Communications in
Commun. Math. Phys. 118, 651-701 (1988) Mathematical
Physics

© Springer-Verlag 1988

Determinant Bundles and Virasoro Algebras

A. A. Beilinson! and V. V. Schechtman?

1125319, Chernyakhovsky street, 5, apt. 144, Moscow, USSR
2 Institute of Problems of Microelectronics Technology and Superpure Materials,
SU-142432 Chernogolovka, Moscow district, USSR

To the memory of Vadik Knizhnik (20.2.1962-25.12.1987)

Abstract. We consider the interplay of infinite-dimensional Lie algebras of
Virasoro type and moduli spaces of curves, suggested by string theory. We will
see that the infinitesimal geometry of determinant bundles is governed by
Virasoro symmetries. The Mumford forms are just invariants of these
symmetries. The representations of Virasoro algebra define (twisted)
2-modules on moduli spaces; these Z-modules are equations on correlators in
conformal field theory.

Introduction

0.1. Let X be a smooth (complex, or algebraic) variety, and E a vector bundle on
X. The Atiyah (or current) algebra ./, of E is the algebra of infinitesimal
symmetries of E which is the extension of the tangent sheaf .7, by End E. Now let
n: X —S be a proper smooth map with 1-dimensional fibers (so X is a family of
curves); then, according to Grothendieck, we have a determinant line bundle
Lp=detRn E with fibers

Jp =det HY(X, E)®det H (X E) .

First problem: find .7, . It appears that this may be done in a very simple way,
using ./, only. Namely, we construct (purely locally) a canonical differential
graded Lie superalgebra "/}, on X such that H'(".o/ ;) =0 for i+0, —2, H(".o/})
=n"'7,, H *"«/;)=C (in the classical topology of X). Then
n(*".of ):= R%m, "o/ ; is the extension of 75 by Us—and it is canonically isomorphic
to <7, This subject is treated in Sect. 2. In fact, n(".«/1) is determined by a certain
quotient of .o/ this is how the Virasoro algebra, the canonical central extension
of o, arises.

0.2. In Sect. 3 we show that this construction gives the differential equations for
Mumford discriminant forms. More precisely, the natural action of vector fields
(Lie derivative) on the sheaf w’ of relative j-differentials on X extends to the
isomorphism between certain canonical subalgebras of .«7,, and .2/, . This
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isomorphism has “central charge” ¢;=6j*—6j+1, thus it defines the canonical
integrable connection on 4;/4§ (here 2;=4,,); the Mumford forms y; are just the
horizontal sections. This local definition of y; as opposed to the usual global one is
quite convenient for calculations.

0.3. Section 4 is devoted to the Virasoro action on moduli. Consider the moduli
space M of triples (X, x, t), where X is a (compact smooth) curve, x € X a point, and
t a (formal) parameter at x. A version of Kodaira-Spencer construction shows that
the Lie algebra ¥ =C((t))0, of formal vector fields acts naturally on .#, so that
&, =C[[t]]t0, changes the parameter ¢ leaving (X, x) fixed, d, moves x, and the
fields with poles may change the complex structure on X. In fact, this action is
transitive (i.e. the Lie algebra is mapped surjectively onto the tangent space to any
triple) with the stabilizer of (X, x, t) being equal to the image of the expansion at x
map Jx(X\{x})—>&. This “Virasoro uniformisation” complements in some
strange way the Teichmiiller one.

A variant: we may consider n different points x,,...,x, with parameters
ty,...,t, at them to get the action of #" on the corresponding moduli spaces. We
may also add to our considerations a bundle (together with trivialisations at x,).
Now the result of Sect. 2 implies that this #-action on the moduli space lifts
canonically to the Z-action on the determinant bundle with central charge 1.

This construction was also (simultaneously) found by Kontsevich [15]; the
case of deformation of a vector bundle (with the curve fixed) was considered
extensively in the soliton theory [19]. Note that the central charge of Virasoro
action on 4;/47 vanishes (cancellation of anomalies), and y; are just the Virasoro
invariant sections (hence the Polyakov measure is completely determined by its
invariance properties: first by invariance with respect to the conformal group, and
then by Virasoro invariance). See also [25-28] for closely related subjects.

More generally, any .#-module defines a (twisted) Z-module on .7 this way
one gets the differential equations for correlators [6] from the equations for
singular vectors in a Verma module (this was explained to us by V. Drinfeld). In the
degenerate case these Z-modules are, as Drinfeld has shown, just the bundles with
(twisted) integrable connections; it would be very interesting to find the
corresponding (projective) monodromy representations of the Teichmiiller group
explicitly. Compare with ideas of Manin [16] that were a starting point for our

paper.

0.5. In Sect. 5 we describe how a pair of C*-connections, one on E, another on
Qj/s» determine a connection on the determinant bundle with the curvature
calculated by the Riemann-Roch-Grothendieck formula.

0.6. In Sect. 6 we describe the algebras “./; for a bundle equipped with a
connection having logarithmic singularities. In fact, we prove a more general
assertion that describes the functoriality of these algebras with respect to
morphisms of Atiyah algebras “with logarithmic singularities.” As a consequence
we will see how the determinant sheaves 4; behave with respect to ramified
coverings.

0.7. Finally, in the Appendix we prove a local Riemann-Roch theorem for Atiyah
algebras inspired by Deligne’s paper [11]. This result generalizes the “cancellation
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of anomalies” isomorphism of Sect. 3. It seems that, by analogy with Sect. 6, the
appropriate generalization of Sect. 5 should describe the functoriality of the
RR-isomorphism A 3.3 with respect to €C*-morphisms of Atiyah algebras.

Note in conclusion that it would be very natural to “integrate” the results of the
present paper and construct some objects of Lie group type on X that after
integrating along the fibers should give determinant bundles themselves and not
only their algebras of infinitesimal symmetries. The corresponding local Riemann-
Roch isomorphism should give after integrating the Deligne isomorphism [11],
cf. 2.7, 6.3.7.

1. ©2-Extensions of Atiyah Algebras
1.1. Atiyah Algebras — a Dictionary

From now on X will be a smooth variety, 7 the tangent bundle.

1.1.1. Let E be a vector bundle on X. Put 2, =Diff(E, E)=U9,, 9,= Dy, is the set
of differential operators of degree <i; we have 2,/%;_, =End EQ S{(J%). Define
the Atiyah algebra of E setting .o/ y={0€ %, :¢&(0):=symb,(0)e Tx=1d;® T
CEndE®Jy};wehave Z,=EndEC ./ C%,, o/ ;,JEndE =N Ty. Clearly .o/ is just
the Lie algebra of infinitesimal symmetries of (X, E): its elements are pairs (t, 7),
where 1€ Iy is a vector field, and 7 is the action of T on E [we have (t, ) =(&(d), 9)].

This basic example motivates the following general

1.1.2. Definition. An Atiyah algebra on X consists of

— a sheaf of associative Oy-algebras R;

— a Lie algebra extension O — R —.o7 % 7, — O (here R“* is R endowed with
the bracket [a,b]=ab—ba, and 7 with the usual Lie bracket);

— aleft Oy-module structure on .« compatible with the ¢’ y-module structures
on R and 7.

For these structures the following identities should hold: [a,ab]=[o,alb
+afa,b] for any ae o/ and either a,beR or ae Uy, beo/; [o,f]=¢a)(f) for
feOxCR.

We will call Atiyah algebras with given R simply R-Atiyah algebras; hence o/,
is End E-Atiyah algebra. Note that an Atiyah algebra has also natural right
O y-module structure given by the formula o f: = fo + ¢(2) (f). The Atiyah algebras
form a category in an obvious way (so we have a forgetting functor (R, &)~ —R).
1.1.3. The following definition and lemma, though not of much use in what
follows, help one to feel at ease with 1.1.2.

Definition. An algebra of differential operators, do-algebra for short, is a sheaf of
associative rings 2 on X together with an increasing filtration 2,C2,C...,9
= U9, and a ring morphism ¢y - %, such that:
(i) i maps Oy into the center of Z (i.e. 9, is O y-algebra).

(ii) For ae %, and fey one has ¢a)(f):=[a,i(f)] €%, and this map
6:9,/9,-Der(Oy, 2,)=T xR, is an isomorphism.

(iii) & defines an isomorphism Gr: 2~S(7,)®%,.

For an R-Atiyah algebra o let &, be the quotient of the I(.</), the universal
envelopping algebra of .oZ, by the relations a - b= ab, where eithera,be R,or ae Oy,
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b e o/ [here the left-hand side is the product in U(.«7), the right-hand side is either
the product in R, or comes from the ¢/y-module structure on /], and Iy, = lx.
Clearly 2, isa do-algebrawith 2, =R, 9,=</ - R, ;= o/ - %, _,. Conversely, if &
is a do-algebra, then .o/ , =7y X 2, [the morphism 7y —%,/%, comes from (iii)]
is the &,-Atiyah algebra. ’

Clearly, both the Atiyah algebras and the do-algebras form categories,
A ~->9D , D~ -, are functors between them, and we have

Lemma. These functors are inverse to each other.

So the Atiyah algebras are the same as the do-algebras. We have ;=2 .
1.1.4. Let &/ be an R-Atiyah algebra.

Definition. A connection V on ./ is an (y-linear map V:7,—./ such that
eV=id, . A curvature cVeQZ®R is defmed by the formula cy(t; A1,)

=[V(t,), V(t,)] =V([ty,7,])- The connectlon V is integrable if ¢, =0.

The connections of .« form a Hom, (7%, R)=Q}® R-torsor

To give an integrable connection is the same as to give a morphism of Atiyah
algebras o7, —.o/ [V corresponds to a morphism 1+ = V(1) + f, 1€ T, fe Ox].
Or it is the same as to give a Jy-action on R together with the isomorphism
of ~Ty <R (= the semi-direct product with respect to this action).

A connection V defines the d-derivative (that we will also denote V) of the
graded algebra @’ g@ R, V(o®@r)=dw)®@r+w-V(r), V({r)(t)=[V(t),r], where

X

weQ,reR, 1eTy, V(r)eQ'®@R. We have V(x)=c, - *.
A connection on o7 is the same as a usual connection on E.

1.1.5. Standard Operations on Atiyah Algebras. These are the following ones.

(i) Push forward ¢@,. Let o/ be an R-Atiyah algebra, and R’ an (y-algebra.
Consider a pair ¢ =(¢,, @g) of Oy-linear Lie algebra maps ¢ : o/ >DerR’,
@r: R >R Assume that ad-@gz=0¢ |z and ¢ (a)(f)=c(a)(f) for ac.«Z,
fe0x—R'. Define the R'-Atiyah algebra ¢,(=/) to be the semi-direct product
R’ >« o/ modulo the relations (¢ g(a), 0) = (0, a), a € R. One has canonical ¢ y-linear
Lie algebras map &/ —@,.o/

(ii) The product. If o/; are R;-Atiyah algebras we get an R, x R,-Atiyah
algebra o/ x of,.

T x

(iii) The opposite algebra for an R-Atiyah algebra .o is the R°-Atiyah algebra
</ such that 2 40=(2,)°; here R, (2,,)° is R, % with reversed multiplication.
Explicitly, «/° =/ as a sheaf, [, ] o= —[ 1., 640= —&, and the left Oy-module
structure for .«/° is the right one for .o7.

(iv) Let o7, be’ R;-Atiyah algebras. Define the R, g@ R,-algebra &/, ®.%/,

to be @ xZ,), where @Qgg(r, ry))=r @1 +1@®r;, @gula, a)(r;®r,)
=[a,;,r ]®r,+r,®[a,,r,], r,eR, (al,az)euQ/l;( .

X
Lemma. Let E; be vector bundles. We have canonical isomorphisms

— Ay QA g, ~A g gp, (it corresponds to the of | x o ,-action on E;®E,
I x
given by Leibnitz rule (0,,0,)(e;®e,)=0,(e;)®e, +e,®0,(e,)).
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— A Y~of o, where E°:=Hom(E,wy), wy:=detQ} (for ecE, e’cE°,
deod Y=l ; one has (0¢°)(e)=e"(0e) — Lie, ,5(e°(e))).

(v) X-functoriality. Let o/ be an R-Atiyah algebra on X. If f:Y—->X is a
morphism of smooth varieties, then we get f*(R)=f"'R ; ® (Oy-Atiyah algebra
oy

[ty = f*(szf) If nm:X—2Z is ¢tale finite map, then
n(L) =T, x n*(ﬂ) is 7 (R)-Atiyah algebra.
Tc*fx

1.1.6. An important class of Atiyah algebras are ¢’ -Atiyah algebras. They form a
groupoid which is a “C-vector space in categories”: the tensor product gives the
sum of objects, and the multiplication by 4 € € is the push-forward by ¢ % ¢,
The corresponding C-vector space of isomorphism classes of objects is
H*X,0.,2%)=H*X,0-0}—0%-03); this space coincides with H3g(X) when
X is affine and with F* H3x(X) when X is proper. Here is a Cech construction of the
characteristic class c(«/)e H(X,0,,Q) of an (x-Atiyah algebra .o/: for an
open covering U; choose some connections V; on .o/|y,; then c(f)=(c,, V,—V).
The locally trivial O,-Atiyah algebras are just twisted differential operator rings
from [3]. Note that the functor L—./,, where L is an invertible sheaf, is a mor-
phism of “groups in categories” (= Picard categories); on the level of isomorphism
classes of objects this is just ¢; in de Rham cohomology.

1.1.7. Traces and Determinants. Let o7 be an R-Atiyah algebra. A trace on .o/ is an
O y-linear map Tr: R— 0y such that Tr([a,r])=e(a)(Trr) for ae o/, r € R. Accord-
ing to 1.1.5(i) we get an Oy-Atiyah algebra Tr, ().

Example. Let E be a vector bundle. The ordinary trace tr: End E— )y is a trace on
o/ . We have a canonical isomorphism

try (o ) > gorp

that corresponds to the action of .« ; on det E given by the formula d(e; A ... Ae,)
=Ye A Ade)n ... Ne,

1.2. m-Algebras, Integration Over the Fiber

From now on 7: X — S will be a smooth morphism of relative dimension 1 between
smooth varieties (hence X is a family of curves parametrised by S). We have a
canonical exact sequence 0— 7y ,s— 7y 4% n* 730, where s is the relative
tangent bundle. The sheaf n* 7= (0, ®n~ ', contains the subsheaf 7~ ' 7. Put

T = (dn)" (n" T C Ty clearly [T, T,]CT,,n ‘- T,CT,,and we have the
exact sequence 07y s~ 7, 21" ' T30 of L1e algebras Denote by . the
differential graded (dg-for short) Lie superalgebra with 7°:=7,, 7. .= / X/50

71=0 for i+0, —1, the differential 7, !—>7,° is a canonical embedding, the
bracket on 7.” is the Lie one. Our .7, has alsoa ™! Og-module structure together
with the morphism &: 7, »n~ ' 7 (= H%7,), £ =dn) of n~ 'Oy modules compati-
ble with brackets such that La, fb]—a(a) (Yb+ fla,b] for fen 0 a,beT;.
Consider the relative de Rham complex Qys=(Ox>w), w:=Q5; It is
naturally a dg—.7,-module: the action of 7 is the Lie derivative on .7,°, and the
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obvious convolution 7, ' ®@w =T s®Q} s—Ux on 7, . Also, Qs is a complex
of n~'0s-modules, and we have the obvious compatibility between =~ (g and .7,
actions.

1.2.1. Definition. a) An O¢-Lie algebra o/" on X is a dg-Lie superalgebra together
witha ™! Og-module structure and a morphism ¢, : /°— .7, compatible with the
above structures such that [a, fb]=¢_(a)(f)b+ f[a,b], where &y 1 =E0gym.

b) A m-algebra o/ isan (s-Lie algebra together with a 3 step filtration0=.o/"_,
CA_,CA " CAy=o/" and an isomorphism &/, ~Q% ¢ [2] of Og-complexes
such that

W) Lot ) Col iy, Osd;C oA .
(1) o,/ is acyclic.

(iil) ey: el > A | DT,

(iv) The ad action of &/ /.o/"_; on /", coincides with the above action of 7,
on Qys.

We will say that «7" is an Q-extension of the (s-Lie algebra .o/'/.o/"_,.

Clearly the m-algebras form a category (the morphisms induce the
identity maps on ., and Qjs). For two mr-algebras /', /" put
A xA" =l g x A" (0, —w)e(Qysx Qxs) [2]: this is the Q-extension of
tszi'/&/'_zgx o Jef_,. For a fixed Os-Lie algebra %  consider the category of

Q-extensions of #". This is a groupoid which is a C-vector space in categories with
the sum o/ + .o/ 1= x " (0, —w), we Qs [2] (this is a sub 7m-algebra of
B

o/ x /") and multiplication by 1€ C defined as A-.o/"=push forward of .«/" by
Aeidg 1 [2] -Q[2].

If % S is a morphism of smooth varieties, we have an obvious base change

functors ¢* from O-Lie algebras, or n-algebras, on X, to the ones on X >< S,
compatible with the above operations.
1.2.2. We will use n-algebras that are related to Atiyah algebras. So let .« be an R-
Atiyah algebra on X. Put o/ \g:=¢,(Ty5)CA 1 =¢,'(7,)C.o. Clearly o is a
Lie subalgebra in .7,/ s an ideal in .o/, o s(/,) an O- (respectively n~"0y)
submodule of .«7. Denote by .« an Os-Lie algebra with /0:= .o/, o/ 7' 1=,
/' =0 for i%0, —1, the differential .o/, ' - .o/ is inclusion ./ ,s—.«/,,, the bracket
comes from .27, and the projection ¢, : .9/, —7 is ¢,. Thus ¢,,_1is surjective and
Kere,,_is Cone(idg).

Definition. An Q-extension *.o/" of (o7, R), is an Q-extension of ./, together with
an Oy-module structure on *.«/ ! such that

— this Ux-action is compatible with the actions on .o/, ' =.o/ 5 and w.

— the component [,]_; i * /7 '@FZ'>F /" 2=0y is a differential
operator along the fibers (i.c. for any ae *.o/ " ! the map ad,: *./ "' >0y isa d.o.).

Remark. [,]_, _; is completely determined by [,]o -: * /'@ ">/ !
(since any two [,]_; s differ by a map *o '@% o 'on '
=Ker(d: Oy—w) which has to be zero being a differential operator).

The Q-extensions of Atiyah algebras form a category; we have a forgetting
functor on it with values in 7-algebras. The standard operations X, +,4" on
n-algebras extend literally to the present situation.
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1.2.3. Assume that 7 is proper. Let .«/° be a r-algebra. Then Rz, applied to
Qys[2] /" —.T,, together with the trace isomorphism R, Qys[2]5 g, gives
the exact sequence

005> R, > T3—0.

The bracket and n~ ' Og-action on /" define the Lie algebra and ¢g-module
structure on R°r,.o/". It is easy to see that they form an Og-Atiyah algebra
structure on R%z,.o/"; denote this algebra by n(.7").

Remark. If the fibers of 7 are not connected, then R°7,./" is a 7,0 y-Atiyah
algebra, and n(7): = trR°n,.o/, where tr:m (y— (g is the trace map.

This way we get the “integration along the fibers” functor from n-algebras to
(s-Atiyah algebras. It is compatible with base change, and we have n(.o7" x /")
=n( )+ ("), n(AL + A )=1(L )+ (L"), W(Al )= An(L).

1.3. Central Extensions of Atiyah Algebras

Here we will work in Zariski topology, at least fiberwise.

1.3.1. Let .o/ be any dg-Lie superalgebra. Put V(«/"):= .2/ '/o/ 2. Define the
new bracket [ ], on V(«&/") by the formula [«, f], :=[do, f]. Let J denote the
image of the differential d:.o/ ~'—.o/°; this is a subalgebra of .«7°. We have

d(Lo, f1y) = [da, d].

Lemma. [,], is a Lie bracket; V(o) with [,], is a central extension of J by
H™ Y.

1.3.1. Let ./° be any dg-Lie superalgebra. Put V(e/):= .o/ ~!/d.o/ 2. Define the
construction gives us a central extension of ./, by the n~'(g-sheaf
H =Hy5:= w/d(Uy). In the case S = point we have #'(U) = H}y(U) for a (Zariski)
open j: U ¢ X, and there is a canonical exact sequence

0> Hip(X) 15 Hip(U) -5 @25 €0,

where res(v)=(res,,(v)), 2(ay,...,a,)=a,+ ... +a,, and {x;,...,x,}:= X\U.
Clearly, V(*.o/")>.o/ is a dg-Lie superalgebra quotient of *.o7", and n(*.o7")
= RO (V(* ) > st ).
The rest of this subsection will be used only in Appendix, AS.

1.3.3.1. Definition. A #-algebra 7" on X is an (s-Lie algebra together with
three step filtration 0=./" ;C.7 ,C.# Coy=+ and the isomorphism
A, ~(Oy—>w—H) of n~'Os-complexes (# stands in degree 0, w—.# is the
canonical projection) such that the properties 1.2.1.b (i)—(iv) hold.

Clearly, # C.7°,C .o/ is an abelian ideal, and *.o/ := ./ '/# is a n-algebra.
We will say that .7 is an # -extension of *.&Z". We have * .o/’ = .7 for i+ 0, and .«/°
is the #-extension of ¥.o/° that coincides with V(") over J C *.&/°.

The projection ¢,:.97 -7, defines the (glinear isomorphism
R°n,(e;):R°n,. o/ —>R°n,7,=Tyof Lic algebras. Hence .7 defines the integrable
connection V;=R 7, (I)(R°n(e;) ' : Tg—>n(*/) on n(*/"); here [ —* .of
is the projection.
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Let Q¢ cn QL §<l)@ A be the sheaf of closed #-valued 1-forms (recall that #

has a natural 7~ ! Zg-action). For any #-algebra 7" we may identify Q¢ with the
sheaf of automorphisms of 7" that induce the identity transformation on *.o/": a
form ve Q¢ acts by the formula a e o7+ a + vé(a). Hence the # -extensions of *./"
that are locally isomorphic to .7 are in 1 — 1 correspondence with Q¢-torsors; for
7e H(X, Q) denote by .7 +7 the corresponding isomorphism class of
A -extensions. We have a trace map H'(X, QY)— Qi It is easy to see that V; ,;
=V +tri.

2. Trace Algebras and Atiyah Algebra of a Determinant Bundle

2.1. Trace Q-Extension of <

Assume we are in the situation of 1.2.

2.1.1. Residues at the Diagonal. Let P,,P,:X x X—X be projections,
A:X ¢ X x X the diagonal; the sheaves on X X X wisth support at A(X) will be
identified with sheaves on X via 47!, Put ¢ =J@COXXX/(OXXX(—iA).

2.1.1.1. Consider the sheaf wXw(co4) on X >S< X. We have two residue maps

Res!, Res?: wXlw(oo 4)—w, where Res! (Res?) is the residue along the first (second)
coordinate with the other one fixed.

The formula: let t be a coordinate along the fiber, t¢,,t, the corresponding
coordinates on X x X, f(t1,t5,5) €y y, @=[(t1,155) (t,—1,) " 'dt,dt,
e wR@w((i+1)4), then ’

Res! ()= §, ol
i+1
R

i!
Clearly Res’ maps wXlw CwXw(o4) into zero.
For ¢ as above put

(st@(z,s):l, ) A UREL ey

ilatrp=i-y as oty -
Lemma. a) Resisa correctly defined map wXw(co 4)— Oy (i.e. Res does not depend
on the choice of coordinates ).
b) One has d Res(p)=Res' (¢)— Res?(¢).
¢) Res vanishes on wRa(4), and is symmetric with respect to transposition of
coordinates.

Proof. b), c) are clear; b) = a), since Res may be characterised as a unique
differential operator(alongtheflbers) such that d Res = Res! — Res? (if Kes, Res' are
two such operators, then Res— Res' maps ¢’s into constants 7~ ', but any such
differential operator is zero).
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2.1.1.2. For a pair of integers a, b, a=b, put
Py =0xRos0((a+1)4)/0xKo((b+1)4),
P=P,. - o= M OyH(0 1)/ OxH i), P = P, CP.

The sheaf & has a natural Zy-bimodule structure [for 0= A(t)0,+ B(1),
p=1y(t;,t;)dt,, one has Jy=(A(t;)0,, + B(t) w(ty, t5)dty, wo=(ylty, t5) B(t,)
—0,,(p(ty, t,) A(t,)) dt,)]; #- 1 C2 is a subbimodule, and one has canonical iso-
morphism “pole at A”: 6:P/P_—>Dy;, Sp(f)=Res,_y(t,t,) f(t,)dt, for
w=y(t,t,)dte P, fely.

For a vector bundle E put Z; , ,:= EQ, 2@ E*, Pp=...; Pyis a Dy
bimodule, and d;: Zp/Py _ | > D5 is isomorphism. Let 2§ denote Z s consid-
ered as a Lie algebra ([0,,0,]1=0,0,—0,0,).

The bimodule structure determines a Zyjs-action on #; by the formula
Lie(0) (p)= 0y —0, 0 € D5, W € % In fact this action extends to an action of the
Lie subalgebra o7, + Z}js C 75 [where o/, . acts as Lie algebra of infinitesimal
symmetries of (X, E, S, 7)]. The transposition of coordinates * defines an isomorph-
ism ' %5 P, where E°:= E*w, compatible with the bimodule structure via
isomorphism Z3,s=Pyos.
2.1.L3. Define the pairing (-, ): 2% -0y by the formula {y,,yp,)
=Res(y p,). We have (yy, fy,) =y, fip,) for feUx, {wi,p0 =Yy,
{p,p,y=0forw, €%, v,e?_, The same formula (joined with convolution
E®E®—w) defines the pairing < -, - > : %, — Oy which is .o j-invariant. Let tr
denote the composition % _—»%; _,/%; _,=w EndE "> .

Clearly, Lied(y,) (y,)+ Lied(p,) () €%, for vy, p, €% _, and we have

tr(Lied(y,) (p,) + Lied(w,) (p1)) =d<y 1 g

2.1.2. Construction of Trace Q-Extension. For a bundle E define an Q-extension
"ol of of i (see 1.2.2) — the trace algebra of E — as follows. We have "o/ 3= .o/} .,
"o/ ;P=0y To define "o/;' consider the exact sequence 0%
-2 D s—0. Now use the embedding o7, s— P/ and the trace tr: %, _; —»w
to push this sequence into

0—-w—-"el g ' > 50,

Hence "o/ ! is the subquotient of EXE®(24)/EXE®(—4) that consists of
sections that map into .« ;s modulo the traceless ones in (End E)®w. It has the
natural (left) @ y-action.

The above projection "o/ '—>.o/y¢=.o/; ' determines the projection
Yof p— o/ and also the differential on ".o7},.

Brackets. The bracket [, g o: "/ f®".Z/2—".o/) should be the usual one;
[-,-Jo.-1s the Lie action of =/, , on the (invariant) subquotient of Z; (see 2.1.1.2);
[-,-Jo. scomesfrome: oy . —> T[] "y '@/ ' >y is the pairing
(-, > frim 2.1.1.3 on the subquotient on %. Now 2.1.1.3 implies

Lemma. The algebra .o/ defined above is an Q-extension of .o/ .

Remarks. a) One may construct the trace extension for an arbitrary Atiyah
algebra with trace, see Appendix, A 2.
b) Clearly E ~ "o/ is compatible with base change.
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Formulas: Let t be a local coordinate (along the fiber), and I:0%SE a
trivialisation of E; we will call the pair (¢, I) a gauge for (X, E). It determines the
isomorphisms

5(?,}) (0x®Mat,(Ox)DOx >l ! S(;,ll)(Xa B,v)
xt) B(t,)
=(x B, V)(z, n= I [ : !

7t +V(t1)—’ dt,,
S(I) : ZC_DMatn((OX):’"’%EQ:&{E,m S?(L A):('C’ A)I .

(ty—1y) ly—1

We have [here t=1(t,s)0,+ u(s)d,; we write for brevity ;' =0,(x(t5)),
v =0,1(t,s), etc.].

The Formulas. Brackets:

[(z, A)r, (1, B, V)(z,I)]o, 1 =([r,x0,]dt,«(B)—yA’
—[A4,B], Tr(—BA +L(Bt"— 34"+ %XT"') + Lie(z)(vdt)d,),
[(x1, By, V1)(:,1), (%2, B», Vz)(z,l)]f 1, -1 =Tr(- BB, + %(XlzBl
+XIIB2_XIB?i_XZB,1)+%(X,IIXZ_X/1X/2+XIX/2/))+X1‘)2+v112'
Gauge Change: for ge GL,(0y) one has

(’Ea A)Ig = (T’ - T(g)g_ ! + gAg_ 1)[7 (Xa Ba v)(t,Ig)
=(1, —xg's ' +gBg L Tr(—3xg"e ' +xge ) —Bg 'g) V) n;
if y=y(t) is another coordinate function, then

B 1 y/// 1 y//2 1 y//
/B, =y Byt — - )+ TrB+vy
(l’ v)(y,I) <Xy nx<6 yrz 4 y/3 + 2 y/ r +Vy

(¢, 1)

Proof is a direct calculation. Clearly, these formulas completely define ".o7;.

2.2. Virasoro Algebras

In this subsection,Aand the next one, we assume that S = point for brevity. Consider
the Lie algebra .o7;:= V(".o/;) the central extension of .o/, by # (we work in
Zariski topology, see 1.3.2) and call it the Virasoro algebra of E. For a gauge (¢, I)
we have an isomorphism

Se.n - Ox®Mat,(Oy) + @X/az(@x)l’w{/ms >

Se.nl@=ay, ), so that

[(x1B;, V1)(z,1), (2, B, Vz)(z,l)]v =01 — 1224 11 B2 — 12 B, + [ By, B, ],
Tr(B By + 3 (15By — 11 BY) + + 15 (11— 120Dy »
(see 2.1.2). So we see that for X = C\ {0} (here (//0,0 = C) the restriction of .7, on

End(¢%)=Mat,(0y) coincides with an affine, or Kac-Moody, algebra, and the
restriction on .7y coincides with the usual Virasoro algebra (hence the name).
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In fact, .7, comes from the central extension &, of Z%° by # (via o7 ¢ DL,
Let fr denote the composition %, _, > w—->H#, A :=kertr. Put Yy=2_,/A so
we have the exact sequence

Ot G, 5,50, 2.2.1)

For a,be 9, put [a,b], : = Lie(da)(h)mod A € I, where b e Z,, bmod A =b,
and 2.1.1.3 implies the following statement

222, Lemma. [ -,y is a well defined Lie bracket on G ; so &, becomes a central
extension of D5 by #.

Now assume that X is compact. Then HY(X, #)=Hg(X)=C, hence the
boundary map in 2.2.1 defines the linear function tr: H%(X, Z,)—H' (X, #)=C.

2.2.3. Lemma. tr=try y p,ie.tr(d)is the alternating sum of traces of d’s action on
H'(X,E) for a differential operator d.

Proof. Consider the exact sequence 0—EXE®— EX E%(c0 4)— 2, —0 of sheaves
on XxX. We have H*'YXxX, EXE%)=H*X,E)@H'"*"(X,E°
=H*X,E)YQH ~*(X, Ey*=End(H'(X, E)) by Kunneth and Serre’s duality. The
map End®(H'(X, E))=HYX x X, EKE®) ", H'(X, 2")=C coincides with the
trace of the action on H'(X, E). The boundary map H'(X,%,)—H "X x X,
EXE®)=End (H'(X, E)) coincides with the map induced by the action of %, on E.
These two easy facts imply the lemma.

Remark. This lemma implies the Riemann-Roch formula for y(X, E): one has
21X, E)=try 5 idg, and this may be computed in Cech cohomology using gauge
change formulas for ".o/ ~* from 2.1.2 (this is a one-dimensional version of Toledo-
Tong’s proof of Riemann-Roch, [24]).

2.3. Atiyah Algebra of Determinant Bundle

The principal point of this section is the following

2.3.1. Theorem. There is a canonical isomorphism between Ug-Atiyah algebras,
Lyl ) >t

where .= det Rn E is the line bundle on S defined by Grothendieck, see [14,11,7].

Remark. In [14] detRn E was defined as a graded line bundle; we omit the
grading since the sign problems are irrelevant for us.

The proof of 2.3.1 will occupy the rest of the subsection.
2.3.2. We will start with the list of compatibilities that, in fact, determine I,

(i) Let 0»E,—»E—E,—0 be a short exact sequence of vectors bundles. Then

Ip=1I; +1,,
where we identified .7, with o/, + .o/, by means of the canonical isomorphism
/p=/ 5, ®2p, and the identification n(".oy)=n(".of )+ n(".o4;)) is defined as

follows. Let "« 4, &,"o/p be the n-subalgebra with "o/Q
={0e oy . 0(E,)CE,}. We have canonical projection "oy, "oty x "ol :
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here p° is the induced action on E, E,, and p~ ' comes from the identification of
Py, x P, with the subquotient of Z; [namely, %, x %, is the quotient of LQZ
C(E*RIE)®Z, where L:=Ker(E*XIE—EFfXE,). The diagram of n-algebras

tr&{é (_l__ "ﬂl:?l,Ez _L lrdél % trdéz
gives the desired isomorphism
(p) (i)~ 'l p) = () + ol A)

(i) Let D ¢, X be a divisor étale over S. Consider the exact sequence
0—E(—D)—»E—i,E|,—0; put Ep = nt|p(Elp). The isomorphism
Ap=Ag-p®detEp, identifies o, with o7, +.9/4.p, In a2 moment we will
define the isomorphism 7(".oZp) ~ n(".of g _ 1) + - gei g and our second compati-
bility claims that I=Ip oyt A s,

So let "o/ ,C".of) be a m-subalgebra such that "7y ,={0e€ .o/ .:¢(0) is
tangent to D}; one has projections p:".eZy >R _p), q: AR p > ipe Ay, Let
£ C"ofy pbe the dg-ideal with ¥ ="o/} pfori+ —1, ¥ '=Kerqd '. Thenp,q
extend todg-maps p: L ="y _p), 4 L —ip oy (plx pis the identity map). Then
R, (p+q): RO (&)= (" Ay~ 1) X 5 sl p(Hpg,,) is an isomorphism, and the cor-
responding map o: ("L - ) X 5 7 p(p;,) > RO, (L") gives the desired isomor-
phism (") Sn( Ay p)+ A geup, [Since A gop, =tru|p(fy,)  and
o on 7|p(End E|p) coincides with tr by 2.2.2].

(iii) Assume that R°z,E=R'rn,E=0. Then detRn E = (g, hence I is just the
trivialisation of n(*.o7;), i.e. the integrable connection V : Tg—n(".o/;). Now recall
that ".oZ; ! is a quotient of a subsheaf %, C EX|E°(24) [here 4, consists of sections
that are mapped into .«/,5C 7y, , under the “pole at A” map: EKIE°24) > 2, ],
so we get a morphism of complexes f3: Cone(% ;> Ay ) "oy The exact tri-

angle ERE[1]—Cone(Zy— oty ) —n~ ' T (2.3.2.1)

shows that Rz, Cone= 7y in our case [since Rn (EXE’[1])=EndRn E=0],
hence R%%,f is just the section Zg—n("e/;) and (iii) claims that

V=Rnf.

(iv) Compatibility with base change. Both assignments E~ — /A, E~ "</,
are compatible with base change (change of S), hence so should I
Now we can give a precise formulation of 2.3.1:

Theorem. There exists a unique system of isomorphisms I such that compatibilities
(1)—(iv) above hold.

Note that the uniqueness is clear: by (iv) the problem is local in S, so by (i) we
may assume that E is a line bundle, and, using (i), we may reduce the arguments to
the situation described in (iii). It remains to construct I.

2.3.3. Construction of I ; in case R'n, E=0. Here 7, E is a vector bundle on S and
/p=detn,E hence o/; =tr.o/, p. Consider the exact triangle 2.3.2.1; it gives the
short exact sequence

0—Endn,E—Rn x n), Cone—T5—0, (2.3.3.1)
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since R(n x ), (EKIE®)=Rn, EQ(Rn, E)*= Endn*E~ by Kunneth and Serre’s
duality. We will construct the natural isomorphism I: .o/, r>RO%n x ), (Cone),
compatible with 2.3.1. Since tr:Endn,E— Oy coincides with Tr- R(n x 7), (),

where A* tr
¢:EXE°—EQE’— w,

Tr:R'n,w—0s,
and "o/, ' =% ,/Ker @, the morphism f3: Cone—"./; and I define the desired
Ip:trod, g=>n("oly).

To define I one proceeds as follows. The problem is local in S, so let us choose
some relative divisor T C X, T is finite over S; put T®:= X x T CX x 3 X. Then,
since R'n, E =0, the sheaves o/, (0o T) (: = sheaf of sections of &7, , that may have
a singularity at T), EKIE%(c0T®) and #(coT®) are acyclic with respect to
projection on S. Hence R°n x m), Cone may be calculated using the Cousin
resolution of Cone:

0 0

B (00 T(Z))/QEL’ ﬂE/s(OO T)/&/E/s —— sy 0Tty ,

u

B0 T?) Ay (0T) (2.33.2)
Ry MLR
T |
0 0

Namely,
R%(r x m), (Cone)={(t,b) ety (0 T)
X (B (00 TP)/By): p(r)=(b)}/Image of 1, B(c0T?).  (2.33.3)

Define the inverse to I by the formula
I; Y(t,b)(e)=1(e) + Res;a b - pe, (2.3.3.4)

where een E, b-piee(ERw)(24+ 0 T?)/EXw(24), and the residue is taken
along the second variable. Note that the condition on (t,b) implies that
singularities at T of the two terms in the right-hand side of the formula cancel. It is
easy to see that I; ! so defined is an isomorphism (it induces the identity maps on
the left and right terms of 2.3.3.1) that does not depend on the choice of T (it is
obvious for T; CT,, the general case reduces to this one).

Remark. Note that the Cousin resolution for "o/, gives (for arbitrary E!) the
isomorphism

n("elp)={(r,a) e m A (0 T)x  (ly (oo T)/ Ly *:
w(t)=0(a)}/Image of n, e/ (0 T)). (2.3.3.5)



664 A. A. Beilinson and V. V. Schechtman

So to Calgulate I; '(x,a) one should choose (t,b) in 2.3.3.3 so as f(b)=a, then
I; '(r,a)=tr I} (z,b).

2.3.4. Iy Commutes with Brackets. For o;en(eZg), i=1,2, in (2.3.3.5) choose the
representatives (t;, a;) of o; with respect to divisors T; such that T, T, =0 and the
corresponding (t;,b;) such that B(b)=a;. Then ([ty,7,], [ty,a2]—1[15,a,]) is
T, u T,-representative of [a;,a,]. Since

[IE (t1,b )Tgl(TZabZ):]
=IE YLy, t2lstyby—byty + b1, —1,b, + by xb,—b, % b))

[here t;b;, b;7; are taken with respect to the A ,-bimodule structure on EXE° and
*1s a convolutlon, so b, * b, is a section of % (oo Ti*))/% ; perhaps with a pole at
T, xT,), then we have Ig'[o,a,]—[Ig " 2,15 a,]=Resy, (b *b,))
—Resy (B(b, *by)). These residues are traces of finite rank operators
Ay, »,€Endy Ep, A, , €End,y Er (where E; is formal completion of E along T))
defined by the formula Ay (e)=Resy (b;*b;-ple)) (see 2.3.3.4). Clearly A4,
=A,,- Ay, where 4, e Hom, (E1 JE, ) are flmte rank operators defined by the
formula 4,(e;) = the expansion of Resy (bp¥e) at T. Hence Ij'[uy,a,]
—[Ig oy, I e, ]=Tr A, - A, —TrA,, A, =0.

2.3.5. Case of Arbitrary E. The above defined I satisfies 2.3.2 (iii), (iv), and also
2.3.2(i), (i) in cases R'n E, =R'n E,=0, R'n, E(—D)=0 respectively. Now for
arbitrary E choose D as in 2.3.2(ii) so as R'n,E(D)=0, and define I; by means of
Igpy via (2.3.2)(ii). By the previous remark this I; does not depend on D and
satisfies 2.3.2(1)—(iv). So we are done. [

The rest of the section contains some complements that will not be of much use
in what follows.

2.4. Relation with Tate’s Construction

In this subsection we also assume for brevity that S=point and T C X(C) consists
of a single point x. Let ¢ be a parameter at x, #(x)=0, U be a formal neighbourhood
of x, OU—(E[[I]] and U=U\Tis a punctured neighbourhood of x, €, =((t)).
Then Res,: # ' (U)>C, hence 2.2.1 gives a central extension Z(U) of Z(U)
=90, by €. We will see that Z(U) is canonically isomorphic to the extension
constructed by Tate [20] by means of the linear algebra.

Remark. This construction became famous since it was rediscovered by the Kyoto
school in connection with soliton theory and representations [10, 19, 12].

2.4.1. Recall Tate’s construction. Put F = E(U), so F x C((t))" > E(U)~ C[[t]]". We
say that a C-vector subspace V CF is open iff VD tYE(U) and V is bounded iff
V Ct~NE(U) for N> 0; a subspace both open and bounded will be called a lattice.
Let #CEndF be the subring of continuous operators [4 € Z if and only if 4~ (V)
is open for any open VCF1,I,:={Ae#:ImAis bounded}, I,:={Ae#:KerAis
open}, Iy, :=1I,nI; these are two-sided ideals in # such that I,+1,=2. If
A€l then dimIm A% < o0, s0 tr A is well defined and tr[a,b]=0foraely, bel,.
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Put Q:=1,®1,; we have the exact sequence
0Ty, —> 0 — A0, (2.4.1.1)

i(A)=(A4, — A), 5(4, B)= A+ B. Now Q is an #-bimodule in an obvious way, hence
A" acts on Q by the formula Lie(r)(q)=rq—qr. Put # =Kertr:I,,—»C, and
A= QJi(A), so that we have the exact sequence

0->C—"5 22 20, (2.4.1.2)

The formula [a, b]:= Lied(a)(b), a,be #, be Q, b=bmodi(#), defines the Lie
algebra bracket on #, therefore (2.4.1.2) is a central extension of 2% by €. Note
that (2.4.1.2) canonically splits over I, and I, (by the definition of Q); let s, : I, — %,
s.:1, > be these sections. Then s,(I;) are ideals, and so(4)—s,(4)=trA for
Aely,.

2.4.2. Torelate this to Virasoro algebra, consider the local Z;’s: 2, _,(U)C Z4(U),
Py _(U)=E)QC[[t,,t,]]®E%U), 24U) is the localisation of 2, _(U)
by (t, —1,)~'. We have the exact sequence of Z,(U)-bimodules,

02, _ (U)>2HU)— Z,(U)~0. (2.4.2.1)

Let R: Z(U)—# denote the action of ¥ +(U) on E(U); this is an embedding of
C-algebras. For yp=y(t,,t,)dt,e #,(U) define Resy(yp), Res,(y)eZ by the
formulas

(Reso () (SN (0)=Res,, - ow(t, 15) f(t)d1.
(Res,(w) (/) (1) =Res,, - p(t,15) f(1;)de, .

One has

(i) Res,=R -6, and Res,, Res,:2(U)—»# are R-morphisms of %,(U)-
bimodules.

(i) Resy(Zg)CIy, (Resy+ Res,)(Pp)C1,, hence we may define an R-morphism
of bimodules

Res: Z,(U)—Q, Res(yp) =(Res, + Res,, —Res,).

(iii) Ro=07 Res, so (Res, R) defines the embedding (2.4.2.1) o (2.4.1.1).
(iv) Resly, ) % - 1(U)=1,; is an isomorphism compatible with traces
from 2.2.1 and 2.4.1.

So Res modulo Ker tr identifies %,(U) with a subalgebra of .

2.5. Shifted Virasoro Algebras

For an integer i consider the sheal Zy(i):=w®'®, #;®, w® filtered by
Py = 0Py . ;0% Clearly, o/, , [being the algebra of symmetries of (E,7)]
acts naturally on 2,(i), and Gr,Z(i)=w® “-EndE. Put

A psli) = (e i), /P(i) -, e(f):= fmod Zy(i)ge ™! Idgj,
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hence we have a short exact sequence 0—End E—.o7y5(i) = 7,5s—0. Put
Ays(i):={ f€ Pyli)1/Peli)_5:0(f): = f mod P (i)ﬂe&iE/s i)}/Kertr,

where tr is a composition /(i) /. Ays(i) -, = -EndE > w—-w/d0=#. So

E/S(z) is an extension of .7y (i) by #. Given a gauge (¢, I) for (X, E) (see 2.1) we
have compatible isomorphisms s, ;,: 7y,s®Mat,(Oy) >y s(i), Ty s®Mat,(Oy)
@A > sy si) defined by the formula

S, n(T(1)0,, B(t), v(t)dt) = (x(z), B(t), w(t))ie)r,

B (t,) B(t,) w(ty) i gt
101 e g D

same for .oy s(i).

Lemma. a) We have canonical  isomorphisms .o/ s(i)= oty 5(0) =Ly,
(t, B) 1y = (1, B 1), that commute with the oy s-action.

b) Define the bracket on ME/S(l) by the formula [o, B]=1Lies(B). This bracket is
skew-symmetric, hence defines a Lie algebra structure on .SZ/E/S() 50 :SZfE/S(l) is a
central extension of .ofy(i) by A. The explicit formula for [ -,-]:

[(zy, By, Vl)g?n, (T2, B, Vz)g?n] = <T17/2 —1,7}, 7B, —1,B]

i+1

(i)
12 (Y1, —775)+ %(T'{Bz —15B)— BzB1>>

. 1)

+[By, B,], Tr(

Lemma follows from the direct calculation cf. [4].

Note also that we may take i to be half-integer if the f-characteristic w'/? is
chosen. The formula for the bracket above means that we have a canonical
isomorphism 7y s(i) > Ly s +iV, (7, B,V = (1, B,V). ) +(1,0,0),. Here V C./,
is Lie subalgebra of elements that project to Iy 5 C./,, (so V'is a central extension
of 7,5 by #, and the sum of extensions is defined 51mllar1y to m-algebras case).
Hence the corresponding Os-Atiyah algebra R (ﬂﬁ/s(l)—* oy ) coincides with
n("elg) +in("ly,) = A 055 -

2.6. Modular Families

Let n: X -8, E be a (locally) universal family of genus g curves (g> 1) and vector
bundles of rankn. This means that the Kodaira-Spencer map KS: 74— R'n .o/ ¢
is isomorphism and R°m,.o/;s=R°n, End E= Os-id,. Assume that y(X,, E)=0,
ie. degE=n(g—1). Then, according to 2.2.3, the exact sequence 00— —.ofp
—ys—0 gives the exact sequence of R'm,’s: 0 Og— R .o/ s— T 50, here we
identified R'n, #, R'n .o s with O s Ty by means of Tr and KS. So the canonical
map ‘EQ{E—>0<-1 e/ = Cone("Te/y 2—""e/; ') [1]— 7y 5 defines the isomorphism
KS: .o/, »Rn, "o/ ,—>Rin, o5 of Og-modules that extends KS.

The Dual Statement. Put Q= Ker(#—%y/Pei_ =0 "TTEndE > 0 1
CP, Pouo=Psa)Qps 15 50 Pogy is extension of 2, ,,, by w~’. The Serre duality
together with *: %, %, identifies the dual to R'n, %, with n, %, _, ; _,. Hence
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the dual to KS identifies Q§ with n,%; ., and the dual to KS is C(4,) (:=the Q1-
torsor of connections on Ap)~{pen, %, _,:pmodn,% o=idy}. Using the
shifted algebras we may identify Q§ with 7, (>, 5;—,0) and C(AgAS)) with
{Pe Py 1,0 1 pmodn, Py 5,0 =idg}. In particular, if i=1, then
Qf=mn, Diff*! (Ew ™!, Ew), C(Agle,) = {0 e n, Diffg*(Ew ™!, Ew): symbd=id}.

Example. Let n=1, so S is moduli of genus g curves with line bundle of degree

—1. Denote by .#" the moduli of pairs (X,w'?), X is a curve, o'/ is
f-characteristics. We have the obvious embedding j: .#" < S; put X" =X| ..
Recall that ./, . is the subquotient of 2,15 since '2 ° = '/ » Zo112 carries the
involution ‘; let 7, , qdwl,z/mv be invariants of * (cf. 3.1): this is extension of
Txv v bY Jf The same reasons as above show that R'r &il/z—;ziml/z, and i
induces the usual embedding 7,12 & j*o7;

One may translate this to 1-shifted language. We have Q! =n,»* and
ClAginhoy)={0€m, Diff3] ;@™ "2, w¥?):symbd=1,'0=0}.

Here ' is the conjugation of the differential operator [note that (w3/?)°=w™/?].
In 3.1 we will see that 4,,=4g,, c;=6j>—6j+1. Hence

Clhys) = {0em, Diffg7 (0™ ? w¥?):symbd=2c;,'0=0} .

This fact is closely related to Tjurin’s results [217; cf. also [4].

2.7. Problem

It would be very interesting to “integrate” 2.3. In a sense Deligne’s Riemann-Roch
(RR) theorem [11] performs implicitly this, but we would like to have a direct
construction as well as a local construction of the RR isomorphism itself. More
precisely, the “characteristic classes” in the right-hand side of Deligne’s RR, say
IC,, may be constructed as follows. Consider the central extension GL, of GL, by
A5, x that corresponds to ¢,. Let E be a rank n vector bundle, and & =Isom((", E)
its GL-torsor. One has a presheaf %(E) defined by formula EE)(U)= {GL -
structures on Ely}={(&y.i); &y is GL,torsor on U,i:&/A,>&, up to
isomorphism}. Let IC,(E) be the sheaf that corresponds to the presheaf 7, €(E).
Since 7 is proper of relative dimension 1, IC,(E) is R'n,#,-torsor. The trace map
tr: R'n, A, —O* transforms IC,(E) into O*-torsor IC,. We would like to have a
similar construction for det RnE. Certainly, the corresponding extension of GL,
is functorial for étale maps only, so one should also vary X and add to the gauge
group GL, the “diffeomorphisms,” as is indicated by the Lie algebra analogue. For
example, one may consider the category G whose objects are pairs (U, t), where U
is a smooth curve and te @(U) is a coordinate function (i.e. dr is invertible); a
morphism ¢: (U, t)—(U’,1') is a pair (¢y, ¢,), where @y : U— U’ is an étale map and
¢,€GL,(O(U)); we have ¢" - ¢ =(py - @y (@, ¢y) - @,). We would like to have the
extension G of this category by £, [or rather by #,/K, (constants)], so as its Lie
algebra would coincide with the Virasoro algebra. If one has a curve X with a
vector bundle E, then we may take an atlas U,, | | U;= X with coordinates t;e O(U,)
and trivialisations of El|y. These data determme the morph1sms @i (U t)
—(U;;,t;)in G such that ;¢ 5 = @, for any i, j, k. The liftings ¢;; of ¢;; to G with the

ij»
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same cocycle property form a H'(X, #,/K ,(C))-torsor, which should be canoni-
cally isomorphic to det Rr E (or rather to its 12-th power); the tangent map to this
isomorphism should be 2 3. The RR-isomorphism should come just from the
isomorphism between G and the sum of GL, above with the analogous extension
of O* x 0* that corresponds to c¢,-c; in the right-hand the side of RR.
Unfortunately, at a moment we can only perform this on the Lie algebra level, see
Appendix.

2.8. Higher-Dimensional Version

Now we will sketch very briefly the higher-dimensional version of 2.3; unfortu-
nately, no canonical complexes are known here, so one should swamp in the
derived category. For brevity, we assume that E= (.

So let n: X —S be a smooth proper map of relative dimension n; denote
w=Q%s, and let 4:X—>X xyX be the diagonal map. Then, following Gro-
thendieck and Sato, we may identify &y s (= the differential operators along the
fibers of n) with H%(X x X, p¥w).

In particular, we have the canonical morphism .oZy s—p5w[n], hence the
triangle ##—./y s~ piw[n]. Let € be the one of the composition % — .oy s~ .y .,
so that we have the triangle pfw[n]—>%—7,. Then one has the canonical
isomorphism R(n x n), ¢ = oy, o, [Where oy, o, is an appropriately defined
2-step filtered object, the extension of I3 by R End(Rn,0x)]. The role of 2 is now
played by the cone of 75— piw[n], completed at A: so one has the exact triangle
piwiln—1]-2—-%ys The appropriate subquotient of # is an analogue of
Virasoro algebra Hysln—11 —»9)(/5 —>9X/S, and one has a canonical isomorphism
R, Cone(&{X/s_‘)Mx o = A getRe,0x

For the higher-dimensional version of Tate’s construction see [2].

3. Differential Equations on Mumford Forms
3.1. Mumford Forms

Note that 7, acts on Q4%/=w’ via Lie derivative: we have a Lic algebra
homomorphism Lie;: 7, —.</,, ., ¢°Lie;=id, . Define &/jc"&im, to be the
n-subalgebra that coincides with Lie;(.7) in degree 0. Hence .oZ; is an Q-extension
of 7, and 2.3 identifies n(</;) with o7, , where 4;:=1,;. Here is an explicit
description of .7}
A local coordinate t (along the fibres) determines the isomorphism
Ox®Ox> o4,

Sjt(Xa v)=(%, V)jz

:<(t21(_t1t))2 +Z( )+(l/2 1/6) y"(t,) + v(t )>dt’ dil .

One has the formulas for bracket [here €7, =7, 1=1,(,5)0,+1,(s)0,,
' =0,1,), cj:6j2—6j+ 1]:

[Ta (X: v)jt:l :([T7 Xat]’ ( )+V’L' - 1/601// N))t,
[(x1 Vl)jn (%2 Vz)jz] = - ]/601‘()(112 +71vatrav)-
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Change of coordinates: let y= y(t) be another coordinate. Then

06 V)jy </c/y vy + lz--y—<x y@ —27>> :
Jt

These formulas determine .o/; completely, and imply

3 1.1. Lemma- Construction We have a canonical isomorphism of m-algebras
gl Seul such that *ufy, v); =1 V)7 := the image of (x,v),, under the map
oy ‘*(C J?i D!

Hence we get a canonical isomorphism .«7; ~c;s/; , or, equivalently, the
integrable connection V; on 4;®4; .

3.1.2. V; corresponds to Mumford’s trivialisation of this bundle: it has a non-zero
horzzontal section u; which is just Mumford’s discriminant form [17].

To see this (the following arguments are parallel to those from [17]), note that
we may assume, since our connection is natural, that X is a universal family of
genus g curves, so S = .#,= moduli space of genus g curves. For g= 3./, admits a
compactification .#, (the closure of .#, in Satake compactified moduli of abelian
varieties) such that codim.#,\.#,=2, and H (., Z)=0. Hence, by Deligne’s
theorem, any integrable connection on a bundle on .#, has regular singularities at
infinity, and so is determined by a global monodromy. Since H(.#,, Z)=0, any
rank 1 vector bundle with integrable connection is trivial (and any of its global
section is horizontal). This proves our assertion for g=3. If g=1,2 any curve is
hyperelliptic, and we will calculate y; in the next subsection.

3.1.3. Remark. The transposition of coordinates defines a canonical isomorphism
of;=.of;_; [it maps (xv); into (x,v);-;,] the corresponding isomorphism
oA, =, comes from Serre’s duality isomorphism 4;=4, _ ;.
Lemma 3.1.1 is a particular case of general Riemann-Roch isomorphism for
Virasoro algebras, see Appendix, A 3.3.
3.1.4. Let t be a vector field on S. To calculate V(1) one may proceed, according to
2.3.3, as follows. We will work locally on S. Choose a section g=g¢(s) of n
(= S-point of X); let U be a neighbourhood of g with a coordinate function ¢ [along
the fibers; 1(q)=0]; put X:=X\q©S), U:= U\q(S) Fix some liftings 7, € 7,(X),
Tye T (U)of tto X, U respectively: drn(®)=t;putt’ =1y —fye /X/S(U) Forj=1
choose a section r; ew’.wl J24)(X x 4U) such that o(r;) = Lie; (1Y) e (V)
CA g, AU). Then (r x» ;)18 a cocycle from (2 3.3.3), which acts on the vector bundie
() by formula (2.3.3.4):

(@)= Ex ) (@) = Lie;(Tx) (@) + Res,, — o1 {1, 15) @;(t2)

where ¢;, € n*(wj) and the residue is taken over the second coordinate. The trace
action of t; on detn (w')=4; is given by the formula

(trz;)(detof;)
=@ A QG A . F Ol AT OF)A L+ =, detg,
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{o{;)} is a basis of m,(w’). Thus trt; corresponds by 2.3.3.5 to the cocycle (Zy, A(r;)
of .7, Consider the expansion of r; in a neighbourhood of 4:

\/t .V t 7 . )
Pty L) = f_( VLAY FU(ty) ) de] dti T+ olty—t,).
(t2 t]) t2~t1

Then for the generator ¢ =deto{;/(det ;) of 1;/2%, one has
Vit) (@)= [2;—Res,_ o l{t)dt —cfo; —Res,_ o [,(1) dt) ] p . (3.1.4.1)

3.2. Hyperelliptic Case

Let X, be a hyperelliptic curve
2g+2

V:=Px)= [] (x—a)a=(a)eC*"? a;*aq;
i=1

J

for i%j; 0:X,—X, the involution a(y,x)=(—y,x). So X, is a covering of P!
ramified at {a;} and X is a universal family of hyperelliptic curves parametrized by

. d . .
S=C?*"2\ {diagonals}. Put ¢ = %ew(X), divp=(g—1)div(x). We have the
following explicit base B; in w/(X):
B ={¢,xq,....x" ¢},
B;={¢/,xq7, ..., x)9 ™ Vi yi, yxep, ..., yxU~ V6" D207} for j>1.
G 1)

3.2.1. Lemma. p;=const- [] (;—a,) * detBj/(detB,)".

i,k

Proof. We will follow the lines of 3.1.4. We have to show that the y; so defined
satisfies V(0,)(1;)=0 (for any i). )
Put 1=0,, q=(a;,0)e X, so y is a coordinate at g, Ty € 7,(X) is the lifting of

- _0.s . Lydy . Pla),  Pla) ,
such that #3(x)=0:7y= % ar = % 0,= P 0, <here P'(a;)
N d
= kl;[i(ai_ak))’ Ty=Tx—1T = <kl;[i(x_ak)+ kl;li(ai_ak)>2—i.
Formula for r;:
1 (y1+y,) Play) P'(a;)
Fixy, s (X2, =3\ — "
j(( 1 yl)( 2 yZ)) 2( 2P(x2)(x2_x1)2 4y2(x2_x1)

+J—1 P'(a)(y,+y2) (2P"(x5) P(xz)+P’(xz)2)) <iﬁ)’ <d_xz_>1~j
4 P(x,) P/(xz)z (x2—x1) Y1 V2 '

This formula may be found as follows. Let A":= (1, g) (4). The function y, +y,
equals 2y on 4 and vanishes on 4'. Hence the first summand of the formula has
pole of order 2 at A with the right higher term, and the pole of order 1 at 4'. The
second summand kills the pole at A’. The third summand is regular at A" and
corrects the first order pole component at 4 to have é(r;) =t". Finally, it remains to
note that r; is regular at x, = co.
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Now we may use the formula
1 P'(x,)
Vi/y=1+ 2 TXZ)(M —X;)

(1 P"(x;) 1 P'(xy)?
T4 P, 8 P,

)(xl —x5)* +0(x; —x,)*

to calculate the expansion of r; at 4:

1(=Pa) 1 D@ Pixy) 1

i 5( P'(xy) (x;—xy)° U= P'(x,)? Xy — X3
i J 3\P@)P(xy) (7 1

+<§+8+E>W+<Ti+§>

L Pla)P'(xy)
P(x,) P'(x,)

+o(x, —x2)> dxy dx ™.

Hence

_1/—Pla) 1 JP'(a;) P'(xy) Jogel—j
pri)= 5( Px) (a—x)? P, (xz—x1)>dxl e

1 1 dy
+-(2j—1)? Y —— — +exact form,
4(1 ) k;fai—ak y

since
P 4 1

PV
ReS'ﬁdX —-0, Resvﬁ“, dx = ‘}),(ai)"k;i a—a, .

So

I PO dy
Ldy=4 =173

i G

[
’ Resyzolidyzz(zjq)zzaﬁ;k
(see 3.1.4.1).

. ; 1
Action of 7; on m,w’: we have Ty(y)= — = .

Lic,(24) (ox) ) = 22

(1) ypx)e’

Uie (T (B @) == == =

. j 1 .
Res,, —o(r (1.1 (62,3 2) 2y2) 92, 2l = S o) ——— ',

1 y

Res,, —o(rf(x1, ¥1): (X2, 1)) y2 B(x5) (x5, ,)= j‘_z* Bla;) o @
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These formulas imply that the trace of the matrix that gives the action of 7; in
basis B;is 0. Hence trt;(det B;))=0. This, together with the above formula for Res/;
gives the differential equation for the Mumford form

. -1 1
,uj=,uj(a)detBj/detBlf.<8al—~TA a—a pfa)=0,
which implies the lemma.

Compare with field-theoretic computations in [23]; for the generalisation to
Z/n-coverings of IP! see [8, 13].

3.3. Problem

It would be very interesting to calculate the expansion of u; near the boundary of
moduli space, e.g. at points that correspond to a completely degenerate stable
curve: these are in 1 —1 correspondence with connected graphs of 2g—2 vertices
and 3g—3 edges, with exactly 3 edges at any vertex; here g =genus. Case

g=2: — Cc—O

g=3 A o—D Q\(-/O C—0—0
O

and to calculate y;in terms of Schottki uniformisation (one should get the formulas
similar to [1]).

3.4. Remark on Cancellation of Anomalies in Higher Dimensions

In situation 2.8 denote by f{c,,...,c,) the term of power n+1 of the series

e *Td(cy, ...,c,), where we put degc,=1i, Td is the Todd genus. Examples: f{"(c,)
= (6% —6j+1)ei; f{Per o) = —j/12-ciley+(j— 1)(2j-1)0f12]~

Suppose that integers ay, ..., ay, jy, -..,jy are such that Y a, /%" =0. Then by
i=1

Grothendieck-Riemann-Roch ~ formula we have ¢ (®4})=0, where
A;:=detRm,®/. It would be interesting to prove a generalisation of (3.1.1) which
should imply the existence of canonical connections on sheaves ® A}'; maybe these
sheaves are trivial?

4. Virasoro Action on Moduli Spaces
4.1. Enhanced Moduli Spaces

Letm,n>1,g=>0,d be some integers. Denote by .# = .. 4.m the moduli space of the
data(X;xq, ..., X, t4, ..., ty), Where X is a genus g curve, x4, ..., x,, € X are different
points, and ¢, are formal parameters at x;. Similarly, let .Z'= ./ be the moduli
space of thedata (X, E; X, ..., Xps L1y -ovs tms 115 .- ) Where X, X, t; are as above,

123

E is a rank n vector bundle on X of degree d, and I,:0" >E, are formal
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trivialisations of E at x,. Both .# and .#' are projective limits of smooth varieties
MO, ' =moduli of the same sort of data with ¢,, I; are jets of trivialisations of
certain finite order k, with respect to obvious smooth projections; so .#, /" are
schemes (of infinite type). Let n: X -4, n': X'— 4’ be the universal curves, E be
the universal bundle on X', etc. Put Z:=C(1t)0, £ := Zm(SpecT((t))
=(((t))(0,+ Mat,): these are our usual Lie algebras on the punctured coordinate
disc. Consider the maps

0=(0): TUX)»L"RCO 4. ¢ 1y (X)L "®C 4
(here X0 —X\Ux (M), T(X):= 1]y (T ,,(X,)) of O ,¢-sheaves: ¢!(1):= ver-

tical component of © with respect to ¢; or t;, I, [if t=1"(s)0,+1"(t;s) near x,,
then (1) =1"(t;, s)=1(t;})0,].

4.1.1. Lemma. ¢, ¢ are isomorphisms.

Proof. The exact sequences 0—+JM{(X)—>J (X)—»JJ,{—>0 O0—.Zg, i (X')
-y X)> 7 ;—0show that it suffices to prove that ¢, ¢’ induce isomorphisms

T i LU i/ (T X, T > L0 )¢/ (A i X))

But these are just Kodaira-Spencer maps for our moduli problem, hence the result.

So ¢!, @ ! define the embeddings ¥ &, T(X), L™ & Ay (X'). They
commute with brackets (as follows from the definition), therefore we have a
F™-action on X and ¥™-action on X' compatible with projections x, 7’ hence the
corresponding actions on .7, .#'. Clearly, the obvious projections X' — X, %' — ./
are equivariant with respect to ¢: ¥’ —».%. Lemma also implies that these actions
are infinitesimally transitive, i.e. the clements of the Lie algebra generate the
tangent plane at any point. More precisely, for any point m”e.#" we have
canonical short exact sequences

07 ( m)_>$ _')‘/‘/Il mhl)0 OqﬂEm’(X/m’)_’g/m—)'j/‘/ﬁ’,m’—_)O

the left arrows are the Laurent series expansions at x; with respect to t(1,), the right
ones correspond to action (= Kodaira-Spencer maps). Note that the action of the
positive part & ™= (tC[[t]],)" C ¥ just changes 1, the action of 0!’ moves x;
(this part of the construction links with the “formal geometry” of Gelfand, ...), and
it is the “polar” part that changes the complex structure of the curve.

Consider the determinant bundles A:= A, , A':= /pon ./, ' respectively. Let
P, %' be the “coordinate” Virasoro algebras, the central extensions of &, ¢’ by C,
and Z™, Z"™ be the sums of m copies of these extensions (= extensions of ¥ by
(D)} Now 2.3 implies that the £'™ action on .Z" lifts canonically to the Virasoro
algebras action on 4,4 with central charge 1. To see this one should calculate
("), m("oZy) by means of adéle, or formal Cech, cochains of the covering
(U, X"} of X, where U := (] U, is the union of formal neighbourhoods of x;. The

13
cochains (in /' case) are the triples

{1y Tys Ty}, Tx € n(X) Ty € g A ﬂ Ay AU,
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ro€ ey {U)=2™Q0 4 such that 1, —1,=0(ry); the bracket is given by the
formula [(ty, 753 70), (v, 753 78)] = (Lvx, 73], [70» 515 g 161 + Lok r2])- It is easy to
see that the formula r > (¢’ (r), —&(r)+ @'~ *(r);r) defines the Lie algebra map
P q("afy) which is, according to 2.3, the desired action of Z™ on 2'; the &
action on comes similarly.

We may rephrase 3.1.1 as follows: #™ also acts canonically on 4;=detRn oY

with central charge ¢;, and Mumford form ; is just the fi’"—invarlant sectlon of
Ay AR,

4.2. Generalities on (®, K)-Schemes

We will describe explicitly the structure the enhanced moduli possess. In what
follows ® will be either of Lie algebras %™ or ™ and G will be the central
extension of ® by € as above. Put #,:=tC[[t]]0,C ¥, =C[[t]]0,CZ, %50
=Zoo +8L(CLHIN C L= Lo+ gL(CLINC L, Gpo=L" CO=LP"C6;
these are “parabolic” subalgebras of ®. It is easy to see that ® lifts umquely to the
subalgebra of ®; so we will assume that ®,,C®,C®. The algebra G, is
projective limit of finite dimensional Lie algebras. Moreover ®,,, is Lie algebra of
the proalgebraic group K, which is an extension of the finite dimensional reductive
group K" by the prounipotent group K* (in case ® =% one has K=AutC[[1]]
= group of formal diffoomorphisms of line ={a,t+a,t>+ ..., a;€ C, a; +0},
K"=Gm;incase = ¢ one has K"=Gm x GL,). Clearly the adjoint action of 6,
on ® integrates to the K-action.

Let Y be a scheme. As usual, (®, K)-action on Y consists of ®-action [i.e. Lie
algebra map ®& 2> 7(Y)] and K-action K x Y—Y which arec compatible in a
sense that the ®,,-actions that come from ®-action and K-action (&, = Lie K)
coincide, and for ke K, 1€ ® one has a(ad k(t)) = k*a(r). The action is (infinitesi-
mally) transitive if for any ye Y the map o,: ®—.7, is surjective; in this case we
will call Y a homogeneous (®, K)-scheme. The most important (®, K)-schemes
are the following ones.

Definition 4.2.1. A (®, K)-action on Y is of finite type if a sufficiently small “open”
K'CK (“open” means “of finite codimension”) acts on Y in a free way with the
quotient K'/Y being a scheme of finite type.

We will call such Y’s (6, K)-schemes of finite type for brevity (note that Y itself
is infinite dimensional!).

Similarly a (%, K)-line bundle on a (®, K)-scheme Y is just the line bundle /
together with the compatible actions of ® and K, that lift the (®, K)-action on Y.
We will say that A has central charge c if the element of the center ae € C ® acts
by multiplication by ca.

Clearly ., .7l above are homogeneous (®, K)-schemes of finite type for the
corresponding ®’s and 2, are (®, K)-bundles of central charge 1.

4.2.2. More General Example. Let j/ _1.1.» be the moduli space of data (X, x, (;
Vis-ees Vi3 Ugs -5 Up), Where (X, x, t)eﬂ 1,y,eX\{ } are different points, and u; are
r-jets of parameters at y;. Then (&, K) acts on .#,, ,,, , in the same manner as it did
on .4, 1,/% 1;1.» thus becomes a homogeneous ((95 K)-scheme of finite type, and
the determinant bundle / also gets (Z, K)-action of central charge 1. Certainly, we
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may complicate the picture by switching on more x’s together with a vector
bundle.

4.2.3. For a (®, K)-scheme Y and pe Y denote by 6, the stabilizer of p;if Zisa
(®, K) bundle with central charge #+0, then ®, lifts to a subalgebra of . So for
Y= // 11 and p=(X,x,1,y,u;) one has £, —algebra of holomorphlc vector
fields on X\ {x} with zero r-jets at y; (for example in case Y=.4, ,,,, the
correspondlng algebra is {L_,,L_,_,...}C%, where L,=¢"'3,). Call a subal-
gebra Q C ® algebraic if there exists a homogeneous (G, K) scheme Y of finite type
with (6, K)-sheaf 1 of central charge +0, and a point pe Y such that Q= 6,
Clearly, algebraic subalgebras are complementary to ®,,=LieK up to finite
dimensional space [i.e. both dim(@N ), dim(G/Q + G ,,) are finite], and does
not contain the center CC ®. We do not know whether there exist a subalgebra of
this type which is not algebraic.

4.3. Relation with Sato Grassmannians

The construction of 4.1 may be easily interpreted in the framework of Sato
construction [19, 28]. Consider the case, say, of ,%Aé,l (the case of m points is
absolutely similar, the same as for the moduli of 4.2.2). The points of the Sato
Grassmannian Gg are the colattices L C F =((t))", i.e. the vector subspaces such
that both LNV, F/L+ V, are finite dimensional; here V,:= C[[¢]]"CF. Given a
lattice VCF (see 2.4.1) let GY"CGg be the set of Ls transversal to V, ie.
GY):={L: L®V=xF}.Clearly, G{’is Hom(F/V, V)-torsor, hence a projective limit
of finite-dimensional spaces. This defines on GY" the structure of a projective limit
of algebraic varieties; more precisely, GY is isomorphic to the spectrum of the
polynomial ring of infinitely many variables. These structures for different V’s glue
together, hence Gg becomes an (infinite dimensional) scheme. The Lie algebra
A CEndF (see 2.4.1) naturally acts on Gg. Now we have a canonical map
&: M -G, ®(X,E, x,t,1): = image of E(X)—E(U)1= F. It is easy to see that @ is
embedding of schemes equivariant with respect to the obvious map %’ < %; so
' is the #'-orbit in G,

The scheme Gy carries a canonical determinant sheaf A4 with fiber 4, at Le Gg
equal to det(LnV,)/det(F/L+ Vy)= det(L(—B Vo= F); so A| 4 coincides with 4. The
Z-action on Ggextends naturally to # action on A with central charge 1 (see [19]).
Namely, to define the action of r e Z choose (4, B)e Q such that r=(4, Bymod %",
A(F)CV,. For Le G4 choose a lattice V' CV, such that VnL=0, B(V)=0, and a
(finite dimensional) subspaces T, T'C F such that V@ T=V}, V@ T'®@L=F. Then
for any L' € G4 close to L one has also the decomposition V@ T'@L =~ F,and so 4;,
=det(V,— F/L)=det(V,/V)/det(F/V + L) identifies with the constant line bundle
det T/det T'. Under this identification r acts as a 1 order differential operator J(r)
+trdpp—Tr(A+ B)g.p. Here tr Ap € € is the trace of TT-component of A4 with
respect to the decomposition V,,=V + T, and the function tr(A4 + B)y. 4 takes at L
the value equal to the trace of T'T'-component of d(r) with respect to the
decomposition F=V@® T @ L. Now one may see that the #’-action on 1’ comes
from the Z-action via the embedding &’ ¢ 2 (see 2.4.2).

In the next few sections we will study certain distinguished Z-modules and
local systems on moduli spaces. These Z-modules are just the equations on
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correlators in conformal 2D quantum field theory. The subject may be viewed as
the first step in the study of lisse representations of Virasoro and current algebras.
These representations are analogues of finite dimensional representations of finite
dimensional Lie algebras (the term “lisse” is borrowed from a %-module
dictionary); in the Kac-Moody case “lisse” means “integrable.”

What follows is a sketch of a part of a joint work with B. Feigin (in
preparation); we omitted all lengthy proofs, as well as (the most) important part
about the factorisation properties (degeneration near the boundary of moduli
spaces). We would like to stress how much this material owes to V. Drinfeld.
Above all it was his key theorem on holonomicity of the partition function (4.7.3)
that was our starting point.

4.4. From Representations to 9-Modules

Assume that a Lie algebra ® acts on (Y, .o/), where Y is an algebraic variety, and .o/
is an Atiyah algebra on Y. This means that we have a Lie algebra map ® - .o/(Y),
hence the morphism of algebras o: U(®)—>Z (Y).

Remark. Any action of ® on (Y,/) defines a (-action on Y, namely
G-.o/(Y)—2> 7(Y); any action of ® on Y [ie. Lic algebras map G&—-.7(Y)]
defines the G-action on (Y, .7, ).

Now the G-action on (Y, .o/) defines the localisation functor A:®-modules
-9 ,modules by formula 4(M):=%, ® M. Clearly A4 is right exact.

ue)

Example. If M is generated by a single clement ¢ subject to relations 4;p =0,
A;e U(®), then A(M) is a & ,module that represents a system of differential
equations a(A4;) ¢ =0.

Remark. The functor A when ® is a finite dimensional reductive Lie algebra and Y
is a flag space of ® appeared to be very convenient in representation theory (see e.g.
(31).

We will apply the above construction to the situation of 4.2. Namely, let Y be
any (6, K)-scheme of finite type and 4 be a (®, K)-bundle on Y with central charge
¢*+0. Put oA =of,=c/c'A,, Dy,=2, (here ceC is a fixed constant). Since the
dimensions of our varieties are infinite one has to worry a little and consider the
continuous modules only. A -module M is continuous iff the stabilizer of any
ze M is an “open” subalgebra in ®; a & -module is continuous iff any of its local
section is K'-invariant for a sufficiently small “open” subgroup K'C K. Denote by
®,-mod the category of continuous -modules of central charge ¢, and by ' -mod
the one of continuous Z,-modules. We get the functor 4: ®,-mod— 2 -mod.

Let pe Y be a point, ®,C® be its stabiliser, and m,C 0, be its maximal ideal.
One has the simple

4.4.1. Lemma. M/® M = A(M)/m,A(M) (i.e. the fiber at p of A(M)as a O,-module
coincides with the coinvariants of M with respect to 6 ).
4.5. Descent to Finite Dimensional Quotients

Let K’ C K be an “open” subgroup that acts on Y ina free way,and g : Y > K'\Y be
the projection (so K'\Y is a finite dimensional variety). The sheaf 4 descends to the
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same-noted sheaf on K'\Y, hence we have the category Z,-mod(K'\Y) of
9.modules on K'\Y together with inverse image functor ng.:%,-mod(K'\Y)
—9,mod (= 2,-mod(Y)), n*(R)=0y ® R. In fact, n* defines equivalence

Ok \y
between Z.-mod(K'\Y) and the category (Z.,K')-mod of K'-equivariant
2 .-modules on Y (here a K'-equivariant Z.-module is a ¥.-module with K'-action
such that the corresponding Lie K’'-action coincides with the one induced by
LieK'c®C2,).

4.5.1. Remarks. a) If K' does not acts freely, then K'\Y is a stack, and, being
defined in an appropriate way, a 2 ,-module on K'\Y is again the same as a (%, K')-
module on Y. b) In fact, the descent of Z-modules usually does not require the
group action. Namely, if S, T are smooth varieties and n:S—T is a smooth
morphism with connected fibers, then % : 2,-mod—Z¢mod is a fully faithful
embedding, 7" (Z;-mod) consists of Zg-modules generated by sections horizontal
along the fibres of n. This remark implies, in particular, that any finitely generated
continuous Z,-module on Y comes from a certain (finite dimensional) quotient
K'\Y.

Below we will confine ourselves with the pure Virasoro case ® =.2". Our
(-modules M’s will be integrable with respect to ®,, (i.e. for any ze M one should
have dim ®,z < o0). This implies that M is naturally a (®, K*)-module, hence 4(M)
is a (2., K*)-module, so 4(M) descends to (the same noted) Z.-module on K*\Y; if
M was finitely generated, then A(M) is coherent. Moreover, we have K"= K/K*
=Gm™, and A(M) is K"-monodromic along the fibers of projection K*\Y—>K\Y.
Note that in case Y=.#,,, one has K\Y=, .., K\Y=.4,,, hence we get
(twisted) Z-modules on moduli spaces.

4.5.2. Examples. Assume that m=1. Let M_, be a Verma module: it is an
2 .-module generated by ve M., subject to relations Ly =0for i> 0, L,v = hv (here

;=1710,€ Z,). Then A(M, ) as Z,-module on .#, ,, is generated by the single
section v subject to the relation Lov= hv (note that L, is a Euler vector field along
the fibers of .#, ,, .4, ). In particular A(M, ;) descends to the free & -module
on ./, . Let M, , be the quotient of M, , by the submodule generated by L_,v
(hence M, , is an Z-module induced by the trivial representation of ®,). Then
4.5.1.b implies that A(M, ) descends to the free Z,-module on .,

4.6. Lisse Modules

The irreducible Z,-modules L., are just the quotients of Verma modules by
maximal submodules: L., =M, ,/N.,; the irreducible ¥-modules are tensor
products L, ,=L, , ®L. ;,,® ... ®L, , . We will be concerned with the following:

Problem. When A(L,,) is lisse, i.e. is a vector bundle with A°-twisted integrable
connection?

4.6.1. First one should chat about singular supports. Let M be a finitely generated
(Z,o-integrable) Z,-module. One defines its singular support SS(M)C £* just as
in the usual finite dimensional situation. Namely, take RCM to be a finite
dimensional subspace that generates M it defines the filtration M;=U,R on M
[hereU;=C+Z + ... + Z'CU(P)]. We geta S'(£)-module Gr. M = @M /M, _,
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[since U,/U,_, =S(%)], generated by R =Gry(M). Put SS(M)C £* =SpecS(¥)
as the support of Gr.(M); this definition does not depend on the choice of R.
Clearly SS(M)C Zg,; it is Zariski closed and ad %, -invariant. An easy linear
algebra exercise shows that these properties imply that SS(M) is either 0 or
coincides with one of the vector subspaces ;- C #*, where #,={L, L, 4, ...},i<0

(s0 Zo=%po, P 1 =)

4.6.2. Examples. If M is generated by a single vector v, then SS(M) is given by
equations Symb(P)=0, P e Ann(M, v); here Ann(M,v)={Pe U,(Z): Pv=0}, and
Symb is a higher order term. Hence SS(M. ,)=%g,, SS(M.,)=%y. More
generally, let N C M, , be a submodule generated by one singular vector vy (L;vy =0
for i>0). Then SS(M,,/N)= %4 This follows from the fact (communicated to us
by D. B. Fuchs) that vy = Pyv with Symb(P,) equals the power of L_, (see [12]).

4.6.3. Definition. Call M lisse if SS(M) does not equal L3, or Li (ie. if
SS(M)C 2*,).

Commentary. An infinite dimensional version of Gabber’s integrability theorem
[30] would imply SS(M), being a vector space, should be an orthogonal
complement to the Lie subalgebra of .. Hence “lisse” above should really mean
that SS(M)=0, which explains the term. It seems that it is really a fact, but we could
not prove it.

4.6.4. Remark. Consider the irreducible module L, ,=M_ /N ;. Then L, ,is lisse
iff the following condition holds: there exists P(L_,,L_,,...) such that Pve N,
[ie. PeAnn(L, ,v)] and Symb(P) is prime to L_,.

We define lisse .#™-modules by the similar condition SSC []#+,. Clearly, if
M,,...,M,, arelisse Z-modules, then M,®...®0M,,is alisse #™-module, and the
converse is also true.

4.6.5. Theorem. Assume that our Y is homogeneous. If M is a lisse Z"-module, then
A(M) is lisse.

Sketch of the Proof. Consider the case m=1; the general case is similar. We will
show that the singular support of 4(M) coincides with the zero section of the
cotangent bundle €(Y). Look at the moment map for the #-action u: Q(Y)—L*.
Itis easy to see that SS(A(M))C u~ ' SS(M)C ™ (22 ,). But the maximal involutive
subvariety of u~!'(2+,) is zero, since #_, generates . and the Z-action is
infinitesimally transitive. This implies that SS(4(M))=0 due to the usual
integrability theorem for SS of 2-modules; note that A(M) comes from a finite-
dimensional quotient, hence the situation is actually finite-dimensional.

4.6.6. Corollary. Let Q C® be an algebraic subalgebra (see 4.2.3) and M be a lisse
®-module. Then dimM/QM < co.

The proof follows directly from 4.6.4 and 4.4.1.

4.7. Classification of Lisse Modules

As follows from, say, [12] the maximal submodules N, of Verma modules M, ,
are either 0, or generated by one or two singular vectors. One has also the following
lemma, well known to specialists on Virasoro algebra (see [6]).
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4.7.1. Lemma. N_, is generated by two singular vectors iff c¢=c, =1
—6(p/q+q/p—2) for certain rational prime integers p,q, 1 <p<gq.

4.7.2. Lemma. L, , is lisse iff c is satisfies the conditions of 4.7.1.

Proof. If N, is generated by one singular vector, then SS(L, )= %5 (4.6.2).
Assume that N, is generated by two smgular vectors (one of them is L_,v). Take
P(L_,,L_,, ...) such that P-ve N, ,\U(Z)L_,v of minimal degree. Then
Symb(P) is prime to L_, [otherwise take R € U(#) with SymbP =(SymbR)-L_;
we have (P—RL_)ve N, \U(Z)L_,vand deg(P—RL_,)<degP], and we may
apply 4.6.4.

4.7.3. Corollary. If c=c, , then A(L.,) is a vector bundle with a J*-twisted
connection on the moduli space of curves .,

The 9.-module A(L,, , o) is just an equation on the partition function in the
minimal theory of central charge ¢, ,, [6].
4.7.4. Now for c=c, , consider the following list of h’s:

2
h,,,,,:i[z_LLﬂ(n-‘Bm)],
T4 g p p q

where 1<m=<gq—1,1<nsp-—1. (p—1)(g—1)
Clearly h,;; =0, one has h, ,=h,_,, ,—, and the list contains B
different Ah’s.

4.7.5. Theorem. a) The following conditions for an irreducible module L, , are
equivalent:
() L., is lisse.

(ii) N, , is generated by two singular vectors and occurs in M, , only (i.e. no
other M, contains L, , as a subquotient).

(iii) The invariant space L3+ is finite dimensional.

(iv) c=c,, from 4.7.1 and h= Ry from 4.7.4.

b) Any lisse Pm-module is a finite direct sum of tensor products of lisse irre-
ducible Z,-modules.

4.8. Local Systems on Moduli Spaces
Let us consider the case Yza%’gm. One has the following:

48.1. Lemma. The % -module A(L,; ® ...®L,, )equals 0 if among L, ,’s both
lisse and non-lisse irreducibles occur.

It readily implies

4.8.2. Corollary Consider the obvious projection m: //g ml+,,,2—>/1gml Let L.,
i=1,...,my, be lisse L.-irreducibles. Then we have the canonical isomorphism

ALy, ®...®L, ), N)=A(L,®...®L,,, ®L, (®...QL. ).

So we may insert the L’s with h=0 at any additional points, and the
coinvariants - the fibers of the corresponding &,-modules — will not change.
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4.8.3. Now — for a moment — let us fix a point p=(X, x,, zi)eﬁg,m. The fiber
AL, 4, ®...®L,,,), is the space of coinvariants of 7 (X\ {x;})C.Z"; such things
are familiar in automorphic representation theory (the automorphic represent-
ations are representations of “adelic groups,”i.e. the product of “local” ones having
the vector or functional fixed under the “global” group). This analogy was also
noticed by Witten [29]. One may exploit this in a slightly different direction to
construct the “automorphic proliferation” functor that replaces tensor products in
a finite dimensional situation.

Namely, assume that {x;} =SuS’, SnS'=0; let Z, Zs be the products of
corresponding Virasoro algebras (so Z™ is %y x P, with centers identified); let
T =T (X\{x;}) o Psx Z be the subalgebra of the global vector field (extended
by a 1-dimensional center). Clearly both projections

T2, 725 2,

have dense image. One has the adjoint functors
v§
~ — A
g -mod . ZLgmod
_—

(here 7 -modules are arbitrary ones, and Zg-modules are P, ,-integrable) vy is
just the restriction, and vy, (M) is the largest submodule of M on which 7 -action
extends to ZFs-action by continuity. We may do the same for S’ to get vg. ., vg.. Now
define the proliferation functor Py ¢: Fg-mod— Lg-mod by formula Py (M)
=vg . Dvg M; here D means dual 7 -representation (arbitrary linear functionals).

Clearly M ® Pg.{(M) carries canonical (universal)  -invariant linear form.
The above results imply

4.8.4. Lemma. Pg g transforms lisse modules to lisse ones.

Example. Let X=P'. If S={0}, S'={o0}, then Pg(M) is a contragradient
module; if M is irreducible, then Pgg(M) is isomorphic to M. If S={0}, S’ = {1, 0},
then Py may be described explicitly (for lisse modules). In particular Pgg(L, )
(=11
2

The bundles on .#,,_ 5 that correspond to irreducible lisse .#3-modules are either 1
dimensional, or 0 ones.

4.8.5. So for any lisse Z"-module M we get a lisse Z,-module on My - As usual,
we may consider the sheaves of their horizontal sections (or solutions). These are
local systems on the fibration A" over .#, ., where A" is 4 with zero section
removed, that have monodromy exp(27ic) along the fibers of A'. Equivalently,
these are representations of n,(4°), which is a central extension of the Teichmuller
group n,(A, . 1) by Z; the generator of the center acts by exp(2ric). It would be
very interesting to find these representations explicitly; the specialists seem to
know only the cases of .4, 4., and .#, ,.,. The only thing we have at the moment is
a very plausible conjecture on their ranks. It is closely related to the description of
these local systems near the boundary of moduli space, and it is here that what
physicists call “operator algebra” comes into play. We refer the reader to the above
mentioned paper in preparation on these subjects.

=®L,,, ®L, . the sum runs through -representations of list 4.7.4.
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5. C*-Connections on Determinant Bundles

In this section we will consider the analytic situation. We will see that 2.3 helps to
construct a canonical C*-connection V, on A from C*-connections Vyon Eand V,
on w, that has the curvature prescribed by the Riemann-Roch-Grothendieck
formula. This construction is, in a sense, the once integrated version of a theorem
by Quillen, Belavin-Khizhnik, Bost [18, 5, 9], generalised recently by Bismut-
Gillet-Soule [ 7] to higher dimensions. To find the exact formula for “det0” one has
to integrate twice .... )

In what follows Q%° %> Q%' —%» ... will be the d-resolution of Oy, so QP =%
is the sheaf of C*-functions, and Q% is the sheaf of (0, g)-forms; the bicomplex Q&
=0Q"®,, Q% has differentials 0, J and the total differential 3+ (—1)?d. These are
(super) commutative dg-algebras. In the relative situation we may consider the
relative forms Q%% which form a 0J-resolution of Ox®,,n"'%s and Q%4
= Q@Y.

5.1.

Let .o/ be an R-Atiyah algebra on X. Put ¥R:=%x®,, R and denote by ¥.« the
%R-Atiyah algebra which is the push-forward of .« [see 1.1.5(i)] by the map
R—>%®R and the action 7(f ®@r)=e&(7) (f)®r+ f ®[1,7] of .«7 on ¥R. We have the
exact sequence of sheaves

0o el > Gcd —> Q@R — ...

A C®-connection on of is just a connection V on € .o/. Clearly, C*-connections
form Q'°® R-torsor which has global sections. The C*-curvature of V' is C;, = C}!
+C2e QY @R®Q*°®R, where C2° is the usual curvature (see 1.1.4), C?%(t, 1)
=[V(t,), V(t)] = V([t1,7,]), 1€ Ty, and C'1:= 0V, CLA(T, 1) =T(V(7)). We will say
that ¥ is a (1, 1)-connection if C2°=0.

5.2.

Assume that we are in a relative situation of 1.2. Let &/ be a n-algebra. The algebra

7., hence &/ ', acts on the complex Qy% by the formulas 7(w):= Lie (w), x(w)
=ydw, 1€ 7, e 7, ', we Q. Define the dg-Lie superalgebra €.«/" to be the
push-forward of .o/° by the map Qys & Q5 and the above action. Hence .o/ is
an extension of o' /Qy 5[ 2] by Q3 %[ 2]. Clearly, n(¢.s/"):= R°n, %o/ has a natural
structure of a #s-Atiyah algebra, and we have the canonical isomorphism €7(.2/")
=n(€.").

A 77 'Oglinear section V:.of’ /Q%s[2]—>%«/" which commutes with the

differential will be called a C*-connection on .«". Such ¥ determines a C*-
connection n(¥): = R°r (V) on (7).

5.3. Formal Parametrix

Let us return to "o/ Let V; be a C*-connection on E (i.e. a connection on &7, p) and
V., be a connection on w. We are going to construct the C®-connection V= VVE v,
on ¥ “</;. This will be done using the formal parametrix.
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5.3.1. Let F be a vector bundle. Put ¥[X|F:= hm%.F/%.F(—zA) hence the
elements of € I@ are formal series

Z f(tl’ )(tz 1)i’fi(t>t_)e(g'

A C*®-connection ¥ on F canonically defines the derivative V'?: ¥X|F ~¢ X Fo
along the second variable: in coordinates, if V=0,+A(t ), then V*=0,
+Ya A A(ty, £1) x (t,—1,)'/i!. If G is another bundle, then V® also acts on ¥GX F
= G®((€F) Now we may define Idy ;,, € #EXIE* to be the (only) V#)-horizontal
section that equals id; being restricted to 4 (here Vg ='¥). In the same way we have
V2 : ¢Xo—%€Xw®? and, localising off 4, V2 : 42 —-%Pw, where

%P = EXw(0 )= lim G R w(coA)/ERKa(—id),
=

CPO=FPR,, 0=FHn®*(04).
Define I, e%% to be the (unique) solution of the equation V*(IT, )+II7
=0 w1th a pole at A. Equivalently, if veKerV?, v=0, then I, —v/jv
here j v is the solution of equation d® fv=v that equals 0 at A. Finally,

put 1'[:=va~IdE,VEe‘€WE,1 :=@EXIE®(A). This IT is called the formal para-
metrix for Vg, V,; we have 0(IT)=1€ @ CE R Dy, so II defines a section s of §,
sp(0)=0VIT (derivative along the first variable).

5.3.2. Let us describe s; more explicitly. Consider the expression

_ A_5(x) A (x) Ao("))
Flen)= < o o Tymx)

where A/x) are nxn-matrices, and apply to it a gauge change (x(x), B(x)),
B(x)eGL,. We get
A_5(x) N A,(x) 71()

B~ !(x)- P(o(x), a(y)) - B(y)= <-“+( —-x)*  (y—x)?* i y—

+(Ag(x)- Fi' ‘a", B 'B)+A_, - FL (« ‘0", B~ 'B)+

+(Ao(x) F3(o/ ‘o, B"'B)+ .. )(y—x)+,..>dy,

where F} are certain universal isobar differential polynomials. Then, if we have
connections V- (where 7 : = w '), ¥}, with potentials @, dx, @ dx, then the section

7 VE:'@E/‘@E,():@E_"@E

is given in coordinates by the formula

A_4(x) | A(x)
s( + =)’ + y——x)dy

(A A
~ (2,2

+A_(x)-Fi(®gs, Pp)+...)+ ...>dy.

L T(Aox) Fo(®7, @)
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For example, we have [for the scalar matrix a_ ,(x)],

(aul(x) +Ao<x)> dy P B_l(x)< a_(a(x))

v—07 Vy—x o) — o)
Ao(o«x») =<a_1(x) Ao(x)
#0)—al) P BO= T Ty

+ (Ao o+ BT B)+a (o) 52/
~4(@2)- BT B+ 4(BT'BY —4(B”'B))+ ...>dy,

where
a_y=o " a_(o(x)); Zo =B~ l(x) Ao((x)) B(x)
+o' " (x)a_ (xx)) B”(x) B(x).

So, for connections @, P, the section

R
is given by the formula

(a_y, Ag)—=(a_y, Ag, tr[Ag(z Py +Pp)+a_,
XEPy—15P5 =50, 05+ 5 Pp—5PP)]). (5.3.2.1)

Remark. The described above Fi are the unique invariant differential polynomials
giving the desired section.

5.4. C¥-Connection on € "oy,

Return to the relative situation 7 : X —S. Let z denote a local coordinate along the
fiber of 7, 0, — a fiberwise d-operator (respectivbly, - the full d-operator on X). Let
Vr, Vg be C*-connections on Jy s, E respectively, with (1,0)-components (locally)
Vin=0,+®ydz, V}')=0,4+®rdz, dyeMat, V; induces connection V, on
w=wys With V) =0,—0pdz. Let C(V)eQy'®@Mat,, C(V)=—C(V,)eQy’
denote the (1,1)-components of the curvature and C(Vy)=70®,, C(Vp)=0D;
[respectively, C(Vy)= 03,9, C(Vy)=0,8;) — the image of C under the projection
Q' ->oRQY! (respectively, Q%' —Q}4). Finally, put ¢, =trC, with the same
meaning of ~ and ", ¢, is the (1, 1)-component of the first Chern class.

Put for brevity .o/p,s="s/;4, and let €./ be its push-forward by a map
w—Q}9. The construction of the preceding subsection gives the section,

S=Spy vy «Q/E/S“*%JE/&
5.4.1. Lemma.
E.S(ﬂh »Ag)=Tr[(Ag—a_,Ppr) (% C(VT) + C( Ve)
Va0, (0/68 (V) — 5 E(Vp)].
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Proof. From (5.3.2.1) we have

0s(a_ 1, Ag)=Tr[ag(0®@y+30Pr)+a_ (30, 00— Py 0Dy
— 200, D — 1D 0P+ L0000, — §Pr0Dy)]

=Tr[(Ag—aPg) (G 0P+ 0P +a (0.~ Py) (§0Pr+ 3 0Pp)].
5.4.2. Now we can construct the desired C*-connection on % ".o7;. The last
algebra is the complex (6 0)
QX/S Qg}é@(gﬁms - Q)I(’/.é@"dE.n'

-2 —1 0
We must construct the section s, of the evident projection of this complex to
ME‘—:('ME/S_’ &/E,n)-

1 0
We put

Si;l 342/5/3‘*9?(’/5@(gﬂ15/s,
sy H(@)=(0, 57, v, (a);
$O: Aty QYD Ay, (5.4.2.1)
59(@)= (Vo0& €1(V) — 3 €1 (V)
+Trny(a)- (3 C(7,) — CVp), id)],
where ¢: .9/ ,— 7, is the projection, n, .o/, >End EQ %y, ny (a)=a—Vy(e(a)).
From Lemma 54.1 it follows directly that the so-constructed map

syt Ap—€ "oy commutes with differentials in o7y, € "o/}, ic. defines the C*-
connection on % "7},

5.5.

Proposition. Let c, be the (1,1)-component of the induced C*-connection V on
(€ " A ys) =C A geirn, - Then cy is expressed by the Riemann-Roch-Grothendieck
formula,

Cp= j<12 ¢, (V) + ZCI(VT)CI(ZE)"'_ChZ(VE)),
where ch,(V;) =1 tr C(V,)%.

Proof. To compute the curvature of V, we shall work with d_-resolutions of
oy, "oy Let €.y , denote the push-forward of .o, by the map .o/ )s— .o/ s QF .
Letve I, and i€ .o/, be any of its non-holomorphic lifting. The construction of
Sect. (5.4.2) extends in the evident way to 0,-resolutions of .7, "</, and from
Stokes formula it follows that

ucvzy{as%w«,,w@ () —4e (VE))}

T

+Tr[7y,(8) - (— 7 6(Vp) — ()] -
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On the other hand we have
(1) 35 36=[8,51 6=V, ,z0) (gél(VT)Jr%él(%))
+Tr[ry (0)- (—c(Vg) —3&(Vp)]  [from (3.5.4.1)];

(2) 8_ w,sﬁ(' . ) = —&l Cl(VT) + Vw,s(?ﬁ)(~ . )a
(3) 0y (8)) = O(D — Vig(eD) = 08 — V(D) — e 1 &(V)-

Hence
viep= i{(eml(m) (gémn %m(%))
+ Tr{(673 C(7) (CF) + § T VT»]}
- ;{sfu [{gclw +%c1<VT>cI(VE)+ch2(VE)]}
=v_) n(%cl(vm + %c,<VT>c1<VE)+ch2<VE)>.
5.6.

Remark. Tt seems very probable that when V, V; arise from hermitian metrics on
E, 7,5, then n(V) is just the connection associated with the corresponding Quillen
metric on Ag [18].

6. Logarithmic Singularities
6.1. Atiyah Algebras with Logarithmic Singularities

6.1.1. Let X be a smooth variety, DCX a smooth divisor. Let 7 ,C 7y be the
subalgebra of vector fields that preserve D. In the case dim X =1 7 ,=7,(—D). If
</ is an Atiyah algebra over X, put </(logD):=¢™ Ty p)C.A.

If («/,R), (#,S) are two Atiyah algebras, then we call a morphism with
logarithmic singularities at D, or simply a log D-morphism, between .o/ and 4 an
Oy-linear Lie algebra map f:.o/(logD)— #(logD) such that f(R)CS, f|z:R—S is
an algebra map and the induced map .o//R—%/S is an identity on 7 . Soif D =0,
then f is just the usual morphism of Atiyah algebras.

6.1.2. Example. If of =, , =4, (E is a vector bundle on X) then a logD-
morphism .o/(logD)— o7 (logD) is the same as an integrable connection on E
with logarithmic singularities at D.

6.1.3. Let E be a vector bundle on X. Put

DyllogD):= Y JiG, ={0€D,:0J'E)CJE forall i=0},
iz0

where J C Uy is an ideal defining D (cf. 1.1.1).
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Clearly, 9 ,C%y is a subalgebra filtered by Z,(logD);:= Z(logD)nDy ;
= Y J*%g,. From now on assume that X is a curve. Then local sections of

k<i
Z(logD) in a neighbourhood of xe D are just polynomials (with matrix coeffi-
cients) of t0,, where ¢t is a local coordinate at x.
Similarly, put
PylogD)= Y J'Py ;C Py,

PlogD);= Jk?}E,kgangD)i,j = g()E(lOgD)i/@E(logD)j
K<i

(cf. 2.1.1.2). We have
Zi(logD)/Z,(logD) _, = 7 ((logD);
Pp(logD),/?p(logD); -, = 7y(— D)®' QEndE.
Note that J4(—D)® " !'=w(logD):= the sheaf of differentials with logarithmic
singularities at D. Clearly, Z(logD) is & 4(logD)-bimodule, cf. 2.1.1.2.
The same definition works for arbitrary Atiyah algebra .o/; thus we get the
2 ,logD)-bimodules, Z,(logD) etc. (cf. Appendix A2.1). One has of course
/(logD)={0eZ?,(logD), _|Symbd:=3dmodZ,(logD),
€ 73(~D)CT(~D)®R}.
6.1.4. Functoriality of P(logD) with Respect to logD-Morphisms (cf. 5.3). Let
f:./(logD)—%(logD) be a logD-morphism. Then it canonically induces the map
P, 2,(logD)—Zy(logD). In fact, since ./(logD)|x_p=|x_p, #; is defined on
X — D because Z,, is functorial with respect to o7 (cf. Appendix, A2.1). We can
extend this map to the whole X and have only to verify that Z,(logD) is mapped
into Z,4(logD).
To see this we shall write down the local formulas for #,|y_ . For simplicity

we’ll restrict ourselves to the case .of = .oy, B = .o, tk E=n, rk F =m. Let us follow
the lines of 5.3.2. Consider the expression

Y Ax)dy(y—x)"',  A{x)eMat,,

i<ip

and perform with it a gauge transform (B(x)e GL,):

BT (x) L Adx)dy(y—x)'"" B(y)= Z( Y. B7l(x)A{x)B(x)

X P;_(B~'x)B'(x),(B~'(x) B(x)),...,(B"'(x) B(x))V "'~ ”))
xdy(y—x)"",
where

PyB™'(x) B'(x),(B~'(x) B(x)),...,(B~'(x) B(x))* " ")= % B~ '(x) B¥(x).
(6.1.4.1)
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Now choose a local coordinate x on X, hence (x,y) on X x X, and local
trivialisations of E and F. Suppose that f: .o/ — .o/, in this local coordinates has the
form

fla(x)0,+ A(x)) = a(x) B(x) + f(4) (x) + a(x) Oy,
a(x)€ Oy, A(x)e End (%), ®(x), f(A)(x)e End(C).

Then, if
p=(A;(x), Ajy—1(x), ...) 1 = iSZiO A dyy—x) "' ePy 4.
we have
yf(p)=<...,l<jsz(fl)(x) ((x),qs'(x),...,<1><f~f~1>(x)),...>e%_i0.

(6.1.4.2)

If f has logarithmic singularities at D then one easily sees from (6.1.4.1) that the
last formula defines a map from Z(logD) to Zx(logD).
In the case of an arbitrary Atiyah algebra the same formula works.

6.1.5. Example. On 2, _,
PHA 1, Ay A1) =([(A_), f(A- )P+ Ao 15 f(A_ ) (@2 + @)+ f(Ag)+A4,).

6.1.6. Residue of a logD-Morphism. Let (</, R), (#,S) be Atiyah algebras and
f:.o/(logD)—%(logD) a log D-morphism. Let #(D) denote the push-forward of B
by means of § ¢ S(D), where S(D)=S ®O(D). Then f extends canonically to f: .o/
— (D). The composition .7 <> %(D)—%(D)/% = S(D)/S equals zero on szr/(logD)
and defines the map 7/Jy(— D)= .o/ /o/(log D)—S(D)/S=S® T4/ T x(— D), hence
an element (which we call residue of f) res(f)= Z res(f), € @ S. Clearly,

res(f)=0iff f is induced by a morphism of Atiyah algebras of —n@

6.1.7. Example. For V:d(logD)—.o/(logD)res(V), is just the operator
V(td,). e EndE,, where t is a local coordinate at xe D.

6.2. Functoriality of Determinant

6.2.1. Let n: X —>S be a family of smooth proper curves, i,: D¢, X a divisor étale
over S. As usual, put o =Qyq.

Clearly, all constructions of 6.1 extend to this relative situation. In particular,
for every Atiyah algebra </ on X one defines the relative Atiyah algebra .7 (log D),
the bimodule Z,(logD) etc. Also put 7, s:=7,n7) o (logD):=,
N/ (logD). Clearly, these objects are functorial with respect to log D-morphisms.
6.2.2. Let (<7, R), (%, T) be Atiyah algebras over X and f:.o/(logD)—%(logD) a
log D-morphism. We may apply the construction 6.1.6 fiberwise and obtain the
section res(f)e Tp:=i}T.

Lemma. For every aeof/(logD) one has [res(f),f(a),]1=0, where f(a),
€B|p:=ip(A) is the restriction of f(a) to D [cf. 1.1.5(v)].
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Proof. Choose local coordinates (¢, s) on X such that ¢ (respectively s) is a co-
ordinate along a fiber (respectively along S) and a local equation of D is t =0, and

local connections &/ ~7,®R, B=T@PT. In these coordinates f has the form
flad,+bd,+r)=ad, +bd,+a®+b¥ + f(r), ®=&/t, & holomorphic. Put
o, =[0,,A], A;:=[0,A] for Ae T or R. Since f is a Lie algebra morphism, f(r,)
—f(n,=[, f(r)], [®,P]=D,— ¥, Taking the residue at t=0, we get
[res®, f(r)]=0, [res®, ¥]=res®,, hence [res®, (ad,+bd,+aP+b¥),-o]=0
(a(0,5)=0). ]

6.2.3. Corollary. Suppose that B has trace. Then all functions trres(f) e ©,, i =0,
are locally constant.

Proof. By definition of trace, 1.1.7 we have

O0=tr[res(f), f(a)p]=e(f(a),)(trres(f)) for every ae./(logD).

Since local sections &(f(a)p,) generate the whole tangent bundle 77, trres(f) is
locally constant.

6.2.4. Let us calla(m, D)-algebra 7" on X a filtered dg-Lie superalgebra together
with a morphism ¢, ./ =7, 1= (T 50T, p—7, p) satisfying axioms 1.2.1
with 7 replaced by 7 . One has a functor /" ~ —.o7},: (n-algebras)—((r, D)-
algebras) (pull-back by 7, ,—7) [cf. 2.3.2(ii)].

Let /" be a (r, D)-algebra and 2 an (-Atiyah algebra on D. Define a (r, D)-
algebra </(2) as follows. Put .o/(2)'=.o/' for i40, —1, o/(2) " '=j,o/ "', where
j:w—w(logD). Next, put o7(2)° to be the fiber product of .7° and 2 over 7, Let
d=?:.9/(2)"*—.o/(2)" ! be induced by the de Rham differential. Finally, let d ' be
the product of the map .«/(2)”'—.o7/° induced by d;' and the sum of residues
AD 1> A(2) oA ' =w(logD)/w—0p ¢ 2. For a n-algebra .o7°, we’ll denote
A p(2) simply by o7 (2).

6.2.5. Lemma [cf. 2.3.2(ii)]. One has canonical isomorphism of O Atiyah algebras
(A (2)=n(A ) +tr,n. 2,
where n'2 is the direct image by étale map =|D, 1.1.5(v), and tr:n,0,—0s.

Proof. Consider a dg-Lie algebra .7 =p % 5,2. One casily sees that ROn (Z")
=7(/")+n.2, and a natural inclusion .7 —> ./, induces on R°z, the map tr,. []

6.2.6. Let(sZ,R),(%4, T) be Atiyah algebras with trace on X, f:.e/(logD)— %(logD)
a logD-morphism such that

e (6.2.6.1)
for certain ne C.
6.2.6.2. Put
uf)i=try <(res(f) (r;:s(f)_ 1)> |

By 6.2.3 u(f) is a locally constant function on D. Put N =Ny, =157y to be
the normal bundle. Let u(f)s/y denote an (/,-Atiyah algebra on D equal to
t(f)p,y,,,, on a connected component D;CD.
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6.2.0.3. For re R,:=1i}R, put
trp(r):=tro(f(r)- res(f)).
Lemma. tr, is a trace on the Atiyah algebra o/|y,.

Proof. For  aes|, reR, we have tr([a,r])=trp([fa, fr] resf)
=trp([fa, fr-res f1)=ela) (tr-(fr - res f)) = e(a) tr o(r), since by 6.2.2
[fa,resf1=0. [

Now we can formulate the main result of this section.

6.2.7. Theorem-Construction. f induces a morphism of n-algebras
n- el =Bt A |y — u(f) A ) -

Proof. Put 2=tr,.o/|,—p(f)ty. Let ¢ ' :"e/y ' >"%(2) ! be a map induced by
P15 PysllogD), Py s(logD), _,, cf. 6.1.4. By (6.2.6.1) this map equals the
multiplication by n on . Put ¢ ~%: 04— to be the multiplication by n. Finally,
</, pacts naturally on N and also maps to .«/|,,. Hence we have maps .7, ,—2 and
frd, p—>B, p Let @°:ol, ,—>B(2)° be their fiber product. Using the local
formula 6.1.5 one easily sees that ¢’ commutes with a differential and thus defines
the desired map. []

6.2.8. Corollary. One has canonical isomorphism of Us-Atiyah algebras
(" By =n - ("L ) tr m (u(f) Ay —tr ol ).
This follows from 6.2.4.1 and 6.2.5.

6.2.9. Corollary. Let E be a bundle of rank n on X with integrable connection V with
logarithmic singularities along D, and L an arbitrary line bundle on X. Then

«5?/,1<E®L) =n- ‘Q{A(L) +tr, (V) .oy — V(V)ﬂdemlp) s
where v(V)=trres(V).
Proof. Apply 6.2.7 to a logD-morphism o7, (logD)— o7y ;(log D) induced by V.

6.2.10. Remark. This formula in some respect resembles the Lefschetz formula.

6.3. Compatibility with Mumford 1somorphism

6.3.1. Consider the following situation
X'\f /X
S
where 7, " are families of smooth proper curves, [ a covering of degree n ramified

at the divisori: D ¢, X étale over S. Put D'={"'D,0=Q} 5, 0/ =0®, ' = Q. s,
Np:=Nyp, Np:=Nyp.
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For line bundles ¥, ¢ over S the notation ¥ ~ %’ will mean an isomorphism
between Atiyah algebras .«/,=~.o7,.. More generally, for ce C #®° in such a
formula will mean ¢/ in a corresponding formula for Atiyah algebras, cf. 1.1.6.

If x e D with local coordinate t along x, x' € f ~ ' x with ramification index e, then
the local coordinate at x" is t'/°. On the sheaf f, 0y arises a connection V with
logarithmic singularities along D induced by the trivial connection on @y.. The

spectrum of the operator V(td,) at x is equal to {E,a: 1,...,e— 1}, Thus,
e

1—e2
V) (x)= x
V) (x) B 120,
le-lala 1—¢e?
i =Y —{-=1)= f. 6.1.7.
smceza;e<e ) 12e,c 6.1.7
Hence we have from 6.2.9,
6.3.2. Lemma.
1—e2

y —
4 ~ ] . 12e
Afyox = Ay - detm Np .

6.3.3. Corollary. If F is a line bundle on X such that F|,~=0p, then

21_62

Dy =100 > 2" @detm N 126

Proof. Again use 6.2.9.

1—e2

6.34. Lemma. /,,~/", detr N 12¢, ¢;=62—6j+1.
Proof. Since w'(logD’)= f*w(logD), we have by a projection formula
R7, o'(logD’yY =Rmn, f,(w'(logD)y=Rn, f, f*(w(logD)y
=Rn,((o(logD))® [, Ox),

whence from 6.3.3 [since w(logD)|,=0,],

1—e2

ol
" 1 ~ Jn 12
(1) Ao (log D)) = Mo(logD)I ® f, Ox+ = /~(w(1ogn>)f®d0t m Np 2.

On the other hand we have the exact sequence

0-w/>(w(logD)Y - Cx/Ox(—jD)-0,

_iG—1

and det0,/Ox(—jD)=N, 2 , whence

JjU—-1)

— T2
i = Htognyy - AELT N ,

and an analogous formula for /. Besides, we have n=) e and

1
y—
detn N, =detm, Np°.

Substituting this in (1), we obtain the desired equality.
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6.3.5. Proposition. Diagram
2;1 —e2
iwrj >~ ;(,Z)‘)detn*ND" 12e
R 1
e gl
A~ ) detn Np — 12¢

where the vertical arrows are Mumford isomorphisms 3.1.1 and horizontal-
isomorphisms 6.3.4, commutes.

Sketch of the Proof. Note that 7, , acts on (w(log D)) via the Lie derivative, so we
can define a (m, D)-subalgebra .o, C",100py, p that coincides with 7, ), in
degree zero, cf. 3.1. One casily sees that the Mumford morphism (3.1.1) induces the
morphism of (n, D)-algebras,

. - (iG—1)
(1) Cj"‘?{lwl"ﬂjw]< 5 &/NL,),

that after taking 7 gives the isomorphism
iG-n
~ ) 2
A3t108D) ™ Ho(10gp) @ Np

Similarly, let .o/, be a (m, D)-subalgebra of "o/ (o (10gpy), p that coincides with
7. pindegree zero and comes from the action of 7., on (w'(log D)) and the map
T w0 f«7w p- The map 6.2.7 induces the morphlsm

. . e’ —1
(2); A jip— j[D]( 12e Ay >

[cf. 6.3.4,(1)]. Now to prove our compatibility we have to verify the commutativity
of the square

2
. (2), g em—1
Cj-n-.%lw] Cj'lMl[D]<Cj2 Aﬁ;ﬂN”>

(1) (1)

: =1 @), . noo1
”’x/jw]<”‘ D) %ND> ”Qii[D]<<Ci’1‘é_Z1_2; A,

6.3.6. Remark. It is probable that 6.3.4 will help to write down differential
equations on Mumford forms for families of curves with given ramification over
P! generalizing 3.2.

6.3.7. Problem. The Mumford isomorphism is true not only for Atiyah algebras
but also for corresponding sheaves: 4., =A%, see 3.1.2. It would be very interesting
to establish an analogous stronger version of 6.3.4:

)121’[3 /112nlle detn N)J(l e?)- He

cf. 2.7. Of course, the corresponding compatibility 6.3.5 should hold.



692 A. A. Beilinson and V. V. Schechtman

Appendix. Local Riemann-Roch for ¢,

Our local Riemann-Roch is a canonical isomorphism between certain Q-exten-
sions. We will start with the definition of terms in the Riemann-Roch formula.

A1. O-Bilinear Q-Extensions

These correspond to Chern classes in Riemann-Roch. Let .o/ be an R-Atiyah
algebra.

Definition. a) An Q-extension .7 of («/,R) is called Cy-bilinear if
[1.. F '®F 1> =0y is Ox-bilinear.

b) An orthogonal Atiyah algebra is a triple (<7, R, (,)), where (<7, R) is an
Atiyah algebra, and (,): R®,,R—0y is a symmetric Ox-bilinear .»/-invariant
pairing [i.e. for ae.o&Z, r{,7,€ R, we have (ri,r,)=(r,, 1), &la)(ri,r2)=(a,r1,7,)
+(ry, [a,12])).

An O-bilinear extension .o/ of (<7, R) defines on (<7, R) the orthogonal
structure (,);: namely (,), is the pairing induced by —3%[,]_., ., on
of/ “!/o/~; =R. Clearly, both Oy-bilinear extensions and orthogonal Atiyah
algebras form a category, and (', .o, R)~ —(Z, R.(,),) is a functor. We have

(3)M®M’Z(S)M®(>)M'v (7).ﬁi+eii':(9)dj+(’)<¢i" (s)LJ:)”(a)M'

Al.l. Claim. This functor is an equivalence of categories.

Proof. Let 7" be an (4-bilinear extension of .«7. We will write (,):=(,). for
brevity. Define an admissible splitting of &/ to be an (y-isomorphism
5:7xs@®R@®Qy s>/ " that splits the filtration ./ ' (hence s/ =idg,, ...) and
such that Ty s 1(Tx,s®R), Qx5 LQ2x,s@R) with respect to the scalar product
{,}:=s*[1-4 -, Note that this {, } does not depend on the choice of admissible
s: namely, it is given by formulas (here y € 75, r€ R, ve Qx):

== {rr={vr}=0;
{rr'y==2(r1), {5 v}=yv.

An admissible splitting s determines a relative connection ¥V, on .o/
(:= Ox-linear section V: Ty s>/ j5):V,=s|,, ;modQys.

(A1.2)

A13. Lemma. sV, is 1—1 correspondence between admissible splittings and
relative connections on <.

Proof. Define the 1nver%e map Vi—sp as follows. First, define spls .
Choose any s: JX,S—> "' such that smodQ'=V, and put sV(y)—s( )
SLsGo)s sG] -1, -1 -z~ " Itis easy to see that the so-defined s : /X/S—wz/ is the
only Oy-linear map such that s, modQ'=V and [ ]_, _, is zero on sp(Ty).
Hence s,(7x,s)® Qs is a hyperbolic pair with respect to [ ]_, _,. In particular
[ 1-1,-, is non-degenerate on sy(7,s5)® Q). Let sp(R) be the orthogonal
complement to this subspace. This defines the desired splitting. []

For (y,r, v)eJX/SeDR@QX/S and a relative connection V, put (y,7,v)y
=sy(y,r,v)e.4 . For weQ} @R define “gweAut(,X(JX,S(-BR(BQX/S) by the
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formula, CIg ) = (1o 07+ . (00,0) 1+ 2 1) ). (A14)
Clearly Vg, +o,="'24, - 'g,,, hence we get Q} c-action on 7y s® R Qys. It
preserves the bilinear form {, }.

A1'5' Lemma' (1) (X)r> V)V-f-w:((,)gw(xsr’v))l%
(i) For ac.o/,=/° one has (here ad (V)eQy;s®R is defined by formula

ad,(V)z=La,V(x)—V(lela), x1):
[aa (X’ r, v)V]O. -1= ([8((,1)7 7]3 ada( V)X + [a> I‘], 2(7’, ada( V)) + 8(61) V)V;
i rs v (s va)l o) »—1:71v2+72v1“2(”1”"2)5(9){:&742'

The proof is plain calculatlon note that the Qj-component of s; '(x),
xe s [splx), X1 1, -1+ 2~ ', where y is invertible section of 7.

Now we may prove A1l.1. For an orthogonal Atiyah algebra (<7, R, (,)) define
the (,-bilinear extension )7 by formulas A 1.5. More precisely, put .7 ~! to be
TxsDRD® Q) s twisted with the Q) s® R-torsor of relative connections on .« by
the action (A1.4). The elements of o/ ™! are just (3,r,v),’s modulo equivalence
relation A1.5(i). The bracket on )/ is defined by formulas A1.5(ii). Clearly
(,(,)— e is inverse to .o > (Z;(,).5)

A2. Trace 2-Extension

Here for any Atiyah algebra .o/ with trace a canonical Q-extension of o/ will be
defined. In the case o7 = .o/, and the usual trace this construction reduces to 2.1.

Let .7 be an R-Atiyah a]gebra Let us define the canonical ¥ Q/,S—blmodule 2.
A2.1. Put R(“.-R@Cf ~hmR®CfXX ox/Ox x gx(—i4), RZ;: -R®J

=R0O; ®] RP = UR? RO ®] so RC ; is ( ;-algebra and RZ, CR?’ are

RO, blmodules In the same way, wc have the ¢ ;-algebra ¢ ;R = €A®R and (" 4R-
blmodules P.RCPR.
Let V be a relative connection on .<7. It defines the relative connection V; on R,
VRGO () =LV (x),r], x€ 75, e R. Hence we get
— the isomorphism of (;-algebras I,:RO;~C;R, I (rf)=f Z ———————

V(0,)-r (reR, fe(,), and compatible isomorphisms IV:R.7’,—>,/,R, R,/—>JR,
— the left &, -module structure on R(j; RZ, denoted by (a,a)—a-pa,
ae 45, 0€ RO (or R?), defined on generators re R, V(y) € ./5 of 7,5 by formula

rpu=ro, V() pa=Vi0) (@),

where V3" is differentiation by Vi along the first variable, V(0,)(r- f(x;,X,))
=Vr(0)(r) f(x 1, X0) + 70, f(x1,X2);

—in the same way, we have the right % ,smodule structure on
PR(B, ) By, fEPR, a€ D 45, such that B-pr=PBr, B-, V()= Vi*(x) [since
2, hence Z,R is right 7 s-module via V{]. .

Note that left and right &, s-actions on RZ =~ #R commute, hence we have a
% 4;s-bimodule. Now we shall see that it actually does not depend on the choice of
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For a pair V,V, of relative connections, V,—V,=weR®Q}, consider
fr.w, € RC; such that f, . (x,x)=1€R,

1 1 1 1
th)(fvlvg):fvlvzw( ' (here o )ZPTQ}ER@A@PTQX/S)-
Such f, ;, exists and is unique; we have

V&)(fv,vz)z wmfv,vz-

Same way, define g, € O4R by properties gy, (x,x)=1,
V§%{)(gV2V1) == w(Z)szV1 (Or Vé%(szVx) = _g7271w(2)) .

A2.1..!. Lemma. (i) fV1V2fV273:fVL‘73’ 8vav.8v v, = 8var,
(i) (a 'V;a)fVlezaVz : (O‘fvlvz)a gVZV,(ﬁ 'V;a):(szVl -p) p,d
(aeRZ, e PR, ac D )
(ii1) IV2(°‘fV172)=gV2V1171(°‘)-

Define ¢;-modules ('), 2'}) (respectively, 02, 27} to be the limit of RO,
RPs (respectively, O;R’s, 7,R’s), labelled by Vs, with respect to transition maps
oy oy, =0y fp p, (respectively, By — By, =gp,y By,); this is correct by (i) above.
Sofor any relative connection V we have isomorphisms Si!: R ;5 0§V, R2, 52},
respectively S{?: ;R 03, RSP, such that

oc%ll)z(afylvz)%’, gle)z(gvzvlﬂ {722)5
where ol 1= SH(a), B := SH(B).

According to (ii) above, ¢%),, 2} have natural left & ,-action defined by
formula ax!=(a-,2)V; in the same way, 2 have right %, s-action BPa
=(B-ya)?. By (iii) above we have isomorphisms I: ()543 20523, L)
=(I())¥. These modules, identified via I, will be denoted simply ¢, 2., The
above left and right &, s-actions define on 2, the structure of %, s-bimodule.
Clearly 2, _,C?, is 9, s-biinvariant and we have canonical isomorphism
PslPy. 12D ys of D, ¢-bimodules, (r@0 +—rV(0) (reR, 0e P[P =Dy,
V(0)e Zs)- These modules also carry a natural .7 -action (since .7, acts by
infinitesimal automorphisms on (X, S, 7, Zx ). Explicit formula: for ae .o/, reR,
fe? we have Lie,((r/)")=([a,r]f+rLie,,(f)+r/n,)", where n, RO, is
defined by properties 7 (x, x) =0,

X1

VY =ad, (V) (i.e. 2 (xy %)= | ady l7)> .

A2.2. If of = oy then O, 2 EQRU;QE*, 2,2 E® P ® E* =2 via the isomor-

R 0x Ox R
phisms  S{":EndE- 0;=(EQE¥®C;>EQU,;®E*, EndE-2=(EQE*)®Z
SE®P®E* that come from isomorphism E*® ¢ ;= (;® E* induced by V. These
isomorphisms are compatible with 7, - and .7 -action.

A2.3. Now assume that .«7 has trace tr. Define the pairing { >, ,: Z,&®Z,—0y

by formula o ) ~ . .
@@ )y s (0@, Dy = Respi(tr(r, 1)) @ -9,

where ;€ R, ¢,€ 2.
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Lemma. { ), . is correctly defined symmetric o/-invariant pairing.

At this point we may repeat the construction 2.1.2 word-by-word to get the
desired Q-extension ".of of .o/. By A2.2 "7, so defined (for tr being equal to the
standard trace on End E) coincides with the one from 2.1.2.

A24. Formulas. Define a (formal) .«7-parametrix I1 , to be any section of #,, that
maps to 1€ %, by canonical projection #,—%,,s; an i-jet of parametrix is a
section of # /%, _,; with the same property. A parametrix IT , is the same as a
section sy, of canonical projection that commutes with left %, -action:
1 ,=sg (1), s, (a)=all ,. In particular, a 2-jet ®IT , defines an (y-linear section

Let II be an .9/ -parametrix <we have II= <7 + 11 o(x,)
Xz Xy

+ (X, —x4) 1 (x,)+ ...)dx2>, x is a coordinate along the fiber), and let V be a

relative connection on /. We get the «/-parametrix IT,:=(1®QI)" (in case
of =1, is a product of I and V-horizontal section of EX]E* that restricts to idy
on ), hence the isomorphism 7ys@R®Qys>"A ", (1,1, v)— (61 Vp
=5, (V(x)+r)+v. It depends on V" and IT as follows [here /" means 0, f for fe Oy,
¥ =Vp(0,)(r) for reR]:

(X axa F,v dx)l? + wdx, IT
= (10 0y +r, v+ tr(3(0* + o)~ olly) + tr(rw) dx),

(Xam r,v dX)V,H+a0(x1)dxz+(xz—x1)<11(x1)dxz
:(Xaxv r, (V+ tr(XOCIO +VOCO _Xal)) dX) .
dx,

To give the formula for the bracket assume that I1= —-
Xy =Xy

. We have

(110571, v dX)y 1 (12 0% 725 V2 dX)y p] -1 4
=11Vataavy Hte(—rry + 5+ — 1501 = F1)2)
T (s =21 15)-
For ae.o/,="</° suppose that &(a)=1(x, )0+ u(s)0,, ad,(V)=wdx. Then
[Cl, (Xaxa r,v dx)V,H]O. -1= ([8((1), Xax:|> wy + [Cl, V] 5

Lie,,(vdx)+tr(Grt" + ¢ g1 —ro— 5 yo')).

If 7 is a restriction on the fiber of an integrable connection ¥, so that
a=V(e(a))+ A, then o= — A’, and the formula transforms to

[aa (X axa rv dX)V, H:l = ([8((1): Xax]ﬁ - A/X + [aa 7'] s
Liey g (vdx) +tr(—rd'+ 3 (rt"—zA") + 5 21").
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A3. Local Riemann-Roch

Let o/ be a R-Atiyah algebra with trace tr [see (1.1.7)]. Consider the following Oy~
bilinear Q-extensions:

— o, =, (A, B)=1tr AB.

— ./, this is the Q-extension of ¢/ x (/y-Atiyah algebra tr.oZ x 7y, COrre-
sponding to the bilinear form — 3¢, ), where {(f1, 1) (2, 82)) = 7(f182 + /281).

— a3 Q-extension of o g1, corresponding to the bilinear form (f;, f3)
- %flfz, n=rk.o/ = trl.

— RRoj.— o/, x o, x o45. This is an Q-extension of (R x (U, x €y x Oy)-Atiyah
algebra.

According to A1 ®R¢7 has the following description.
A3.1. For any pair of relative connections ¥, V,, on &/ and Qj s respectively we
have the isomorphism,

SVﬂ.Vg:fX/S@R®(a®@)®@®9;{/SLRR’—Q{‘1 )
SV(,;,[/H(Za Ba f» /5 h> V) = (Xa B, f, /a ha v)V,,,(,VQ >
such that

0B, 4,0V, 4 .o = (2 0y + B, troy
+ ., hStrw?y+troB—Stro L+ V), b,

(Xa B’ f: /3 h: V)V,pj.VQ‘F).

=B, fi g+ +h, =32+ ﬁ?» /+"/h+")v,,,,v,2-

The bracket is given by formulas [here a=(a,b,c.d) RRoyO = (ot x 5 (tred/
Xg b's %qu) T XJX/Q,\ «,)ﬂ]
[‘Z (Xa Bs fa /s h: v)V,y/. V_q]O, -1
=([ea), x1,ad, (Vo)) x + [a, B, ad,(trV,)) - x + [b, /1,
ad (Vo) x+1[e,/1ady (Vo) - x+ [d, h], tr(B-ad (V)

Tad,(trV,) -/ —Lad. (V) f+ dd Vo) -h+Lie, My, v,s

[(Xl’Bl’.fl’/1’1115\/'])V,d<yjz’ (127329](2’/29 112’V2)V.ﬁ1,VQ]‘1. -1
n
=(Va Vit — B Byt 3 (filo+ 7 fo)— 6h1]12~

A3.2. Let us return to A2.4. A relative connection V,, on Qj defines the
O x-parametrix IT,,  as follows (cf. 5.3): Consider the equation V(f)+ f> =0, where
fe#and V,acts along the second coordinate. This equation has a unique solution
with a pole at 4; this is our parametrix 1, .

Remark. Here is an equivalent description of I, Let w(x) be a non-zero

Vo-horizontal form, and ¢(x, x,):= [ we ; be a function such that ¢(x, x)=0,

X1
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o(x,)
@lxy,X5)
that V(dx)=0 (we will say that x is Vj,-flat; it is defined up to a transformation
x+>ax+b,a,be @, a+0,and V, is the same as the class of such coordinates) then

dx
m,=—2-. O
Xo =Xy
So, according to A2.4, (V,,,V,) determine the isomorphism

Txs®ROQy s> 71,
(Xa r, V) g ()(7 r, v)VM,VS} = (/(7 r, V)V‘,,(,HVQ .

A3.3. Theorem-Definition. Define the Riemann-Roch map RR_:"/ -RRd by

Sormulas ) .
RR®(a)=(a,tra, Lie,,, Lie,),

d.,¢(x 1, X,)=w(x,). Then Iy, = If we choose a local coordinate x such

—_ ! ! n "
RR I(Xanv)Vﬂ.,Vsz: (X,V:tr’”:X,X 9‘)_%'[1“7&/(")_% 6% > >

Va.Va

where Lie,, € Ao, is Lie derivative, and ' means derivation by V, (ie.
T x5 T x)s®x,s= 0y ). This is correctly defined morphism of n-algebras.

The proof is direct calculation (the formula for RR ™! may be found from the
demand that RR commutes with [ ]_, _)).

Integrating A3.3 along the fibers of © we get the isomorphism n(RR): n(*.e)
> (ot )+ m(.of,) + (/5) of Uy-Atiyah algebras.

A4.

Remark. Let V,, be a C*-connection on .« (see 5.1), and V,, be the one of Q} .
According to 1.5 they define the C*-connection ®¥¥7 on ®R¢7. Using the method of
5.4 one can also construct a C*-connection ¥ on "<z, and RR maps "V to RXV.

The formulations of Sect. 6 suggest that this result may be generalized. Namely,
there should exist some kind of functoriality of RR with respect to C*-maps of
Atiyah algebras.

AS5. Compatibility with Deligne’s Riemann-Roch

Let E be a rankn vector bundle and L,,L, be invertible sheaves on X. Put
w:=Q} 5. In[11] Deligne defined the invertible sheaves IC,(E),{L,, L, on S and
constructed the Riemann-Roch isomorphism

RR,:detRr E®'2 5 (det E,det EY®° - IC, (E) - (det E, 0»® - (e, w)®".

In this section we will see that the RR ,, isomorphism of A3.3,integrated along
the fibers of E, is RRy on the level of Atiyah algebras: n(RR,,, )=/, or,
equivalently, that n(RR,, ) is the differential equation for RR ;. We will start with
the identification of Deligne’s sheaves.

A5.1. We will use the following variant of Deligne’s construction. Let SL, be a
universal extension of SL(0y) by ¢, if n=2 put SL, = SAL3|SL2). The standard GL,
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={(*1,)} CGL, acts on SL, by conjugation, hence on SL,; put °GL,=GL, s<
SL,. We get a central extension

0-4,-GL,—»GL,—~1.

This is just the extension corresponding to the universal Chern class
c,eH? (Q\Ln,%) [31]. Let us denote by s: GL, »GL, the canonical section. Now
let GL; x GL, be the central extension,

0-#,—-GL, XGL,»GL, xGL, > 1,

defined by 2-cocycle {pr,, pr,}, ie. GL, X GL, =GL, x GL, x %, with multiplica-
tion (f,g;r) (f. g5 )=(ff",gg’,r- ¥ - {f", g}). These extensions have the following
properties:

(i) For «eGL, and f= <'6())1 ;2> B,eGL,, B,eGL,_,, one has ad,(s(x))
= {detﬁb O(}

(i) Define the section s, of CzGL on the diagonal matrices T,CGL, by the
formula s,(diag(a, ..., a,))=s(a;) - ad,,(s(a,)) - ... - ad, (s(a,)), wherea is a transpo-

sition of coordinates such that (oi)a1=5ia. Then s,,(diag(a,-))'s,,(diag(b,-))
=s,(diag(a;by) - [ {a; byl
i<j

. . . B 1 *
(ii1) One has a canonical group-theoretic section of ?GL,on U, = {( 1 )}

0 1
(tv) For  n=n,+n, consider P,, = {(GL"‘ . >} cGL,; et
mne 0 GL, "
pi: P,.,—~GL, be the projections. Then one has a canonical 1somorphlsm of GL,

restricted to P,,l,,2 with the sum of extensions pl(GL,,l) pz(GL ,)-(detp,
x detp,)* (GL, XGL ;). Namely, it is unique isomorphism that maps s,(diag(a,)) to

sp,(diag(ay, ..., a,,) - s,(diag(a,, 1, ..., a,))
Ay Ay Oy sy 1)

Now our vector bundle E is the same as GL,-torsor & =Isom(¢", E). Consider
the presheaf on S whose sections over UCS are isomorphism classes of
GL ~structures on n~ }(U) (here GL -structure means a GL -torsor & together
with an isomorphism (5_(“’/%2) Smce fibers of n are one-dimensional, the
corresponding sheaf is R'm,#-torsor. The norm map R'n, #,— 0¥ applied to
this torsor gives us (¥- torsor which is just Dehgnes sheaf IC,(E). The sheaf
{Ly,L,» may be defined in the same way using GL, % GL and ¢* x (*-torsor
£ x ¥,. Note that (iv) above associates with any short exact sequence 0> E, —»E
—E,—0 the isomorphism IC,(E)=1C,(E|)1C,(E,) {detE, detE,).

Remark. Deligne’s definition is somewhat different but may readily reduce to the
one above.

A5.2. Now let (,),, be the invariant form on gl,:= Lie GL, given by formula
(X,Y),=tr XtrY—trXY. Let (,),.., be the form (fl,g1 (f2:22)e, e,
=3(f1g,+¢g: f2) on Oy x O. Consider the corresponding (y-bilinear Q-exten-
sions “2e/ of o/ and "L/ | of of) x .o,
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Lemma-Construction. One has canonical isomorphisms
~ c ~ .
ﬂICZ(E)=n( *ly), M{LhLD:TC(CI C1M1,1L2)~

Proof. We will treat the case IC, only; the ¢, - ¢, case is parallel. Our Og-Atiyah
algebras are locally trivial, hence they are completely determined by the
corresponding Q4 “-torsors of integrable connections J%(A) : = Isom(sZ,, /). So
it suffices to identify .S 6(.o# ¢, () With S G(n “2Z}). Since I G (A ¢, ) = d log IC, (E)
[where IC,(E) is considered as a O0¥-torsor] this will be done if we define a dlog-
morphism ¢ :1C,(E)—> FE(n “*(<o/g)). Now recall that in 1.3.3 the canonical map
y: Pp:= {isomorphism classes of #*-extensions of e/} > #€(n /) was cons-
tructed; this map is equivariant with respect to R'm(Q%)-twist. Our ¢ will be a
composition IC,(E)-%> P,.-% #%(n°2/;). Note that IC,(E) has natural
R'm,#,-action, Py, has the one of Rz, Q¢, and y will be equivariant with respect
too: Rin H,— R ', Q¢, where o comes from the same noted map o , 1% Q3¢
-4 the last arrow is “restriction to fiber.” This would imply that ¢ is dlog-
equivariant.

Recall that “2¢/, was constructed as follows. We have the algebra 27, with
GL,(Oy)-action, and e/}, is &-twist of it (0= 0Oy). Now we will construct the
A -extension 2/ of 2/, together with natural GL,(O'y)-action that reduces to
the old GL,(0)-action on the quotient “2¢/,., and such that #’, C GL,(0y) acts via
a (see 1.3.3). The map y just transforms & e IC,(E) to an &-twist of °2¢7; clearly it
will have the desired properties.

Construction of °2/: we have to define °2/° only. Put ©2°
=7, ®Mat,(0,)®#". Bracket:

(G100 (Lo 72 )1 =[x 22 x4 (r2) — x2(ry)
+0rs o) 11(ve) = xa(vi) +2r,, dry)),

where (r,,dr) is the scalar product with respect to the c,-form. One verifies that
[,]is a Lie algebra bracket; in fact, “2e/° is a semi-direct product of .7, and the
Kac-Moody part Mat, ()@ #".

Construction of GL,-action: it “integrates” the adjoint action of the Kac-
Moody part. So let G be the group of automorphisms of sheaf “27° that preserve
the flag #'CA#'@®Mat,(0y) and induce identity maps on #', 7,
=2/%)(A# ' ®Mat,(Oy)); let A=Hom(7,, #')C G be the subgroup of ones that
induce identity maps on #'@®Mat,(0) and <27°/#"; put G=G/A. Then G is a
central extension of G by A. Define the map @:GL,(04)—G by the formula

Q) (4., v)=(1-gxg ' —x(g)g "' v+2dgg 1)

One verifies that both @ mod 4:GL,(04)—G and @|g,,:GL,—G are group
morphisms. Hence the universality property of GL implies that there exists a
unique group morphism @:GL,—G such that #mod A=, ¢ 5= |, . So we
get a desired GL,-action on 2/, []

AS5.3. By(2.3.1),A3.3 and A5.2 we have a canonical isomorphism between Atiyah
algebras of invertible sheaves

(detRn E)®'? and (detE,detE)®®-1C,(E)® 2
(detE,w)® % L, w)®"
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or, equivalently, the integrable connection on their quotient. Of course we have
Lemma. This isomorphism comes from Deligne’s Riemann-Roch isomorphism, [11]:
RRy:detRn E®'?~(detE,det EY®6 - 1C,(E)® % (detE,w)® ~° {w,w)®".

Sketch of the Proof. Deligne’s isomorphism may be characterised by the following
properties (see [11] for details):
(i) compatibility with base change;
(ii) compatibility with filtrations on E’s;
(i) if rkE=1, ae X is S-point, then we have canonical identifications

QAR L) _ 7 1C,(E)=1C, (E(@) = O,

detRn E
(E(a), E(a)) =<E,E)yEP*7,, {E(a),w)={E,0)- T, .

The RR-isomorphisms should be compatible with these identifications.
(iv) Consider RR,,:(det R, 0)®'? > w, w),

RR, o> (detRm, ®?)® 12 5w, w)®'3.
On the other hand we have the (suitably normalised) Mumford isomorphism,

p:detRr, w®*S(det Rmw)®13.
Then
RR,e:- (RRE1) 1 =p®12,

To prove the lemma we have to verify these properties for our isomorphism on
the Atiyah algebra level. (i) is obvious. (ii): let E;CE be a filtration; then "o/,
contains a n-subalgebra "</, g, with "o/§ ;) = infinitesimal automorphisms of
(E,E;, X, S). Same for ®Re7,. The RR-isomorphism preserves these subalgebras. We

have
n("elp) = n(lr@{(E,E,)) = Z n(tr%E,/El _ 1) ;

the same for ®*%<7,; this proves (ii). As for (iii), you should use instead of .o, o/,
their common subalgebra o7, , (2.3.2), (6.2.4) that consists of elements whose
symbols preserve a and verify the compatibilities in (2.3.2). As for (iv), see 3.1.2.
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