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Abstract. It was observed by Atiyah that there is a correspondence between
based gauge equivalence classes of SU -instantons over S* of charge d on the
one hand, and based holomorphic curves of genus zero in QSU,, of degree d on
the other hand. In this paper we study the parameter space of such
holomorphic curves which have the additional property that they lie entirely in
the subgroup €,,,SU, of algebraic loops. We describe a cell decomposition of
this parameter space, and compute its complex dimension to be (2n—1)d.

1. Introduction

It is well known that the space QG of (smooth) basepoint preserving maps from the
circle S* to a compact Lie group G is, in a natural way, a complex manifold. One of
its many remarkable properties is that, despite being infinite dimensional, QG
behaves in many ways as if it were a compact manifold. For example, every
holomorphic function QG—-C is constant. Atiyah [At] proved that, for any
compact, complex manifold M, the set of all basepoint preserving holomorphic
maps M —QG lying in a given homotopy class is finite dimensional; in simple
cases, the dimension can even be computed. The argument in [At], however, is
non-constructive. The purpose of this paper is to complement [At] by giving an
explicit geometric construction of a large family of holomorphic maps M —»QG in
the case where M is the Riemann sphere S?. Some examples of where the study of
holomorphic maps M —QG occurs in the literature are given at the end of the
introduction.

To describe our results more precisely, we assume, without loss of generality,
that G has only one simple factor, so that n,(2G)~n,(G)=Z. Then any
(continuous) map S*— QG has an integer invariant, its degree, given by the induced
map on 7,, and this determines the map up to homotopy. Let Hol#(S?, QG) denote
the set of holomorphic maps f:S*—QG of degree d, which are basepoint
preserving in the sense that f(oo)=e, where we think of S?=Cu{w} as the
extended complex plane and e is the identity element or identity loop in G. Here, d
is necessarily =0. Then [At] gives:
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(1.1) Hol¥*(S?%, QG) is a complex manifold of dimension 2dc(G), where ¢(G) is the
dual Coxeter number of G.

For example, if G=SU,, the dimension is 2nd for n=2.

Our construction of holomorphic maps S*—QG makes use of the subgroup
Q2,,,G of QG consisting of the maps §'—G which have finite Fourier expansions.
Although this is not a submanifold, it is a good approximation to QG in at least two
senses (see [PS]):

(1.2) Q,,G is homotopy equivalent to QG;

(1.3) Q,1,G is dense in QG, if G is semisimple.

An infinite dimensional version of Chow’s theorem would suggest that every
based holomorphic map $*—QG actually maps into €,,,G. The results of this
paper, however, indicate that this is probably false.

We shall make use of a filtration

{1} =Q,CQ,CQ,C...CQ,,,G= | @
k=0

of Q,,,G by (finite dimensional) complex projective varieties €,. In fact, the Q, are
varieties of fixed points of unipotent transformations acting on Grassmannians;
such varieties have been studied extensively in [Sh, HS, Bo]. We shall show that
Hol#¥(S?, Q,) is essentially an iterated fibration whose base and fibres are varieties
of this type. We set

HOI:; (SZ’ QalgSUn) = U HOI:ik (SZ’ Qk)a
k=0

we conjecture that every based holomorphic map S*—QG with values in Q,,,G
actually maps into some £, so that the notation should be unambiguous. One
consequence of our description of Hol}(S?,€,,SU,), to be proved in Sect. 4, is:

Corollary 1.4. Hol#(S?, Q,,8U,) has (Hausdorff) dimension 2(2n—1)d. (We use
Hausdorff dimension as Hol}(S?, Q,,,SU,) is not a manifold.)

Comparing with (1.1), we see that there are based holomorphic maps
§?—-QSU, which do not map into any Q,. One can show that every based
holomorphic map M —QG, for any compact complex manifold M, actually maps
into Q,,,G, the rational functions S* — G, but the methods of this paper (based on
those of [Gu]) do not apply to 2,,,G.

The simplest non-trivial case of (1.4), namely d=1, n=2, is easy to understand
geometrically. We shall see that Hol(S?, 2,,,SU,)=Hol¥ (5% Q,), and that Q, is a
cone on a conic in CP? (see Example 3.2 for a more precise statement) whose vertex
is the identity loop I (see Fig. 1). The basepoint preserving degree 1 maps S*—Q,
are given by the generators of the cone, a complex 1-parameter family. But each
generator has a complex 2-parameter family of parametrisations which respect
basepoints. Thus, Hol¥(S% Q,,SU,) is 6-dimensional whereas, by (1.1),
Hol*(S?%, QSU,) is 8 dimensional.

We conclude this introduction by mentioning some problems in the calculus of
variations where holomorphic maps of a compact Riemann surface M into QG
have arisen naturally.
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Fig. 1

Example A: Topology of the Space of Holomorphic Curves

The loop group QG is not only a complex manifold but also a homogeneous
Kéhler manifold [PS], which has many properties in common with finite
dimensional homogeneous Kéhler manifolds such as projective spaces or
Grassmannians. Segal [Se] proved that Hol¥ (M, CIP") approximates the space
Map} (M, CIP") of smooth (or continuous) maps:

(1.5) The inclusion Holf(M,CP") ¢, Mapi (M, CP") is a homology equivalence
up to dimension (d—2g)(2n—1), where g is the genus of M. Moreover, if
g=0 (M =S?), the inclusion is a homotopy equivalence in the same range.

Although Segal’s proof of (1.5) was entirely topological, the result has an
interesting interpretation in terms of differential geometry, since Hol¥ (M, CP") is
precisely the set of absolute minima of the energy functional
E:Map#(M,CP"—R given by

E(f)={ ldf]*.
M
Thus, (1.5) should admit a Morse-theoretic interpretation.

These results were partially generalized to the case where €CP" is replaced by a
Grassmannian or flag manifold in [Gu, Ki]. It was conjectured by Atiyah [At]
that similar results should hold when CP” is replaced by QG; some progress has
been made in this direction (see Example B).

Example B: Holomorphic Curves and Yang-Mills Instantons

Let P be a principal G-bundle on S*. Since n,(G)~Z, P is determined up to
topological equivalence by an integer d. Assume d=0. Let .o/, be the space of
connections on P and ., the space of self-dual connections (instantons). The group
% . of automorphisms of P which are the identity in the fibre over a fixed basepoint
of §* acts freely on .7, In [At], Atiyah proved that there is a diffeomorphism
S 4/% . ~Hol}(S? QG), for any classical G. Combining this with the results of
[AHS] gives (1.1) immediately.
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We can now relate the conjecture in Example A to earlier work of Atiyah and
Jones [AJ]. Consider the following diagram:

49, — Hol#(S% QG)

l l :
A /%, —~Map} (52, QG)

The lower horizontal map is a homotopy equivalence, described in [AJ]. For
G=SU,, it was proved in [AJ] that the left-hand inclusion is, in homology, a
projection onto a direct summand in dimensions <d. It was conjectured that one
actually obtains a homotopy equivalence in dimensions <d; hence the same
would hold for the right-hand inclusion. A version of this conjecture, i.e.

lim H, Hol#(S% QG)= lim H,Map} (5% QG),

d— o d— o
has been proved by Graveson [Gv]. Using the instanton formulation this has
also been proved by Taubes [Ta]. See also [BM] and the Note added in proof at
the end of this paper.

In the case G=SU,, d=1, instantons are well understood (see Sect. 6 of [FU]):

S 1/% (=Hol¥(S% QSU,))is the real 8 dimensional manifold SO 5 x B®, where B® is
the open 5-ball. We do not know whether the real 6 dimensional manifold
corresponding to Hol¥(S?, Q,1,8U,) has any significance in terms of instantons
[the diffeomorphism .# /%, ~Hol}(S?, QG) is not canonical]. However, from the
identification Hol¥(S?, Q,,,SU,)=~ PSL,(C) made at the end of Sect. 4, it follows
that this 6 dimensional manifold is diffeomorphic to SO, x B>.

Example C: Classical Solutions of the Principal Chiral Model

The principal chiral model is a field theory which, at the classical level, amounts to
studying harmonic maps M — G, where M is a compact Riemann surface. In [Uh]
(see also [ZM, ZS]) it was proved that there is a one-to-one correspondence
between the set of based harmonic maps ¢:S*—G and the set of “extended
solutions”, i.e., the set of maps @:S?—QG satisfying

(1) ®(c0)=e,

(2) (0®/0A)P ' =(1—2z"")A, and

(3) (0®/07)® ' =(1—2)B,
where A, B are functions on S? with values in the Lie algebra of G and z is the loop
parameter in QG. Moreover, the degree of @ is the (suitably normalized) energy of
¢ (this is an observation of Eells and Freed). Hence, a crude upper bound for the
real dimension of the space of based harmonic maps S*— G of energy d is [by (1.1)]
4dc(G). A theorem of [Uh] says that, for G=U,, any extended solution actually
takes value in some €, so our result permits a slight reduction of this upper bound,
from 4nd to 2(2n—1)d.

2. Aspects of the Geometry of 2G

In this section we summarize the necessary facts about loop groups. Our main
reference is [PS], although [Pr] contains most of the information we need.
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For any Lie group G, the loop group LG is the space of smooth maps S' -G,
provided with the C*-topology; LG is a Fréchet Lie group. The based loop group
QG is the space of maps f: S* — G satisfying f(1)=e. Although QG is a subgroup of
LG, it is better to think of QG as a homogencous space of LG:

QG=~LG/G,

where G is identified with the constant loops in LG. By way of contrast, the groups
L,,G and Q,,,G, consisting of maps S' -G which have finite Fourier expansions,
are not smooth manifolds in any reasonable sense. (For us, G will always be a
matrix group, so the definition of L,;,G is obvious; in general, one would have to
take linear representations of G.)

All the geometry of QG which we shall need can be deduced from the
“Grassmannian model” of QG. We shall describe this only when G=U, or SU,,
although the model exists for all compact G. Let H be the Hilbert space IZ(S*, C"),
n=1. Then QU, acts on H (by unitary operators) and hence also on the subspaces
of H. Let H , C H be the closed subspace of H consisting of the vectors ve H of the
form

v=Y vz, v;el",
jz0

where S! is thought of as the set of complex numbers z of modulus 1.

Theorem 2.1 (Grassmannian Model). The assignment f+ fH, is a one-to-one
correspondence between Q,,,U, and the set of subspaces W of H such that

(i) zW W, and

(i) Z*H, CWCz % H . for some k=0. []

alg

The group ©,,,U, has components indexed by Z: a loop f lies in the d-th
component if det f:S'—S' has winding number —d. In terms of the Gra-
ssmannian model,

d=14(dim(W/z*H ,)—dim(z"*H , /W), (2.2)

where W= fH, and k is any integer large enough for (2.1)(ii) to hold. Since any
trigonometric polynomial map S'—S' of degree zero is constant, Q,,SU, is
exactly the identity component of Q,,,U,. The larger group L, ,SL,(C) obviously
acts on the set of subspaces satisfying (2.1) (i) and (ii), and the stabilizer of H, is the
subgroup L;,,SL,(C) consisting of the loops which involve no negative powers of z.
Thus we have a one-to-one correspondence

LalgSLn(q:)/L:lgSLn((E) = QalgS Un . (23)

There is also a Grassmannian model for the smooth loop group QU,: one
replaces (2.1)(ii) by the condition that the images of the orthogonal projections
W—H* and W*— H . should consist of smooth maps. In particular, the smooth
analogue of (2.3) holds, in the sense that there is a diffeomorphism

LSL,(C)/L' SL(C)=QSU, . (2.4)

Since LSL,(C) and L™ SL,(C) are complex Lie groups, this shows that QSU, is a
complex manifold.
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Theorem 2.1 immediately suggests a filtration of Q,,,SU, (or Q,,,U,). Namely,
let Q, denote the set of loops f€Q,,,SU, for which W= fH , satisfies (2.1)(ii) for
the given value of k. Then

Q,CQR,CA,C...CRSU,= ) Q. (2.5)
k=0
In terms of loops, €, consists of those feQ,,SU, of the form

fo= ¥ 42

iFk

for some n x n matrices 4;. Note that Q, consists of a single point, the constant
loop in €,,,SU,. In general, Theorem 2.1 shows that €, is a complex projective
variety. To see this, observe first that multiplication by z is a nilpotent
endomorphism of z7*H,/z*H,. Using (2.2), it follows that the assignment
fr>fH,/z"H . identifies Q, with the set of X eGr,(z *H,/z*H ), the Grass-
mannian of kn dimensional subspaces of the 2kn dimensional space
zkH , /zH ., for which zX € X ; equivalently, X should be fixed by the unipotent
automorphism 14z It follows that @, is a (closed) subvariety of
Gr(z *H . /7*H ,)~Gr, (C**"). Except for Q,, all the Q, are singular varieties.

It is casy to see that the natural complex structure and topology on the variety
Q, agree with those which are inherited from QSU,. However, the topology on
Q,,,SU, induced from the C”-topology on QSU, is strictly coarser than the direct
limit topology arising from the identification Q,, SU,= (] Q,.

k=0

Finally, it can be shown that ©,,,SU, has a natural cell decomposition arising
from the Grassmannian model, and that Q, consists precisely of the kn>-skeleton (if
n is even) or the k(n*> —1)-skeleton (if n is odd) for this decomposition. Together
with (1.2), this implies that the inclusions Q¢ Q,, . SU, < QSU, induce isomor-
phisms on 7, (for k=1, n=2) and so the notation Hol(S?, ©2,) makes sense.

3. Fixed Point Varieties of Unipotent Transformations

Let F=F(ry,...,r) be the complex “flag manifold” consisting of all sequences {E;}
of the form
{0}CE, CE, C...CE, =C",

where E; is a subspace of €" of dimension i. Let N = N(ny, ..., n,,) be the nilpotent
linear transformation of €" which is the direct sum of Jordan blocks J, ,....J, ,
where J, is represented by the i x i matrix

0 1
C
0
with respect to some fixed basis. Then we are interested in

F¥={{E)eF|NE,CE, for all i},
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which is the same as the set of fixed points in F of the unipotent transformation
U=I+N. The case of the “full flag manifold” [i.e. F=F(1,2,...,n)] has been
studied in greater generality, namely, where F is replaced by the quotient of a
complex semisimple Lie group by a Borel subgroup, and where N is replaced by
any nilpotent element of the Lie algebra. The space FY has many interesting
properties. For example, it provides a link between nilpotent orbits in the Lie
algebra and representations of the Weyl group: to the orbit of N one associates a
certain action of the Weyl group on (a subgroup of) the top cohomology group of
FN. For a summary of this, and further references, see [Bo].

The variety Q, of Sect. 2 is isomorphic to Gr,,(C**")N 2K and we identify
these from now on. Thus, all we need are some facts concerning FV in the special
case s=2, which we shall derive from scratch.

The main result is the following, which we take from [Sh]. (A more general
reference, which uses slightly different conventions, is [HS].)

Theorem 3.1. The space Gr(C") (where N=N(n,,...,n,)) has a complex cell
decomposition, the cells being indexed by diagrams

X —— n, boxes e

X —~— N, boxes = —=
X

X ~=— n,, boxes —=

in which crosses are distributed in such a way that

(1) now row contains more than one cross, and

(2) if the boxes in each row to the left of (and including ) the crosses are shaded,
there are k shaded boxes altogether.

We define an ordering on the boxes in such a diagram, by saying that one box
precedes another of the first box is either in a column to the left of, or in the same
column and above, the second box.

The complex dimension of the cell corresponding to such a diagram is Xd,;, where
d; is the number of unshaded boxes which precede the box containing the i-th cross.
(In the diagram shown, 2d;=6). If X belongs to the cell corresponding to the
diagram with k; shaded boxes in row i (0 <k,<n,), then the restriction of N to X is
nilpotent and has type given by N(ky, ..., k,,).

Proof. First we recall the usual cell decomposition of Gr(C"). Let ey, ..., e, be an
orthonormal basis of €, and let vy,..., v, be a basis for Ve Gry(C"). We write

C'=[e,...,e,), V=[v,...,v], and v;= Z a;e;, j=1,....k. The kxn matrix

A=(a;) may be put in reduced echelon form In other words, therc exists an
invertible k x k matrix R such that RA has the form:

'« « 1 0 0 0 0 0
* = 01 0 0 0 O
* = 0 0 = 1 0 0
* * 0 0 %« 0 1 0
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Let the 1’s appear in columns sy, ...,s; (Where 1<s, <...<s,<n). This matrix,
and hence the set S, ={s;, ..., 5}, is canonically assigned to the subspace V. Since
the #’s are unrestricted, it follows, given any set S={s;,....s,}S{1,2,...,n} with
§; <...<s,, that the set

cs=1{VeGr(C"|Sy, =S}

is a cell, i.e, a submanifold of Gr(C") difftomorphic to € for some d. The
dimension d is given simply by counting the number of entries *, so

k
d = Z (Si - Z) .
i=1
Thus, Gr(C")= ucs, where the cells ¢g are indexed by matrices of the form

0 0 00

S o O O
o O O O
o O

o OO =

10
0 0
0 0

S = O O

0
0
0

—

which have k entries equal to 1, not more than one such in each row and column,
and with all other entries zero. We may compress this information into a diagram
of the form

L] P

with precisely k shaded boxes, from which the dimension d is easily read off.

The same method may be used to give a cell decomposition of Gr,(C")". Let
C'=V,®...®V,, where the restriction of N to V; is cyclic, i.e., represented by a
Jordan block J, with respect to some basis. Let the basis e,,...,e, of €" be
obtained by taking the union of such bases for V, ..., V,,. In the following diagram
(which generalizes the one above) we arrange the boxes so that the i-th row
represents the chosen basis of V:

e, e,

The action of N on basis vectors is thus represented by a shift of one box (to the
left, say). The first j columns together represent Ker N.. For S={s,, ..., 5}, we call
aneclement [e , ..., e, 1€ Gr,(C") a “standard k-plane”;if [e, , ..., e,, ] € Gr(C")" we
callita “standard invariant k-plane.” The standard k-planes are represented on the
diagram by shading k boxes, and these index the cells of Gr,(C"). The standard
invariant k-planes are represented by shading k boxes in such a way that N always
moves a shaded box to another shaded box, for example:
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The cell ¢g of Gr(C") consists of the standard k-plane Vi=/[e, ..., e, ] together
with all “modifications” of it, where a modification involves altering the
appropriate s5;—i coordinates of the basis vectors e,. If Voe Gr (C"", a subset
c§ EGr(C)V ey is obtained by modifying [e,....e, ] to [v,...,v,], Where
Nv;=v; if and only if Ne;=e; Such modifications are specified by making
alterations (of the kind just described) to the basis vectors at the right-hand ends
of each row of shaded boxes. Such boxes we indicate with a cross:

X

X

Thus, ¢§ is a cell, and its dimension is d,, where d, is the number of unshaded boxes
“preceding” the i-th cross (the ordering being that of the basis vectors e, ...,e,).
For example, in particular diagram above, we have a cell in Gry(C*Y)" of
dimension d, +d, +d;+d,=0+1+2+3=6. The fact that the restriction of N to
X is N(ky, ..., k), for any X in this cell, is obvious. To complete the proof of the
theorem, we show that ¢y is in fact equal to Gr(C")¥ nc;. First, it is easy to see that
Gri(C)¥neg+0 if and only if Vge Gr(C")™. When this is so, the reduced echelon
form shows that any W e Gr(C")Vncg has a basis w,, ..., w,, with the property:
Nw, =w, if and only if Ne, =e¢, . Hence W belongs to ¢. [

Example 3.2. The Grassmannian Gr,(C*) has 6 cells represented by:

(T O] o

= L

l
3 A

(LI O
2

where the dimensions are as indicated. If N =N(2,2), the corresponding cells of
Gr,(CH" are represented by:

o

1
1]
4]

0 1

r—T = r—T
P ol
bt — —+—1
Lol Lol
R S
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If Gr,(C*) is represented in the usual way as a quadric in CP? given by the Pliicker
equation zyz,; —z,z3+2z42s=0, an eclementary calculation shows that
Q,(=Gr,(CHN?2) corresponds to the subvariety given by imposing the ad-
ditional conditions z,=0, z, =z5. Hence,

Q={[z0521:25;23]€CP? |21z, =123} .

Blowing up the singular point [1;0;0;0] gives a variety which admits an obvious
holomorphic map to the conic

C={[z0:2,;2,]1€ CP?*|zyz, =23} = CP",

all of whose fibres are copies of CP*. By general principles such a map is necessarily
a holomorphic €P' bundle over CP’, i.e., of the form IP(0(a)® (O(0)) for some
integer a. The zero section (which may be identified with C) has self-intersection
number 2, so a=2. Thus, Q, is obtained by collapsing to a point the infinity section
of P(O(2)® 0(0)), i.e.,

Q, =Gr,(CH"2V > 0(2)* ~(TS?",

where + indicates the Thom space. This makes precise the statement in Sect. 1 that
2, is a cone over a conic. [t is also consistent with the assertion at the end of Sect. 1
that Q, is the 4-skeleton of QSU,~S? and it is well known that the 4-skeleton of
Q58?2 is homotopy equivalent to (TS?)*. The cell structure of Q, itself, indicated by
the diagrams above, is easy to verify using this description of €.

We summarize below some elementary properties of the spaces Gr (C")".

Proposition 3.3. 1) Gr(C")"~Gr,_ (C"".

2) The inclusion Gr(Ker NY¥-Gr(C"N is an isomorphism.

3) The inclusion Gry(@™N® 0 - Gr(@"N"--" s an isomorphism if k<n;
fori=1,...,m.

Proof. 1) Certainly Gry(C")" ~Gr,_ (C"". But N and N’ are similar transform-
ations, so 1) follows. From consideration of the diagrams, 2) and 3) are
obvious. [

4. Results

Our aim is to find an explicit cell decomposition of Holf(S? €,), where
Q, =Gr,, (C*mNCk.- 20 By Theorem 3.1, we have an explicit cell decomposition
of Q,. The main observation of this section is that the whole space Hol¥(S?, )
may in fact be constructed out of fixed point varieties of the type considered in
Sect. 3, and hence its dimension may be read off. Before proceeding, however, we
need to recall some facts about holomorphic vector bundles on §2.

The Birkhoff-Grothendieck theorem (see [Gr]) says that any holomorphic
vector bundle E on S? splits holomorphically as a direct sum of line bundles, i.¢.,

Ex~ @(al)e‘) s @Co(an) >
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where (0(a) is the standard line bundle of degree a (a = (¢, ¥(a)) [S*]). This splitting is
not canonical, but it is proved in [Gr] that there is a canonically defined sequence

0CE, CE,C...CE,=E

of holomorphic subbundles, where

1) E, has rank s; and E_/E;  =0(b)®...®0(b;)

2) by>...>b,

3) the sequences 0—-E;  —E —»E /E,_ —0 split holomorphically.

Hence, the a;’s are just the b;’s, possibly with repetitions. These subbundles
may be characterized as follows: the meromorphic sections of E with divisor
order =i generate a holomorphic subbundle F;CE, and so one has a sequence
0C...CF, £F,C...CE; the distinct subbundles of this sequence are the
required ones.

If X is a complex variety with a holomorphic vector bundle E of rank n, and
feHol(S?,X), then the pullback E,=f*E splits holomorphically as
(@)@ ... ®0(al) with af = ... = al (say), so one has a “stratification” of Hol(S?, X)
given by the various splitting types. This has been studied in some depth (see, for
example, [AB]), but the only result we shall need is a consequence of the “semi-
continuity theorem” (see [Br]): if

r=min {Z (aif—a{)|feHol(Sz,X)},
i<j
then the subset of Hol (S%, X) consisting of those f for which this minimum is
attained is open and dense. We shall apply this to the case where X is (a subvariety
of) a Grassmannian, and E is the tautologous holomorphic vector bundle. The
integers a/ are then necessarily non-positive.

The following is a straightforward application of the Birkhoff-Grothendieck

decomposition.

Lemma 4.1. 1) dim Gr(C’) = a(b—a).
2) If d=0, dimgHol# (52, Gr (") =

Proof. 1) This follows from the equivalence Gr,(C*)=U,/(U,x U,_,).

2). The tangent space to Hol,(S?, Gr,(C")) at f may be identified with the space
of holomorphic sections of f*T, where T is the tangent bundle of Gr,(C"). From
the identification mentioned in 1), T~ Hom(E, C*/E), where we write €” for the
trivial bundle with fibre C°. Let the Birkhoff-Grothendieck decompositions be

>0(k,)®...®0(k,) and C*/Ex=(l)) @ .@®0(,_,). Then k;<0 for all i and

Z k;=—d, and [;=0 for all j and Z l;=d. Hence T Z O(l;—k,). Since
ji=1
I —k =0 for all i, j, the space of holomorphic sections of f*T has dimension

Z (I;—k;+1)=db+a(b—a), and the result follows from 1). []

Unfortunately, the same method does not apply when Gr,(C?) is replaced by
Gr,(C"Y, so we develop a different approach which will give the dimension as a
consequence of the cell decomposition. As motivation, we first make some remarks
on holomorphic curves in complex projective space.



522 M. A. Guest and A. N. Pressley

A holomorphic map f: S*—CP? ! of degree d corresponds to a holomorphic
line subbundle E ; >~ ((—d) of C? (in the usual way) and hence to a holomorphically
trivial line subbundle of C*® 0(d). Now, I'()(d) may be identified naturally with
(C** H* (or polynomials in one variable of degree d). So f corresponds to a point
[T]inIP(Hom(C** !, €")). Beginning with [ T],if we take 1, z, z%, ..., z as a basis for
C‘*', f is given explicitly in local homogeneous coordinates by
f(2)=[p,(2); ...; ps(2)], where the coefficients of the polynomial p; are given by the
i-th row of the matrix representing T. Conversely, a point [ 7] arises from some
feHol,(S?,CP"!)if and only if the polynomials p,, ..., p, have no common zero
in §, i.e, if and only if

Ker TnVer(d)={0},

where Ver(d) is the submanifold of €**! consisting of points which project to the
“Veronese curve” zr—[1;z;z%;...;z%] in CP%

Let D;={TeHom(C**!,C")|Ker TnVer(d)={0}} (a closed subset). To sum-
marize, we have shown

Hol,(S?,CP* " YY~P(Hom(C* "', C"—D,)

which illustrates the classical fact that “every holomorphic curve of genus zero is
the projection of a Veronese curve.” We shall use this to give a second proof of
Lemma 4.1 2). Unlike the first proof, this can be modified to deal with Gr(C?)",
and will form the basis for our main result (Theorem 4.2).

Alternative Proof of Lemma 4.1 2), for d £ a. The basepoint condition is f(c0)=C*
= [ela cees ea]- We define

Hol#*(S2, Gr,(@CY) = { fe Hol# (S%, Gr (@) | E,
~0(~1)®... 00— 1)DO0)®... D)} ;

the number of summands equal to ¢(— 1) is necessarily d. By the semi-continuity
property referred to earlier, this is an open dense subset of Hol¥ (5%, Gr(C?)). For
each feHol#*(S%,Gr(C") we have a Birkhoff-Grothendieck filtration
0CT,CE f(g52 x C?), where T} is a canonically defined, holomorphically trivial,
subbundle of E, Now, a trivial holomorphic subbundle of $*xC" (being
determined by its holomorphic sections, which are all constant) must be of the
form $% x V for some subspace V of €. Hence we have a map

HOlfik* (st G[‘a((]:b))—) Gra -d((Eb) ) f = Vf H

where V, is the subspace corresponding to T;. Explicitly, we have
V,=n{f(z)|zeS?}. Since f(c0)=C" we have V,CC* for all f. We obtain a map

7 Hol#*(S2, Gr,(C) -~ Gr, _ (C9),

which is obviously surjective. In fact « is a holomorphic fibre bundle, whose fibre
over XCC“is

n~ {X) = Hol#*(S?, Gr(CY/ X)D(CYY)).
Here, the basepoint condition is g(c0)=C*/ X, and E,=0(—-1)®...@0(—1). We
shall now calculate the dimensions of the base and fibre of =.
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Bearing in mind the remarks above on holomorphic curves in complex
projective space, we can see that the fibre 7~ '(X) may be identified with a subset of
the Grassmannian Gr(C?**?~%). For a map

ge Hol* (S, Gr,(C*/X)@®(C*))
corresponds to a holomorphically trivial subbundle, of rank d, of the bundle
[(C/XD(C) 1®0(1).

To identify the d-planes which arise in this way, we introduce some notation: sy, s,
is a basis of €2, f}, ..., f;is a basis of €*/X, and e ,, ..., e, is the standard basis of
(€™ The condition that W defines a holomorphic map of degree d such that

E,=20(—1)®...®0(—1)

is that a basis T, ..., T, of W can be chosen such that Ker T;nVer(1)= {0} for all i,
i.e., such that Ker TnVer(1)={0} for all Te W. The map is then given by

g(2)=[Ti(s; +253), ..., Ty(s; +28,)],

so the basepoint condition g(oo)=C"/X is that T(s,)e €/ X for all T e W. Hence
7~ !(X) may be identified with the open subset Gr(C***?~*— D) of Gr(C***"~%,
where €297°~4 has basis consisting of

ST®f15""S>lk®fd; S>2k®f1a"'ss>2k®f;i; S§®ea+13~-'>s>2k®eb;
and D consists of those points
Te@*"**“C Hom(C?,(C*/X)®(T)")

which are not of maximal rank. Hence the fibre and base of = have dimensions
d(d+b—a), dla—d) respectively by 4.1 1) and so the total space has (complex)
dimension db. [

Our main result is a description of the restriction, my, of
70 Hol¥*(S?, Grp,(C*) - Gry,, _ (T*)
to Hol¥*(S2,Q,).

Theorem 4.2. Assume 0 <d < kn. Then,
1) The image of my is my(HolF*(S%, Q,)) = Gry, _ (C)NE-0,
2) If X eGry,_(CNE&-8 the fibre ny'(X) is isomorphic to

Grd(aj2d+kn_~D)N(k+klx, ek RE KX KX

for some kY, ..., kX =0 with k¥ + ... + kX =d, where D is the closed subset of €C*¢**"
defined in the previeus paragraph.

Proof. Take feHoli*(S% Gr,,(C**")). This defines a (kn—d)-plane
Vy= n(f)eGry, ~d(¢2kn) >

and a map
g e Hol*(S%, Gry(C*/ V) ®(T™)*))

[namely, g(z) =/ (z)/V,@(C*")'].
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Claim. Nf(z)C f(z) for all zeS* [ie, f(S*)CQ,] if and only if NV,CV, and
Ng(z)Cg(z) for all ze S2.

This is obvious since V,=n{f(z)|z€S?}. The nilpotent linear transform-
ations induced by N on €*" and on (C*'/V,)@(C*")* will also be denoted N when
thisis unlikely to lead to confusion. Thus, on C*", N = N(k, ..., k), so the image of m
is Gry, _ (CFNE- b,

To identify the fibre of ny over ¥, we need to find the type of N on €
=(CH/V,)D(TH)*.

d+kn

Lemma 4.3. Let N=N(m,...,m) on €™, so that KerN'=C" for i=1,...,m. Let
X e Gry(C™) with NXC X. Then

1) N=N(ay,...,a) on X, for some a;,...,a;Sm.

2) N=N(m—a,,...,m—a) on C"/X.

Moreover, if XCT, then ay,...,aq;<i.

This will be proved later. It follows that N = N(k,, ...,k,) on C*/X and that
N=N(k+ky,...k+k,) on (C*"/X)®(@*")*, for some ky,....k, (=0) with
ki+...+k,=d Hence N=N(k+ky, ..., k+k, ky,....k,) on

([:2:1 +kn ~ [((Ek”/X)@((Ek")J'] @ [(Ek"/X] .
This completes the proof of Theorem 4.2. []

Proof of Lemma 4.3. If X e Gr,(C™)", then X belongs to a cell of Gry(C™"
corresponding to an [ x m diagram (I rows and m columns) of the form

iX —~—— a, shaded boxes —=—

[
Ix —~——qa, shaded boxes —=
!
|
i

X ———qa, shaded boxes —=

(see Theorem 3.1). Hence N =N(a,,...,a;) on X, and 1) is proved. To prove 2), we
begin by choosing a basis of X of the form x,, Nx,,..., N® “'x;;...; x, Nx,, ...,
N“~!x, which is possible by 1). Since Ker N'=C"=ImN""", we may choose
Vi €C™ with Ny, =x,,...,N" "My, =x, We claim that y,, Ny,,..
N™ 1y v, Ny oo, N™ 71y, is a basis for €™ If

*

'_ZO O(illel+..,+ '_ZO O(”Niylzo,

then application of N™™! gives 2o N™ 'y, + ...+ oy, N™ 'y,=0, contradicting
linear independence of the chosen basis for X, unless o, = ... =, =0. Application
of N" /forj=2,...,mshows similarly that o;, = ... =, =0for all j, so the claim is
proved. Using the quotient basis for €™/X gives 2). Finally, if X CC", then the
observation used in the proof of 1) shows that a,, ..., q,<i, since all shaded boxes
must appear in the first i columns of the diagram. []

We can now prove Corollary 1.4 of the introduction.
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First, dim Hol#(S? Q,)=dim Hol$*(S% Q,) since the second space is an
open dense subspace of the first. To use Theorem4.2, we shall calculate the
dimensions of the base and of all fibres of my. The base is Gry,_ (CF)N*: -0
=~ Gr (CH)¥k-B (by 1) of Proposition 3.3), and by Theorem 3.1 this has a cell
decomposition with cells corresponding to n x k diagrams of the form:

—)a —=— k, shaded boxes —=
—— k, shaded boxes —=

—— Kk, shaded boxes —

The total number of shaded boxes is k; + ... + k,=d. The largest dimension of such
a cell (e.g, for k;=... =k, =0, k,=d) is 2(2n—1)d, so this is the dimension
of the base. For any X € Gry,,_ (C*")¥* % which is contained in the cell corre-
sponding to such a diagram, we have N=N(k,,....k,) on €*"/X. By Theorem
4.2, the fibre my '(X) over any such point X has the same dimension as

Grd(c2d+kn)N(k+k1 ..... k+tknkyi,....kn)

To find the dimension of this, using Theorem 3.1, we must shade d boxes of the
diagram

] ~— k+k, boxes —m

~—— k +k, boxes —=

|
[ ]

~— k +k, boxes —

—~—  k, boxes —

~—  k, boxes —=

——  k,boxes —m

in such a way that the dimension of the corresponding cell is maximized. It is easy
to see that this is achieved by (for example) shading the last n rows. The dimension
is then nd. As this is independent of ky,...,k, all fibres of ny have the same
dimension nd, so dimgHol¥*(S%, Q)=nd+(n—1)d=02n—1)d. []

Remarks. 1) Consideration of the last proof shows that in fact Holf*(S2, Q)
=Hol¥*($%,Q,) for all k=d [The base of my is Gr,,_(CNE-0
=~ Gr(C)NE-B >~ Gry(C)N -9 by 1) and 3) of Proposition3.3. A similar
reduction may be made for the fibre.]

2) We have dealt only with the open dense subspace Hol$*(S%, €,) of
Hol#(S?, Q,), but in principle our methods of constructing the bundle = applies to
any other stratum. The calculations would be more complicated, however.

Proof of Corollary 1.4. The cell decomposition follows from Theorems 3.1 and
4.2. By definition, dim Hol,(S? ,,SU,)= hm dim Hol,(S%, Q,), and this 15
2(2n—1)d by Corollary4.4. []
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We conclude with some remarks on the case d=1, n=2. Here we have
Hol*(52, Q,)=Hol¥*(S?,Q,) (obvious)
=Hol¥*(S%,Q,) (see above)

and this has dimension 6 by the proof of 1.4. It is possible to obtain the
dimension of Hol*(S% Q,) by direct arguments, as follows. First, as in the
introduction, we may use the explicit description of Q, as 02)* (see
Example 3.2), from which it follows that Hol¥(S?, ©,) is just the principal Aff(C)-
bundle associated to @(2). An alternative, more elementary, argument proceeds
by a modification of the method of Theorem 4.2. We have a map

7: Hol¥(S?, Gry (C*) > F(2k — 1,2k + 1, 4k)
obtained by defining n(f) to the flag
0CN{f(2)|zeS*}C U {f(2)|zeS*}CC*.

Note that U{ f(z)| ze S*} isin fact a linear subspace of €** since f has degree 1,50 7
is well defined. The image of this map is

{0CXCYCCH* | XCC*CY}=CP* ' xCP* 1,
and the fibre over X C Y CC* is isomorphic to
Hol¥(S%, P(Y/X)) = Aff(C).

To describe the restriction my of © to Hol*(S?, 2,), we note that if N f(z)C f(z) for all
zeS? sothat NXCX and NYCY, then N=0on Y/X and in fact NY = X. (To see
this, observe that if ye Y then the linear span [y, X] is f(z) for some ze S?, so
N[y, X1=Nf(2)< f(z)=[y,X], ie, N acts diagonally on Y/X. But N is nil-
potent on Y/X, so it must be zero. This shows NY X, but since dimzNY
>dimg Y —2 because of the form of N, we must have NY = X.) Hence 7y is ob-
tained from m simply by restricting the base to {0CXCYCC*|XCC*CY,
NY=X}=P(C*"?/C*)=CP'(x~S?. Again this exhibits Hol}(S? Q,,SU,) as
an Aff(C)-bundle over CP'. From either of these descriptions, one sees
that Hol¥(S?,Q,,,SU,) is complex analytically equivalent to PSL,(C).
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Note added in proof. For G=SU,, Boyer and Mann have used Dyer-Lashoff operations to
detect homology of .# /%, up to dimension (approximately) 2 dim.# /% . (A classifying space for
instantons, preprint, Clarkson University, 1988) The similarity with our result, that
dim Hol}(S?, Q,,,SU,) = 3dim Hol}(S? QSU,). is striking, and lends further credence to the
Atiyah-Jones conjecture.








