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Euler Evolution for Singular Initial Data
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Abstract We study the evolution of a two-dimensional, incompressible, ideal
fluid in a case in which the vorticity is concentrated in small disjoint regions
and we prove, globally in time, its connection with the vortex model.

1. Introduction

In this paper we want to study some properties of the behaviour of a non-viscous,
incompressible fluid in two dimensions. In particular, we consider the case in
which the vort city is initially concentrated in N small disjoint blobs. We follow
their evolution during the time and we prove that, in the limit of vanishing regions,
their centers of vorticity move as a system of point vortex ([1], for a review see [2]).
This result is global in time and it is obtained for vortices of the same sign.

Until now the convergence local in time for vortices of every sign was known
[3], global in time for one vortex in a bounded domain [4] and two vortices of
different sign in a bounded region [5]. The last two results are very particular and
cannot be generalized to a more complicated case. The present paper is a non-
trivial generalization of the method used in [3].

The Euler equations in R2 for the vorticity are:

0 = 0, (1.1)

V u = 0, (1.2)

ω = curlu = {dXiu2 — dX2ux), (1.3)

x = (x l 5 x2) e &2 •> ω( x> 0) = ωo(x).
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Here U = (U1,M2) denotes the velocity field. If the velocity decays at infinity, we can
reconstruct the velocity field by means of ω:

(1.4)

K = V x g, (1.5)

Vλ = (dXl,~dXi), (1.6)

g(r)=-(2π)- 1 ln | r | . (1.7)

As is well known, Eq. (1.1) means that the vorticity is constant along the
particle paths that are the characteristic of the Euler system. Therefore,

ω(x,ί) = ω(x(x0,-ί),0), (1.8)

where the trajectory x(xθ51) of a particle of the fluid initially in x0 satisfies:

x(xo,ί) = u(x,f), (1-9)

u(x,ί)= JK(x-y)ω(y,ί)dy, x(0) = x o . (1.10)

We consider N blobs of vorticity supported in N disjoint open regions [ΛUε(0)},
i=ί...N, such that:

measyl ί j ε = ύ[ίβ
2, at>0, (1.11)

Λ^cΣizMad112), z^R2, (1.12)

where Σ(z\r) is a circle of center z and radius r,

ω,e(x,0) = β-2χ(xM,,e(0)), (1.13)

ωε(x,0) = Σ ω, ,ε(x,0), (1.14)
i= 1

where χ{x\A) is the characteristic function of A.
Each blob At ε(0) evolves via the Euler equation in Λiε(ή. Because of a

divergence-free condition, the evolution is Lebesgue measure preserving. In
particular,

measΛ; ε(t) = mQ3.sAi ε(0).

Moreover, we note that there is a unique weak solution of the Euler equation with
initial datum ωε, that we denote as ωε(x, t).

We define the center of vorticity of the evolved region:

Mit c(t) = α£~
1J dxxω^ ε(x, ί) = αf~

1J dxxε(x, t)ωu ε(x, 0). (1.15)

We want now to compare this evolution with the vortex model.
We consider N point vortices zt of intensity at>0. The equations of motion are

dzi(t)/dt= X ajKfaiή-Zjit)), zeR\ zί(0) = z i , (1.16)
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which admit the integrals of motion

H=-(4π)~1 X α^lnflz^-z/OI) (Energy), (1.17)
ί, j = 1, i φ j

M=\ Σ aizi) { Σ ai) (Center of vorticity), (1.18)

/ = Σ αr-|z|2 (Moment of inertia). (1.19)
i= 1

It is immediate to note that H and / prevent the collapses. In the sequel we
denote by Ro the minimal distance between the vortices.

We state now the main result.

Theorem 1.1. For any fixed ί,

limM ί > ε(ί) = z i(ί). (1.20)

2. Proof of the Theorem 1.1

Let us explain the main difference between the present proof and the local one. In
[3] we introduced the moment of inertia of each blob and we proved that it
remains bounded by ε2 (and so the blob concentrated) until the vorticity is
contained in a finite circle around each vortex. This can be proved only for a small
time. Here we introduce a smooth version of the moment of inertia and of the total
vorticity and we evaluate their change in time. We prove that the filaments going
away (if they exist) give a small contribution and this is enough for the proof.
Remains open the problem to understand whether these filaments are actually
contained in a bounded region possibly vanishing when ε->0. In this direction a
partial result is given in Sect. 3.

Let ε<(l/20)R0. We introduce a smooth function W(r), r^O such that

ί 1 if r<Rx ,
_

W{r)=< 0 if r^R2, (2.1)
[ a decreasing smooth function otherwise,

W(R3) =i/2, (2.2)

where
(2-3)

(2.4)

J- (2.5)

(From now on Ct means a constant independent of ε.)
We want to study the quantity

N

ί = 1

N N

— y £~2 y r dx[x (x, t)~z-(t)~\2W(\x (x, t) — z (ί)|). (2.6)
i=ί j=l Λj,ε(0)
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and we prove that this quantity vanishes as ε2 when ε-»0,

dljt)/dt= Σ ε~2 Σ ί
ί=l j=l Λj,ε(O)

x W(\xε(x, t)-z,.(ί)|) + [xt(x, ί ) - z ; ]

x[x ε(x,t)-z ;(f)]} (2-7)

By Eqs. (1.9), (1.10), (1.16) and the identity

Π [1-^-1^(0,1?,))]+ Σ χ( |2;(zlt(ί).Λ1))=i
fc - 1 . fc Φ i k = 1 , fc Φ i

we have

where

ί dx2[xe(x,t)-zi(ί)]
(0)

ε" 2 Σ Γ ί rfyK(χc(χ,f)-yε(y,t))
h=l[_Λh,ε(0)

x Π [i-χ(y|2:(zt(t),Λ1)]l^(|χe(χ,ί)-zi(0l)l, (2-
fc = 1 , k Φ / J J

B= Σ ε" 2 Σ ί dx2[xε(x,ί)-z,(t)]
i = l j = l /lJ - e(0)

" 2 Σ ί UyK(xi(x,t)-yi(y,t)H Σ

- Σ ^KWO-z^lWdx^O-Ziίί)!), (2-9)

k= 1, fcΦi J J

D= Σ ε " 2 Σ ί rfx[xe(x,i)-Zi(i)]2VW(|Xe(x,f)-ZiWI)

x | ε " 2 Σ ί ^yK(x ε(x,t)-y ε(y,ί))- Σ αΛK(z ;(ί)-z f t(ί))[. (2.10)
I. Λ= 1 Λh,ε(O) h= 1, h Φ i J

We study these three terms.
Using the antisymmetry of K we can write

=Σε~*Σ Σ ί dx j dyΓlXίMj-z^)] ή [1
i = l j = l f t = U J ( £ ( 0 ) -lh,ε(O) L k = l , k Φ i

x H/(|xε(x, t)-Zi(t)l)- [y.(y. t)-z,<t)] Π C1 - z ( χ | ^ ( 0 l ^ i ) ]
k= 1, kΦi

K(χε(χ,t)-yε(y,t)) (2 it)
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We note that this term vanishes when both |xε(x, t) — zf(ί)| and |yε(y, t) — zf(ί)| are
less than Rx. [We use the fact that K(x) is orthogonal to x.] Moreover, the
integrand is bounded. It is not trivial for the singularity of K(x —y) as |x — y|.
However, when χ in (2.11) is φ 0 the points are far and so the integrand is trivially
bounded. Otherwise, the integrand is continuous and the term in square brackets
vanishes as |x -y | [by Eq. (2.4)] and the identity

We denote by αf + μj(τ) the vorticity contained in 2^(01 JRt) and

m= max sup |μf(τ)|. (2.13)

We have, immediately

. (2.14)

To study B, let us denote by L the Lipschitz constant of K(x) when |x| >RQ/2,
ύtj. Then for |x — y\>R0/2 we have

K(x-y) = K(zi-zk) + d with |d|<L[|x-z f | + ly-zfc|].

Then

\B\sί^2 Σ ί

=l Λh,ε(O) k=i, kΦi

N Γ N

χ I Σ f c φ . κ ( z ί- z fe) ak~ Σι Λ ί o

 dyε~

N N N N

^2aNLIw(t)+ Σ ε"4 Σ Σ Σ M * !
f = l j=\ h=l k=ί, fcΦi v i J l C ( O ) Λ h ) t (

x {2|xε(x, t)-z,.(t)l |yε(y, ί)-z f eWI^(|χε(χ, O-z. ίOD^dy^y, ί)—MOD} + c >

lv(t) + C6m, (2.15)

l O l ^ ί c - 4 ) ^ Σ Σ Σ ί ^ ί dy|{[x«(x,t)-zi(ί)]2VW(|x.(x,ί)-z((ί)l)
ί = l 7 = 1 h = l / l J j £ ( 0 ) ylh,e(0)

x [y£(y, ί) - z ; «] 2 V W%ε(y, ί) - z,(ί)|) K(xε(x, ί) - yε(y, f))}l + CΊm.
(2.16)

The integrand is bounded as in Eq. (2.11). Hence

and (2.17)

\dIJj)/dt\ZC9IJt) + Cιom.
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We want now bound m by Iw(t). We denote by

7(ί)= sup 7w(τ). (2.18)

Lemma 1. There exists a constant C 1 X such that

w(0^C n 7(0. (2.19)

Proof of Lemma. We introduce a smooth function G{r)

1 if 0 = r ^ R 1 ?

G(r)= a decreasing function if Rί^r^R3, (2.20)

0 if r^R3,

sup|VG(|x|)| = C 1 2 , (2.21)

We define

N

Then

N

dmf/dt = ε~2 Σ ί
i = 1 Λj,ε{<

N N

χK(xe(χ,0-ye(y,0)

-ε~2 Σ Σ ί dxVG(|xe(x,0-zf(0l)
j=l Λ = 1, Λ Φ i / l J > ε ( 0 )

xα f tK(z ;(ί)-zh(0), (2.24)

N N

j=l h=ί Λj.tΛO) ^lh,ε(0)

- VG(|yε(y, t)-z,(ί)l)] K(xe(x, ί)-y,(y, 0) + C^m\

m\, (2.25)

where m\ is the vorticity contained in 2>

On the other hand, by the definition of I(t)

'Jl. (2.26)

Hence

\dmf(τ)/dτ\SCl6I(t), mf(0) = α ; , (2.27)

that implies

\mf (0) - mf (ί)| ^ C t 5ί/(ί) = C t 7/(t). (2.28)
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So the vorticity contained in Σiz^R^ may differ from a{ at most by

51

I(ί). • (2.29)

We return to the main theorem. Using Eqs. (2.17) we have proved that

\dIw(t)/dt\^C19I(t) (2.30)

that implies

/(ί)^/(0)exp(C 1 9ί)-C 2 0/(0)^C 2 1^ 2, (2.31)

and so

Iw(ή^C21ε
2. (2.32)

By Eqs. (2.19), (2.13) we have

2. (2.33)

We have proved, roughly speaking, that the blobs remain concentrated during the
motion. The other steps in the proof are, in some sense, easier and they will be only
sketched.

We define

We have

) — a~i Y ε~2 \ dxx (x, ί)VK(|x (x, t) — z-(ί)|). (2.34)
j = l >lj)e(O)

= α i-
1 Σ «"2 ί dx{xt(x,t)W(\xJ[x,t)-z/tt)\)

+ xε(x, t)VW(\xε(x, t)-z,{t)\) • (xε(x, t)-z ; (0)}, (2.35)

Σ Σ { ί ί dxdy
j=ί h=l U J ) C ( 0 ) Λh>ε(0)

zίt)\)\ Π (

Σ x(y\Σ(zk(t)\Rι)) K(xε(x,ί)-yε(y,0)
k = 1 , fe Φ i

N

k= 1 , ft
-fCm 23

Σ Σ Σ ί ί
j=ί h=l k=l, k*i Λj!b(0) Λh<ε(0)

x {[(xε(x, ί)-z ;(t)] + [yε(y, ί)-z t(f)]}

w(\χc(χ, t)-

- Σ «k
k=l,fcΦi
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Σ Σ Σ
7 = 1 h = 1 fc= 1 , fc

ί ί dxdy
j , ε ( 0 ) / l h , ε ( 0 )

^C 2 6rn-hC 2 7ε- 2 Σ Σ ί rfx
7 = 1 fe= 1 y l 7 , ε ( O )

x\xJx,l)-zk(t)\W(\xs(x,t)-zk(t)\)

N N

Σ Σ ί

(2.37)

by the previous estimates and the Cauchy-Schwarz inequality.
The initial data are similar and so we have proved that

M i f β f W ( ί ) — - ^ z K O .

Now we compare Mί>ε(ί) with MitE>w(t). They differ by the vortitity initially in
ΣίzJKj) that has gone out and by the vorticity entered in Σ(zi(ή\R2). We realize that
each two are bounded by Cε2. In fact, in the region out of Σ(z/(τ)|K2) for any i and τ,
0 ^ τ ̂  ί, the vorticity is bounded by Cε2 and consequently the field is bounded by a
constant, fit is easy to observe that a blob of vorticity ε2 and intensity ε ~~2 produces

a velocity field

J where r = c2(π) " 1 / 2
(2.38)

Hence the vorticity flux cannot be too large. Moreover, the fluid remains in a
bounded region (for finite t). So the contribution to Mίε(t) of the "particles" far
away from zf(ί) cannot be too large.

In conclusion we have proved

(2.39)

and this achieves the proof. Π

3. Remarks

In the previous section we have also proved the weak convergence of the measure
ωε(x,t):

Theorem 3.1. Let f\R2-^R be any continuous function. Then for all t,

limj/(x)ωe(x,ί)dx= Σ
ε -> 0 i = 1
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Now we want to show a simple case in which the filaments of vorticity remain
close to the center of vorticity when ε->0. We consider a (noncircular) blob of
vorticity moving in absence of external fields. The center of vorticity remains fixed,
but thin filaments evolve in a complicated way and, for long time, may go far away.
We show that the limit ε—>0 prevents this effect in spite of the fact that the vorticity
density becomes infinite.

Theorem 3.2. Let

with

measΛε(0) - ε2, Λε(0) C Σ(0\ε),

and let

ω(x,t) = ε-2χ{x\Λε(t)),

the evolution of ω(x,0) via the Euler equations. Then for any t and any d

Γ Ί ) . (3.1)Λ ( ) Ί ( , )
|_ε-0 j

Proof. We sketch the proof. It is enough to show that the radial component of the
velocity field vanishes when ε-+0 for any fixed t and |x|. We consider

μ(Rι)=\-ε-2 j dxW{\xε{x,t)\), (3.2)
ΛE(0)

dμ(Rι)/dt=-ε~2 J dx\W-x
ΛL(0)

= - « - 4 I dx{\W(\xc(x,t)\)- J dyK(xe(x,f)-yf(y,r))
Λε(0) { Λε(0)

= -ε-4l/2 J J {dxdy[yW(\xt(x,t)\)-\W(\yJiy,t)\)]
ΛE(0) Λε(0)

xK(xe(x,t)-y«(y,ί))} (3-3)

The integrand is bounded by a constant proportional to C 2 .
From now on, we choose R2 = 3/2Rι,C2 = σR^2, where σ is independent of Rλ.

We consider y such that ε <ξ y <ξ JR1 and we divide the integral in y in Eq. (3.3) into
two parts: |y |^y and |y|>y. We denote by m(R) the vorticity external to Σ(0,R).
Then, the first contribution is proportional to miR^yR^2. (In fact, for y^R1 \W
and K are almost orthogonal.) The second contribution is proportional to
m{y)m{Rι)σRl2. Hence

J/dή S Cm(R1)yR;2 + CmiyMR^R;2 . (3.4)

By definition, we have

where

j
Λε(0)
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which is constant and proportional to ε2. Then

-2R;^—->0 as εβ, β>2, (3.5)

if we choose y&ε1/2, Rx^y1/5. Then

μiRJ—ϊO a s ^ , β>2,

and

so that

m(jR2)->0 asr/,

and the velocity field produced by this vorticity vanishes as ε~2 + β [Eq. (2.38)].
Finally, we consider an x such that \x\ = R4_^> R2; in this point both the velocity
field produced by the vorticity out of Σ(0\R2) and the radial component of the field
generated by the vorticity in ^(Oli^) vanish. •

We note that this proof fails in the presence of external forces.
In the presence of boundaries the existence of a global solution for the vortex

Eq. (1.16) may fail. In fact, an eventual collision between the vortices and the
boundary is not forbidden by the conservation of energy. Nevertheless, initial data
producing this collapse should be exceptional. This has been proved rigorously for
a circular domain [2] and it can be conjectured to be true in general. For all "good"
initial conditions the technique of the present paper can be used and the result
remains valid.

The proof of Sect. 2 fails when the vortices have different signs. In fact, in this
case we are not able to control the growth in time of Iw; moreover, Iw is not a good
Liapunov function of the problem.

Finally, we can study the stability of the measure with respect to a small
viscosity. Let ώε v(x, ί) be the evolution of the initial data (1.13), (1.14) via the
Navier-Stokes equations:

δtώε> v(x, t) + (u V)ώε5 v(x, ί) = vA ώEt v(x, ί), x e R2. (3.5)

It is well known that the solution of the Navier-Stokes equations for bounded
initial data converge to the solutions of the Euler equations when v->0. In our case
also, it is reasonable to prove, using the ideas of Sect. 2, that

ώBtV(x9t)~^ Σ Mfa W). (3-6)

[<5(x) denotes the Dirac measure concentrated in x.]
Note that for singular initial data the uniqueness of the solution of the Navier-

Stokes equations is only proved for large enough viscosity [6].

Acknowledgements. It is a pleasure to thank the "Centre de Physique Theorique, CNRS Luminy,
Marseille," where part of this research has been performed, for its warm hospitality.



Euler Evolution for Singular Initial Data and Vortex Theory 55

References

1. Helmholtz, H.: On the integrals of the hydrodynamical equations which express vortex motion.
Phys. Mag. 33, 485 (1867)
Kirchhoff, G.: Vorlesungen ϋber Math. Phys. Leipzig: Teubner 1876
Poincare, H.: Theories des tourbillons. Paris: George Carre 1893
Kelvin, L.: Mathematical and physical papers. Cambridge: Cambridge University Press 1910

2. Marchioro, C, Pulvirenti, M.: Vortex methods in two-dimensional fluid mechanics. Lecture
Notes in Physics, Vol. 203. Berlin, Heidelberg, New York: Springer 1984

3. Marchioro, C, Pulvirenti, M.: Euler evolution for singular initial data and vortex theory.
Commun. Math. Phys. 91, 563 (1983)

4. Turkington, B.: On the evolution of a concentrated vortex in an ideal fluid. Northwestern
University, Evanston 1984

5. Marchioro, C, Pagani, E.: Evolution of two concentrated vortices in a two-dimensional
bounded domain. Math. Methods Appl. Sci. 8, 328 (1986)

6. Benfatto, G., Esposito, R., Pulvirenti, M.: Planar Navier-Stokes flow for singular initial data.
Nonlinear Anal., Theory Methods Appl. 9, 533 (1985)

Communicated by J. L. Lebowitz

Received January 6, 1987; in revised form October 8, 1987






