.
Compare with field-theoretic computations in [23] for the generalisation to

Z/rc-coverings of F1 see [8, 13].

3.3. Problem

It would be very interesting to calculate the expansion of μ; near the boundary of
moduli space, e.g. at points that correspond to a completely degenerate stable
curve: these are in 1 — 1 correspondence with connected graphs of 2g — 2 vertices
and 3g — 3 edges, with exactly 3 edges at any vertex; here g = genus. Case

= 2: O 0—0

O— Φ°Y° 0-0-0
O

and to calculate μ7 in terms of Schottki uniformisation (one should get the formulas
similar to [1]).

3.4. Remark on Cancellation of Anomalies in Higher Dimensions

In situation 2.8 denote by //c l5 ...,cπ) the term of power n - h l of the series
e~JC Td(c l5 . . . , cj, where we put degct = f, Td is the Todd genus. Examples: //

N

Suppose that integers α l 5 . . . , aN, j 1 ?... JN are such that £ Q>if(£ = O Then by
i = 1

Grothendieck-Riemann-Roch formula we have c x( (x) Λ, £) = (), where
A,-: = detKπ^ω®7. It would be interesting to prove a generalisation of (3.1.1) which
should imply the existence of canonical connections on sheaves ®^;; maybe these
sheaves are trivial?

4. Virasoro Action on Moduli Spaces

4.1. Enhanced Moduli Spaces

Let m, n ̂  1, g Ξ> 0, d be some integers. Denote by Ji = ΛQ^ m the moduli space of the
data (X x 1 , . . . , xm; tλ,..., ίm), where X is a genus g curve, x l 5 . . . , xm e X are different
points, and ti are formal parameters at xt. Similarly, let Λ' = Λ^ be the moduli
space of the data (X, E; x l 5 . . . , xm; ί l 5 . . . , tm; / 1 ? . . . , /m), where X, xt, tt are as above,
£ is a rank n vector bundle on X of degree d, and It:(9n

Xι^EXι are formal



Determinant Bundles and Virasoro Algebras 673

trivialisations of E at xt. Both Jt and M' are projective limits of smooth varieties
Jtf(k\ Jίl(k] = moduli of the same sort of data with ίί5 It arc jets of trivialisations of
certain finite order fc, with respect to obvious smooth projections; so Jt^JP are
schemes (of infinite type). Let π: X^Jί, π': X1 -+Jί' be the universal curves, E be
the universal bundle on X', etc. Put &: = (D((t))dt9 £": = j^n(Spec<C((ί)))
= (C((f))(dί + Mat/1): these are our usual Lie algebras on the punctured coordinate
disc. Consider the maps

'here X^: = X\(JXi(J(^)9 ^π(X):=π\u(^})} of ^.-sheaves: <p<%): = ver-
ί J

ίical component of τ with respect to tt or tb It [if τ = τh(s)ds-\-τv(ti,s) near xb

hen φ/(τ) = τv(th s) — τ(ί/)dΛ.

4.1.1. Lemma, φ, φ' are isomorphisms.

Proof. The exact sequences 0^^(l)^^π(X)-^^-^0, Q-+jtfE/^,(Xf)
-+$0E,π(X')-*^M'-*® show that it suffices to prove that φ, φ' induce isomorphisms

But these are just Kodaira-Spencer maps for our moduli problem, hence the result.
So φ-1, φ'"1 define the embeddings J^m c^ ^π(l), j£"m t> dE^(X'\ They

commute with brackets (as follows from the definition), therefore we have a
^m-action on X and Jzf /m-action on X' compatible with projections π, π' hence the
corresponding actions on Jί, Jί' . Clearly, the obvious projections X'-+X, Jt' -+Λ
are equivariant with respect to ε : £"-+^. Lemma also implies that these actions
are infinitesimally transitive, i.e. the elements of the Lie algebra generate the
tangent plane at any point. More precisely, for any point m(/)eJ^(/) we have
canonical short exact sequences

the left arrows are the Laurent series expansions at xt with respect to ^(/t ), the right
ones correspond to action (= Kodaira-Spencer maps). Note that the action of the
positive part ̂  + m: = (ί(C[[ί]]5ί)

mC^m just changes t i 9 the action of df} moves x{

(this part of the construction links with the "formal geometry" of Gelfand, . . .), and
it is the "polar" part that changes the complex structure of the curve.

Consider the determinant bundles λ : = λ&χ, λ' : = λE on Λ, Jί' respectively. Let
,̂ & be the "coordinate" Virasoro algebras, the central extensions of JSf, £?' by (C,

and ^m, ̂ "m be the sums of m copies of these extensions ( — extensions of 5£ (/)m by
(C). Now 2.3 implies that the j^(/)m action on Λ(l} lifts canonically to the Virasoro
algebras action on λ,λ' with central charge 1. To see this one should calculate
π(trj/ffχ), π(trj/£) by means of adele, or formal Cech, cochains of the covering
{ [/, X(f}] of X(f\ where U:= (J Ut is the union of formal neighbourhoods of x t . The

i

cochains (in λ' case) are the triples



674 A. A. Beilinson and V. V. Schechtman

' such that τx-τϋ = δ(ru)', the bracket is given by the
formula [(4, 4; 4), (τ*, τ* 4)] = ([τl, τ|], [4, τ£] [rj,, τ£] + [4, 4]). It is easy to
see that the formula r i— >• (φ' *(r), — (5(r) + φ' ί(r); r) defines the Lie algebra map
j£"m->π(trj^;) which is, according to 2.3, the desired action of S"m on λ' 9 the &m

action on comes similarly.
We may rephrase 3.1.1 as follows: &m also acts canonically on λj = detRπή:ω

j

with central charge Cp and Mumford form μ; is just the J?m-invariant section of

4.2. Generalities on (©, K)-Schemes

We will describe explicitly the structure the enhanced moduli possess. In what
follows © will be either of Lie algebras ^m or JS? /m, and © will be the central
extension of © by C as above. Put JSf0o:=ί<C[W]3 tC^o = <C[[ί]]δfCJSf5 J^00

= ̂ oo + 9U<C[[ί]]) C&'0:=&0 + 9W<C[[ί]]) C JS?', ©Oo = &$? C ©0 = ̂ /)m C ©
these are "parabolic" subalgebras of®. It is easy to see that ©0 lifts uniquely to the
subalgebra of ffi; so we will assume that © 0 0 C© 0 C©. The algebra ©00 is
projective limit of finite dimensional Lie algebras. Moreover ©00 is Lie algebra of
the proalgebraic group K, which is an extension of the finite dimensional reductive
group Kr by the prounipotent group Ku (in case © = ̂  one has X = Aut(C[[ί]]
= group of formal diffeomorphisms of line ={a1t + a2t

2 + ..., a{ e (C, fliΦO},
Kr ^}Gm; in case ffi = JS?' one has Kr = Gm x GLJ. Clearly the adjoint action of ©00

on © integrates to the K-action.
Let Y be a scheme. As usual, (©, K)-action on Y consists of ©-action [i.e. Lie

algebra map ©^-^(Y)] and K-action Kx Γ->7 which are compatible in a
sense that the ©00-actions that come from ©-action and K-action (®00 = LieX)
coincide, and for keK, τ e © one has α(adfc(τ)) = fc*α(τ). The action is (infinitesi-
mally) transitive if for any j e Y the map ay : ®->&~y is surjective; in this case we
will call Y a homogeneous (©, X)-scheme. The most important (©, K)-schemes
are the following ones.

Definition 4.2.1. A (©, K)-action on Y is of finite type if a sufficiently small "open"
K' C K ("open" means "of finite codimension") acts on Y in a free way with the
quotient K'/Y being a scheme of finite type.

We will call such Y's (©, K)-schemes of finite type for brevity (note that Y itself
is infinite dimensional!).

Similarly a (®,K)-line bundle on a (©, K)-scheme Y is just the line bundle λ
together with the compatible actions of © and K, that lift the (©, X)-action on Y.
We will say that λ has central charge c if the element of the center a e (C C © acts
by multiplication by ca.

Clearly Jt, Λ' above are homogeneous (©, K)-schemes of finite type for the
corresponding ©'s and λ,λf are (©, K)-bundles of central charge 1.

4.2.2. More General Example. Let ΛgΛ.^r be the moduli space of data (X, x, i\
yly . . . , yt; w 1 ? . . . , ut\ where (X, x, t) E Jίg^ 1? yt e ̂ \{x} are different points, and ut are
r-jets of parameters at yt. Then (j^f, K) acts on JtgΛ.^r in the same manner as it did
on ,MqΛ\JtgΛ.^r thus becomes a homogeneous (©, X)-scheme of finite type, and
the determinant bundle λ also gets (j?, X)-action of central charge 1 . Certainly, we
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may complicate the picture by switching on more x's together with a vector
bundle.
4.2.3. For a (©, K)-scheme Y and p e Y denote by ©p the stabilizer of p; if λ is a
(©, K)-bundle with central charge φO, then @p lifts to a subalgebra of @. So for
Y = ΛgΛ.lίΓ and p = (X,x,t,yi,ui) one has &p= algebra of holomorphic vector
fields on ^\{x} with zero r-jets at yt (for example, in case "̂  = ̂ 0,i;i,r ̂ e

corresponding algebra is { L _ n L _ r _ 1 ; ...}CJ^, where Ll = ίί + 1δί). Call a subal-
gebra Q C © algebraic if there exists a homogeneous (©, ̂ -scheme Y of finite type
with (©, K)-sheaf λ of central charge φ 0, and a point p e 7 such that Q = ©p.
Clearly, algebraic subalgebras are complementary to ©00 = LieK up to finite
dimensional space [i.e. both dim(Qn©00), dim(©/Q-f ©00) are finite], and does
not contain the center (Cc ©. We do not know whether there exist a subalgebra of
this type which is not algebraic.

4.3. Relation with Sato Grassmannians

The construction of 4.1 may be easily interpreted in the framework of Sato
construction [19, 28]. Consider the case, say, of Jί'gΛ (the case of m points is
absolutely similar, the same as for the moduli of 4.2.2). The points of the Sato
Grassmannian Gs are the colattices LcF = (C((ί))n, i.e. the vector subspaces such
that both LnF0, F/L + F0 are finite dimensional; here F0 : = <C[[ί]]πCF. Given a
lattice VcF (see 2.4.1) let G^}CGS be the set of L's transversal to F, i.e.
G(P: = {L: L0 F^ F}. Clearly, G(P is Hom(F/F, F)-torsor, hence a projective limit
of finite-dimensional spaces. This defines on G^F) the structure of a projective limit
of algebraic varieties; more precisely, G^F) is isomorphic to the spectrum of the
polynomial ring of infinitely many variables. These structures for different F's glue
together, hence Gs becomes an (infinite dimensional) scheme. The Lie algebra
^CEndF (see 2.4.1) naturally acts on Gs. Now we have a canonical map
Φ\M'-* Gs, Φ(X, E, x, t, I): = image of E(X) -> E( U)L^ F. It is easy to see that Φ is
embedding of schemes equivariant with respect to the obvious map <£' q» ^ so
Jί' is the 5f '-orbit in Gs.

The scheme Gs carries a canonical determinant sheaf Λ with fiber ΛL at Le Gs

equal to det(LnF0)/det(F/L+ F0) = det(L0F0->F); so A\^, coincides with λ'. The
^-action on Gs extends naturally to ̂  action on Λ with central charge 1 (see [19]).
Namely, to define the action of r e ̂  choose (A, B)eQ such that r = (A, B] mod Jf\
A(F)CV0. For LeGs choose a lattice VcV0 such that FnL = 0, β(F) = 0, and a
(finite dimensional) subspaces T, Γ C F such that V®T=VS,V@T'@L = F. Then
for any L e Gs close to L one has also the decomposition 70 T'®E ^ F, and so ΛL,
= det(F0-^F/L/) = det(Fo/7)/det(F/F + L/) identifies with the constant line bundle
det T/det T. Under this identification r acts as a 1st order differential operator δ(r)
+ tΐAττ — Ύΐ(A + B)τ,τ>. Here tr/l τ τ eCis the trace of TT-component of A with
respect to the decomposition F0 = F+ Γ, and the function tτ(A -f B}τ,τ, takes at L
the value equal to the trace of T'T'-component of δ(r) with respect to the
decomposition F= V®T®E. Now one may see that the ^'-action on λ' comes
from the ̂ -action via the embedding $' ^ $ (see 2.4.2).

In the next few sections we will study certain distinguished ^-modules and
local systems on moduli spaces. These ^-modules are just the equations on
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correlators in conformal 2D quantum field theory. The subject may be viewed as
the first step in the study of lisse representations of Virasoro and current algebras.
These representations are analogues of finite dimensional representations of finite
dimensional Lie algebras (the term "lisse" is borrowed from a ^-module
dictionary); in the Kac-Moody case "lisse" means "integrable."

What follows is a sketch of a part of a joint work with B. Feigin (in
preparation); we omitted all lengthy proofs, as well as (the most) important part
about the factorisation properties (degeneration near the boundary of moduli
spaces). We would like to stress how much this material owes to V. Drinfeld.
Above all it was his key theorem on holonomicity of the partition function (4.7.3)
that was our starting point.

4.4. From Representations to ^-Modules

Assume that a Lie algebra © acts on (Y, .£/), where Y is an algebraic variety, and j/
is an Atiyah algebra on Y. This means that we have a Lie algebra map © -̂  s$(Ύ\
hence the morphism of algebras α:U(©)-»^(Y).

Remark. Any action of © on (Y, jtf) defines a ©-action on Y, namely
®-W(Y)-^^(Y); any action of © on Y [i.e. Lie algebras map ®->/Γ(Y)]
defines the ©-action on (Y, j^y).

Now the ©-action on (Y,<$#) defines the localisation functor A [©-modules
->£^-modules by formula A(M):=^ ® M. Clearly A is right exact.

U((5)

Example. If M is generated by a single element φ subject to relations Aiφ = ΰ,
^eUί©), then A(M) is a ^-module that represents a system of differential
equations α(ylί)φ = 0.

Remark. The functor A when © is a finite dimensional reductive Lie algebra and Y
is a flag space of© appeared to be very convenient in representation theory (see e.g.

[3]).
We will apply the above construction to the situation of 4.2. Namely, let Y be

any (©, K)-scheme of finite type and λ be a (©, K)-bundle on Y with central charge
d φ 0. Put ̂  = jtfc = clc'stfλ, 2^ = &c (here c e C is a fixed constant). Since the
dimensions of our varieties are infinite one has to worry a little and consider the
continuous modules only. A ©-module M is continuous iff the stabilizer of any
z e M is an "open" subalgebra in © a ^-module is continuous iff any of its local
section is K'-invariant for a sufficiently small "open" subgroup K' C K. Denote by
©c-mod the category of continuous ©-modules of central charge c, and by ^c-mod
the one of continuous ^-modules. We get the functor A : ©c-mod—^c-mod.

Let p e Y be a point, ©p C © be its stabiliser, and mp C (9p be its maximal ideal.
One has the simple

4.4.1. Lemma. M/©pM = A(M)/mpA(M) (i.e. the fiber at p of A(M) as a @p-module
coincides with the coinυarίants of M with respect to &p).

4.5. Descent to Finite Dimensional Quotients

Let K' C K be an "open" subgroup that acts on Y in a free way, and πκ,: Y-*K'\Y be
the projection (so K'\Y is a finite dimensional variety). The sheaf λ descends to the
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same-noted sheaf on K'\7, hence we have the category &c~mod(K'\ϊ) of
®c-modules on K'\Y together with inverse image functor π^:^c-mod(K'\Y)

(:=0c-mod(Y)), π+(R) = @γ <g) R. In fact, π+ defines equivalence

between &c-mod(K'\Y) and the category (£ιc,K')-mod of K'-equivariant
^-modules on Y (here a K'-equivariant ίδ^-module is a ^-module with K'-action
such that the corresponding Lie K'-action coincides with the one induced by

4.5.1. Remarks, a) If K' does not acts freely, then K'\Y is a stack, and, being
defined in an appropriate way, a ̂ -module on K'\Y is again the same as a ( ĉ, K'}-
module on Y. b) In fact, the descent of ^-modules usually does not require the
group action. Namely, if S, T are smooth varieties and π:S-»T is a smooth
morphism with connected fibers, then π4" :^Γ-mod-»^s-mod is a fully faithful
embedding, π+(@τ-mod) consists of ̂ -modules generated by sections horizontal
along the fibres of π. This remark implies, in particular, that any finitely generated
continuous ^-module on Y comes from a certain (finite dimensional) quotient
K'\Y.

Below we will confine ourselves with the pure Virasoro case © — Jί?m. Our
©-modules M's will be integrable with respect to ©00 (i.e. for any z ε M one should
have dim ©00z < oo). This implies that M is naturally a (©, K")-module, hence A(M)
is a (βc, K")-module, so A(M) descends to (the same noted) ^-module on KU\Y; if
M was finitely generated, then A(M) is coherent. Moreover, we have Kr = K/Ku

= Gmm, and Δ(M) is Kr-monodromic along the fibers of projection KU\Y-*K\Y.
Note that in case Y=^Jίg^m one has Ku\Y = Jί^m.l, K\Y = Jίg^m, hence we get
(twisted) ^-modules on moduli spaces.

4.5.2. Examples. Assume that m = l . Let MCth be a Verma module: it is an
Jί?c-module generated by v e Mc h subject to relations Ltv — 0 for i > 0, L0v = hv (here
Li : = ti + ldte &c). Then A (Mc> h) as ^c-module on Jίgt 1;lis generated by the single
section v subject to the relation L0v = hv (note that L0 is a Euler vector field along
the fibers of MgΛ.Λ -»^> ι) In particular A(MCt 0) descends to the free ^c-module
on Jtgt !. Let Mc o be the quotient of Mc 0 by the submodule generated by L_ λυ
(hence Mc 0 is an ^-module induced by the trivial representation of ©0). Then
4.5. l .b implies that Δ(MC j 0) descends to the free ^-module on Jig.

4.6. Lisse Modules

The irreducible ^-modules Lcjl are just the quotients of Verma modules by
maximal submodules: Lc^h = MCίh/NCth', the irreducible J?c

m-modules are tensor
products LCιh = LCthί®LCth2® ... ®Lc^hm. We will be concerned with the following:

Problem. When A(LCίh) is lisse, i.e. is a vector bundle with λc -twisted integrable
connection?

4.6.1 . First one should chat about singular supports. Let M be a finitely generated
(c^00-integrable) ^.-module. One defines its singular support SS(M)C^* just as
in the usual finite dimensional situation. Namely, take RcM to be a finite
dimensional subspace that generates M; it defines the filtration M^U^ on M

'
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[since \JJVi-ί=Si(&)'], generated by R = Gr0(M). Put
as the support of Gr.(M); this definition does not depend on the choice of R.
Clearly SS(M)CJSf^0; it is Zariski closed and adJzf00-invariant. An easy linear
algebra exercise shows that these properties imply that SS(M) is either 0 or
coincides with one of the vector subspaces ̂  C <£?*, where ̂  = (Lί5 L f + 1? . . . } , i ̂  0
/ςn $7> _ 0> (jύ _ q? \
^SO <SQ — =.£ oθs <S- 1 ~ °Z O/

4.6.2. Examples. If M is generated by a single vector y, then SS(M) is given by
equations Symb(P) = 0, P e Ann(M, v); here Ann(M, ι;) - {P E U£(^) : Pv = 0}, and
Symb is a higher order term. Hence SS(MC>Λ) = J2#05 SS(Λ?Cf0) = ̂ . More
generally, let TV C MC>Λ be a submodule generated by 0we singular vector VN (LtvN = 0
for i>0). Then SS(MC th/N) = ̂ Q. This follows from the fact (communicated to us
by D. B. Fuchs) that vN = PNv with Symb(P]v) equals the power of L_l (see [12]).

4.6.3. Definition. Call M lίsse if SS(M) does not equal ̂  or ̂  (i.e. if

Commentary. An infinite dimensional version of Gabber's integrability theorem
[30] would imply SS(M), being a vector space, should be an orthogonal
complement to the Lie subalgebra of 5£ . Hence "lisse" above should really mean
that SS(M) = 0, which explains the term. It seems that it is really a fact, but we could
not prove it.

4.6.4. Remark. Consider the irreducible module Lc h = Mc h/NCt h. Then Lc h is lisse
iff the following condition holds: there exists P(L_ l 5 L_ 2 , ...) such that PvεNCίh

[i.e. PeAnn(Lc>hι;)] and Symb(P) is prime to L _ p
We define lisse ^m-modules by the similar condition SSc Π^-2 Clearly, if

M l 5 . . . , Mm are lisse ^-modules, then M\ (x) . . . ®Mm is a lisse ^m-module, and the
converse is also true.

4.6.5. Theorem. Assume that our Y is homogeneous. If M is a lisse ^-module, then
A(M) is lisse.

Sketch of the Proof. Consider the case m — 1 the general case is similar. We will
show that the singular support of A(M) coincides with the zero section of the
cotangent bundle Ω(Y). Look at the moment map for the ^-action μ : Ω(Y)-+£P*.
It is easy to see that SS(A(M)) Cμ~1S$(M)Cμ~ \&± 2). But the maximal involutive
subvariety of μ~i(0>±2) ^s zero> since ^*_2 generates JS? and the <£ -action is
infinitesimally transitive. This implies that SS(J(M)) = 0 due to the usual
integrability theorem for SS of ^-modules; note that A(M) comes from a finite-
dimensional quotient, hence the situation is actually finite-dimensional.

4.6.6. Corollary. Let Q C © be an algebraic subalgebra (see 4.2.3) and M be a lisse
(5-module. Then dimM/QM<oo.

The proof follows directly from 4.6.4 and 4.4.1.

4.7. Classification of Lisse Modules

As follows from, say, [12] the maximal submodules NCth of Verma modules MCth

are either 0, or generated by one or two singular vectors. One has also the following
lemma, well known to specialists on Virasoro algebra (see [6]).
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4.7.1. Lemma. JVC ? 0 is generated by two singular vectors iff c = cp>q = ί
— 6(p/q + q/p — 2) for certain rational prime integers p,q, \<p<q.

4.7.2. Lemma. LC;0 is lisse iff c is satisfies the conditions of 4.7 .1.

Proof. If NC^Q is generated by one singular vector, then SS(Lc>0) = J*?o~ (4.6.2).
Assume that NCtQ is generated by two singular vectors (one of them is L_ vv). Take
P(L_ l 5 L_ 2 , ...) such that P vENCί0\l](^)L_iv of minimal degree. Then
Symb(P) is prime to L_ l [otherwise take R e U( J^) with SymbP = (Symb JR) L_ !
wehave(P- JRL_1)^eΛΓc ? 0\U(J ?)L_1ι;anddeg(P-^L_1)<degP],andwemay
apply 4.6.4.

4.7.3. Corollary. // c = cp>q, then Δ(LC^) is a vector bundle with a λc -twisted
connection on the moduli space of curves Jiq.

The ^-module Δ(LC 0) is just an equation on the partition function in the
minimal theory of central charge cp^φ [6].
4.7.4. Now for c = cptq consider the following list of /ι's:

q P

where lgra^g-1, l ^ n ^ p — 1.
Clearly ^^=0, one has hmtn = hq-mtp-n, and the list contains

different /z's.

4.7.5. Theorem, a) T/ie following conditions for an irreducible module LCίh are
equivalent:

(i) Lc h is lisse.
(ii) NCth is generated by two singular vectors and occurs in Mc^h only (i.e. no

other Mc>h, contains LCth as a subquotient).

(iii) The invariant space L(

C^'L4"") is finite dimensional.
(iv) c = cpjq from 4.7 M and h = hmn from 4.7 A.
b) ^4πj; /zs5^ 2?™-moάule is a finite direct sum of tensor products of lisse irre-

ducible J£c-modules.

4.8. Local Systems on Moduli Spaces

Let us consider the case Y=Jfrgm. One has the following:

4.8.1. Lemma. The ζ$c-module ^(Lc>Λl(g) ... ®Lc>flm) equals 0 if among Lc^s both
lisse and non-lisse irreducibles occur.

It readily implies

4.8.2. Corollary. Consider the obvious projection π:^)mι + m2->^mι. Let LCιhι,
ϊ = l, . . . ,m l 5 be lisse ^c-irreducibles. Then we have the canonical isomorphism

π4(J(LC ι h l®...<g>LC t ΛJH^

So we may insert the L's with /ι = 0 at any additional points, and the
coinvariants - the fibers of the corresponding ^-modules - will not change.
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4.8.3. Now - for a moment - let us fix a point p = (X,xbti)£j^9ίm. The fiber
Δ(LC > h l ® ... ®LC thm)p is the space of coinvariants of ̂ (X^x^C^™; such things
are familiar in automorphic representation theory (the automorphic represent-
ations are representations of "adelic groups," i.e. the product of "local" ones having
the vector or functional fixed under the "global" group). This analogy was also
noticed by Witten [29]. One may exploit this in a slightly different direction to
construct the "automorphic proliferation" functor that replaces tensor products in
a finite dimensional situation.

Namely, assume that {xί} = SuS'5 SnS' = 0; let &$,&$, be the products of
corresponding Virasoro algebras (so j?m is &s x &s, with centers identified); let
& = #'(X\{xi}) <+ ^s x &s' be Λe subalgebra of the global vector field (extended
by a 1 -dimensional center). Clearly both projections

have dense image. One has the adjoint functors

(here ^-modules are arbitrary ones, and ^-modules are j?soo-integrable) v^ is
just the restriction, and vs+(M) is the largest submodule of M on which ^-action
extends to ^-action by continuity. We may do the same for S' to get vs, + , v^ . Now
define the proliferation functor Ps> s: j?s-mod— >Jί?s<-mod by formula Ps,tS(M)
= vs, + ΌvsM; here D means dual ^-representation (arbitrary linear functionals).
Clearly M®PS/S(M) carries canonical (universal) ̂ -invariant linear form.

The above results imply

4.8.4. Lemma. Ps> s transforms Hsse modules to lίsse ones.

Example. Let X = JP1. If S = {0}, S' = {oo}, then PSs'(
M) is a contragradient

module; if M is irreducible, then PSS(M) *s isomorphic to M. If S = {0}, S' = {1, oo},
then Pss, may be described explicitly (for lisse modules). In particular PSS/(LC>0)

= ®Lhtnn®Lhnιn, the sum runs through - - -- representations of list 4.7.4.
mn mn 2

The bundles on ̂ 0,s that correspond to irreducible lisse J^3-modules are either 1
dimensional, or 0 ones.
4.8.5. So for any lisse ^c

m-module M we get a lisse ^-module on Jίgm. ^ As usual,
we may consider the sheaves of their horizontal sections (or solutions). These are
local systems on the fibration λ' over ^>m;1, where λ' is λ with zero section
removed, that have monodromy exp(2τπc) along the fibers of λ'. Equivalently,
these are representations of π^/Γ), which is a central extension of the Teichmuller
group τiι(Jίg > T O ; 1) by TL\ the generator of the center acts by exp(2πz'c). It would be
very interesting to find these representations explicitly; the specialists seem to
know only the cases of ̂ 0? 4. 1 and Jίγ ^.Λ. The only thing we have at the moment is
a very plausible conjecture on their ranks. It is closely related to the description of
these local systems near the boundary of moduli space, and it is here that what
physicists call "operator algebra" comes into play. We refer the reader to the above
mentioned paper in preparation on these subjects.
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5. C°°-Coπnections on Determinant Bundles

In this section we will consider the analytic situation. We will see that 2.3 helps to
construct a canonical C°°-connection Vλ on λE from C00 -connections VE on E and Vω

on ω, that has the curvature prescribed by the Riemann-Roch-Grothendieck
formula. This construction is, in a sense, the once integrated version of a theorem
by Quillen, Belavin-Khizhnik, Bost [18, 5, 9], generalised recently by Bismut-
Gillet-Soule [7] to higher dimensions. To find the exact formula for "detίί" one has
to integrate twice . . . .

In what follows Ω°x° -ϊ-> QQ

x

l -̂  . . . will be the δ-resolution of Θx, so Ω°x° = <gx

is the sheaf of C°° -functions, and Ωx

q is the sheaf of (0,g)-forms; the bicomplex Ωψ
= Ωp®ΘχΩ

0q has differentials 3,3 and the total differential <3 + (-l)pδ. These are
(super) commutative dg-algebras. In the relative situation we may consider the
relative forms QQ

x

q

jS which form a ^-resolution of &x®Gsπ~lc$s, and Ω^fs

5.1.

Let ̂  be an K-Atiyah algebra on X. Put <#R: = (#x®βχR and denote by <#jtf the
algebra which is the push-forward of j/ [see 1.1.5(i)] by the map

the action τ(/(g)r) = ε(τ)(/)®r + /®[τ, r] of j/ on %R. We have the
exact sequence of sheaves

A C00 -connection on $0 is just a connection V on Ήstf. Clearly, C°° -connections
form Ώ10(χ).R-torsor which has global sections. The C^-curvature of V is Cy = Cy1

+ Cϊ°eΩ1

x

1®R@Ω20®R, where C20 is the usual curvature (see 1.1.4), C20(τ1,τ2)
= [F(τι), P(τ2)] ~ F([τl9 τ2]), τ e ̂  and C1 1 : = dV, C^(τ, τ) = τ(V(τ}}. We will say
that V is a (1, l)-connection if Cp° = 0.

5.2.

Assume that we are in a relative situation of 1.2. Let stf' be a π-algebra. The algebra
'̂, hence j/', acts on the complex Ώxfs by the formulas τ(ω):= Lieτ(ω), χ(ω)

= χ J ω, τ e "̂π°, χ e ^~π~
 J , ω e Ω'xfs. Define the dg-Lie superalgebra Ήjtf' to be the

push-forward of J3/' by the map Ωx/s c+ Ω'x*s and the above action. Hence <&£#' is
an extension of jtf'/Ω'x/s[2] by Ω [̂2]. Clearly, π(^s/') : = R°π^^' has a natural
structure of a ^s-Atiyah algebra, and we have the canonical isomorphism

A π~1fi?s-linear section Γ: j^7Ω^/s[2]->^j/' which commutes with the
differential will be called a C00 -connection on <s/'. Such V determines a C°°-
connection π(Γ): = Λ°πψ(F) on π(j/').

5. 3. Formal Parametrix

Let us return to trj/£. Let VE be a C°° -connection on E (i.e. a connection on j/£) and
Pω be a connection on ω. We are going to construct the C°°-connection V = VvE,vω

on ^ tr^. This will be done using the formal parametrix.
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5.3.1. Let F be a vector bundle. Put ^mF :=\im^mF/^^F(~iΔ); hence the
elements of ^^Θx are formal series l'

A C^-connection F on F canonically defines the derivative P(2

along the second variable: in coordinates, if V = dt + A(t, ί), then V ( 2 ] = dt2

+ Σ ̂ (ίi, ίi) x (ί2 -ίjVϋ. If G is another bundle, then V(2} also acts on ̂ G|x]F
- G® («Ίx|f). Now we may define Id£t VE e %E& F* to be the (only) ̂ -horizontal
section that equals id£ being restricted to A (here VE* = %). In the same way we have

®2, and, localising off Δ, V™\<g&-*<g&ω, where

Define Z7P e#^ to be the (unique) solution of the equation PJ2)(/7P )-f/7p

^ ω

= 0 with a pole at Δ. Equivalently, if veKerPj,2), vφO, then 17Pω = v / J v ;
f2 / f l

here J v is the solution of equation rf(2)jv = v that equals 0 at A Finally,
f i

put Π'^Π^ IdE^eΉ&E^'.^yE^E^Δ). This /I is called the formal para-
metrix for VE, Vω\ we have δ(Π) = 1 e^C^7®^, so /I defines a section % of (5,
sπ(d) = d(ί}Π (derivative along the first variable).
5.3.2. Let us describe sπ more explicitly. Consider the expression

, , A.(x) A- άx) A(x
P(x,y)=

(y-χr (y-χ) y-
where At(x) are n x ^-matrices, and apply to it a gauge change (α(x),

n. We get

= - + +(y-x) (y-xY y-χ

where Fj are certain universal isobar differential polynomials. Then, if we have
connections Vg- (where 3~ \ = ω~v\VE with potentials Φ^ dx, ΦE dx, then the section

is given in coordinates by the formula

y-:

}dy.

(φ φ)
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For example, we have [for the scalar matrix α_ t(x)],

where

α _ 1 = α'-1α_1(α(x));^o =

+ α'~ x(x) α_ !(α(x)) 5

So, for connections Φ£, Φ^, the section

^F^^
is given by the formula

x(i^-T2^~i^ΦE + iΦ^-iΦ|)]). (5.3.2.1)

Remark. The described above F{ are the unique invariant differential polynomials
giving the desired section.

5.4. C00 -Connection on %ir^E

Return to the relative situation π : X-+S. Let z denote a local coordinate along the
fiber of π, dz — a fiber wise ^-operator (respectivbly, d- the full 5-operator on X). Let
FΓ, P£ be C°°-connections on 3ΓX^ E respectively, with (l,0)-components (locally)
yE,'d° = dz + ΦEdz, 7τjez = dz + Φτdz, Φ£eMatn. Vτ induces connection Vω on
ω = ωxfs with ^:d°z = dz-Φτdz. Let C(?E) e Ωl

x> * ®Ma.t» C(VT]= -C(Vω}eΩ^1

denote the (l,l)-components of the curvature and C(VE} = dΦE, C(Vτ} = dΦτ

[respectively, C(VE) = dΣΦE, C(Vτ} = dzΦτ} - the image of C under the projection
Ωi>1->ω®Ωj'1 (respectively, Ωi'^Ω^J). Finally, put cί=tτC9 with the same
meaning of" and ~. c1 is the (1, l)-component of the first Chern class.

Put for brevity ^E/S^^E/SI and let Ή^E/S be its push-forward by a map
ω->Ω^5. The construction of the preceding subsection gives the section,

5.4.1. Lemma.
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Proof. From (5.3.2.1) we have

5.4.2. Now we can construct the desired C00-connection on ^iτ

(^E. The last
algebra is the complex

-2 -1 0

We must construct the section sv of the evident projection of this complex to

1 0
We put

(5.4.2.1)

where ε:^Eίπ-^^π is the projection, πΫE\,stfE^>Er\.dE®y>x, πVF(a) = a—
From Lemma 5.4.1 it follows directly that the so-constructed map

sv\^E^^ir^E commutes with differentials in s^E^^s^E, i.e. defines the C°°-
connection on # trj/£.

5.5.

Proposition. Lei cp fee ί/ιe (l,\)-component of the induced C00 -connection V on
π(^tΓj/£/s) = ̂ j/det/^£. Tfien Cp is expressed by the Riemann-Roch-Grothendieck
formula,

Proof. To compute the curvature of P, we shall work with ^-resolutions of
stffr tr&/E. Let ̂ ^£,π denote the push-forward of ̂  π by the map ^E/S^^E/S®^X'
Let z; e ̂  and i; e ̂ J^£) π be any of its non-holomorphic lifting. The construction of
Sect. (5.4.2) extends in the evident way to δz-resolutions of s$E, trj/£, and from
Stokes formula it follows that
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On the other hand we have

(1) dsdv = [d,s]dv=Ϋωίe(M)l-cl(Vτ) + %ci(l

+ Tr[πF>l (-c(P£)-ic(PΓ))] [from (3.5.4.1)];

Hence f /

farj+^cά

-f Tr[(εiJ_jC(P£))(C(P£)+ iC(PT))]

f Γ"= l\εv-i\—Cι(Vτγ + %sl(
π (_ L I Z

5.6.

Remark. It seems very probable that when P£, VΎ arise from hermitian metrics on
E, &~xι& then π(P) is just the connection associated with the corresponding Quillen
metric on λE, [18].

6β Logarithmic Singularities

6.1. Atiyah Algebras with Logarithmic Singularities

6.1.1. Let Jf be a smooth variety, Dc^T a smooth divisor. Let ^XίDC^x be the
subalgebra of vector fields that preserve D. In the case dim X = \ 3~x D = 2ΓX( — D). If
j/ is an Atiyah algebra over X, put j/(logD): — ε~1(3r~x D)C£/.

If (j/,-R), (β>S) are two Atiyah algebras, then we call a morphism with
logarithmic singularities at D, or simply a logD-morphism, between j/ and ̂  an
^^-linear Lie algebra map /: j/(log£>)-»^(logD) such that /(jR)cS, /|Λ: R->S is
an algebra map and the induced map ,^/R -+&/S is an identity on &~x D. So if D = 0,
then / is just the usual morphism of Atiyah algebras.

6.1.2. Example. If s/ = j/COχ, & = j/E (E is a vector bundle on X) then a logD-
morphism .$/(logD)-+jtfE(logD) is the same as an integrable connection on E
with logarithmic singularities at D.
6.1.3. Let E be a vector bundle on X. Put

@E(logD): - X J^E ~{de &E: dE(JΈ) C JΈ for all i ̂  0},
i ^ O

where JC(9X is an ideal defining D (cf. 1.1.1).
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Clearly, $>EtDC2E is a subalgebra filtered by ^E(\ogD)t: = ̂
!

Eίk.= JkS!

Ek. From now on assume that X is a curve. Then local sections of

D) in a neighbourhood of xeD are just polynomials (with matrix coeffi-
cients) of ίδt, where t is a local coordinate at x.

Similarly, put

(cf. 2.1.1.2). We have

Note that ^(-D)®'1 =ω(log£)): = the sheaf of differentials with logarithmic
singularities at D. Clearly, 0>E(\ogD) is ^(logD)-bimodule, cf. 2.1.1.2.

The same definition works for arbitrary Atiyah algebra j/; thus we get the
^(logD)-bimodules, ^(logD) etc. (cf. Appendix A2.1). One has of course

6.1.4. Functorίality of ^(logD) with Respect to logD-Morphisms (cf. 5.3). Let
/: ,s/(logD)-^(logD) be a logD-morphism. Then it canonically induces the map
^/.^(log£>)-^(logl>). In fact, since ^/(logD)|x_D-j3/|x_£), &f is defined on
X — D because ̂  is functorial with respect to ^/ (cf. Appendix, A 2.1). We can
extend this map to the whole X and have only to verify that ^(logD) is mapped
into ^(logD).

To see this we shall write down the local formulas for 0*f\x-D. For simplicity
we'll restrict ourselves to the case s# = j/£, ̂  = jtfF, rkE = n, rkF = m. Let us follow
the lines of 5.3.2. Consider the expression

Σ Afc) dy(y - x)1 ~ 1 , Afc) e Matw ,
i < i o

and perform with it a gauge transform (5(x)eGLm):

i < i o \ί<j<io

where

(6.1.4.1)
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Now choose a local coordinate x on X, hence (x, j;) on X x X, and local
trivialisations of £ and F. Suppose that /: s$E-+ sέ¥ in this local coordinates has the
form

f(a(x)dx + A(x)) = φ) Φ(x) + f(A) (x

φ) e 0J, .4(x) e End(0J), Φ(x),

Then, if

Σ

we have

(6.1.4.2)

I f/ has logarithmic singularities at D then one easily sees from (6.1.4.1) that the
last formula defines a map from ^(logD) to ^p(logD).

In the case of an arbitrary Atiyah algebra the same formula works.

6.1.5. Example. On ^ l f _ 2

6J.6. Residue of a logD-Morphism. Let (^,jR), (^,S) be Atiyah algebras and
/: .^(logD)->^(logD) a logD-morphism. Let Jf(D) denote the push-forward of B
by means of S c> S(D), where S(/)) = S(g>0(Z)). Then / extends canonically t o f : , s /
-*&(D\ The composition ̂  -̂  3$(D)-+^(D}/^ = S(D}/S equals zero on ̂ (logD)
and defines the map Fx/Fx(-D) = rf/jtf(logD)-+S(D)/S = S®&'x/&'x(-D)i hence
an element (which we call residue of /) res(/)= Σ res(/)χe ® Sx- Clearly,

xeD xeD

res(/) = 0 iff / is induced by a morphism of Atiyah algebras sέ-^$.

6.1.7. Example. For F:^(logD)-^^/£(logD)res(F)x is just the operator
F(ί<3f)xeEnd£x, where t is a local coordinate at x

6.2. Functoriality of Determinant

6.2.1. Let π : JΓ-»S be a family of smooth proper curves, iD:Dc+X a divisor etale
over 5. As usual, put ω = Ω^/s.

Clearly, all constructions of 6.1 extend to this relative situation. In particular,
for every Atiyah algebra si on X one defines the relative Atiyah algebra j//s(logD),
the bimodule ^/s(logD) etc. Also put «^"π,s: = «^"πn«^D, j/π(logD): = j/π

n^(logί)). Clearly, these objects are functorial with respect to logD-morphisms.
6.2.2. Let (j/?^), (̂ , 7) be Atiyah algebras over X and /:^(logD)-»^(logZ)) a
logD-morphism. We may apply the construction 6.1.6 fiberwise and obtain the
section res(/) eTD:

Lemma. For every αej/(logD) one has [res(/),/(α)1)]=0, where f(a)D

e£S\D:= ΪD(0S) is the restriction of f(d) to D [cf. 1.1. 5(v)].
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Proof. Choose local coordinates (ί, s) on X such that t (respectively s) is a co-
ordinate along a fiber (respectively along S) and a local equation of D is t = 0, and

local connections stf = ϊ7'x®R, ^~^X®T. In these coordinates / has the form
f(adt + bds + r) = adt + bds + aΦ + bΨ + f(r\ Φ = Φ/t, Φ holomorphic. Put

rtft : = [3ί5 A], As : = [3S5 .4] for A e T or R. Since / is a Lie algebra morphism, f(rt)
-/Mί = [Φ>./M]> [Φ,ϊ/] = Φ s-¥ ί

ί. Taking the residue at f = 0, we get
[resΦ,/(r)]=0, [res Φ, <F] - res Φs, hence [resΦ, (a
(α(0,s) = 0). D

6.2.3. Corollary. Suppose that B has trace. Then all functions tr res(f)1 e @ D, ί^
are locally constant.

Proof. By definition of trace, 1.1.7 we have

0 = tr[res(/)ί,/(α)J)] = ε(/(fl)I))(trres(/)ί) for every

Since local sections ε(f(a)D) generate the whole tangent bundle 5̂ , trres(/)1 is
locally constant.
6.2.4. Let us calla(π,D)-algebra jtf' on X a filtered dg-Lie superalgebra together
with a morphism ε^ ^'^^D^C^x/s0^ ,D~*^π ,D) satisfying axioms 1.2.1
with ^π replaced by SΓ^n One nas a functor ^/'^ -^tβ/D:(π-algebras)-^ ((π, D)-
algebras) (pull-back by ^D-^^π) [cf. 2.3.2 (ii)].

Let jtf' be a (π, D)-algebra and Ά an dv-Atiyah algebra on D. Define a (π,D)-
algebra £/(£)' as follows. Put ̂ (Ά)^^1 for f φ O , -1, ^(J)"1^'^"1, where
j : ω^ω(logD). Next, put j/(^)° to be the fiber product of j^° and ̂  over ^D. Let
d~ 2 : stf(£y2-+d(£)~ 1 be induced by the de Rham differential. Finally, let ά~ 1 be
the product of the map <stf(Ά}~l-+stf® induced by d^1 and the sum of residues
jtf(£Γ1^^(&Γl/^~ί=<^ogD)/ω-*®D ^ & For a π-algebra #f\ we'll denote
<vf'D(Ά) simply by <s/'(£).

6.2.5. Lemma [cf. 2.3.2 (ii)]. One has canonical isomorphism of Gs-Atiyah algebras

π'Q is the direct image by etale map π|D, 1.1.5(v), and tr:n^(9D->(9s.

Proof. Consider a dg-Lie algebra <$$' -=s$Ό x <?DQ. One easily sees that RGn^
— π(j2/') + π. J, and a natural inclusion jj ' -+s$$ induces on R^n^. the map tr^.

6.2.6. Let (#/, R), (3$, T) be Atiyah algebras with trace on X, f : j^(logD)-^ J*(logD)
a logD-morphism such that

^τ'f\s = n tτR (6.2.6.1)

for certain ne(C.
6.2.6.2. Put

By 6.2.3 μ(/) is a locally constant function on D. Put N = Nx/D = i^x/s to be
the normal bundle. Let μ(f)jtfN denote an GD-Atiyah algebra on D equal to
μ(f)\Dl

J^N\Dί

 on a connected component DtcD.
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6.2.6.3. For r e .R^ : = ϊ'JjjR, put

tr/(r): = tr r(/(r)-res(/)).

Lemma, tr^ is a trace on the Atίyah algebra jtf\D.

Proof. For αej/l^, reRD> we nave tr/([^r]) = trr([/a?/r] *res/)
= trτ([/α, fr - res/]) = ε(a) (trr(/r res/)) = ε(0) tτf(r\ since by 6.2.2
[/fl,res/]=0. Π

Now we can formulate the main result of this section.

6.2.1. Theorem-Construction. / induces a morphίsm of π-algebras

Proof. Put Ά = trj d\D - μ(f)^N. Let φ ~ x : tr^D

 1 ->tr Jp)~ 1 be a map induced by
^//s^/s(log£>)ι, -2^^/s(log£)ι,-2, cf 6-1-4. By (6.2.6.1) this map equals the
multiplication by n on ω. Put φ~2 : @x-+@x to be the multiplication by «. Finally,
j3/π D acts naturally on N and also maps to J/\D. Hence we have maps jtfπ D-+ £ and
f'.d^D-+3i^D. Let φQ:^D-^^(Ά)° be their fiber product. Using 'the local
formula 6.1.5 one easily sees that φ' commutes with a differential and thus defines
the desired map. Π

6.2.8. Corollary. One has canonical isomorphism of Θs-Atiyah algebras

π(tr^) ̂  n - πCW) + tr*

This follows from 6.2.4.1 and 6.2.5.

6.2.9. Corollary. Let Ebea bundle of rank nonX with integrable connection V with
logarithmic singularities along D, and L an arbitrary line bundle on X. Then

where v(P) = t

Proof. Apply 6.2.7 to a logD-morphism j/L(logD)->^/£ΘL(logD) induced by V '.

6.2. 10. Remark. This formula in some respect resembles the Lefschetz formula.

6.3. Compatibility with Mumford Isomorphism

6.3.1. Consider the following situation

X' - - - >X

where π, π' are families of smooth proper curves, / a covering of degree n ramified
at the divisor iD: D c> X etale over S. Put D' = f ~ 1D, ω = Ω^fs, ωj=ω®j, ω' = Ωjf,(S,
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For line bundles j£f, ££' over S the notation J2? ~ j^7' will mean an isomorphism
between Atiyah algebras j/^ = j3/^. More generally, for ceC J^@c in such a
formula will mean cj/ in a corresponding formula for Atiyah algebras, cf. 1.1.6.

If x E D with local coordinate ί along x, xΈ/ ~ *x with ramification index β, then
the local coordinate at x' is ί1/e. On the sheaf f*(9x, arises a connection P with
logarithmic singularities along D induced by the trivial connection on &x,. The

spectrum of the operator Ϋ(tdt) at x is equal to <-,α = l, . . . 5 e — 1 >. Thus,

H Σ 1

-

since- V - - - l = _ , c f . 6.1.7.
2 a = ιe\e J 12e

Hence we have from 6.2.9,

6.3.2. Lemma.

6.3.3. Corollary. // F is a line bundle on X such that F\D^ΘD, then

Proof. Again use 6.2,9.

6.3.4. Lemma. A^j^/l^detπ^Λ^ 12e , cj = 6/2 —6/ + 1.

Proof. Since ω/(logD') = /*ω(logD), we have by a projection formula

whence from 6.3.3 [since ω(logD)\D = ΘD],

On the other hand we have the exact sequence

0 -» ωj^ (ω(log D)X -» C?X/Φ^( - Ό) -̂  0 ,

12e

and det ̂ x/^x( -jD) - ND

 2 , whence

^ωJ ~ ̂ (ω(logD))J '

and an analogous formula for Λωυ. Besides, we have n=^e and

Substituting this in (1), we obtain the desired equality.
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6.3.5. Proposition,, Diagram

_ l - e 2

/J ̂ T -̂

12e

where the vertical arrows are Mumford isomorphisms 3.1.1 and horizontal-
isomorphisms 6.3.4, commutes.

Sketch of the Proof. Note that 5̂  acts on (ω(logD))J via the Lie derivative, so we
can define a (π, D)-subalgebra ^j'[£>]C

tW('co(logf>))J?i) that coincides with 3~πD in
degree zero, cf. 3.1. One easily sees that the Mumford morphism (3.1.1) induces the
morphism of (π, D)-algebras,

(1) cj ^'l[D]->^Λ

that after taking π gives the isomorphism

) — ^(ω(logD)) J D

Similarly, let <β^[D] be a (π, D)-subalgebra of trj/Λ(oAlogD,))J>D that coincides with
2Γπ D in degree zero and comes from the action of &~π, D, on (ω^logD'))7 and the map
'^π^-^/^^π'.D' The map 6.2.7 induces the morphism

,e2-! ,

[cf. 6.3.4, (1)]. Now to prove our compatibility we have to verify the commutativity
of the square

.. (2), .., / v^2"1 ^c - n ^1[jD] > 6-. tβ/ltl)] ( CjΣ ~~^

(1) (1)'

6J.6. Remark, it is probable that 6.3.4 will help to write down differential
equations on Mumford forms for families of curves with given ramification over
P1 generalizing 3.2.

6.3.7. Problem. The Mumford isomorphism is true not only for Atiyah algebras
but also for corresponding sheaves: λωj = λc^ see 3.1.2. It would be very interesting
to establish an analogous stronger version of 6.3.4:

;12Γ/e_ ;12n//e Λ^π NΣ(l~e^) Πeλω,j —λωj •αetπ^v ,

cf. 2.7. Of course, the corresponding compatibility 6.3.5 should hold.
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Appendix. Local Riemann-Roch for c t

Our local Riemann-Roch is a canonical isomorphism between certain Ω-exten-
sions. We will start with the definition of terms in the Riemann-Roch formula.

AL (9-Bilinear Ω-Extensions

These correspond to Chern classes in Riemann-Roch. Let j/ be an JR-Atiyah
algebra.

Definition, a) An Ώ-extension j/' of (<z#,R) is called (^-bilinear if
[ l-i.-i:^"1®^"1^^'2^* is tfVbilinear.

b) An orthogonal Atiyah algebra is a triple (j/,JR5(,)), where (jtf,R) is an
Atiyah algebra, and (,):R®&χR-+(9x is a symmetric $x-bilinear ^/-invariant
pairing [i.e. for ae.tf, r 1 ,r 2 e J R, we have ( r ι , r 2 ) = ( r 2 , r l ) , £(«)(r1,r2) = ([iz5r1],r2)
+ (rι,[α,r2])).

An $z-bilinear extension j/' of (j/,jR) defines on (•£/,#) the orthogonal
structure (,)^: namely (,) t < 2 / is the pairing induced by — i[,]-ι,_ι on
,Q0ll/s£I2=R. Clearly, both $x-bilinear extensions and orthogonal Atiyah
algebras form a category, and (j#Γ, j/,jR)~ ->(j/,jR, (,)./) is a functor. We have

( 5 )jtf 0 ( S Λs/'? ( ? ),£/ + jtf ' = ( ? )atf "+" ( •> ) tQ/'5 ( 5 )λ J^" ~ ̂ ( ? )j/'

ALL Claim. 77ns functor is an equivalence of categories.

Proof. Let s#' be an ^^-bilinear extension of ^/. We will write ( ,) : = (,)< Q /~. for
brevity. Define an admissible splitting of j</' to be an ^-isomorphism

that splits the filtration j/"1 (hence sΩι=idβι, ...) and
χ/sA.ΩχιS®R) with respect to the scalar product

{,} : = s*[ ] _ l s _!. Note that this {,} does not depend on the choice of admissible
s: namely, it is given by formulas (here χe^/s, reR, v e Ω χ / s ) :

An admissible splitting s determines a relative connection Vs on
(:= ̂ -linear section 7:^x/s-^^ l s ) : F s = s\^x

A 1.3. Lemma, si— »(^ is 1 — 1 correspondence between admissible splittings and
relative connections on ̂ .

Proof. Define the inverse map V\-*sv as follows. First, define sγ\^x/s.
Choose any s:^x/s-^^~1 such that smodΩ^P, and put sr(χ) = s(χ)
— JT [s(χ)5 s(χ)] _ 1} _ j χ~ l. It is easy to see that the so-defined s7 : ̂ x/s-+^~ 1 is the
only $x-linear map such that SpmodΏ 1 ^^ and [ ]-ι,-ι is zero on s7(^~XfS).
Hence s7(^XίS)®ΩXfS is a hyperbolic pair with respect to [ ] _ l _ I P In particular
[]-ι,-ι is non-degenerate on Sp(^χ/s)©Ωχ/s Let sv(R) be the orthogonal
complement to this subspace. This defines the desired splitting. Π

For (χ,r,v)e&~x/s®R®Ωx/s and a relative connection V, put (χ, r, v)p

= sF(X,r,v)ee5 r~ 1. For ωEΩi / sΘΛ define ^^eAut^ί^ΘjRΘΩi/s) by the
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formula, ( >gωfer,v) = (χ,ωχ + r,(ω,ω)χ + 2(ω,r) + v). (A 1.4)

Clearly ωgωι + ω2 =
 (>)gωι -

 ωgω2, hence we get ̂ -action on ̂ x,s®R®Ql

x,s. It
preserves the bilinear form {,}.

A 1.5. Lemma, (i) (χ,r,vV + ω = ((')gω(χ,r,v))F.
(ii) For a££/π = £/° one has (here adα(P)eΩ^/s@K is defined by formula

, (L r, v)F]0, _ ! - ([£(4 χ], adα(P)χ + [α, r], 2(r, adα

The proof is plain calculation; note that the Ω^/ιS-component of SF ^x),
xej/" 1 , is [ v(χ), x]_ t _ t -χ" 1 , where χ is invertible section of <TX/S.

Now we may prove A 1.1. For an orthogonal Atiyah algebra (X, #,(,)) define
the $x-bilinear extension ('}j/ by formulas A 1.5. More precisely, put ('\z/~ 1 to be
^~xιs®R®Ωχ/s twisted with the ί2^/s®^-torsor of relative connections on j/ by
the action (A 1.4). The elements of ^W" 1 are just (χ,r,v)F's modulo equivalence
relation A1.5(i). The bracket on ('}^ is defined by formulas A1.5(ii). Clearly
j/, 5 )^ ( ' l5/ is inverse to

A 2. Trace Ω-Extension

Here for any Atiyah algebra tc/ with trace a canonical ί2-extension of j/ will be
defined. In the case j=/ — J/E and the usual trace this construction reduces to 2.1.

Let ,?/ be an .R-Atiyah algebra. Let us define the canonical ^/s-bimodule ̂ .
All. Put R C / ^ : = R ® ^ = limΛ(g)^X s X/ύ? j r x s X(--y), R^: = R®^

&χ &χ &χ

R(9A®0>, so ROA is tfj-algebra and R^cRtf* are

s. In the same way, we have the # ̂ -algebra ΦAR = Θ ̂ ®R and d^
bimodules ^Rc&R.

Let V be a relative connection on ,β/. It defines the relative connection VR on
s* rER Hence we get _

- the isomorphism of ^-algebras IV\R&^Θ^R, Iv(rf) = f X -̂ -77-̂
ί^o ί!

• F(δx)
l' r (rGR, /E#J), and compatible isomorphisms JP:^A^

- the left ^/s-module structure on #$j, Λ,^, denoted by (α,
α e ̂ /s, α 6 K(5^ (or K^), defined on generators r e R, V(χ) E j//s of ̂ /s by formula

where F^1} is differentiation by P^ along the first variable, ^

- in the same way, we have the right ^^/s-module structure on
)F->j8- F α, /^e^R, αe^/s, such that β ?r = βr, β V|7(χ) = j8 P^2)(χ) [since

-̂, hence ̂  is right ̂ J/s-module via P^2>].
Note that left and right ^^/s-actions on jR^ = g?R commute, hence we have a

^/s-bimodule. Now we shall see that it actually does not depend on the choice of
V.
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For a pair V±, V2 of relative connections, V2 — Vl^ωeR®Ω]ίl8, consider
fVιΫ2 e R&A such that /FlF2(x, x) = 1 e R,

F2) = /F1p2ω
(1) (here

Such /Pl,72 exists and is unique; we have

Same way, define gψ2Vl^(9ΔR by properties gF 2 F l(x,x)=l,

A2.1.1. Lemma, (i)
(ii) (a Vla)fVlV2

(in)

Define ^-modules 0j&, ^V (respectively, ̂ ,̂ 2)) to be the limit of RΘΔ\
R^'s (respectively, $j#'s, ^R's), labelled by F's, with respect to transition maps
αF l i— » αF2 = αF l/Γ lp 2 (respectively, j8Fl κ-> jSp2 = gF2Fl)8Fl); this is correct by (i) above.
Sofor any relative connection V we have isomorphisms S(

F

υ :
respectively S(

F

2) : ΘAR^&f^ ^R^^l such that

whprp r/ (1) — ^Vr/l R(2^' — <\(2^(R}Wild C UCp . — Op v^/j PP — *^P IP/'

According to (ii) above, C/^, ̂ ) have natural left ^x/s-action defined by
formula αα(

p

1) = (α pα)(1); in the same way, ^(2) have right ^/s-action β(γ}a
= ( β ' V ά ) ( γ \ By (iii) above we have isomorphisms I'.C^J^ &^l ^J/-*^^, ^p1^
= (/p(α))(

p

2). These modules, identified via /, will be denoted simply ΘΔ^, ̂ ^{, The
above left and right ^/s-actions define on ̂  the structure of ̂ /s-bimodule.
Clearly ^,-iC^ is ^/s-biinvariant and we have canonical isomorphism

P(3)eί^/s). These modules also carry a natural j/π-action (since j/π acts by
infinitesimal automorphisms on (X, S, π, ̂ /s). Explicit formula; for a e jtfπ, r e jR,
/e^ we have Liea((r/)F

1)) = ([α, r]/ + rLiee(ίί)(/) + r/π^)(1), where πv

aεR(9Δ is
defined by properties π£(x, x) = 0,

/ - Vί \~ 7i.e. πα(x1,x2)= : j adα(

A2.2. lf<$/ = jtfE then <5j^^£(x)^®£*, ^^£® ̂ ® E* = 0>E via the isomor-
<Pχ <9χ

phisms 5r(p1

that come from isomorphism E*®(9^ = (9^®E* induced by V . These
isomorphisms are compatible with ^js- and j</π-action.

A2.3. Now assume that $4 has trace tr. Define the pairing < >^ tr :
by formula

where rteR, φte^.
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Lemma. < >^tr is correctly defined symmetric £/-invariant pairing.

At this point we may repeat the construction 2.1.2 word-by-word to get the
desired Ω-extension tr^/ of j/. By A 2.2 trj/£ so defined (for tr being equal to the
standard trace on End£) coincides with the one from 2.1.2.

A 2.4. Formulas. Define a (formal) ̂ /-parametrix 77^ to be any section of ̂  that
maps to 1 e^/s by canonical projection ^-^^/s; an /-jet of parametrix is a
section of ̂ / ,̂ _ , with the same property. A parametrix 77^ is the same as a
section sπ^ of canonical projection that commutes with left ^^-action:
77^ = sπj(l\ sΠjί(a) = aΠ^. In particular, a 2-jet (2)77^ defines an $x-linear section

Let 77 be an j/^-parametrix we have 77= \-n0(xi)
\ V \*2-*ι

\dx2 , x is a coordinate along the fiber), and let V be a

relative connection on j/. We get the j/-parametrix 77P: = (1®77)|7
1) (in case

jtf = jtfEΠp is a product of 77 and F-horizontal section of £[x]£* that restricts to id£

on Δ\ hence the isomorphism ^x/s®R®Ωχ/s-^tr^' l, (Lr^v)}~^(Lr^v)^,π
r) + v It depends on P and 77 as follows [here /' means 3X/ for /e β/x,

x
To give the formula for the bracket assume that 77= --- ̂  We have

X 2 -X 1

[(Xi ̂  rι?

 vι ^)F, ιr? (/2^5 r25 v2 dx)Ff π] _ l t _ !

For aestfπ = lrj/° suppose that ε(a) = τ(x,s)dx + μ(s)ds, ada(Ϋ) = ωdx. Then

[α, (χdx, r, v rfx)Fj π]0> _ l = ([φ), χSJ, ωχ + [α, r] ,

Lieε(Ω)(v dx) + tr(| rτ'; + •£ χτw - rω - \ χω')) .

If V is a restriction on the fiber of an integrable connection F, so that
0= P(ε(α)) + y4, then ω= — ^4', and the formula transforms to

[α, (χ dx, r, v <kV5 π] = ([ε(α)5 χ 5X], - ^;χ + [α, r] ,

Liefi(β) (v dx) + tr ( - M' + \ (rτ" - χA") 4- £ χτ"')) .
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A3. Local Rίemann-Roch

Let j/ be a jR-Atiyah algebra with trace tr [see (1.1.7)]. Consider the following Θx-
bilinear Ω-extensions:

- j/2: this is the £2-extension of &x x 6^-Atiyah algebra trj/ x $-x^ω corre-
sponding to the bilinear form ~i< ? >, where <(/ι,gι),(/2,g2)> = 2(/ιg2 + /2gι)

- j/3: Ω-extension of s$&x/s corresponding to the bilinear form (/l5/2)

- **j? : = j?! x j3/2 x j?3. This is an £2-extension of (R x C/^ x Gx x β^-Atiyah
algebra.

According to A 1 RRjtf has the following description.
A3 Λ. For any pair of relative connections ί7^, VΩ on j/ and Ώ^/s respectively we
have the isomorphism,

s^, rnte
 β. Λ Λ Λ, v) - : (χ, B, /, /, Λ,

such that

(X, B, f , ̂  h, v )^ + ωj Pβ - (χ, ωχ + 5, tr ωχ

The bracket is given by formulas [here ά = (a,b,c,d) RR£/° = (.$/ x

c(FΩ) χ + [c, /], add(FJ - χ + [d, /z], tr(B

^43.2. Let us return to A 2.4. A relative connection VΩ on ί2^/s defines the
$x-parametrix Π^Ω as follows (cf. 5.3) : Consider the equation VΩ(f) + /2 = 0, where
/e ̂  and VΩ acts along the second coordinate. This equation has a unique solution
with a pole at Δ this is our parametrix ΠVn.
Remark. Here is an equivalent description of ΠVn. Let ω(x) be a non-zero

*2

F^-horizontal form, and φ(xι,x2)' = J ωe^ be a function such that φ(x,x) = 0,
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dX2φ(x1,x2) = ω(x2). Then ΠVn= — — ̂ — -. If we choose a local coordinate x such
φ(x^x2)

that \7Ω(dx) = Q (we will say that x is Pβ-flat; it is defined up to a transformation
x H^ ax + b, a, b e (C, a φ 0, and FΩ is the same as the class of such coordinates) then

Π,a=^-. D

So, according to A 2.4, (P^, PΩ) determine the isomorphism

A3.3. Theorem-Definition. Define the Rίemann-Roch map RR^:irjtf-+RR^ by
formulas

RR°(a) = (a, tτa, Liee(α), Lieε(α)) ,

where Lieε(α) e ̂ QX/S is Lie derivative, and ' means derivation by VΩ (i.e.
= @x)- This is correctly defined morphism of π-algebras.

The proof is direct calculation (the formula for RR~ 1 may be found from the
demand that RR commutes with [ ] _ i, _ i).

Integrating A3. 3 along the fibers of π we get the isomorphism π(RR) : π(tr^/)
^π(j/1) + π(j/2)4-π(j/3) of β^x-Atiyah algebras.

A4.

Remark. Let V^ be a C°° -connection on j/ (see 5.1), and VΩ be the one of Ωχ!S.
According to 1.5 they define the C^-connection RRV on RRstf. Using the method of
5.4 one can also construct a C°°-connection t ΓP on tr,^/, and RR maps t rP to RRV.

The formulations of Sect. 6 suggest that this result may be generalized. Namely,
there should exist some kind of functoriality of RR with respect to C^-maps of
Atiyah algebras.

A5. Compatibility with Deligne's Rίemann-Roch

Let £ be a rankn vector bundle and L l 5L 2 be invertible sheaves on X. Put
ω : = Ωχ/s. In [1 1] Deligne defined the invertible sheaves \C2(E\ <L1? L2> on S and
constructed the Riemann-Roch isomorphism

In this section we will see that the RR^R isomorphism of A 3. 3, integrated along
the fibers of E, is RRE on the level of Atiyah algebras: n(RR^E) = ̂ /RRE or,
equivalently, that π(RR^F) is the differential equation for RRE. We will start with
the identification of Deligne's sheaves.
A 5.1. We will use the following variant of Deligne's construction. Let SLΠ be a
universal extension of SLn((9x) by JΓ2 if n = 2 put SL2 = SL3|SL2). The standard GLί
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= {(*11)}CGLΠ acts on SLn by conjugation, hence on SLn; put C2CfLπ =
SLn. We get a central extension

This is just the extension corresponding to the universal Chern class
c2 eH2(GLn, JΓ2), [31]. Let us denote by s : GL1 ->GLΠ the canonical section. Now
let GLX x GLt be the central extension,

defined by 2-cocycle {pr l5pr2}, i.e. GL^GLi = GL1 x GL± x JΓ2 with multiplica-
tion (/,g;r) (/',g';r') = (jff',gg',r r' {/',g}). These extensions have the following
properties:

(i) For αeGLi and β= * I, βίEGLί9 /? 2 eGL π _ 1 ? one has adβ(s(a))
\ v p2J

(ii) Define the section sn of C2GLn on the diagonal matrices ΎncGLn by the
formula sπ(diag(fl l5 . . . , αj) = s^) adσ2(s(α2)) . . . adσn(s(an)), where σ f is a transpo-
sition of coordinates such that (σί)αl = δ fα. Then 1sn(diag(αί)) sn(diag(^))

f /1 *
(iii) One has a canonical group-theoretic section of C2GLn on Un = < I 1

(iv) For n = n}+n7 consider P n ι n = <!( Γ^"1 ^τ 1 / c G L * letv 1 2 n l t t 2 M A GLM

 / f

nι be the projections. Then one has a canonical isomorphism of GLn

restricted to Pnιtΐ2 with the sum of extensions /?*(GLΠ1) pf(GLΠ2) (detpj_
x detp2)* (GLi x GLj). Namely, it is unique isomorphism that maps sn(diag(0f)) to

aί9 . . . , απι)) sn2(diag(απι + 15 . . . , αn))

Now our vector bundle E is the same as GLn-torsor $ = Isom(0", E). Consider
the presheaf on S whose sections over UcS are isomorphism classes of
GL^-structures on π ~ l ( U ) (here GL^-structure means a GLn-torsor i together
with an isomorphism ^^<?/jΓ2). Since fibers of π are one-dimensional, the
corresponding sheaf is .R^Jf^torsor. The norm map Rlπ^2-*®* applied to
this torsor gives us $*-torsor which is just Deligne's sheaf IC2(E). The sheaf
<L1,L2> may be defined in the same way using GL{ x GLt and (9* x <5*-torsor
jSf ! x J^2. Note that (iv) above associates with any short exact sequence 0-^Eΐ ->E
->E2-^0 the isomorphism IC2(£) = IC2(JEι)IC2(£2) <det£ l 9det£2>.

Remark. Deligne's definition is somewhat different but may readily reduce to the
one above.
A 5. 2. Now let (,)C 2 be the invariant form on gIΠ:=LieGLn given by formula

y-trZY. Let ( , ) C l . C l be the form ((/1,g1),(/2,g2))Cl.Cl

) on ®xx&x Consider the corresponding $x-bilinear
sions C2j/£ of £/E and C l 'C l^L L of ^/L x s#L.



Determinant Bundles and Virasoro Algebras 699

Lemma-Construction. One has canonical isomorphisms

Proof. We will treat the case IC2 only; the c1 cl case is parallel. Our $s-Atiyah
algebras are locally trivial, hence they are completely determined by the
corresponding i2^d-torsors of integrable connections J>^>(A) : = Isom(^s, j/). So
it suffices to identify ^^(^IC2(E}] with ./#(π C2^£). Since «/#(eS/IC2(£)) - d log IC2(E)
[where IC2(E) is considered as a $*-torsor] this will be done if we define a dlog-
morphism φ:IC2(£)^J^(πC2(j/£)). Now recall that in 1.3.3 the canonical map
ιp:PE:= (isomorphism classes of ffl ^extensions of CW£} ->,/#(π C2^E) was cons-
tructed; this map is equivariant with respect to Rln^(Qc

s

1)- twist. Our φ will be a
composition IC2(E)-^-> PE-^ J?%(πC2^E}. Note that IC2(£) has natural
.R^Jf^action, P£ has the one of R^π^Ω0^ and χ will be equivariant with respect
to α : β1?^ tf2-+RlπχΩcs, where α comes from the same noted map α : Jf2 ̂ ^ Ώjd

->ΏS, the last arrow is "restriction to fiber." This would imply that φ is dlog-
equivariant.

Recall that C2j/£ was constructed as follows. We have the algebra C2^&n with
GLn($x)-action, and C2j/£ is <?-twist of it (β = Gx). Now we will construct the
Jf ^extension C2j/ of °2^&n together with natural GLn($x)-action that reduces to
the old GLn($^)-action on the quotient C2stfΘn, and such that JΓ2 C GLn(@x) acts via
α (see 1.3.3). The map χ just transforms $elC2(E) to an d-twist of C2<$\ clearly it
will have the desired properties.

Construction of C2^: we have to define C2j/° only. Put C2j/°
Bracket:

ι? rl9 Vi), (χ2, r2, v2)] - ([χl5 χ2], χ^r^ - χ^rj

+ I r l 9 r2], Xi(v 2)

where (r2,drί) is the scalar product with respect to the c2-form. One verifies that
[,] is a Lie algebra bracket; in fact, C2j3/° is a semi-direct product of ̂ π and the
Kac-Moody part Mat^(Θx)®^fl.

Construction of GL^-action: it "integrates" the adjoint action of the Kac-
Moody part. So let G be the group of automorphisms of sheaf C2j/° that preserve
the flag ^C^ΘMat,,^) and induce identity maps on Jf1,^
= C2j5r°/(^?1θMatn(^)); let A = Hom(^^f ^CG be the subgroup of ones that
induce identity maps on jel®Matn(Φx) and ^j^0/^1; put G = G/A. Then G is a
central extension of G by A. Define the map Φ:GLn(Θx)-^G by the formula

<%)(7, r, v) = (χ5 gχg" x -χ(g)g~ S v + 2(rfgg~ \ r)) .

One verifies that both ΦmodA:GLn((9x)-*G and ΦlGL^GLi-^G are group
morphisms. Hence the universality property of GL implies that there exists a
unique group morphism Φ:GLΠ-»G such that Φmod^^Φ, φos = Φ\GLl. So we
get a desired GLM-action on °W. Π

A5.3. By (2.3.1), A3. 3 and A 5.2 we have a canonical isomorphism between Atiyah
algebras of invertible sheaves

)®1 2 and <det£,det£>®6 IC2(£)Θ-12

<det£,ω>®-6 <ω,ω>®"
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or, equivalently, the integrable connection on their quotient. Of course we have

Lemma, This isomorphism comes from Deligne's Riemann-Roch isomorphism, [11]:

RRE : detKπ^E® 12 ̂  <det£, det£>®6 IC2(£)® ~ 12 <det£, ω>® ~6 <ω, ω>®" .

Sketch of the Proof. Deligne's isomorphism may be characterised by the following
properties (see [11] for details):

(i) compatibility with base change;
(ii) compatibility with filtrations on E's;

(iii) if rk£ = l, aeX is S-point, then we have canonical identifications

<£(4 J5(α)> =

The ^^-isomorphisms should be compatible with these identifications.
(iv) Consider ##

On the other hand we have the (suitably normalised) Mumford isomorphism,

μ:det^ω®2A(det#π*ω)®13.
Then

PR f / ? 7 ? ® 1 3 Ί ~ 1 — i i ® 12

κκω®2 (KKω ) —μ

To prove the lemma we have to verify these properties for our isomorphism on
the Atiyah algebra level, (i) is obvious, (ii): let EtcE be a filtration; then trj/£

contains a π-subalgebra tr^/(e?£i) with trj/(££ι) = infinitesimal automorphisms of
(E, Ej, X, S). Same for ^κ^/£. The ^^-isomorphism preserves these subalgebras. We
\\f\ ve

π(tr^£) = π(χ£,£>)) = Σ «,/£ι _ t)
ί

the same for RR£/E; this proves (ii). As for (iii), you should use instead of j/£, j/£(ίj)

their common subalgebra s#E ? f l (2.3.2), (6.2.4) that consists of elements whose
symbols preserve a and verify the compatibilities in (2.3.2). As for (iv), see 3.1.2.
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