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On Structural Stability for Semiflows
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Abstract. Some results on structural stability which are known to hold for flows
of a compact manifold are extended to semiflows of a Banach space.

In this paper we consider the problem of structural stability for evolution
equations which generate semiflows of Banach spaces. From a theoretical point of
view it is advantageous in such a study to look at the semiflows directly without
referring back to the generating equations. We will do this here by choosing a
natural topology on the class of all semiflows of a given Banach space. We then ask
the question under which conditions semiflows behave qualitatively alike if they
are slightly perturbed in the above topology. Physically, this is motivated by the
fact that, in experiments, semiflows can only be approximately determined.

Guided by the theory of flows, where the main assumption leading to structural
stability is "hyperbolicity," we make the following observation. If we weaken both
the concept of structural stability and hyperbolicity by restricting it to the global
(bi-infinite) solutions, then the theory of flows carries over to the semiflow case.
Physically, this may be justified by the fact that only those solutions seem to play a
significant role in nature.

In Sects. 1 and 2 we extend results of Palis [6] and Pugh [7] on hyperbolic
linear flows, and of Anosov [1] and Moser [5] on Anosov flows to the semiflow
case, and Sect. 3 contains some ideas towards a general stability theorem for
semiflows. A similar discussion for maps may be found in [8,9].

0. Introduction

Let (X, I I) be a Banach space. A Cr-semiflow of X, r^O, is a one-parameter family
of Cr-maps {F(ή:X->X\t^Q} such that

1) F(s + t) = F(s)F(t) for all s,ί^0,
2) F(0) is the identity,
3) F( )(x): [0, co[-*X is continuous for every xe X.
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The class of all Cr-semiίlows of X, r ̂  0, will be denoted by

and equipped with the quasimetric

s u p { \ D i F ( ή ( x ) - D ί G ( t ) ( x ) \ \ t E [ Q 9 l ' ] and xeX and je{0,...,r}}

for F(t), G(t) E SemrpO, where the value oo is allowed.
A global solution of a semiflow F(t) is a function v :R->J^ such that F(t)(v(τ))

= v(τ + t) for all f ^ O and τeR. Assumption 3) above implies that any such
function is continuous, i.e., an element of C(R,X).

Our first problem then is to find the right topology for C(R,.AΓ), i.e., to
determine when two solutions should be considered close. The topology of
uniform convergence would require the solutions to be close for all times t. This is
certainly too strong. The topology of pointwise convergence requires the solutions
to be close at finitely many times. This is quite satisfactory. We choose here the
particular quasinorm

\\v\\=+S°e-W\v(t)\dt
— oo

for vεC(R9X)(see M. Komura [3]).
Since C(R, X) with this quasinorm is not complete, we may have to substitute

its completion, whenever necessary.
Any continuous map f:X-^X induces a map /: C(R, JΓ)-»C(R, X) through
} = fv, where fv means / composed with v. For the time one map F(l) of a

semiflow F(t) we simply write F, and I(F) will denote an ω-invariant set of F(t\ i.e.,
f°r all ί^O. We then define

for all ίeR},

that is the set of all global solutions of F(t) with values in /(F), and

S(F) = {vECQH,X)\F(v(t)) = v(t + l) for all

that is the set of global solutions of F(t\ and

The following proposition contains several basic properties. In particular, it
shows that A(F) consists of all values in X through which a global solution of F(t)
passes.

Let pτ:C(ΊR.,X)-*X, τeR, denote the τ-th projection.

Proposition 1. // F(t) is a Cr -semiflow of X, r^O, then the diagram

S(F) -̂ H. S(F)

Pτ
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commutes for allt^Q and τ e IR with pτ [S(F)] — A(F\ and F(t) is bijective on S(F) for
every t^Q.

Proof. Let f^O, τeR and veS(F). Then

pt(F(ί) OX ))) = pτ(F(t)v( - )) - pτ(t;( - + ί)) = Φ + ί)

and hence the above diagram commutes. To see that pτ[S(F}]=A(F), let
φ)epτ[S(F)]9 i.e, ι eS(F) with pτ(ι;) = φ). For every ί^O we have F(ή(v(τ-ή)
= υ(τ\ and hence ι (τ) e A(F). Conversely, let x e A(F) and suppose there is no back-
ward continuation to — oo for x, i.e., there exists a ί e IR for which there is no y e X
with F(t) (y) = x. But, in particular, x e F(t) [T], a contradiction. Finally, we fix t ̂  0
and show that F(ϊ) is bijective on S(F). Let υ, w e S(F) with i; φ w, i.e., there exists an
seIR such that φ)φvφ). Suppose that F(^(ι;) = F ( w ) . Then v(s) = F ( t ) ( υ ( s - t ) }
= F(t) (w(s — t)) — w(s), a contradiction. Hence F(ί) is one-to-one on S(F). To see
that it is also onto, let v e S(F), and observe that F(7) (ι;( — ί)) = F(ίM — 0 = ̂

D

Actually, it is quite easy to see that F(i) is a Cr-ίlow of S(F). The fact that for
every t ̂  0, the map F(t): C(R, Jί)-+C(IR, X) is Cr, is a basic result from the theory
of map spaces.

Let us now introduce a conjugacy between semiίlows. We will say that two
Cr-semiίlows F(t) and G(t) of X, r^O, are inverse limit conjugate if there exists a
homeomorphism H:S(F)-+S(G) which takes the global solutions of F(t) onto the
global solutions of G(i) and preserves the orientation in time. This means that there
exists a function α:S(F)->]0, oo[ such that HF^(v) = G(a(v)t)H(v) for all t eS(F)
and ίelR. A Cr-semiίlow F(ί) of X, r^l, is called C'-inverse limit stable if there
exists a Cr-neighborhood U of F(ί) in Semr(^) such that for every G(ί) e t/, the
semiίlows F(ί) and G(t) are inverse limit conjugate. We want to emphasize that
inverse limit stability compares global solutions, i.e., elements of C(R,X), rather
than orbits, i.e., elements of X. Moreover, the concept of inverse limit conjugacy
for semiflows is a natural extension of the concept of topological conjugacy for
flows, i.e., for flows the two concepts coincide. Let us now ask which qualitative
features are preserved under this form of stability. A global solution v of a semiflow
F(ί) is called an equilibrium solution if F(ί) v = υ for all t e IR, and a periodic solution if
there exists an ω>0 such that F(t + ω)v = v for all felR. Such solutions will be
preserved.

Proposition 2. Let H: S(F)-+S(&) and α: S(F)-»]0, ao[bean inverse limit conjugacy
between two Cr-semiflows F(t) and G(t) of X, r^O.

(i) // v is an equilibrium solution of F(ί), then H(v) is an equilibrium solution of
G(t).

(ii) // v is a periodic solution of F(t), then H(v) is a periodic solution of G(t).

Proof, (i). Let υ be an equilibrium solution of F(t). Then

for all
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(ii). Let v be a periodic solution of F(t) with period ω. Then

G(φ) (ί + ω))H(v) = HF(t + ω)H~1H(v) = HF(t~+~ω) (v) = H(v) for
all f e R . D

Moreover, it is clear that the asymptotic behavior of global solutions will be
preserved.

The following two technical lemmas are quite useful in proving inverse limit
stability.

Lemma 1. Let F(t\ G(t) be two Cr-semiflows of X, r^O. // there exists a map
H:S(F)-+C(ΊSί,X) making the following diagram commute:

then there exists an "adjusted" map H:S(F)-^C(^X) defined through ps(H(υ))
= p0(H(v( - 4- s)}) for all v e S(F) and s eR, which also commutes the above diagram
and, in addition, satisfies H[S(FJ]ξ:S(G). (This last condition is not automatically
true for H).

Proof. Let H and H be as above. Clearly the following diagram commutes for all
„

S(P) -̂ U S(F)

HIS(F}]

ί/(r)

i.e., we have G(t)p0H=j>()HF(t) for all t^O. We now must show that 1)
H [S(F)] gS(G) and 2) ̂ F(ί) (v) = δ® /?(») for all v e 5(F) and ί e R. We will use the
fact that F(i)(v) = v( +t) for every v e S ( F ) and ίeR.

Let v e S ( F ) and s,ίeR. Then

Ad 1).

= Pt+1(H(v)).

Ad 2). ps(H(F(ί) (»))) = ps(H(v( + ί)))
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and

= Po(H(Ό( +

Lemma 2. Let H and H be as above.
(i) // H is bounded by μ, then H is bounded by 2μ.

(ii) // H is continuous, then so is H.

Proof. Ad (i). Let H be bounded by μ, i.e., for all veS(F)

J e-l 'ΊpΛf/Mμrgμ. (1)
— oo

Since with v e S ( F ) and seIR also t;( + s)eS(F), we have, in particular, that

|Po(tf(ι>(

Hence

+f e-W\ps(fϊ(v))\ds= +S
— 00 — 00

Ad (ii). Clear from (i). Π

Part (i) of this lemma shows that if H is close to the identity [of C(R, XJ], i.e.,
with G bounded (small), then so is H.

1. Hyperbolic Linear Semiflows

Let L(t) be a hyperbolic linear semiflow of X, i.e., L(ί) is continuous and the
spectrum of L=L(1) does not meet the unit circle. In this case the spectrum of L(ί)
does not meet the unit circle for any ί>0. Moreover, this is equivalent to saying
that L(ί) has an exponential dichotomy, i.e., there exists a splitting of X into
XS@XU, where Xs, Xu are closed subsets of X which are ω-in variant under L(t\
and there are constants M, JV, v > 0 and an equivalent norm on X such that

i |x| for all xeXs and f ^ O ,

|L(ί) (x)| ̂  ΛΓ evί |x| for all xeX" and f ^0.

We set LS = L|XS, Lu = L\χu and α = max{|Ls|, L"1!}, called the skewness of L(ί).
(Hyperbolicity for linear maps is defined analogously.)

Let F(t) be a Lipschitz semiflow of X, i.e., for every ί^O there exists a positive
constant M(ί) such that

|F(ί) (x) - F(ί) (j;)| ̂  M(ί) |x - j| for all x, 3; 6 X.

Suppose that M(l)< 1 — a and that F(ί) is also bounded.
For a topological space A we define

) = {f:A-*C(1Sfί,X)\f is continuous and bounded},
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with corresponding norm

||F||b = sup{| |F(t;)| | | ι>eΛ}.

We begin with the following simple observation.

Lemma 3. Let L(t) and F(f) be as above. Then
(i) L(7) is a hyperbolic semiflow of C(R, X),

(ii) F(t) is a Lipschitz semiflow of C(IR, X) with the same constants as F(ί), and
bounded,

(iii) L(ί) + F(t) = L(t) + F(ί) for all suitable t.

Proof. Clear. Q

We can now prove the inverse limit conjugacy of L(ί) and L(ί)-f F(ί). In
particular, both semiflows have homeomorphic sets of global solutions.

Theorem 1. Let L(t) and F(t) be as above. Then L(t) and L(t) + F(f) are inverse limit
conjugate.

Proof. The proof follows Irwin [2, p. 114], arid we begin with the following result
for time one maps.

Let F^ί), F2(ί) be two Lipschitz semiflows of X with constants at time one less
than \—a and bounded. Then there exists a unique map G:S(L+JF\)-»C(R,AΓ)
such that

on S(L+F\), (1)

where id denotes the identity on C(R,J^), and id + G:S(L-f jF\)->S(L + F^>) is a
homeomorphism.

Equation (1) is equivalent to

on S ( L + ) . (2)

We define

^ : Cb(S(L + F~), C(R, X))->Cb(S(L+Γά C(R, JQ)

and

\), C(R, X))->Cb(S(L i- FJ, C(R,

Equation (2) is then equivalent to

and «Sf is hyperbolic with skewness a and a corresponding splitting

i), C(R, X)) - C6(S(L + 7^), C(R, X*))®Cb(S(L+ F^), C(R, X ")) .

Moreover, 3F is Lipschitz with a constant less than 1—0, and therefore
has a unique fixed point G. [Notice that the fixed point set of J£? + J^ is equal to
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that of the contraction (Id — J^f)"1 J% where Id denotes the identity on
Cb(S(L+F\\ C(R,X)) and (Id-^Γ1 is the left inverse^ Id- J§?.]

To see that the range of id + G is contained in S(L + F"2), we use Lemmas 1 and
2. They show that the range of id + G is contained in S(L+f^2\ that G satisfies
Eq. (1) on S(L + Fί), and that όeCb(S(L + F\), C(R,X)). Uniqueness then implies
that G = G.

Reversing the roles of F1 and F2, one obtains a unique map G' £ Cb(S(L + F2),
C(R5Jf)) such that

on S(L + F ) , (3)

and it follows as above that the range of id + G' is contained in S(L + ,F\).
Equations (1) and (3) imply that

(id + G') (id + G) (L + /\) - (id + G') (L + F^) (id + G)

= (L + JF\) (id + G') (id + G) on S(L+F\).

One then sees that

(id + G') (id + G) - id + (G + G'(id + G)) on S(L + f\ ) ,

and since G + G'(id + G) is continuous and bounded, it follows from uniqueness
that

(id + G') (id + G) -id on

and analogously that

(id + G) (id + G')- id on

This shows that id + G is a homeomorphism, since G and G' are continuous.
We now set F^O, F2 = F and H = iά + G, and observe that for any

^
= ((L + F)(t)HL(-t))L(l) on S(L),

and also that

T) - id - (
on

This shows that (L+TyfyHL^ 7) — id is continuous and bounded, so that by
uniqueness

H = (ΣHΓFKΓ)Hί^=T) on S(L),

and the proof of the theorem is complete. Π

We notice that the above conjugacy is unique only if it is required to be within a
finite distance of the identity.

Theorem 1 does not necessarily lead to a conjugacy on the phase space between
A(L) and A(L+F). This is because neither the linear semiflow L(ί) nor the
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perturbed semiίlow (L + F)(i) need to be one-to-one on A(L) and A(L + F\
respectively.

If there exist r,sElR such that L(τ) [X~\ = L(r) [J*Γ] for all τ^r and ker(L(τ))
= ker(L(s)) for all τ ̂  5, then L(ή is one-to-one on A(L) for all t ̂  0. For example, if
X is finite dimensional, this condition is satisfied. Theorem 1 then yields a
continuous, onto conjugacy between A(L) and A(L + F). If, in addition, L + F is
one-to-one on A(L+F\ then there exists a commuting homeomorphism between
A(L) and A(L + F).

2. Anosov Semiflows

We now turn to the slightly more complicated situation of hyperbolic invariant
sets for semiflows. A discussion in the context of semilinear parabolic equations
may be found in [4] of R. Mane.

We will say that a (7-semiflow F(t) of X, r ̂  1 , has a (weak) hyperbolic structure
for an ω-invariant set I(F) if for every v e I(F) there exists a continuous splitting of

+ 00

(J Tυ(t)X into a direct sum XS@X°®XU, where
ί = — ao

1) Xl= +\J X'vm for i = s,0,M,

+ for ί = s,0,w,

and all τ ̂  0, and there are constants c, d, v > 0 such that

2) l(T,( ί )F(τ))(y)|^cβ-vτW for all τ^O and yeX*v(t),

\(Tv(t}F(τ))(y}\^de^\y\ for all τ^O and ye^(ί).

We notice that the definition of a (weak) hyperbolic structure does not imply a
splitting of the whole restricted tangent bundle of X over I(F). Moreover, the
semiflow F(t) has a (weak) hyperbolic structure for I(F) precisely if it has a (weak)
hyperbolic structure for p| F(ί)[/(F)]. In case that the (weak) hyperbolic set is

ί^O
equal to A(F) and A(F) is compact, we call F(t) an Anosov semiflow.

We will need the following two lemmas.

Lemma 4. Let F(t) be a C1 -semiflow of X and assume that F(t) has a (weak)
hyperbolic structure for an ω-invariant set I(F). Then F(t) has a (weak) hyperbolic
structure for ί(F).

Proof. For vεϊ(F) we can write TVC(R,X) = C(R,X) and define

C(R,*)ΐ(.+t)= X Xl

υ(t + τ} for i = s,0,tt, and τeR.
ί= - oo

Since F(t) has a (weak) hyperbolic structure for I(F)9 it follows that there exists a
+ 00

continuous splitting of (J Tv(.+τ)C(ΊR.,X) into a direct sum

C(R, *)S0 C(R, X)Q Θ C(R, Jf )",' where

1) C(R,X)l= (J C(R,JSOi(.+t) for i = s,0,M,

Oi (.+i+I) for ί = s,0,M, and τeR.
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Moreover, we have

2) II W)(w)|| = 7 e'^\Tυ(t)F(τ)(^(t))\dt

w(t)\dt
— oo

= ce~vτ\\w\\

for all τ ̂  0 and w e C(R, X)s

υ, and analogously

for all τ ̂  0 and w e C(R, X)U

Ό . D

Lemma 5. Let F(t) be a Cl-semiflow of X and I(F) an ω-ίnvarίant subset of F(t). If
Π F(t) [/(F)] is compact in X, then ί(F) is compact in C(IR, X).

Proof. As in Proposition 1 we obtain that pτ[/(F)] = Π ^(0 C^(^)l for all
ί^O

Thus we can write

/(F) = it; e C /ΊR, Π F(ί) [/(F)]\ F(υ(t)) = υ(t + 1) for all ί e Rl .
1 v ^° / J

The assertion then follows from Tychonov's theorem, since I(F) is complete. Π

We can now prove the inverse limit stability of compact (weak) hyperbolic
invariant sets.

Theorem 2. Let F(t) be a C^-semiflow of X, and I(F] an ω-invariant set for F(t). We
assume that F(t) has a (weak) hyperbolic structure for I(F) and that f] F(t) [/(F)]

ί^O
is compact in X, Then there exists a C1 -neighborhood U of F(t) in Sem1^) such that
for all G(ί)el/ there is an ω-invariant set J(G) for G(t] such that there exists a
homeomorphism H:ΐ(F)-+J(G) and a function α:/(F)-»]0, oo[ with HF(t)(v)
= G(a(j})t)H(v) for all v e I(F) and t e R. By choosing the neighborhood U sufficiently
small, we can get H arbitrarily close to the identity, and the number α(ι ) for v 6 7(F)
arbitrarily close to the number 1 . Subject to these restrictions, the maps H and α are
unique.

Proof. The proof follows Robinson [10], and is based on the implicit function
theorem. We first try to find a conjugacy for the time one maps, i.e., we are
looking for continuous functions H :/(F)->C(R, X) and α:/(F)-»]0, oo[ such that

(v) = G{o^v))H(v) for all ι;e/(F). (4)

Setting H = exp(T), we can rewrite Eq. (4) as

exp * 1 (G(φ) j exp (Tf ' \v)) - T(v) = 0 for all vεί(F). (5)

As in [1 0, p. 1 73] it follows from the implicit function theorem that Eq. (5) has unique
solutions Tand α, if G(t) is sufficiently C1 -close to F(ί), and hence Git) is sufficiently
enclose to F(t) with respect to the corresponding quasinorm on Sem^C^IR,^)).
Since F(Γ) has a (weak) hyperbolic structure for /(F) by Lemma 4, we obtain that
F(ί)|/cp) is expansive, i.e., for every ε > 0 there exists aδ >0 such that, ir v,w e /(F) and
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g: R ^R is continuous with g(0) = 0 and || F(ί) (t;) - F(g(£)j (w) || ̂  δ for all t e R, then
w = F(ί)(ι;) for all |ί|^ε. This is a local result and follows from the fact that, for
v e /(F) and a sufficiently small constant ε > 0, the sets

v)|| ^ε for all t^O},

< ε for all t > (

intersect in {v}. Expansiveness implies that H is one-to-one, provided the
C°-distance from H to the identity on /(F) is less than ̂ ε. Namely, let v, w e /(F) and
suppose that H(v) = H(w). Then

HF(t) (v) = G(φ)ΐ}H(v) =

= G(α(w)g(0)H(w)HF(g(ί))(w)

for all ίeR, and thus

^ \\F(t)(υ)-HF(t)(v)

+ || HF(g(f)) (w) - F(g(ί)) (w) || ̂  iε + 0 + iε = ε

for all ίeR, which implies that v = w. Since /(F) is compact in C(R,ΛΓ) by
Lemma 5, it follows that f/:/(F)— >H[/(F)] is a homeomorphism. To see that its
range is contained in S(G), we use again Lemmas 1 and 2. They show that the
"adjusted" map H also commutes F(Γ) and G(f) on /(F) and satisfies H [/(F)] £ S(G).
Uniqueness then implies that H = H. We therefore may choose

_
Now let ίeR and ve!(F). Then

and

TGMΪ^flF^

which shows that G(α(t>)ί)HF(7::T) is close to the identity. It follows therefore from
uniqueness that

HF(t)(v) = ^(φ)H(v).

This completes the proof of Theorem 2, Π

Let us now make the following observations.
First, it is not difficult to see that G(ί) has a (weak) hyperbolic structure for J(G),

because the set of hyperbolic linear maps of X is open in the set of continuous
linear maps of X.

Secondly, if /(F) is equal to A(F\ i.e., /(F) is the maximal compact invariant set
for F(ί), then the range of the above conjugacy will be all of S(G).

This leads to the following result:

Theorem 3. Anosov semiflows of X are C1 -inverse limit stable and form an open
subset in
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3. Axiom A Semiflows

We end this paper with a conjecture about a general stability theorem for
semiflows. Given a Cr-semiflow F(t) of X, r^ 1, and veS(F\ we define stable and
unstable sets of F(t] at v through

Wβ(v) - { w e S(F}\ || F(Γ) (υ) - F(ί) (w) || - > 0} ,
-

These sets contain the global solutions of F(i) which approach and leave υ as t goes
to -f oc and — GO, respectively. In case that the linearized semiflow at υ is
hyperbolic, they should be injectively Cr-immersed submanifolds of C(IR? X).

Moreover, we define

Ω(F)={xeX\ϊoτ every neighborhood U of x in X there

exists a ί^O such that F(f)[Γ/]nl/Φ0},

that is the set of nonwandering points of F(i).
We say that F(t) satisfies Axiom A (compare Smale [11]) if
1) F(t) has a (weak) hyperbolic structure for Ω(F),
2) Ω(F) is the closure of the set of all periodic solutions of F(t).
We conjecture that the following conditions are necessary and sufficient for a

C'-sermflow F(t) of X, r ̂  1, to be Converse limit stable:
1) F(t) satisfies Axiom A,
2) the stable and unstable manifolds of the elements in Ώ(F) intersect

transversally,
3) S(F) is compact in C(IR, Jf)
Let us indicate the main steps in a proof of the inverse limit stability from

assumptions 1) to 3).
The set S(F) is the (disjoint) union of the unstable manifolds of the elements in

Ω(F). This is a consequence of the compactness of S(F). Since F(t) has a (weak)
hyperbolic structure for Ω(F\ it follows from Theorem 2 that there exists an
ω-invariant set J(G) for G(t) and a homeomorphism H : Ω(Fj-» J(G) and a function
α:Ω(F)->]0, oo[ such that the following diagram commutes for all ί^O:

J(G] -^ J(G) .
G(ί)

Moreover, G(ί) has a (weak) hyperbolicjstructure for J(G). In order to see that J(G)
is equal to Ω(G\ w^observe that H[β(F)] £ Ω(G), because the periodic solutions of
F(t) are dense in Ω(F). Also, there exists a spectral decomposition of Ω(G) into
finitely many basic sets with corresponding filtrations (see [11] for the definitions).
This implies that Ω(G) is contained in a small neighborhood of the basic sets, and
the proof of the opposite inclusion reduces to a study near these basic sets.
Arguments similar to those used in the flow case should apply here, too.
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Next we observe that the set S(G) is the disjoint union of the unstable
manifolds of the elements in Q(G\ and using an observation in [8], we can
construct local conjugacies between the unstable manifolds for each correspond-
ing pair of elements in Q(F) and Ω(G}. These local conjugacies can then be
extended to the global unstable manifolds by following along the global
solutions. Combining all these conjugacies yields a commuting map between S(F)
and S(G). What remains to show is the continuity, and here the transversality
condition comes in.

Acknowledgement. I would like to thank Natalia Steinberg for her help.
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