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Abstract. We discuss the supersymmetric σ model and its soliton solutions in
2+1 dimensions. We classify supersymmetric maps and derive Bogomolny
bounds. We also give the modified superalgebra and describe the metric on the
parameter space of solitons.

Introduction

Nonlinear σ models have been studied for many reasons. In 2-Euclidean
dimensions analogies have been considered with 4-dimensional gauge theories,
whereas in Lorentzian spacetimes the supersymmetric and extended supersym-
metric σ models have been discussed, because of their fϊniteness properties and its
relation to complex geometry. More recently σ models defined on Riemann
surfaces have been considered in string theory where the Riemann surface
represents the world sheet of the string propagating through spacetime.

In this paper we wish to discuss the two dimensional instanton solutions and
some metrics associated with them. The primary motivation was to understand the
work of Ward [1] and of Zakrzewski and collaborators [2, 3] in a wider context.
These authors have discussed the evolution of solitons in the 2 + 1 dimensional
CP1 and CPn models. A technique which has also recently been applied to similar
problems is that of the approximation of geodesic motion on a moduli space
[1, 4-6]. That is at low energies in a given topological sector the evolution of
solitons may be approximated by a motion on a finite dimensional submanifold of
an infinite dimensional configuration space. On this submanifold the evolution is
given by a geodesic motion with respect to a natural metric and for the CPn models
the submanifold represents the instanton solutions in 2 Euclidean dimensions.
Zakrzewski and collaborators [2, 3] found that for the CP1 model these natural
metrics were formally Kahler. Here we generalize this result to a wider class of
target manifold and elucidate properties of the metrics already found.
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The Kahler property hints that the proper setting for these solitons in the
supersymmetric extension of the theory [7, 8]. Thus we will derive various
properties of these solitons such as Bogomolny inequalities and superalgebras in
the nontrivial topological sector. The features which arise here show the
similarities that these solitons have with, for example, BPS monopoles [4] and
extreme black holes [5]. These systems have also been treated using the moduli
space approximation. This has been a second motivation for this work; to try to
relate the moduli space metric to the underlying supersymmetry in the field theory.
Unfortunately this cannot be achieved for the σ model and we comment on the the
apparent paradox that remains.

The rest of this paper is organized as follows; in Sect, two we review the 2
dimensional and 2 + 1 dimensional σ models and discuss the topological sectors
for a variety of ranges and domains. In Sect, three we show that supersymmetric
maps must be holomorphic, and in Sect, four we show how the superalgebra is
modified by central charges in the topologically nontrivial sector. In Sect, five we
discuss the metrics described above and in Sect, six we relate this work to the
metrics discussed by Ward and Zakrzewski. Section seven concludes the paper.

2. σ Models in 2 Euclidean and 3 Lorentzian Dimensions

The supersymmetric σ model has an action which is given by the supersymmetric
extension of the energy functional studied by mathematicians in the theory of
harmonic maps [9]. For any domain D with metric h the fields are given by smooth
maps φ: (D,/z)->(M,g), where (M,g) is a Riemannian manifold with metric g,
together with "fermions" ψa. These spinors obey an appropriate reality condition
and are spinors with respect to the tangent space group of D [i.e. SO(d— 1,1) or
SO (d)~] or SO(d)~] and vectors on M. ψa sits over the map φ and each element of ψa

lives in the complexified tangent space (Tφ(x)M) of M at φ(x). These spinors thus
correspond to a number of vectors over the map φ or sections of the pull back
bundle φ ~1TM over D. These variables have been discussed in the mathematical
literature as infinitesimal perturbations of maps, and the correspondence between
"fermions" and perturbations noted before [9,10]. They will appear later in this
paper when we discuss the differential geometry of the space of maps.

In two Euclidean dimensions the action is given by:

S = ί d2X h«βSμΦ*dvφ
βhμV + ~ ψΛH>ψβgaβ + Maβytψ'ψψψ* C1)

We have assumed here that the metric h on D is the standard flat metric on R2, but
note that the first term is invariant under the conformal transformations
/zμv->Ώ2/zμv. This property only holds in two dimensions. Our notation in (2.1) is as
follows; the covariant derivative on spinors is

μ μ pydμφeψ\ (2.2)

ίw α\
where ψa is a two component anticommuting spinor 1

a ) obeying the Majorana

condition. We take y1 = σl5 γ2 = σ3, y5 = io2 for gamma matrices and C, the charge
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conjugation matrix, obeys CyμC~1 = -yμ

τ, Cy5C~1=-y5

T, C2= - 1 , C~ι = Cτ.
The Majorana condition is

(2.3)

and the (Dirac) conjugate is defined by

Θ = Θ + y 5 . (2.4)

Thus if we take C = ίσ2 the Majorana spinors are real, and if Θ is Majorana then so
are yμΘ and y5Θ. To obtain the 2 + 1 dimensional model we use action (2.1) and
formula (2.2) but allow μ to vary over indices 0,1,2 taking y0 = y5. Interpreting the
rest of the formulae in this section in this way gives us valid expressions for either
case.

We now recall some results of Zumino [7] and Freedman and Alvarez-Gaume
[8]. For an arbitrary metric, action (2.1) is invariant under the supersymmetry
transformation

δφa = iεψa δψa = {$φaε - ίΓβγψ
βεψy), (2.5)

ε a constant anticommuting Majorana spinor. Any further supersymmetry
transformations imply a reduction of the holonomy group of M and are given by

δφ« = iέJ«βψ
β δψa = - Ja

p9φβε - iΓβyJ
γ

δεψδψβ, (2.6)

i

where Ja

β is a covariant constant (1,1) tensor on M and i labels the extra
supersymmetry transformations. Reference [8] now gives that except for the trivial
case of non-interacting models we either have one such J or three. The former case
implies that M is Kahler, the latter that it is hyper Kahler. From now on we will
assume that M is Kahler as this appears to be necessary for the existence of
supersymmetric solitons and is the case discussed by most authors. Thus we have a
covariant constant complex structure Ja

β such that

rβj
β

γ=-δ%. (2.7)

For the models we consider here the existence of this structure leads to a
partitioning of the space of finite action (respectively energy) field configurations in
2 (respectively 3) dimensions into topological sectors labelled by

QίΦΊ= ί Φ*(co), (2.8)
R2

where ω is the fundamental two form on M defined via ω(X, Y) = g(JX, Y)
regarding J as an endomorphism of TyM for all y. The integral in (2.8) is over space
for the 2 dimensional theory or any constant time surface for the 3 dimensional
model. Restricting to finite energy/action maps gives that Q is a topological
invariant [11]. This condition says that (at constant time) φ may be extended to a
map $: S2->M (see [9]) and for M a Riemann surface Q measures the degree of $.
In fact we have for generic M a finer topological classification associating a
topologically invariant vector F[φ] ejRb2, where b2 = άimH2(M, R) is the second
betti number of M. This is obtained by trivially extending (2.8) to other generators
of the second cohomology group. This classification does not appear to have been



648 P. J. Ruback

used in the physics literature. For CPn models it yields nothing new and for other
manifolds only certain vectors V\_φ~\ are permitted.

There are other sorts of topological invariants that one may define using the
spinor fields although for the finite energy/action maps we consider here these all
vanish. It seems plausible that for D a Riemann surface of arbitrary genus and
unusual boundary conditions on ψa new types of solutions (and new types of
physics) will be possible. Later we will contrast this with the work of Gracey [12] in
2 Lorentzian dimensions where the finite energy condition does not force these
spinorial topological invariants to vanish. Finally in this section we note a class of
2 Lorentzian dimensional σ models not possessing a Euclidean supersymmetric
analogue. These are the heterotic σ models with torsion discussed by Hull and
Witten [13] and Howe and Sierra [14]. Although the bosonic theory given by

S = ί d2x h«βdμΦ*dψ + ̂ B^dμφ'dvφi> (2.9)

may be considered in a space with signature + +, it is not possible to extend the
fermionic part as the definition of a spinor derivative now depends on the chirality
of i/Λ and we do not have Majorana-Weyl spinors in this space.

3. Supersymmetric Maps

In this section we wish to find all purely bosonic configurations which are invariant
under at least one supersymmetry. We call these supersymmetric maps. We restrict
ourselves to seeking static configurations in 2-1-1 dimensions so me may
equivalently consider the 2-dimensional Euclidean model. It is a general
phenomenon that such maps will in addition obey the equations of motion and
this does indeed happen in our case. For a restricted class of theories there is a
theorem due to Boucher [15] that static supersymmetric configurations obey the
full equations of motion; however the σ-model does not fall into this class as the
action is non-polynomial (generically) in fields φa.

Suppose we have just one complex structure Ja

β. Then we have a superinvar-
iance of φ: R2-^M if and only if there exist Majorana spinors ε°, ε1 not both zero
s u c h t h a t #« ε°-jy0V=o. (3.i)

A little algebra shows that this equation is equivalent to

rβdμφ
β=±ε;dvφe. (3.2)

If we interpret the alternating tensor as arising from a complex structure on R2, Eq.
(3.2) has the interpretation that φ is an (anti) holomorphic map. Now it is well
known [9] that a holomorphic map is harmonic and that the harmonic map
equations are the Euler Lagrange equations for the bosonic energy functional.
Further ψa = 0 trivially solves the Fermi field equations and thus φ holomorphic
and ψa = 0 solve the field equations for the full supersymmetric σ-model. Thus we
have the

Result. If a sigma model admits (only) N = 2 supersymmetry then a bosonic
configuration is supersymmetric if and only if it is (anti) holomorphic. Fur-
thermore this configuration obeys the full equations of motion.
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There is another way of seeing that such configurations must solve the
equations of motion. Consider the action for bosonic configurations

This may be (as is well known) rearranged to give

f Φ*ω, (3.4)
R2

where

Now the last term in (3.4) is a topological invariant, thus if D±a

μ = 0 we are at a
minimum of configurations in the same topological class. Thus we have solutions
to the full equations of motion, and D±y

μ vanishing is equivalent to (anti)
1

holomorphicity. In the case that M is hyper Kahler (i.e. has 3 complex structures J,
2 3 1 2 3

J, J with JJ=J etc.) it is easy to show that supersymmetry implies that φ is
holomorphic with respect to one and only one of the complex structures
parametrized by the two-sphere

J = aJ + bJ + cJ, a2 + b2 + c2 = l. (3.6)

Moreover by extending the definition of topological charge Qt (2.8) to the 3
fundamental forms ωι we can see that the relevant complex structure is

J=Q,Jι/(QjQj)112. (3-7)

For, given any complex structure (3.6), we have from (3.4)

, (3.8)

and this inequality is sharpest for a = Q1/(QjQj)
1/2 etc. But if the configuration is

supersymmetric and hence holomorphic with respect to some complex structure
we have (3.8) even for this choice. Hence equality can only be achieved (and is since
φ is holomorphic) for the sharpest choice. Thus we have the corollary that a
bosonic configuration for a hyperKahler target is supersymmetric if and only if it is
holomorphic with respect to the complex structure (3.7). We have also derived the
"Bogomolny inequalities" for the Kahler and hyperKahler σ models:

(3.9)

and

fcY12 (3-10)

with saturation if and only if the configurations are supersymmetric. This picture is
characteristic of solitons in all supersymmetric theories, where the topological
charges become central charges [16] as we shall see in the next section.
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We may reexpress the right-hand side of (3.10) in terms of homology classes of
the image of φ and the period matrix of the hyperKahler target.

Let γa be a basis of H2(M, Έ). Then expand φ(S2) in this basis

]=Σnaya, naeZ. (3.11)

Now the period matrix is defined by

A a i = j ωt (3.12)

with ωt the ιth fundamental form. Thus

Qt=Sφ*ωi= j ωt = naAai. (3.13)
φ(S2)

Hence (3.10) reads

E^(naAaiAbin
b)112. (3.14)

Thus the Bogomolny bounds are, in a sense, quantized.
For further reference we give here the holomorphic maps where M is taken to

be CP1. Then φ(z) (z = z + iy) are given by rational functions of degree n. These
have Q = 2πn and depend on (2n+l) complex parameters. However we may
eliminate one of these parameters by fixing the behaviour as \z\ -• oo. Thus without
loss of generality

When we come to describe the metrics on the space of parameters in Sects. 5 and 6
we will need to enforce the boundary condition $->0 at GO which we have here.
Clearly for arbitrary target manifold we will have at lest as many real parameters
as there are isometries of the target which fix φ(αo) as / o φ still solves the Euler-
Lagrange equations if/ is an isometry. Thus for the Kahler symmetric spaces (such
as CPn) we are guaranteed solutions depending on continuous parameters.

4. The Superalgebra and Topological Central Charges

It was first noticed by Witten and Olive [17] that in supersymmetric field theories
the superalgebra is modified in the topologically nontrivial sector by the
appearance of topological central charges. This leads to a quantum mechanical
bound for the mass of such states, the Bogomolny inequality, and this bound is
saturated if and only if the state is annihilated by some supercharge. This section
aims to examine these issues for the 2-dimensional Euclidean σ model.

To find the superalgebra for the 2-dimensional Euclidean supersymmetric
theory we first consider the 2 + 1 dimensional Lorentzian theory. The super-
charges in this case are constructed simply by using Noether's theorem for
invariant Lagrangians. Calculating the variation of these charges under supersym-
metry gives the superalgebra. In the classical theory these may be found by using
Poisson brackets and using commutators for the quantum theory. Now if we
specialise to time independent fields we obtain the symmetry algebra for the
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Euclidean theory. This is true for three reasons. First the actions and Lagrangian
coincide for such fields and secondly supersymmetry preserves time independence
of fields. Finally supersymmetry is only an on-shell symmetry, but time indepen-
dent fields which are on-shell in the 2 + 1 dimensional theory are also on-shell in the
2-dimensional Euclidean theory. Thus we will have a consistent truncation of
supersymmetry in going from the Lorentzian theory to the Euclidean theory. For
the 2 + 1 dimensional theory the supercharge corresponding to transformations
(2.5) is given by

QO=ίd2X0AYψβgaβ (4-1)

and those to transformation (2.6) by

. (4.2)

As we done for N = 4 super Yang-Mills [18] we compute the variation of (operator
valued) charges 6 by

<50 = i[έβ,<5]. (4.3)

Let the Noether currents be Jo

μ and Jf corresponding to (4.1) and (4.2)
respectively. Then

V o " = 2T""yv6 + l- εVfίedv(ψVg«β)7βε, (4.4)

+jaβdλφ%φγγγε = - <y o", (4.5)

ψ'εDλψl), (4.6)

where Zijaβ = — Zjiaβ is the covariant constant two form

ZijaP = Wjyβ-Jβ?J\)- (4-7)
k

(In the case that M is hyperKahler i ranges over 1,2,3 and Zijaβ = εijkJaβ.) To obtain
the superalgebra we set μ = 0 in (4.4)-(4.6) and integrate over space. Note that all
terms involving fermions are total derivatives and thus are essentially constructed
from asymptotic values of spinor fields. However the finite action condition forces
these to be constant on the circle at spatial infinity and thus they can give no
contribution. This should be contrasted with [12] for 1 + 1 dimensions where these
contributions are allowed as spatial infinity is disconnected. In our case this leads

{Q\,Q°β} = 2P't(yχβ, (4.8)

% ί (4.9)

J

β} = 2<5 i jP"(y^ 2 C Q i J{Q\, QJ

β} = 2<5 i j P"(y^ - 2C«βQiJ > (4-10)
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where

Thus the Euclidean superalgebra is modified from its naive form (obtained by
successively applying transformations to fields) by topological terms given by
integrals of closed two forms R2. This possibility was conjectured by Zumino in [7]
for the CPn model and was shown to hold for M given by CPn and with bosonic
configurations only by Maison [19]. It is also known to occur generally for a wide
class of other topological solutions. Note that the assumption of time inde-
pendence has not been used in deriving (4.8-4.11). It is merely necessary in order to
interpret the quantites on the right-hand side of these equations for the Euclidean
theory.

5. The Moduli Space Metric

We have seen in Sect. 3 that the holomorphic maps can (for example if the target
manifold M is homogeneous) depend on continuous parameters or moduli. Thus
the set of maps with the same topological numbers forms a topological space which
may even be a complete Riemannian Manifold. We will not consider rigorous
derivations of this later fact and in the spirit of [1] assume that we have at least an
incomplete manifold. Our aim is to discuss a certain natural metric on this
manifold whose counterparts in other field theories have been discussed recently
[4-6].

The general motivation for considering these metrics on the space of
holomorphic maps comes from the 2 +1 dimensional bosonic sigma model. The
metrics here generalize those considered by Ward [1] and Zakrzewski [2, 3] for
the CP1 and CPn models respectively. Unlike these authors we do not require
explicit formulae for the holomorphic maps.

The metric on the space of holomorphic maps is given by restricting the kinetic
energy term in (2.1) for the bosonic fields to this submanifold of the space of all
maps, but where we now allow the moduli to depend on time. We consider

^f^ (5.1)

restricted to holomorphic maps. Then we have the following

Theorem. The metric given by (5.1) is formally Kάhler.

The aim of this section is to prove this theorem. We will first show that the
space of (smooth) maps

£={φ:D-+M}, (5.2)

where M is Kahler is formally a Kahler manifold. It has been pointed out [20]
that since (£ is an infinite number of copies of M that this result must hold with
suitable definitions.
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Let the metric and complex structure on M be g, J respectively. Then we define
a metric and complex structure on (£ as follows. The tangent space at φ e (£, Tφ(ί is
the set of vectors over the map φ, i.e.

= {V:D^TM such that ΠoV=φ}, (5.3)

where Π is the canonical projection TM^M. Define the metric g on (£ by

gφ(V, W) = J d Vol gφlx{V{x), W(x)) (5.4)
D

and the almost complex structure J by

(JφV)(x) = Jφ(x)(V(x)). (5.5)

Then clearly J2 = — 1 and we define the fundamental 2-form ώ by

ώφ(V,W) = gφ(JφV,W). (5.6)

We now prove that ((£, g, J) is Kahler by showing that ώ is closed and that the
torsion of J vanishes. To show that ώ is closed it suffices to show that it is closed
when pulled back to any finite dimensional submanifold £/c£. Define the
evaluation map /: U x D-^M by

I(φ,x) = φ(x). (5.7)

Then

ώ\u=l(I*ω)2'°d\ol, (5.8)
D

where

/*ω = (/*ω)2' ° + (/*ω)1'x + (/*ω)0 '2. (5.9)

The first superscript in (5.9) indicates the number of components of the form du\
where uι are coordinates on U. Since U x D is a global product the decomposition
in (5.9) is unique. Now dUxD = duxdDby a similar argument where d is the exterior
derivative. Since dMω = 0, we have

< W / * ω ) = 0, (5.10)

and thus

° = 0. (5.11)

Thus dc/(ώ|L/) = 0. This is true for any 1/cK. Thus ώ is closed. To show that the
torsion of J vanishes is more difficult. A vector field on (£, V, associates with each
φ e K a vector F over 0. Consider ϊ^ ί^ vector fields near φ0 e (£. These generate
flows on (£,

/V £-><£, /^:e-e. (5.12)

Pick XOED, then for </> near 0O and x near x0 and t near 0 we have:
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(and similarly for W) where ψΫ

t is α/1 parameter of diffeomorphisms of a
neighbourhood of φo(xo). Now let F be a map &-+R. The derivative F'φ at φ is
given by

= F'φ(V(φ)). (5.14)

Then

= 0

, V(φ)) + Fφ -r V(fw

t{φ))
at ί = 0.

By symmetry of partial derivatives we have

Now in a neighbourhood of x0 and φ0,

ί = 0

(5.15)

(5.16)

(5.17)
f = 0

where for </) near φ 0 and x near x0 the flows y/, define vector fields near φo(xi)- We
are now essentially done. Consider

N(V,W) = [JVjW]-JlJV,W]-JlVjW]-[V,W^ (5.18)

the torsion of V, W Now near φ0 and x0 the action of this vector field on functions
F is given by

(5.19)

But the argument of the derivative vanishes as J is torsion free on M. Now let our
choice of x0 vary. Then J has vanishing torsion near φ0. But φ0 is arbitrary and
thus J is torsion free. So we have a Kahler manifold (£ with covariant constant
complex structure. What is not clear however from this analysis is whether one can
apply the Newlander-Nirenberg theorem [21] and deduce that K is a complex
manifold. We will now show that if we specialize D to be a Kahler manifold, then
the holomorphic maps will form a complex submanifold of (£.

A submanifold S of our Kahler manifold ((£, g, J) will be complex if and only if
for all vectors tangent to S at φ9 JV is also tangent to S. Suppose S is the
submanifold of (£ given by holomorphic maps and let V be a vector at φ tangent to
S. Then we have a one-parameter family of holomorphic maps {φt} with φo = φ.
The vector V is such that

eTφ(x)M,
r = 0

and each φt obeys

(5.20)

(5.21)
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Given V we need to construct φt(x) such that (j)0 = φ and

= JM(ΦM) V(X) VX e D (5.22)

0

with <])t a one-parameter family of holomorphic maps. We claim that

φt(x) = Qχpt(JV(x),φ0(x)) (5.23)

satisfies our requirements with exp f: TM-+M the exponential mapping sending
(x, V) to the point with affϊne parameter t along the geodesic starting at x with
dxa

= Va. It is easy to see that this works by realising that for V to be tangent toat
a curve of holomorphic functions at φ it is necessary and sufficient that Va(x) obeys

V . ( Φ W ) VμV* = (VvV
β)JD

v

μ(x). (5.24)

This can be seen by an explicit computation in complex coordinates. But if Va

solves (5.24) then so does Ja

β(φ(x)) Vβ. Thus the space of holomorphic maps (if it is a
manifold) is Kahler and we have proved our theorem.

The above construction may be further extended to finding the Kahler
potential on (£. It is easy to show that formally

= S dYolK(φ{x)) (5.25)
D

will generate the above metric. However there may be a problem if the Kahler
potential K of M is not globally defined on the image of φ. Note that although
(5.23) appears to depend on the connection used, this dependence vanishes as the
complex structure is covariant constant.

We close this section with some remarks on the metric whose existence has just
been proved. The metric will have isometry group including IsomDxIsomM
since these preserve the action and where we take isometries which preserve the
appropriate boundary conditions. The subgroup formed by the product of
isometries of D and holomorphic isometries of M will further preserve the complex
structure. We will examine these features in more detail in Sect. 6 in the context of
Ward's metrics relevant to the CP1 model.

Finally the existence of Kahler structures in string theory has recently been
shown [22]. In this work the Kahler structure is exhibited explicitly on the space of
maps into 26 dimensional Minkowski space. It is not the same as our Kahler
structure although it may be possible to nontrivially extend our Kahler structure
to the case of strings in a Kahler manifold. This is currently under investigation.

6. Ward's Metrics

As has been mentioned previously it is necessary to impose boundary conditions
on the solutions we consider and thereby restrict the parameter space on which the
metric is defined. In [1] Ward explicitly calculated metrics on the parameter spaces
for holomorphic maps into CP1 and we turn to discuss these using the more
general formalism found in Sect. 5. The first point to note is that the formal
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argument presented before in fact breaks down as there exist directions in the
parameter space which require infinite energy for motion to occur; thus we must
fix these particular parameters in order to obtain a well defined metric.

The charge one solution is given by

φ = a + β(z + yy1. (6.1)

But the energy integral with a, β, y time dependent diverges unless ά = β = 0. This
fact has interesting physical origins and consequences. Suppose we wish to rotate
our solution. This is effected by phasing γ and β by the same angle, but the
divergence of the energy associated with this motion is equivalent to the fact that
the moment of inertia of a charge 1 lump is infinite. Thus we cannot rotate these
solutions. This must be of some relevance to recent discussions of the statistics and
spin of the CP1 lump solutions [23].

Then this means we must fix α and β. Choosing α = 0, β = 1 we find that the
metric on the (1 complex dimensional) parameter space is

d$1 = ί άzάz~ ( | z + y |2 + 1 ) 2 dydy = 2πdydy. (6.2)

This is clearly a Kahler metric with respect to the complex structure induced on the
complex submanifold (α = 0, β = 1) of the 3 complex dimensional parameter space.
Now let us consider the action of isometries on the domain and the target in this
(trivial) case. The isometries of D are

z->zeiμ and z-^z + λ. (6.3)

Of these only the translations preserve the restricted form of (6.1) with α = 0, β=ί.
The isometries of the target, CP1, are given by

φ-*aφ + b/(a*-b*φ) |α|2 + |6|2 = l . (6.4)

To preserve our choice of constants α, β forces b = 0, a— 1, thus none of the target
isometries preserve our restricted form. This discussion for the charge one sector is
merely to serve as an illustration; the charge two sector is less trivial. Here Ward
restricts himself to a totally geodesic submanifold given by:

. (6.5)

From our discussion in Sect. 5 we find that the Kahler potential is

K(y,y,ε,ε) = \dzdz In Λ + - ^ - J ) =π|y|£(i|β|/|y|)^4π|ε|, (6.7)

where E(ίct) is the complete elliptic integral

£(/α)="f dθ]/l+(x2sin2θ. (6.8)

o
Here the discussion of isometries is more illuminating. Consider first transforma-
tions (6.4). Again we must specialize to b = 0. Then we have

γ-*eiμγ. (6.9)
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Now consider rotations and translations of the domain, the latter do not preserve
the form (6.5) and the former yield

β-+Λ. (6.10)

Since they arise from holomorphic isometries on the target or isometries on the
domain they preserve both the metric g and the fundamental two form ώ. Thus we
have the two commuting holomorphic Killing vectors called d/dθ and d/dφ by
Ward. A wider class of transformations may be found useful as well. Consider a

homothety of the domain generated by H = Ha-—, i.e.
ΰxa

~h = λh (6.11)

with h the domain metric and λ a constant. Since this generates conformal
transformations it takes solutions to solutions and (clearly) preserves the form
(6.5). Thus it acts on the parameter space. However it induces the transformations
on g and ώ

g->e2λg, ώ-^e2λώ. (6.12)

Thus we have a holomorphic homothety on the parameter space (in Ward's

d \
notation this is R —— I. This has several interesting consequences. Let H generate

dRJ
the holomorphic homothety. Then

-jjώ = λώ = d(i(H)ώ). (6.13)

Thus since λ φ 0 the homology class of ώ is trivial. This restricts the complex
submanifolds of the space. For example none have the topology of the two sphere.
In addition we can argue that if (as is most unlikely) our metric were Einstein then it
would immediately be Ricci flat.

It seems unlikely that any further structure can be deduced about these metrics.
The fact that we have to choose submanifolds of the parameter space means that
the type of information we can obtain is severely restricted. At present the
applicability of this method to, in principle, the construction of hyperKahler
manifolds, is unclear.

7. Conclusions

Given that the metrics described above are Kahler one now appears to have a
paradox. The Kahler structure means that the low energy quantum mechanics has
an extension with N = 2 supersymmetry, i.e. an invariance parametrised by two 2
component Majorana spinors. But the soliton solutions themselves break
supersymmetry partially, and moreover so does the restriction of the functional
form of bosonic fields to that of holomorphic maps. That is if we ask what fermion
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ansatze are possible if we restrict φ to be holomorphic, demanding N = 2
supersymmetry then leads to a contradiction. Thus it does not seem possible to
derive the Kahler nature of the moduli space metric from the field theory. The issue
of symmetries of low energy soliton dynamics deserves further clarification.
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