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Abstract. It was observed by Atiyah that there is a correspondence between
based gauge equivalence classes of St/^-instantons over S4 of charge d on the
one hand, and based holomorphic curves of genus zero in ΩSUn of degree d on
the other hand. In this paper we study the parameter space of such
holomorphic curves which have the additional property that they lie entirely in
the subgroup ΩalgSUn of algebraic loops. We describe a cell decomposition of
this parameter space, and compute its complex dimension to be (2n—\)d.

1. Introduction

It is well known that the space ΩG of (smooth) basepoint preserving maps from the
circle S1 to a compact Lie group G is, in a natural way, a complex manifold. One of
its many remarkable properties is that, despite being infinite dimensional, ΩG
behaves in many ways as if it were a compact manifold. For example, every
holomorphic function ΩG^<L is constant. Atiyah [At] proved that, for any
compact, complex manifold M, the set of all basepoint preserving holomorphic
maps M-^ΩG lying in a given homotopy class is finite dimensional; in simple
cases, the dimension can even be computed. The argument in [At], however, is
non-constructive. The purpose of this paper is to complement [At] by giving an
explicit geometric construction of a large family of holomorphic maps M-+ΩG in
the case where M is the Riemann sphere S2. Some examples of where the study of
holomorphic maps M-+ΩG occurs in the literature are given at the end of the
introduction.

To describe our results more precisely, we assume, without loss of generality,
that G has only one simple factor, so that π2(ΩG)^π3(G) = Z. Then any
(continuous) map S2-+ΩG has an integer invariant, its degree, given by the induced
map on π 2, and this determines the map up to homotopy. Let HolJ (S2, ΩG) denote
the set of holomorphic maps f:S2-+ΩG of degree d, which are basepoint
preserving in the sense that f(oo) = e, where we think of S2 = (Cu{oo} as the
extended complex plane and e is the identity element or identity loop in G. Here, d
is necessarily ^ 0 . Then [At] gives:
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(1.1) Hol*(S2, ΩG) is a complex manifold of dimension 2dc(G\ where c(G) is the
dual Coxeter number of G.

For example, if G = SUn, the dimension is 2nd for n^.2.
Our construction of holomorphic maps S2-^ΩG makes use of the subgroup

ΩalgG of ΩG consisting of the maps S1~+G which have finite Fourier expansions.
Although this is not a submanifold, it is a good approximation to ΩG in at least two
senses (see [PS]):

(1.2) ΩalgG is homotopy equivalent to ΩG;
(1.3) ΩalgG is dense in ΩG, if G is semisimple.
An infinite dimensional version of Chow's theorem would suggest that every

based holomorphic map S2-+ΩG actually maps into ΩalgG. The results of this
paper, however, indicate that this is probably false.

We shall make use of a filtration

{/} = Ω 0 C Ω 1 c Ω 2 C . . . C Ω a l g G = Q Ωk

of ΩalgG by (finite dimensional) complex projective varieties Ωk. In fact, the Ωk are
varieties of fixed points of unipotent transformations acting on Grassmannians;
such varieties have been studied extensively in [Sh, HS, Bo]. We shall show that
Hol*(S2, Ωk) is essentially an iterated fibration whose base and fibres are varieties
of this type. We set

Uo\${S2,ΩSίlgSUn) = U Hol*(52,Ω fc);

we conjecture that every based holomorphic map S2-»ΩG with values in ΩalgG
actually maps into some Ωk, so that the notation should be unambiguous. One
consequence of our description of Hol*(S2, ΩalgSUn), to be proved in Sect. 4, is:

Corollary 1.4. Hol$(S2,ΩalgSUn) has (Hausdorff') dimension 2(2n-l)d. (We use
Hausdorff dimension as Hol*(S2, ΩalgSUn) is not α manifold.)

Comparing with (1.1), we see that there are based holomorphic maps
S2-+ΩSUn which do not map into any Ωk. One can show that every based
holomorphic map M-+ΩG, for any compact complex manifold M, actually maps
into ΩratG, the rational functions Si-^G, but the methods of this paper (based on
those of [Gu]) do not apply to ΩratG.

The simplest non-trivial case of (1.4), namely d = 1, n = 2, is easy to understand
geometrically. We shall see that Hoi*(S2, ΩalgSU2) = Hol*(S2, Ωγ\ and that Ωi is a
cone on a conic in (CP2 (see Example 3.2 for a more precise statement) whose vertex
is the identity loop / (see Fig. 1). The basepoint preserving degree 1 maps S2->Ωι

are given by the generators of the cone, a complex 1-parameter family. But each
generator has a complex 2-parameter family of parametrisations which respect
basepoints. Thus, Hol*^ 2 ,Ω a l g SU 2 ) is 6-dimensional whereas, by (1.1),
Hol*(S2,ΩSl/2) is 8 dimensional.

We conclude this introduction by mentioning some problems in the calculus of
variations where holomorphic maps of a compact Riemann surface M into ΩG
have arisen naturally.
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Fig. I

Example A: Topology of the Space of Holomorphic Curves

The loop group ΩG is not only a complex manifold but also a homogeneous
Kahler manifold [PS], which has many properties in common with finite
dimensional homogeneous Kahler manifolds such as projective spaces or
Grassmannians. Segal [Se] proved that HolJ(M, CP") approximates the space
Map|(M, (CPM) of smooth (or continuous) maps:

(1.5) The inclusion HolJ(M,(EPn)c+ Map%(M,(EP") is a homology equivalence
up to dimension (d — 2g)(2n—ί), where g is the genus of M. Moreover, if
g = 0 (M = S2\ the inclusion is a homotopy equivalence in the same range.

Although Segal's proof of (1.5) was entirely topological, the result has an
interesting interpretation in terms of differential geometry, since Holf (M,CP") is
precisely the set of absolute minima of the energy functional
E: MapJ(M, CPn)->R given by

E(f)= ί \\df\\\
M

Thus, (1.5) should admit a Morse-theoretic interpretation.
These results were partially generalized to the case where (£Pn is replaced by a

Grassmannian or flag manifold in [Gu, Ki]. It was conjectured by Atiyah [At]
that similar results should hold when (CPn is replaced by ΩG; some progress has
been made in this direction (see Example B).

Example B: Holomorphic Curves and Yang-Mills Instantons

Let P be a principal G-bundle on S4. Since π 3 (G)^Z, P is determined up to
topological equivalence by an integer d. Assume d^O. Let srfά be the space of
connections on P and ./d the space of self-dual connections (instantons). The group
^ of automorphisms of P which are the identity in the fibre over a fixed basepoint
of S 4 acts freely on sid. In [At], Atiyah proved that there is a diffeomorphism
J ^ / ^ ^ H o l * ^ 2 , ΩG), for any classical G. Combining this with the results of
[AHS] gives (1.1) immediately.
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We can now relate the conjecture in Example A to earlier work of Atiyah and
Jones [AJ]. Consider the following diagram:

2,ΩG)

ϊ

The lower horizontal map is a homotopy equivalence, described in [AJ]. For
G = SU2, it was proved in [AJ] that the left-hand inclusion is, in homology, a
projection onto a direct summand in dimensions <ζd. It was conjectured that one
actually obtains a homotopy equivalence in dimensions <ζd; hence the same
would hold for the right-hand inclusion. A version of this conjecture, i.e.

lim Hs|cHolJ(S2,ί2G)= lim H* Mapd*(S2,ΩG),
d-*- oo d-* oo

has been proved by Graveson [Gv]. Using the instanton formulation this has
also been proved by Taubes [Ta]. See also [BM] and the Note added in proof at
the end of this paper.

In the case G = SU2, d = ί, instantons are well understood (see Sect. 6 of [FU]):
^i/^ + ( = Holf (S2, ΩSU2)) is the real 8 dimensional manifold S03 x J35, where B5 is
the open 5-ball. We do not know whether the real 6 dimensional manifold
corresponding to Holf (S2, ΩaίgSU2) has any significance in terms of instantons
[the diffeomorphism S J& ^HoV£(S2, ΩG) is not canonical]. However, from the
identification Hol*(S2,ΩalgSl/2)^PSL2((C) made at the end of Sect. 4, it follows
that this 6 dimensional manifold is diffeomorphic to S03 x B3.

Example C: Classical Solutions of the Principal Chiral Model

The principal chiral model is a field theory which, at the classical level, amounts to
studying harmonic maps M-*G9 where M is a compact Riemann surface. In [Uh]
(see also [ZM, ZS]) it was proved that there is a one-to-one correspondence
between the set of based harmonic maps φ:S2-^G and the set of "extended
solutions", i.e., the set of maps Φ:S2->ΩG satisfying

(1) Φ(oo) = e,
(2) (dΦ/dλ)Φ'ί=(l-z-ί)A, and
(3) (δΦ/δλ)φ-1=(l-z)B,

where A, B are functions on S2 with values in the Lie algebra of G and z is the loop
parameter in ΩG. Moreover, the degree of Φ is the (suitably normalized) energy of
φ (this is an observation of Eells and Freed). Hence, a crude upper bound for the
real dimension of the space of based harmonic maps S2-»G of energy d is [by (1.1)]
Adc(G). A theorem of [Uh] says that, for G = Un, any extended solution actually
takes value in some Ωk, so our result permits a slight reduction of this upper bound,
from And to 2(2n-l)d.

2. Aspects of the Geometry of ΩG

In this section we summarize the necessary facts about loop groups. Our main
reference is [PS], although [Pr] contains most of the information we need.
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For any Lie group G, the loop group LG is the space of smooth maps S1 ->G,
provided with the C00-topology; LG is a Frechet Lie group. The based loop group
ΩG is the space of maps f:Sι-+G satisfying f(\) = e. Although ΩG is a subgroup of
LG, it is better to think of ΩG as a homogeneous space of LG:

ΩG^LG/G,

where G is identified with the constant loops in LG. By way of contrast, the groups
LalgG and ΩalgG, consisting of maps S1-+G which have finite Fourier expansions,
are not smooth manifolds in any reasonable sense. (For us, G will always be a
matrix group, so the definition of La l gG is obvious; in general, one would have to
take linear representations of G.)

All the geometry of ΩG which we shall need can be deduced from the
"Grassmannian model" of ΩG. We shall describe this only when G = Un or SUn,
although the model exists for all compact G. Let H be the Hubert space I3(S1, (Cw),
n^ί. Then ΩUn acts on H (by unitary operators) and hence also on the subspaces
of H. Let H + Q H be the closed subspace of H consisting of the vectors v e H of the
form

υ= Σ vjZ\ VJECT,

where S1 is thought of as the set of complex numbers z of modulus 1.

Theorem 2.1 (Grassmannian Model). The assignment f\-+fH+ is a one-to-one
correspondence between ΩΆlgUn and the set of subspaces W of H such that

(i) zWQW.and
(ii) zkH+ Q WQz~kH+ for some k^O. •

The group ΩalgUn has components indexed by Έ: a loop / lies in the d-th
component if det/ S 1 - ^ 1 has winding number —d. In terms of the Gra-
ssmannian model,

zkH+)- aim{z~kH JW)), (2.2)

where W = fHΛ and k is any integer large enough for (2.1)(ii) to hold. Since any
trigonometric polynomial map S 1 - ^ 1 of degree zero is constant, ΩalgSUn is
exactly the identity component of ΩalgUn. The larger group LalgSLπ((C) obviously
acts on the set of subspaces satisfying (2.1) (ί) and (ii), and the stabilizer of H + is the
subgroup L+

algSLn((£) consisting of the loops which involve no negative powers of z.
Thus we have a one-to-one correspondence

LalgSLn(<£)/L:igSLn(<£) * ΩalgSUn. (2.3)

There is also a Grassmannian model for the smooth loop group ΩUn: one
replaces (2.1) (ii) by the condition that the images of the orthogonal projections
W^HL

+ and Wλ-^H+ should consist of smooth maps. In particular, the smooth
analogue of (2.3) holds, in the sense that there is a diffeomorphism

LSLΛ(C)/L+SLB(C)^ΩSC7Λ. (2.4)

Since LSLn(<£) and L+SLn((£) are complex Lie groups, this shows that ΩSUn is a
complex manifold.
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Theorem 2.1 immediately suggests a filtration of ΩalgSUn (or ΩalgUn). Namely,
let Ωk denote the set of loops feΩalgSUn for which W = fH+ satisfies (2.1) (ii) for
the given value of k. Then

Ω0cΩ1cΩ2C...CΩΛlgSUn= [j Ωk. (2.5)

In terms of loops, Ωk consists of those feΩalgSUn of the form

j=

for some nxn matrices Ay Note that Ωo consists of a single point, the constant
loop in ΩΆlgSUn. In general, Theorem2.1 shows that Ωk is a complex projective
variety. To see this, observe first that multiplication by z is a nilpotent
endomorphism of z~kH+/zkH + . Using (2.2), it follows that the assignment
f^fH+/zkH + identifies Ωk with the set of XeGxkn{z~kH+/zkH+\ the Grass-
mannian of kn dimensional subspaces of the 2kn dimensional space
z~kH+/zkH + , for which zXQX; equivalently, X should be fixed by the unipotent
automorphism 1+z. It follows that Ωk is a (closed) subvariety of
Gΐkn(z~kH+/zkH+)^Grkn{<£2kn). Except for ΩOi all the Ωk are singular varieties.

It is easy to see that the natural complex structure and topology on the variety
Ωk agree with those which are inherited from ΩSUn. However, the topology on
ΩalgSUn induced from the C°°-topology on ΩSUn is strictly coarser than the direct
limit topology arising from the identification Ωal SUn= (J Ωk.

Finally, it can be shown that ΩalgSUn has a natural cell decomposition arising
from the Grassmannian model, and that Ωk consists precisely of the fcn2-skeleton (if
n is even) or the k(n2 — l)-skeleton (if n is odd) for this decomposition. Together
with (1.2), this implies that the inclusions Ωkc+ ΩalgSUnc+ ΩSUn induce isomor-
phisms on π 2 (for fc^l, n^2) and so the notation Hol;f(S2, Ωk) makes sense.

3. Fixed Point Varieties of Unipotent Transformations

Let F = F(r1,..., rs) be the complex "flag manifold" consisting of all sequences {Et}
of the form

where Et is a subspace of C" of dimension i. Let N = N(nu ..., nm) be the nilpotent
linear transformation of (Cn which is the direct sum of Jordan blocks JΛ l,. . ., Jnm,
where Jt is represented by the i x i matrix

0 1

'. 1

0/

with respect to some fixed basis. Then we are interested in

FN = {{Ei}eF\NEiQEi for all i},
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which is the same as the set of fixed points in F of the unipotent transformation
U = I + N. The case of the "full flag manifold" [i.e. F = F(\,2, ...,n)] has been
studied in greater generality, namely, where F is replaced by the quotient of a
complex semisimple Lie group by a Borel subgroup, and where N is replaced by
any nilpotent element of the Lie algebra. The space FN has many interesting
properties. For example, it provides a link between nilpotent orbits in the Lie
algebra and representations of the Weyl group: to the orbit of N one associates a
certain action of the Weyl group on (a subgroup of) the top cohomology group of
FN. For a summary of this, and further references, see [Bo].

The variety Ωk of Sect. 2 is isomorphic to Grkn((C2kn)N{2k'---'2k\ and we identify
these from now on. Thus, all we need are some facts concerning FN in the special
case s = 2, which we shall derive from scratch.

The main result is the following, which we take from [Sh]. (A more general
reference, which uses slightly different conventions, is [HS].)

Theorem 3.1. The space Grk(<Dn)N (where N = N(nu...,nm)) has a complex cell
decomposition, the cells being indexed by diagrams

π
1
 boxes

n
7
 boxes

n
m
 boxes

in which crosses are distributed in such a way that
(1) now row contains more than one cross, and
(2) if the boxes in each row to the left of (and including) the crosses are shaded,

there are k shaded boxes altogether.
We define an ordering on the boxes in such a diagram, by saying that one box

precedes another of the first box is either in a column to the left of or in the same
column and above, the second box.

The complex dimension of the cell corresponding to such a diagram is Σdh where
d{ is the number of unshaded boxes which precede the box containing the i-th cross.
(In the diagram shown, Σd^β). If X belongs to the cell corresponding to the
diagram with ki shaded boxes in row i ( O ^ / c ^ ^ ), then the restriction of N to X is
nilpotent and has type given by N(kl9 ...,fcm).

Proof First we recall the usual cell decomposition of Grfc(<C"). Let e1,..., en be an
orthonormal basis of (C", and let vί,...,vk be a basis for FeGrfe((C"). We write

X

X

X

X

(Cw = \_ex, . . . , e w ] , V=[vί9 . . . , ϋ f c ] , a n d vt= p j=l, ...,k. The k x n matrix
j

A = (ciij) may be put in reduced echelon form. In other words, there exists an
invertible kxk matrix R such that RA has the form:

' * 1 0 0 0 0 (T

* 0 1 0 0 0 0

* 0 0 * 1 0 0

* 0 0 * 0 1 0/
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Let the Γs appear in columns s l 9 . . . , s k (where \^s1< ...<sk^n). This matrix,
and hence the set Sv = {s l 5..., sk}, is canonically assigned to the subspace V. Since
the *'s are unrestricted, it follows, given any set S = {sl9 ...,sk}Q{1,2, ...,n} with
Si < ... <sh, that the set

is a cell, i.e., a submanifold of Grk((C") diffeomorphic to (Cd for some d. The
dimension d is given simply by counting the number of entries *, so

d=

Thus, Grk(<C") = ucs, where the cells cs are indexed by matrices of the form

' 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

\0 0 0 0 0 0 1 0

which have fc entries equal to 1, not more than one such in each row and column,
and with all other entries zero. We may compress this information into a diagram
of the form

with precisely fc shaded boxes, from which the dimension d is easily read off.
The same method may be used to give a cell decomposition of Gr^C")^. Let

(En=Vι(B...ζ&Vm, where the restriction of AT to Vt is cyclic, i.e., represented by a
Jordan block Jnχ with respect to some basis. Let the basis e1,...,en of C" be
obtained by taking the union of such bases for Vu ..., Vm. In the following diagram
(which generalizes the one above) we arrange the boxes so that the i-th row
represents the chosen basis of V{.

Θ 2

Θ 3

The action of N on basis vectors is thus represented by a shift of one box (to the
left, say). The first j columns together represent KeriV 7. For S = {si, ...,sk}, we call
an element [eS l,..., esj e Grk(C") a "standard fe-plane"; if [>S l,..., esj e Grk(<En)N we
call it a "standard invariant fe-plane." The standard fc-planes are represented on the
diagram by shading k boxes, and these index the cells of Grfc((C"). The standard
invariant fc-planes are represented by shading fe boxes in such a way that N always
moves a shaded box to another shaded box, for example:
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The cell cs of Grfc(C") consists of the standard fe-plane Vs = [eSί, . . . ,e s j together
with all "modifications" of it, where a modification involves altering the
appropriate s£ — i coordinates of the basis vectors eSί. If Vs e Gr^C")^, a subset
c%QGτk(<Cn)Nncs is obtained by modifying [>Sl, . . . ,β s j to lυSί,...,vsJ, where
Nvi = Vj if and only if Net = ej. Such modifications are specified by making
alterations (of the kind just described) to the basis vectors at the right-hand ends
of each row of shaded boxes. Such boxes we indicate with a cross:

X

X

X

X

Thus, Cs is a cell, and its dimension is Σdb where dt is the number of unshaded boxes
"preceding" the i-th cross (the ordering being that of the basis vectors e l 5 ...,en).
For example, in particular diagram above, we have a cell in Gr7((C2 1)N of
dimension d1+d2 + d3 + d4 = 0 + 1 + 2 + 3 = 6. The fact that the restriction of N to
X is iV(fel5..., /cm), for any X in this cell, is obvious. To complete the proof of the
theorem, we show that c$ is in fact equal to Grk((Cn)Nncs. First, it is easy to see that
Gΐk((Cn)Nncs + Φ if and only if VseGrk(£nf. When this is so, the reduced echelon
form shows that any WeGrk(<En)Nncs has a basis w&1,..
NwSι = wSj if and only if NeSι = es. Hence W belongs to

Example 3.2. The Grassmannian Gr2((C4) has 6 cells represented by:

Sk with the property:

•

1 |
0

H Z t

where the dimensions are as indicated. If N = N(2,2), the corresponding cells of
Gr 2(C 4) i V are represented by:

i—i—i
I I I

1

I I I
I 1 — 1
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If Gr2((C4) is represented in the usual way as a quadric in C P 5 given by the Plucker
equation zoz1 — z 2z 3 + z 4z 5 = 0, an elementary calculation shows that
Ωί( = Gr2((£>4')N{2'2)) corresponds to the subvariety given by imposing the ad-
ditional conditions zo = 0, z4 = z5. Hence,

Blowing up the singular point [1 O O O] gives a variety which admits an obvious
holomorphic map to the conic

all of whose fibres are copies of (CP1. By general principles such a map is necessarily
a holomorphic (CP1 bundle over (CP1, i.e., of the form Ψ(Θ{a)®Θ(0)) for some
integer a. The zero section (which may be identified with C) has self-intersection
number 2, so a = 2. Thus, Ωx is obtained by collapsing to a point the infinity section
of P(0(2)00(O))5i.e.,

where -f indicates the Thorn space. This makes precise the statement in Sect. 1 that
Ωx is a cone over a conic. It is also consistent with the assertion at the end of Sect. 1
that Ω1 is the 4-skeleton of ΩSU2^S?> and it is well known that the 4-skeleton of
ΩS3 is homotopy equivalent to (TΣ2) +. The cell structure of Ωλ itself, indicated by
the diagrams above, is easy to verify using this description of Ωv

We summarize below some elementary properties of the spaces Grfe((C")iV.

Proposition 3.3. 1) Grfc(<CT = Gr«
2) The inclusion Gr^KerΛ^)^—^Gr^C"^ is an isomorphism.

3) The inclusion Grk(<Cmk)JV(k>--k)->Grfc(CfI)JV(II1'""'nm) is an isomorphism if k^nt

for i = \,...,m.

Proof 1) Certainly Gτk(<Cn)N ^ GrM _ ̂ (C1)"'. But N and N< are similar transform-
ations, so 1) follows. From consideration of the diagrams, 2) and 3) are
obvious. •

4. Results

Our aim is to find an explicit cell decomposition of HolJ(52,β f c), where
Ωk = Gvkn(<D2kn)N{2k'""2k). By Theorem 3.1, we have an explicit cell decomposition
of Ωk. The main observation of this section is that the whole space Hol*(,S2, Ωk)
may in fact be constructed out of fixed point varieties of the type considered in
Sect. 3, and hence its dimension may be read off. Before proceeding, however, we
need to recall some facts about holomorphic vector bundles on S2.

The Birkhoff-Grothendieck theorem (see [Gr]) says that any holomorphic
vector bundle E on S2 splits holomorphically as a direct sum of line bundles, i.e.,
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where Θ(a) is the standard line bundle of degree a(a = (cx 0(α)) [S2]). This splitting is
not canonical, but it is proved in [Gr] that there is a canonically defined sequence

OCESιCES2C.CESk = E

of holomorphic subbundles, where
1) ESι has rank sf and EJESι_ί^O(bi)®...®Θ{bi)
2)bι

l>...>bk

3) the sequences 0-+ESι_ι-+ESι-+EJESι_ί-^0 split holomorphically.
Hence, the a s are just the £>/s, possibly with repetitions. These subbundles

may be characterized as follows: the meromorphic sections of E with divisor
order ^i generate a holomorphic subbundle FtQE, and so one has a sequence
0£ ••• <ίFi+ίQFiQ ... QE; the distinct subbundles of this sequence are the
required ones.

If X is a complex variety with a holomorphic vector bundle E of rank n, and
feHol(S2,X), then the pullback Ef = f*E splits holomorphically as
@(a{)@.. .®Θ{a{) with a{^...^a{ (say), so one has a "stratification" of Hoi (S2, X)
given by the various splitting types. This has been studied in some depth (see, for
example, [AB]), but the only result we shall need is a consequence of the "semi-
continuity theorem" (see [Br]): if

r = min f £ (a{-aj)\feHol(52,X)
\ i j

then the subset of Hoi (S2, X) consisting of those / for which this minimum is
attained is open and dense. We shall apply this to the case where X is (a subvariety
of) a Grassmannian, and E is the tautologous holomorphic vector bundle. The
integers a{ are then necessarily non-positive.

The following is a straightforward application of the Birkhoff-Grothendieck
decomposition.

Lemma 4.1. 1) dimcGra((Cb) = a(b-a).
2) If d^O, dim<£Ho\*(S2,Gτa((£b)) = db.

Proof. 1) This follows from the equivalence Grfl((C&)= Ub/(Ua x Ub_a).
2). The tangent space to Hold(S2, Grα((D6)) at / may be identified with the space

of holomorphic sections of f*T, where T is the tangent bundle of Grα((Cb). From
the identification mentioned in 1), T ^ H o m ( £ , <Lb/E\ where we write (Cb for the
trivial bundle with fibre (£b. Let the Birkhoff-Grothendieck decompositions be
E^G(kι)®...®&(ka) and (Cf'/E^&il^®... ®&(lb-a). Then fc^O for all i and

£ k~-d, and / ^ 0 for all j and Σ h = d- H e n c e τ= Σ 0 ( ' , — Ό Since

ij — k^O for all i, y, the space of holomorphic sections of f*T has dimension
X (/; -feί + l) = db + α(b-α), and the result follows from 1). •

Unfortunately, the same method does not apply when Grα((C
&) is replaced by

Grα(C5)N, so we develop a different approach which will give the dimension as a
consequence of the cell decomposition. As motivation, we first make some remarks
on holomorphic curves in complex projective space.
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A holomorphic map / : S2-+(£Pb~1 of degree d corresponds to a holomorphic
line subbundle Ef^Θ( — d) oϊ(£b (in the usual way) and hence to a holomorphically
trivial line subbundle of C b ® $(d). Now, ΓΘ(d) may be identified naturally with
((Cd + *)* (or polynomials in one variable of degree d). So / corresponds to a point
[T] in P(Hom(Cd + \ <£b)). Beginning with [Γ], if we take 1, z, z2,..., zJ as a basis for
(C d + 1, / is given explicitly in local homogeneous coordinates by
f(z) = [Pi(z);... Pb{z)\ where the coefficients of the polynomial pt are given by the
f-th row of the matrix representing T. Conversely, a point [T] arises from some
/ e Hold (S2, <LPb ~1) if and only if the polynomials pί9...,pb have no common zero
in S2, i.e., if and only if

KerTnVer(d) = {0},

where Ver(d) is the submanifold of C d + x consisting of points which project to the
"Veronese curve" zκ-»[l;z;z2; ...;zd] in (CPd.

Let Dd= {TeHom((Cd+ \ (Cb) | Ker ΓnVer(d) = {0}} (a closed subset). To sum-
marize, we have shown

Hold(S2, <£Pb~*) ^P(Hom(<Cd + \ <Cb)-Dd)

which illustrates the classical fact that "every holomorphic curve of genus zero is
the projection of a Veronese curve." We shall use this to give a second proof of
Lemma 4.1 2). Unlike the first proof, this can be modified to deal with Grα((Cb)N,
and will form the basis for our main result (Theorem 4.2).

Alternative Proof of Lemma 4.1 2), for d ̂  a. The basepoint condition is /(oo) = (Cα

= [eί, . . . , e j . We define

HolJ* (S2, Grfl(<Cb)) = {/G Hoi* (S2, Grα((Cb)) | £ ,

the number of summands equal to β?(— 1) is necessarily d. By the semi-continuity
property referred to earlier, this is an open dense subset of Hoi* (S2, Grα((Cb)). For
each /eHol**(S2,Gra((C&)) we have a Birkhoff-Grothendieck filtration
0QTfQEf(QS2 x (C&), where 7} is a canonically defined, holomorphically trivial,
subbundle of Ef. Now, a trivial holomorphic subbundle of S2 x C b (being
determined by its holomorphic sections, which are all constant) must be of the
form S2 x V for some subspace V of Cb. Hence we have a map

where Vf is the subspace corresponding to 7}. Explicitly, we have
Vf = n{f(z)\zeS2}. Since /(oo) = <Cα, we have VfQ(£a for all / We obtain a map

π: Hoi?* (S2, Gr β(C f t))-Gr β _,

which is obviously surjective. In fact π is a holomorphic fibre bundle, whose fibre
over XQ(£a is

π-\X)^ HolJ*(S2, G

Here, the basepoint condition is g(co) = (£a/X, and E ^ 0 ( - l ) © . . . 0 0 ( - l ) . We
shall now calculate the dimensions of the base and fibre of π.
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Bearing in mind the remarks above on holomorphic curves in complex
projective space, we can see that the fibre π~ 1(X) may be identified with a subset of
the Grassmannian Gΐd{(£2d + b~a). For a map

corresponds to a holomorphically trivial subbundle, of rank d, of the bundle

To identify the d-planes which arise in this way, we introduce some notation: su s2

is a basis of (C2, f x , . . . , fd is a basis of (£a/X, and ea + ί,..., eb is the standard basis of
(C*)1. The condition that W defines a holomorphic map of degree d such that

is that a basis T1 ?..., Td of W can be chosen such that Ker 7]nVer(l) = {0} for all i,
i.e., such that Ker TnVer(l) = {0} for all Te W. The map is then given by

so the basepoint condition g(oo) = (Da/X is that Γ ί s ^ e C " / * for all Te W. Hence
π~\X) may be identified with the open subset Gxd{(L2d + h~a-D) of Gvd(£2d + b~al
where C 2 d + b~α has basis consisting of

and D consists of those points

which are not of maximal rank. Hence the fibre and base of π have dimensions
d(d + b — a), d(a — d) respectively by 4.1 1) and so the total space has (complex)
dimension db. •

Our main result is a description of the restriction, πN, of

π: Holf *(S2, Grkn(<L2k"))^Grk^d(<Ck")

toRo\Γ(S2,Ωk).

Theorem 4.2. Assume O^d^kn. Then,

1) The image of πN is πN(Ro\r(S\Ωk)) = Gτkn_d(<i:kr{k>-k)

2) If XeGTkn-4(<Ckn)m>'-'>k\ the fibre π ^ ( X ) is isomorphic to

Gr ((£2

for some fcf,..., fc* ̂  0 with /cf + ... + fc* = d, wft̂ re D is tfce c/05^ 5i/fo5eί 0/ (C2d + kn

defined in the previous paragraph.

Proof Take /eHol**(5 2 ,GrJ(C 2 / ί n )) . This defines a (kn - d)-plane

and a map
g E

[namely, g(z) = f(z)/Vf®(<Ekn)1l
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Claim. Nf{z)Qf(z) for all zeS2 [i.e., f(S2)QΩk~] if and only if NVfQVf and

Ng(z)Qg(z) for all zeS2.

This is obvious since Vf= n{f(z)\zeS2}. The nilpotent linear transform-

ations induced by N on <Ckn and on (<Ckn/Vf)®(<Cϊn)1 will also be denoted N when

this is unlikely to lead to confusion. Thus, on (Ckw, Â  = iV(/c,..., fc), so the image of π^

To identify the fibre of π^ over Vf we need to find the type of N on (£d + kn

Lemma 4.3. Let N = N{m, ...,m) on (C'm, so that KerN^CC" /or / = 1 , ...,m. Let

IeGr,((C l m ) wiίfc iVX^X. Γfen

1) N = N(au ...,#/) on X, for some au ....a^m.

2) N = N(m~aι,...,m-aι) on<£lm/X.

Moreover, if XQ<£}\ then aι,...,aι^i.

This will be proved later. It follows that N = N(kί9...,kn) on Cfc"/X and that

1,...,k + kn) on ( C ^ / X ) © ^ " ) 1 , for some kl9...,kn ( ^ 0 ) with

feΠ = d. Hence N = N{k + k1, ..., fc + fcB5 fel5...,fen) on

This completes the proof of Theorem 4.2. Π

Proo/ o/ Lemma 4.3. If l e G r ^ t , then X belongs to a cell of Grk(<C'm)*

corresponding to an ί x m diagram (/ rows and m columns) of the form

X
X

X
X

- σ
1
 shaded boxes •

-a
7
 shaded boxes

- a, shaded boxes -

(see Theorem 3.1). Hence N = N(a1, ...,at) on X, and 1) is proved. To prove 2), we

begin by choosing a basis of X of the form xu Nxu ..., Nai ~1xi; ... xb Nxb ...,

Naι~1xl9 which is possible by 1). Since KQΐNί = (Cli = lmNm~\ we may choose
lm with Nm~kyι = x l 9 ...?Λ

rm"/c'j;/ = x/. We claim that j ; l 5 J V ^ ! , . . . ,

h iV^,..., ΛΓm"Viis a basis for <C/m. If

Σ anN'yι+...+ Σ *aN
ιyι = 0,

ί = 0 ί = 0

then application of Λ/™"1 gives <x01N
m~1yι

Jr ...JrotolN
m~lyl = 0, contradicting

linear independence of the chosen basis for X, unless α 0 1 = ... = aoι = 0. Application

of iVm~ ifor j = 2,...,m shows similarly that ajί = ... = ocβ = 0for all), so the claim is

proved. Using the quotient basis for (Clm/X gives 2). Finally, if X Q (Cι\ then the

observation used in the proof of 1) shows that aί,...,aι^i, since all shaded boxes

must appear in the first z columns of the diagram. •

We can now prove Corollary 1.4 of the introduction.
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First, dimHol%(S2,Ωk) = dimHo\f*(S2,Ωk) since the second space is an
open dense subspace of the first. To use Theorem 4.2, we shall calculate the
dimensions of the base and of all fibres of πN. The base is Grfcn_d((C/c") jV(/c""/c)

^Gr^(C k n f (/c' 'fe) (by 1) of Proposition 3.3), and by Theorem 3.1 this has a cell
decomposition with cells corresponding to n x k diagrams of the form:

k
λ
 shaded boxes

k
9
 shaded boxes

k
n
 shaded boxes

The total number of shaded boxes is kx + ... + kn = d. The largest dimension of such
a cell (e.g., for fej = ... =fe n _ 1 =0, kn = d) is 2(2n~l)d, so this is the dimension
of the base. For any X eGrkn_d(<Ckn)Ni-k'-'k) which is contained in the cell corre-
sponding to such a diagram, we have N = N(ku...,kn) on (Ekn/X. By Theorem
4.2, the fibre π^1(X) over any such point X has the same dimension as

X

X
X

X

To find the dimension of this, using Theorem 3.1, we must shade d boxes of the
diagram

• k +

- k +

boxes

boxes

• k + k
n
 boxes

k
]
 boxes

k
Ί
 boxes

k
n
 boxes

in such a way that the dimension of the corresponding cell is maximized. It is easy
to see that this is achieved by (for example) shading the last n rows. The dimension
is then nd. As this is independent of k1,...,kn all fibres of πN have the same
dimension nd, so dimcHolJ*(S2,Ω fc) = nd + ( n - ί)d = {2n-l)d. •

Remarks. 1) Consideration of the last proof shows that in fact Holf*(S2,Ωd)
= Hol**{S\Ωk) for all k^d. [The base of πN is Grkn_d(<£kn)m -'k)

^Gτd(<£kηm---Λ)^Gτd((Ddn)Nid--d) by 1) and 3) of Proposition3.3. A similar
reduction may be made for the fibre.]

2) We have dealt only with the open dense subspace Holf*(5'2,Ωk) of
HolJ (S2, Ωk\ but in principle our methods of constructing the bundle π applies to
any other stratum. The calculations would be more complicated, however.

Proof of Corollary ί.4. The cell decomposition follows from Theorems 3.1 and
4.2. By definition, dimHold(S2

5Ω a l gSl/ I I)= lim d i m H o l ^ S 2 , ^ ) , and this is
2(2n-l)d by Corollary4.4. Π k"°°
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We conclude with some remarks on the case d=l, n = 2. Here we have

Hoi* (S\ Ωk) = Hoi? * (S2, Ωk) (obvious)

^ H o l f * ^ 2 , ^ ) (see above)

and this has dimension 6 by the proof of 1.4. It is possible to obtain the
dimension of Hol*(S2, Ωx) by direct arguments, as follows. First, as in the
introduction, we may use the explicit description of Ωλ as Θ(2)+ (see
Example 3.2), from which it follows that Hol*(S2, Ωx) is just the principal Aff(C)-
bundle associated to &(2). An alternative, more elementary, argument proceeds
by a modification of the method of Theorem 4.2. We have a map

obtained by defining π(f) to the flag

OC f]{f(z)\ZeS2}c

N o t e that u{/(z) | zeS2} is in fact a linear s u b s p a c e o f C 4 k s i n c e / h a s degree l , s o π
is well defined. The image of this m a p is

and the fibre over XcYC(C4/c is isomorphic to

Hol?(S2, Ψ(Y/X)) ^ Aff((C).

To describe the restriction πN of π to Hoi* (S2, Ωk), we note that if Nf(z) Q f(z) for all
ze S2, so that NXQX and NYQ Y, then N = Q on Y/X and in fact NY = X. (To see
this, observe that if y e Y then the linear span \_y, X] is f(z) for some z e S2, so
N[y,X] = Nf(z)Qf(z) = [y,X], i.e., iV acts diagonally on Y/X. But JV is nil-
potent on Y/X, so it must be zero. This shows NYQX, but since dimciVΎ
^dim^Y —2 because of the form of JV, we must have NY = X.) Hence πN is ob-
tained from π simply by restricting the base to {OcXC Yc<£4k\XC<C2kC 7,
NY = X}^Ψ(<£2k + 2/£2k)^<[:P1(^S2). Again this exhibits Hol?(S2,Ωa l gSt/2) as
an Aff((C)-bundle over C P ι . From either of these descriptions, one sees
that Hol*(S2,i2a l gSt/2) is complex analytically equivalent to PSL2{<£).
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Note added in proof. For G = SU2, Boyer and Mann have used Dyer-Lashoff operations to
detect homology of,/ jy^ up to dimension (approximately) f d i m ^ / ^ . (A classifying space for
instantons, preprint, Clarkson University, 1988.) The similarity with our result, that
dimHolί(52,Ωalg lSί/2)-JdimHolί(52,Ω5L/2), is striking, and lends further credence to the
Atiyah-Jones conjecture.






