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Abstract. We give the elements of a theory of line bundles, their classification,
and their connections on super Riemann surfaces. There are several salient
departures from the classical case. For example, the dimension of the Picard
group is not constant, and there is no natural hermitian form on Pic.
Furthermore, the bundles with vanishing Chern number aren't necessarily flat,
nor can every such bundle be represented by an antiholomorphic connection
on the trivial bundle. Nevertheless the latter representation is still useful in
investigating questions of holomorphic factorization. We also define a subclass
of all connections, those which are compatible with the superconformal
structure. The compatibility conditions turn out to be constraints on the
curvature 2-form.

1. Introduction

This paper is a sequel to [1, 2]. In those papers we described the theory of super
Riemann surfaces (SRS) in differential-geometric terms.1 In particular we defined a
SRS X as a supermanifold of real dimension 2|2 equipped with an additional
structure. This "superconformal structure" amounts to an integrable reduction of
the structure group of X. X then has a canonical holomorphic line bundle ώ, so we

can define holomorphic --differentials as sections of ώp. We also get an analog of

the Cauchy-Riemann operator, $, which can be used to define both the string
action and actions for generalized first-order systems [3]. All in all, SRS show a
remarkable formal similarity to ordinary Riemann surfaces, despite the fact that
they cannot be thought of as having just one complex dimension.

In this paper we will carry the discussion further, turning to other structures on
Riemann surfaces and their SRS analogs. We begin by reviewing the basic

1 See the references in [2]
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properties of the (? operator and by discussing the associated cohomology groups.
Next we define line bundles on complex supermanifolds and on SRS, and describe
their classification. Following this, we describe in greater detail the relation
between the super Cauchy Riemann operator S and the exterior derivative
operator δ, briefly mentioned in [2]. We then introduce both arbitrary connec-
tions and those compatible with the superconformal structure. The latter turn out
to be distinguished by the fact that their curvatures obey certain constraints, a 2d
version of the curvature constraints of superfield gauge theory. The curvature of a
line bundle can be used to compute its Chern class, much as in the classical case.

In the case of odd spin structures, however, we will see several important
differences between the theory of line bundles on SRS and the classical case. For
one thing, the dimension of the Picard group is not constant. Also the group Pic0

of bundles with Chern number zero cannot be represented in general by flat
connections. Both of these pathologies suggest that perhaps our definition of Jί is
not yet the most useful one. On the other hand, for the even spin structures the
above pathologies generically don't arise. Thus the even case closely parallels the
classical theory.

In any case we can still describe Pic0 in terms of connections on the trivial
bundle, as we show in the last section. This differential geometric representation of
a holomorphic family is useful when one wants to investigate holomorphic
factorization. Finally we conclude with some open questions.

When one is given a class of analytic spaces such as SRS it is mathematically
very natural to ask about the most general bundles and connections one can write
compatible with the given structure. The answers which emerge then usually find
their way into physical constructions. For example, once one knows that Riemann
surfaces are important for string theory then it quickly becomes clear that
holomorphic bundles are important, not just complex bundles. Still one may ask
about the utility of considering arbitrary line bundles, when it seems to be only the

untwisted --differentials which enter into string theory. One answer is that a

number of results in ordinary conformal field theory emerge only when one
interpolates between different spin structures, for example the theorem on the
determinant of the Dirac operator and the ensuing bosonization results [4,5].
Even if in the end one considers only spin bundles, the results obtained by
admitting twists are still important. It is not yet clear to us whether an exact analog
of the theorem in [4] can be given on SRS, but the formalism developed here is a
step in that direction.

Superdifferentials were introduced in [3, 6]. We also draw the reader's
attention to the papers [7, 8], where bundles and jacobians are also discussed,
and where some of our results are independently given.

2. The δ Operator and its Cohomology

Before introducing bundles we will review and extend some notions from [2] we
focus in particular on the d operator and some of its properties. We will also give
the Dolbeault theorem for d.
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Throughout this paper w, θ will denote a set of superconformal coordinates for
a SRS2 X has a canonical holomorphic line bundle ώ of half-volume forms. Given
the coordinates u,θ we get a local trivializing section v of ώ:

υ = ldudθ']9 (2.1)

where the right side is the Berezin volume element. We will write a general section
of ώ as v - λ + , where λ+ is a function. Let t be the complex conjugate of v. We can
define an analog of the Cauchy-Riemann operator as follows:

Sf = υ (Df). (2.2)

§ is intrinsically defined, and we get an exact sequence

0->Cc»$Λώ->0. (2.3)

Here Φ is the sheaf of holomorphic super functions on X, while C is the constant
sheaf of complex numbers. Any constant sheaf like C knows only about the
topology of the ordinary topological space underlying X.

The sequence (2.3) deals entirely with sheaves of holomorphic (or constant)
functions. It will be important to generalize everything to spaces of smooth
sections, analogous to the (p, g)-forms on Riemann surfaces. Defining differential
forms as in [2], we can split the r-forms into spaces of smooth (p, g)-forms, where

Ωp> q = {smooth (p, 4)-forms on X] . (2.4)

We then have the usual exterior operator

and its conjugate, defined by d = d + d. They define the exact sequences

P**^UPΛ^UP*2 ->..., (2.5)

where Qp are the holomorphic p-forms. For example when p = 0 the holomorphic
functions are precisely those annihilated by d, and so on.

The problem with (2.5) is that it does not terminate; there are no "top forms" in
super geometry. Instead we need a complex based on <9. Define 3

so that j^0' ° = <$/ are the smooth functions, etc. In the definition of s/1' 1 we add
the condition that v®v = ϋ®v, so that v behaves like dθ. We will call sections of

p'q "( -, - 1-differentials" to distinguish them from "(p, g)-forms", the sections of

2 Actually we must always consider families of SRS, as discussed for example in [2]. We will not
make this explicit in the notation, but really M, θ are relative coordinates, the cohomology groups
Hq below are Rqp^ and so on (see [9])
3 More precisely sip'q = (ώp
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We can define an operator d from s/p'® to s/pΛ using (2.2) and

$(v'λ + ) = υϋ (Dλ + )9 (2.6)

and similarly for S. This yields the sequences

O^ώ^j/' oΛj/*1-^. (2.7)

The sequences^(2.7) are also exact. For example, a smooth function is holomorphic
exactly when 3" annihilates it. As explained in [2] this is possible because a single
vector field in superspace can be nonintegrable. Moreover, just as in the classical
case one finds that the sheaves <$fp'q are fine; that is, they admit a partition of unity
subordinate to any cover of the base space X. To prove this we simply note that the
smooth ordinary functions s$ on X admit partitions of unity. Furthermore X
always admits a splitting as a smooth supermanifold [10]. Choose any such
splitting and use it to pull the partition of unity from X up to X. This is not
canonical, but it does show that the s$p'q are fine.

The resolutions (2.7) of (9 and ώ by fine sheaves lead at once to a Dolbeault-type
theorem4. Let

where Γ( ) = HQ( - ) is the space of sections of a sheaf. Then from the long sequences
based on (2.7) we have

0^#°(ώ*H#%5/p °)Λff^

and

Q = Hq-ί(^p'l)-*Hq(ώp)-+Hq(άp °) = Q for q>\.

This shows that5

H\ώp}^Hpβ\ Hq(ώp) = Q, q>\. (2.8)

One can also prove [11, 8] a Serre duality theorem:

H\ώp)^H°(ώ1~p)*. (2.9)

3. Bundles

On a smooth supermanifold we can define complex line bundles as follows. Let
sf* denote the smooth, invertible, even functions on X. (These functions have an
expansion in the anticommuting generators whose lowest term is nowhere
vanishing.) A line bundle E on X is then defined by a collection of transition
functions {gα/3} on the overlaps of a covering { Ua} oϊX. The gaβ are in s$ x ((7αn Uβ)
and satisfy the usual cocycle condition; they are defined up to the usual
coboundary. A collection of super functions related across patch overlaps by the
gΛβ is called a section of E; the sections constitute a sheaf which we will call S.

4 We thank M. Rothstein for a discussion on this point
5 A similar result also follows in the case where ώp is replaced by an arbitrary holomorphic line
bundle. Both versions were independently given in [8]
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Since the transition functions of a line bundle are all even, it makes sense to
assign a parity to a section of E. In fact we can divide line bundles into those of rank
1 1 0 and those of rank 0 1 1 , depending on whether a local trivializing section s of E is
even or odd, e.g. whether θ-s= ±s-θ. This distinction is well-defined, since to
change the parity of 5 requires that we multiply by an odd function, whereupon it
vanishes when the nilpotents are set to zero, and hence is no longer trivializing.
Given the transition functions of a bundle, its parity can be declared at will.
However, we will adhere to the convention that ώ is of rank 0| 1, as implied by (2.1).

One can also define bundles of higher rank, but we will not do so here.
As in the classical case [12] one has the exponential sequences

where e(f) = e2πif and j/^ are all the smooth even functions. The corresponding
long sequence

then implies Hl(^ X)^#2(Z), since sf is fine. Thus complex line bundles are
completely classified by an element of ί/2(Z), the Chern class c(E).

If we are given a family of complex manifolds, we simply define a family of line
bundles as a single bundle over the total space, just as in the classical case. For
example consider the family of manifolds X x C° ' * depending trivially on an odd
parameter ζ. If {gα^} is a class in Hl(s$ *(X}\ then it defines a bundle on X which
also depends trivially on ζ. If however {gΛβ} is a class in Hl(stfoά(X)\ the odd super
functions, then the functions {gaβ = 1+ ζgaβ} define an interesting family of bundles
on X. For this reason we will keep both parts of the cohomology, bearing in mind
that the odd classes are associated to odd directions in the group of line bundles.

Similarly we can define the invertible even holomorphic functions Φ x . We again
have an exponential sequence, but now θ is not fine. From (2.8) we have that
H2(@) = Q, however, and so we get the sequence

This says that the Picard group Pic = H1(0X) falls into disconnected components
labeled by the Chern class c(E). The zero component is

Z) (3.1)

Now suppose that the underlying supermanifold X is a SRS, or a family of SRS.
As before we can define complex bundles on X. Using the complex structure we
can again define holomorphic bundles as well. One might think that we could go
further and define a still more restrictive class of bundles using the full
superconformal structure of X, but this is not so, again essentially because the
latter really adds no information to X. X has the same structure sheaf Θ regardless
of whether we think of it as a complex manifold or as a SRS, and a line bundle is
precisely a (locally free) j>heaf of ^-modules. Put differently, a "superconformal
bundle" should have a d operator. The condition for this operator to be well-
defined, analogously to 3, is that all transition functions be annihilated by D. But
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this simply says that the gΛβ are holomorphic. There is thus no special class of
bundles associated to a superconformal structure.

Using Serre duality, Eq. (3.1) tells us that the dimension of the Picard group
equals that oϊH°(ώ). Consider first a "reduced" family of SRS, that is, a family with
only commuting parameters, or none at all. For such a family we can expand a
^-super-differential in components,

ω = v(ω++ θωz} ,

where ω+ and ωz are respectively ordinary \- and 1 -differentials on the
corresponding Riemann surface X. Thus we have [9]

ώ^ω|ω 1 / 2 . (3.2)

The bar means the direct sum, with the left element even and the right element
odd6: ω is the ordinary canonical line on X. Thus for a reduced family the
dimension of Pic is g | q, where g is the genus and q — dim/ί0(ω1/2). q is generically 0
or 1 on the even (respectively odd) component of Jί, but it can jump on sets of
codimension one, a striking departure from the classical case. In any case the body
of Pic is just the classical Picard group. This is an example of a general result about
line bundles over a space with just one odd coordinate [13].

Things get worse when we consider arbitrary families of SRS.7 Consider a
family of tori with one odd parameter ζ and superconformal patching conditions

w + l — £0 f w ~ w + ι
ζ + θ \θ~θ '

The transition functions of ώ are all identically equal to one. The holomorphic
sections of ώ are then spanned over C by

Roughly speaking, the number of sections of ώ "jumps" as we leave the locus C = 0.
More precisely H°(ώ) fails to be free over the ring of functions Λ (C) on the
parameter space; if it were free it would certainly be even-dimensional over C.
Again the problem arises only when there are spinor zero modes on X.

It is not clear to us how severely the above pathology affects SRS theory. We
will proceed, but at times we will restrict to the case of split families in order to
avoid it.

An even more restrictive class than the holomorphic bundles are the flat ones.
A flat bundle is an equivalence class of constant transition gα / seC; those are
classified by Hl(C), a vector space of 2g complex dimensions. An important
classical theorem states that every holomorphic bundle in Pic0 has a flat
representative [14]. We will now investigate the corresponding super statement.

As in the classical case we begin with (2.3), whence [using H2((9} = $]

Q^H0(C)^H°(Θ)^H°(ώ)^H\C)ίH\$)^H\ώ)-+H2(C}-+0. (3.3)

6 This is sometimes written ώ = ω1/2®/7ω
7 We thank E. Witten for this observation
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The Dolbeault theorem (2.8) says that H1(ώ) ^ H\;l. In the classical case this group
is just C, the isomorphism being integration of (1, l)-forms. Thus the arrow labeled
φ is onto, by exactness, and every bundle in Pic0 has a flat representative [14]. In
the super case, however, H2(C) is still C while H^ώ)^ H°(@) can be C1 u with q > 0,
by arguments similar to those following (3.2). In this case φ cannot be onto.
Bundles with vanishing Chern class are not necessarily flat if X has spinor zero
modes.

4. Complexes

in this section we describe the relationship between the exterior and S sequences,
Eqs. (2.5) and (2.7). Define

%°*1 - {^-closed (0, l)-forms] CO 0 ' 1,

^T1'° = {δ-closed (l^-forms}^1'0, (4.1)

^T1'1 - {^-closed (1, l)-forms} CUίΛ .

Then we have
J/P'«^P'«, (4.2)

generalizing [2].8 Equation (4.2) equates s/p^ with a sheaf defined without
reference to the superconformal structure. This is possible because a super-
conformal structure, when it exists, is unique [2]. ^

Under the isomorphisms (4.2) the operators S, ^correspond to <9, d. To show
this, and to establish (4.2), choose superconformal coordinates u, θ. Dual to the

'8 J , ^ d „ d
basis <—-,£)>, where D= — +θ^~, we have the 1 -forms (η,dθ\, where

[on } cθ ou

η-du-dθ-θ. (4.3)

For the correspondence between j^1>0 and Ω1 '0 we then have [see (2.1)]

v λ + ̂ >dθ'λ++η'(Dλ + ). (4.4)

In different coordinates u', θ' we have

where ξ = DΘ', and hence v' = v ξ. From this one readily shows that (4.4) is
intrinsically defined. It is also easy to see that the right side of (4.4) is the most
general 3-closed (l,0)-form, using the identity

. (4.5)

This identity also makes it clear why under (4.4) the operators S and d correspond:
for any smooth / we have

8 These isomorphisms were given independently in [8]. They are isomorphisms of complex vector
spaces - not of ^-modules. Indeed the right side of (4.2) isn't an (^-module at all
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and df is certainly in f̂ l5°. Finally, complex conjugating the entire discussion
shows that ^'^j/0*1.

We now turn to s/lΛ. Here we let

\v\2 - φ+_<-+dθs\dθ φ + _ +dθs\η Dφ+_ ~ή f\dθ- Dφ+-

_. (4.6)

Again one verifies that the right side is the most general closed (1, l)-form, and that
the correspondence is natural.

To summarize, on a SRS we have the equivalent complexes

The differential forms which correspond to super differentials have only their
top component independent: (4.4) and (4.6) give the lower components in terms of
the top one.

The differentials in s/^Λ are by definition volume forms on X, so one can
integrate them if X is compact. If we expand φ + _ in powers of θ as
φ + _ = . . . + θθφun, then the integral gives

J φ= J dudΰφu-u.
x x

In particular the integral is zero if φjs of the form &l or δ/l, a total derivative.
The relationship between d and d can also be generalized to the case where

these operators are coupled to a holomorphic line bundle. Given a holomorphic
line bundle E we can generalize d from Ωp'q to Ω%q, the smooth £-valued
(p, g)-forms. Simply choose a local holomorphic trivializing section s of E and let
d(λ - s) = (dλ) s, where ^ is a (p, #)-form. This definition clearly factors through a
change in the section 5, so we always have

We can then discuss E- valued differentials, letting $p'q = £fp'q®S}. As before we
have

and the evident correspondence between d and d acting on sections of E. Before we
set up the rest of (4.1), however, we must first introduce a connection.

5. Connections

On a complex line bundle we define a connection in the usual way, as a linear map

satisfying

7ψ. (5.1)
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Given a local trivializing section s for £, define even 1 -forms α,

Vs = a - s Vs — ά ' S .

Under a change of s the connection forms transform in the usual way. For an
arbitrary section ιp = ιp. s we have

V(φt - s) — (d + a)ψt s .

The dot reminds that φ is not "gauge"-invariant.
If E is a holomorphic bundle it makes sense to require that V = d, or ά = 0 with

respect to any holomorphic trivialization. In this case we say that (V, d) is a
holomorphic connection.

Given a connection we can at once extend V, V to act on the E-valued forms.
This works because the exterior derivative satisfies (see e.g. [2])

while the connection satisfies (5.1). Thus we let

V(λ. s) = (dλ.+ λ.Λά) s. (5.2)

This prescription usually does not lead to a complex, however: (F+P) 2 ΦO in
general. Instead we have that

where ̂  is a 2-form called the curvature:

The curvature is always a closed 2-form: d^ = Q, the Bianchi identity.
When the underlying manifold X is a SRS we can generalize Sand δto V and V

in a similar way. A "superconformal connection" is a derivation

and similarly (?
We can now generalize a part of (4.2), the relation between ^)1'0 and Ω^°. We

let JΓ^ 0 be the P-closed E- valued (1, 0)-forms. Then 2£^ corresponds to /lf0 via

+ .)'] s> (5.3)

where .4 + is the odd function defined by

Vs = A'S = (vΆ+)'S9

so that

The correspondence (5.3) is easily seen to be gauge- and superconformally
invariant.

Moreover given a superconformal connection we obtain a connection by
letting Vψ be the form corresponding to V\p, or in other words by letting a
correspond to A under (4.4). Thus a superconformal connection is just a special
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case of a connection, one whose connection form a is δ-closed in any trivialization
(and similarly ά).

We can again define curvature by

Under (4.6) F corresponds to the curvature J^ of the associated connection on
forms. Thus superconformal connections are distinguished by the fact that their
curvature forms J^ are not merely closed, but closed (1, l)-forms:

,̂ 00 = 3?θu = .̂ 0-0 = J^ΰ = 0 for superconformal connections . (5.4)

Conversely, if (5.4) holds for a connection then by definition ae^Clt0,άe 3?°' 1 and
the connection is superconformal. Thus the superconformal connections are
precisely those which obey the curvature "constraints" (5.4). These constraints are
all "conventional" in the sense of [1 5] : given an arbitrary connection we can force
it to be superconformal by discarding part of it (the coefficient az oϊη) and replacing
it (take az = Da + ). The constraints express the compatibility of a connection with
the superconformal structure, much as the torsion constraints express the
consistency of the superconformal structure itself.

If the curvature vanishes we call the connection flat. It is easy to see that every
flat bundle admits a flat connection, namely A = A = 0. Again not every bundle in
Pic0 has this property.

Since S and d anticommute, F is gauge-invariant. Moreover, two connections
F, V differ by a global differential δA, so that under a change of connection F
changes by a total derivative. Thus the net curvature j F depends only upon the
bundle E itself. We will now relate the total curvature to the Chern class.

To calculate the Chern number of a bundle9 [_g]eHl((9* ), recall that each class
in Hl(Φ*) determines a unique element c[g] of H2(Z)^Z. The Chern number of
[g] is its image in Z; we will show how to compute the Chern number via the
curvature.

The integral class c[g] determines an element of H 2(C). From (3.3)

H2(C}^H\ώ}/dH\Θ), (5.5)

so one can represent this element by a class [B~\ e H1(ώ). More explicitly, given the
representative {gΆβ} of [g], let

. (5.6)

We now recall that from the Dolbeault theorem (2.8)
Q}. (5.7)

To make this explicit, we take B = δA, where δ is the Cech coboundary operator
and {Aa} is a collection of smooth (1, (^-differentials on the patches o f X . By (5.6)
this means that {Aa} defines a holomorphic connection for the bundle given by
gaβ. Thus the choice of {Aa} is ambiguous by the addition a ^global (1,0)-
differential C, AΛ -> Aa + C. As usual we define F e H°(^ 1 1 ) by Fα - oAΛ. Clearly F
is global: <5F = 0.

' Here [g] denotes the cohomology class of (gα/
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From (5.5) and (5.7) we thus find that a bundle [g]efί1(^x) determines an
element of Γ(s/l>l\ namely the curvature form F, up to

(5.8)

The Chern number of the bundle is then given by

c[g]=^-SF. (5.9)
2π £

We have already seen that this expression is unaffected by a change in the choice of
connection on E, Eq. (5.8). Moreover it is clearly additive under tensor products
and zero whenever [g] e Pic0. The last point follows since in that case F takes the
form SC for a global (0, l)-differential C, again a total divergence. Finally, we
should check that c[g] is an integer. This is done in the appendix.

6. Families of Bundles

One often wants to study the behavior of the determinants of a family of operators,
for example d^ζ coupled to a family of line bundles. Since the Picard group is
disconnected, we can study the variation of such a determinant by coupling it to
£0®£, where E0 is fixed and E lies in Pic0. Rather than parametrizing E by a
family of transition functions, in the classical case it is equivalent and compu-
tationally simpler to represent it by a family of connections on the trivial bundle
[16,4]. We can realize every bundle once by choosing the connections to be
antiabelian differentials. In this section we will treat the corresponding super case,
extending the discussion of [7,8].

Since E is in Pic0 we can take the logarithms of its transition functions,
representing them by the cocycle [λΛβ}eZ^(@) [see (3.1)]. Regarding {λΛβ} as a
cocycle in j/, it is trivial since $/ is fine. Thus we can write

λ«β = τ«-τβ (6.1)

where |τα} define a 0-cochain: {τα} e C°(^/). The {τα} define a trivialization of E
which is not holomorphic: given a section {ψΛ} of E, the corresponding global
function is f = e~2mτ"ψOL. Under this correspondence the operator d on $ is
unitarily equivalent to d + A on j/, where

Ά = 2πiδτΛ on UΛ (6.2)

defines a global (0, l)-differential.
The representation (6.2) of a bundle by the (0,1) part of a connection is

redundant; after all, $i °' l(X) is a function space, while Pic0 is finite-dimensional.
In fact replacing τα by τα + τ' for a global smooth function τ does not affect (6.1), but
it changes A by dτ'. Thus all that matters is the Dolbeault class of A; by the
Dolbeault theorem (2.8) we then have a faithful representation of the tangent to
Pic0 by vector potentials. Serre duality (2.9) then says that Γ(Pic) ̂ H%1^ H°(ώ)*.

Unlike the classical case, however, we cannot find a unique representative for
each class of H%1 as a global section of ώ, an antiholomorphic differential.
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Consider for example a reduced family of SRS, with odd spin structure. We have

A. =α_

We see that there are Dolbeault groups obstructing the removal of the terms θau

and $0αQ+. The latter is not antiholomorphic, since it depends on 0, so we do not
get a nice slice for H% l. This problem is just another manifestation of the fact that
bundles in Pic0 aren't necessarily flat.

Nevertheless we can use the representation of bundles near the identity of Pic
given by (6.2) to address holomorphic factorization [7]. While we have no nice slice
for Γ(stfQΛ)/dΓ(stf\ still this is a complex vector space modulo a complex
subspace, so we do get the complex structure on Pic in this way. This means that a
function on Pic is holomorphic precisely when its variation with respect to any
(0, 1) variation A is zero.

Finally, in the classical case the representation (6.2) provides a natural
hermitian norm on Pic. Given a holomorphic tangent we represent it uniquely by
A and let its norm be

= J AAA. (6.3)
X

This norm plays an important role in the theory of theta functions and in Quillen's
theorem. Unfortunately, in the super case things are again not so nice. The
definition analogous to (6.3) is

(A,Ά')= [A A', (6.4)
X

where AeH°(ώ) and Ά'εH^1. This formula exhibits the isomorphism
HQ(ώ)*^H%1. We have seen, however, that when there are spinor zero modes
H%1 is not naturally represented by H°(ω). Consequently (6.4) does not give a
norm on Pic. Thus in this case it's not clear what a super analog of the Quillen
theorem should say.

7. Conclusion

We have described a number of features of line bundles on super Riemann surfaces.
There are some close parallels between bundles on SRS and their classical
counterparts, especially for even spin structures. These include basic results of
classification: the Picard group Pic falls into components labelled by the Chern
number. Each connected component is isomorphic to Pic0, which in the even case
has dimension g 10 except at the theta divisor in spin moduli space.

Various pathologies appear, however, when the underlying Riemann surface X
has spinor zero modes, and in particular in the case of odd spin structures.
Bundles in Pic0 aren't necessarily flat, and cannot necessarily be represented by
flat connections. In addition the dimension of Pic can jump, both as the even and
the odd moduli are varied. All of these annoyances point out the fact that SRS
theory is not an automatic generalization of the classical theory, and they cast
some doubt on the utility of arbitrary bundles on SRS in applications to string
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theory. It may be that some of the basic constructions need to be modified to
ameliorate the problems mentioned above.

Appendix

Given a family of complex bundles and a family of SRS we want to show that c[g]
defined in (5.9) is an integer. To do this, we first show how to construct (non-
canonically) from [g] a bundle [g°] on the body of X. We will then show that c[g]
is the ordinary Chern number of the associated [g°].

To define g^, first recall that all smooth supermanifolds are split. For the
family of SRS in question, let υ, ϋ, ψ, ψ be relative coordinates respecting the
splitting (in particular v, v can be taken to be complex coordinates for X). We can
then expand out each gaβ in terms of all the nilpotents: gaβ = g®β + g^, where g®β is a
function only of even coordinates and even parameters. Thus g%β defines a bundle
[g°] on X. Let α° be an admissible connection for [g°], that is α° — a^ = d\ogga».
The projection from X to X then enables us to pull this connection back to X.

While we cannot consistently define logg^ if the Chern class is non-zero, we
can define

by means of its power series expansion. Now define [τ] e C°(s/ ) by δτ = λ. Then the
connection aa, = a® + 8τΛ is an admissible connection for [g]. Its curvature is
F = <3βα + δαα; clearly the only nonvanishing component of F is Fvϋ.

In superconformal coordinates u, θ we have

if we write this in arbitrary coordinates, for example v, φ, it becomes

C[g]= έ ίd2υd2ψdet(E*)E*ίE»FNM. (A.I)

where EA is any frame in the given superconformal class on X. In prin-
ciple we could just work out the Jacobian for the change of coordinates
(u, θ)-+(υ, ψ), but this is somewhat complicated in detail. Instead, and without loss
of generality, assume that there are no even parameters: the parameter space
y=C°K Following [17] we can begin with a Riemann surface X and construct a
holomorphic odd family of SRS by choosing 2g — 2 "gravitino" fields, ( — i, 1)-

differentials χl on X. Let v be a holomorphic coordinate for X and ιp = l/dv a
holomorphic coordinate on the split surface X = (X, Λ ω1/2). Then X x Ϋ becomes
a family of SRS with frame

(A.2)

where χ = χlζl and ζl are odd coordinates for Ϋ. The coordinates v, ip are
holomorphic only when ζ* = 0.

We now put the frame (A.2) in (A.I) and use the fact detE^ = 1 + θ(\\p\2} from
[17]; this immediately gives
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the classical expression for the Chern number of [g°]. In particular, we can easily
see from this result that c[ώ] = g — 1.
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Note added in proof. The problem of non locally free sheaves discussed in Sect. 3 has recently
been developed in detail by Hodgkin [18].




