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Abstract. We study the bound states of diatomic molecular systems. We prove
that if the nuclear masses are proportional to ε~4 then certain eigenvalues and
eigenvectors of the Hamiltonian have asymptotic expansions to arbitrarily high
order in powers of ε, as ε —> 0. The zeroth through fourth order terms in the
expansions for the eigenvalues are those of the well-known Born-Oppenheimer
approximation. The fifth order term is zero.

1. Introduction

In this paper we study the quantum mechanics of diatomic molecules and ions by
exploiting the fact that the nuclear masses are much larger than the electronic
masses. We prove that if the nuclear masses are proportional to ε ~4, then certain
bound state energies and wave functions have asymptotic expansions to arbitrarily
high orders in powers of ε as ε -» 0. In an earlier paper [15], we proved this for
molecular type systems with smooth potentials. The present paper is the extension
of [15] to overcome the difficulties associated with Coulomb potentials.

Although we will discuss only Coulomb systems, our techniques clearly extend
to diatomic molecular and ionic type systems with spherically symmetric dilation
analytic potentials [20] that are relatively operator bounded with respect to the
Laplacian [20]. We have concentrated on Coulomb systems for concreteness and
because they are physically the most interesting.

The principal difficulty in extending the results of [15] to Coulomb systems is
that the Coulomb singularities can give rise to cusps in the electronic wave functions
at the positions of the nuclei. The techniques of [15], require certain derivatives
of the electron wave functions that do not exist in the Coulomb case. We overcome
this difficulty by noticing that the required derivatives are directional derivatives,
and that by altering the expansion we can avoid the "bad" directions where the
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derivatives do not exist. In the appropriate "good" directions the electron wave
functions are analytic.

In order to make the discussion as concrete as possible, we will make
changes of independent variables so that the "good" directions are some of
the new coordinate directions. That way, to lowest order, the Born-Oppenheimer
expansion will look like a separation of variables.

Approximations of the type we are studying were first developed in 1927 by
Born and Oppenheimer [4]. They formally showed that molecular energy levels
had asymptotic expansions through the fourth order in ε, and that the non-zero
terms in the expansions had direct physical interpretations. They stopped at fourth
order for various physical reasons, and seem to have been unaware that some
derivatives they would have needed at fifth order did not exist. The physical basis
for their approximations can be summarized as follows: The small mass electrons
move very rapidly compared to the large mass nuclei. As a result, the adiabatic
approximation fairly accurately describes the electron motion, i.e., on a short time
scale, the electrons hardly notice the motion of the nuclei, and on a large time
scale, they rapidly adjust their motion in response to the changing positions of the
nuclei. In addition, the nuclear motion is approximately semiclassical due to the
large nuclear masses.

The disparity between the periods for the electronic and nuclear motions leads
to a separation in the energies of these motions. Roughly speaking, as ε tends to
zero, the energy terms decompose as follows: The electronic energy is 0(1); the
molecular vibrational energy is O(ε2); and the molecular rotational energy is 0(ε4).
There are additional 0(ε4) terms (anharmonic corrections to the nuclear vibrational
energies, and the lowest order term involving the coupling of electronic and nuclear
motions). As we shall see below, the terms of orders ε\ε 3, and ε5 all vanish. The
terms of order ε6 and higher involve complicated interactions between the electronic
and nuclear motions, and they do not have simple physical interpretations.
Although we have not computed the ε7 terms in any specific examples, we believe
that they are generically non-zero. In particular, we see no reason for all the odd
order terms to vanish.

From the above discussion and the discussions in most physical textbooks on
the subject, one would be led to believe that the disparity between time scales is
the basis for the validity of the Born-Oppenheimer approximation. This is not the
proper intuition, even in the time dependent approximation [14]. The crucial
ingredient is a disparity in spatial scales. In the time that it takes the electrons to
move a unit distance, the nuclei move a distance of order ε. As a result, the
appropriate technique for analyzing the motion is the "method of multiple scales"
applied to the appropriate spatial variables. Born and Oppenheimer [4] were
clearly aware of the role of spatial scaling, but did not have a clean formalism for
dealing with more than one scale in the same variable.

There has been very little rigorous mathematical work concerning the validity
of the Born-Oppenheimer approximation until recently. In the last decade, Seller
[21] has worked out a simple exactly soluble Born-Oppenheimer type model
involving coupled harmonic oscillators, and Aventini, Combes, Duclos, Grossman,
and Seiler [5-7] have rigorously proved the fourth order results of [4]. The only
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other related mathematical work on this subject (of which we are aware) is the
author's own work [13-15]. In [13,14] the time-dependent Born-Oppenheimer
expansion is shown to be asymptotic to all orders in ε to the exact solution of the
Schrόdinger equation if the potentials are smooth. The paper [15] proves the
analogous time-independent result.

The papers [6,7] of Combes, Duclos, and Seiler involve some very clever
techniques for analyzing the discrete spectrum of a molecular Hamiltonian. By
using a Feshbach projection technique, they have computed rigorous upper and
lower bounds for the eigenvalues. As ε -> 0, the upper and lower bounds agree
through fourth order, and the asymptotics of the lowest finitely many eigenvalues
can be computed. Unfortunately, the estimates are not uniform, in the sense that
as one looks at higher eigenvalues, the estimates become poorer. Thus, only the
bottom of the spectrum is completely described. The estimates do guarantee the
presence of eigenvalues near certain higher energies, but do not preclude the
possibility that eigenvalues with other asymptotics might be present above the first
finitely many eigenvalues.

We regard the papers [6,7] as being very deep, careful analyses of the low-lying
spectrum in a very singular perturbation problem. In addition, the techniques are
capable of handling the technical problems associated with Coulomb potentials
through fourth order. The crucial arguments of [6,7] employ some clever non-linear
techniques to establish the lower bounds.

In contrast, we will use linear methods to produce high order "quasimodes."
That is, we will produce solutions to the inequality

\\H(ε)Ψ(ε)-£(ε)Ψ(ε)\\^CNεN,

where JV is arbitrarily large and CN is appropriately chosen. The existence of such
quasimodes guarantees that either $(ε) is in the spectrum of the self-adjoint operator
H(ε), or the norm of the resolvent is least ε~N/CN. Thus, H(ε) must have some
spectrum in the interval [S(ε) — CNεN, ${ε) + CNεN~]. This proves the presence of
spectrum near certain energies, but does not preclude the possibility that there is
also other spectrum present. In addition, we have the same uniformity problem
as [6,7]. However, by combining our results with other results, more detailed
information can be obtained. For example:

1. By combining our results with the HVZ Theorem [20], we can be sure that
certain quasimodes correspond to discrete eigenvalues: The HVZ Theorem
characterizes the bottom Σ of the essential spectrum. Quasimode estimates that
guarantee spectrum below Σ, guarantee the presence of discrete eigenvalues.

2. By combining our results with those of [6,7], it is easy to see that our high
order quasimodes completely describe the asymptotics of the lowest finitely many
eigenvalues to arbitrarily high order.

In the next section, we will precisely state our results. In Sect. 3, we will give
a formal computation of the quasimodes by using the method of multiple scales.
In the fourth section we will rigorously justify all the steps of the formal
computation.

Remarks. 1. In contrast to the approach of [15], we will separate the total angular
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momentum dependence before beginning the expansion in powers of ε. The
separation will be convenient in the rotating, dilating coordinate system we will
use because the total angular momentum operator J2 and the z-component Jz will
be given by simple expressions in the new coordinates. By using the rotating
coordinates without the dilations, one can redo the analysis of [15] in what is
perhaps a more natural way. This leads to more complicated formulas, but one
can avoid the infinite degeneracies that are only broken at fourth order in [15].

2. Born and Oppenheimer only considered nondegenerate electronic states.
We can improve upon this by allowing the degeneracy that gives rise to the
phenomenon of "Λ-doubling." To low orders in our expansion, the component of
the electron angular momentum about the internuclear axis, Lz.9 is conserved.
There are two electronic states with the same energy corresponding to LZ>—±A
if A Φ 0. The phenomenon of /1-doubling is the splitting of these energy levels.
Generically, the splitting occurs at order ε8|/t|.

3. We have split Sect. 3 into two parts. In the first part we will explicitly write
out the case of one electron. In the second part we will show that the formal
expansion for two or more electrons can be developed, without explicitly presenting
all the formulas. The addition of more electrons makes the formulas more
complicated, but no further new ideas are required.

4. We are not particularly fond of our proof! We believe there ought to be a
proof similar to the one used in [22] to study semiclassical asymptotics. When we
tried to mimic the lower bound estimates of [22], we found ourselves facing the
difficulties that caused the authors of [6,7] to resort to nonlinear techniques.

5. The ideas that we use in this paper can also be used to extend the time
dependent results of [14] to diatomic Coulomb systems in two ways. First, one
could diagonalize the total angular momentum and use the complex coherent
states of [14] in the variable R. This is the most straightforward way to extend
[14] by using the ideas of the present paper. This is not the physically most natural
result, but it might give some phase shift information. The second extension would
use the complex coherent states in the variables JR, θ, and φ. We plan to publish
results of this type for polyatomic systems by using the ideas of [16], rather than
the ideas of the present paper.

6. The present paper's ideas do not extend easily to polyatomic systems. One
could try to use the ideas of [16], but it is not clear how to implement those ideas
globally, which must be done in the time independent situation.

7. In some molecules, spin effects are very important. In fact, in terms of the
energy, they can dominate the rotational effects. For Coulomb systems we do not
know how to include these terms because of self-adjointness problems. Even in
the case of the Hydrogen atom, we do not know what the physically correct
Hamiltonian is if spin-orbit effects are included. The formal operator one can find
in the physics textbooks is not essentially self adjoint. The difficulty comes from
the singularity in the term proportional to L S/r3. See [23].

8. In our approach, one can impose Fermi statistics on the electrons. Remark
7 describes the only obstacle that prevents us from dealing with a completely
physically realistic model of molecules. Only for convenience have we ignored the
Fermi statistics for the electrons. However, if the Fermi statistics are imposed, the
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lowest electronic state of the system might have A φ 0. In that case, some of the
remarks of Sect. 2 must be modified.

2e Notation and Results

In this section we present precise statements of our main theorems and develop
notation.

We consider an iV-body quantum mechanical system of particles whose masses
are Mγ ε ~~4, M2ε " 4, and m; ( j = 3,4,..., N). We assume that particles 1 and 2 interact
via a non-zero repulsive Coulomb potential, and that the all the other potentials
in the problem are also Coulombic. We refer to such a system a diatomic molecule.
Particles 1 and 2 are called the nuclei; particles 3,4,..., N are called the electrons.
The Hamiltonian for a diatomic molecule is

on L2(U3N), with z 1 2 > 0. We choose a clustered Jacobi coordinate system [20] in
which the first three coordinates are the vector X, from the first nucleus to the
second, and the second three coordinates are the vector ζι, from the center of mass
of the nuclei to the center of mass of the electrons. Then we remove the center of
mass dependence [20] from H(ε) to obtain

on L2{U3N~3). The reduced masses v_y(ε) are analytic in ε4 and approach non-zero
values μ } as ε tends to zero. For convenience, we assume that M = 1, and we define
r to be the vector (ζl9ζ2i.. .,ζN-2)

e^3N~b We define the electron Hamiltonian
h(X) to be the operator valued function

on L2(U3N~6,dr). By using the direct integral decomposition L2(U3N~2dXdr) =
J ®L2(U3N'6)dX, we define h to be the operator on L2(U37ς~3dXdr) which is the

direct integral of the fiber operators h(X). In addition, we define an operator D(ε)
by the relation

.v - 2 / i i \

Note that D{ε) is a second order differential operator whose coefficients are analytic
in ε4. With this notation, we have

The term ε4D(ε) plays the uninteresting role of a regular perturbation because it
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is relatively bounded with respect to h. The interesting mathematics arises from
the interplay of h and — ε^βΔx, which involves a singular perturbation problem.

We will henceforth use the spherical coordinates (R, θ, φ) to represent the vector
X. For each θ and φ, we let $^(9, φ) be the rotation of U3 given by the matrix

/cos θ cos φ — sinφ sίn#cosφ\

0lγ(β,φ)= cos 0 sin φ cos φ sinθsinφ .

V - s i n e 0 cosθ )

&1(θ,φ) maps the vector 0 into the unit vector in the (R,θ,φ) direction. We

w
define a new coordinate system (ξί,ξ2,...,ζN-2) f ° r the electrons that "rotates

with the nuclei" by setting

Next, we define &2(y) to be the rotation

cosy
siny

0

— sin y
cosy

0

0
0

1

For generic ξl9 we choose the angle y (mod2π) so that the second component of
1Ίι = l&2(y)~]~lζi i s z e r o a n d the first component of ηx is positive. We set
Άj = {βi^ϊίY^ζy We let p and z denote the first and third components of ηx,
respectively. At this point we can use the 3N — 3 coordinates (R,θ,φ,y,p,z\
?72,^3,...,^ iV_2). The values of R, θ, and φ specify the spherical coordinates of the
internuclear vector X; the (rotated) cylindrical coordinates y, p, and z' specify the
position of the center of mass of the electrons with reference to the internuclear axis.

In addition to rotating the electron coordinates, we will also have to dilate
them. This dilation is motivated by [3,8], where analyticity of the electron energy
in R was first proved. Given any positive value of the internuclear distance R, we
define α = p/R, β = z'/R, and τ7- = ηJR. Our final coordinate system is given by
(R,θ,φ,y,α,jS Jτ2,τ3,...,τ i V_2).

In this coordinate system, the electron hamiltonian h(R, θ, φ) has a particularly
nice representation:

2 ί d ι d2 &
2μi \ooί oί ooc ocz δγ oβ

N-2 I

" Σ τr4,

where the potential function W(oι,β,τ2,τ3,...,τN-2) is relatively bounded with
respect to the kinetic energy term, with relative bound zero, and has no dependence
on R, θ, φ9 or y. In these coordinates, h(R, θ, φ) is independent of θ and φ, and
depends on R via a multiplication and a coupling constant. It is thus analytic in
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R for R > 0. In addition, h(R, 0, φ) commutes with Lz> = — id/dy, the component
of the total electron angular momentum about the internuclear axis.

Obtaining a representation in which h(R, (9, φ) depends smoothly on JR, θ, and
φ is the crucial step in extending the results of [15]. However, this causes a
significant uglification because the nuclear kinetic energy term in H is very
complicated.

The eigenvalues A of Lz, are clearly 0, ± 1, ± 2,... The eigenvalues of h(R, θ, φ)
that correspond ioAΦO must be doubly degenerate because Lz> = A and LΣ. = — A
give rise to the same eigenvalues for h(R, θ, φ). Because Lz. does not commute with
the full Hamiltonian if, we will have to deal directly with this degeneracy. Of course,
the eigenvalues of h(R, θ, φ) that correspond to Λ = 0 are generically non-
degenerate.

With a slight abuse of notation, we define the operator

2μi\doί2 a da a2

on L2(a/RiN~7d(xdβd3N~9τ). We assume that h{R,±Λ) has an isolated non-
degenerate eigenvalue E(R) for R in some open neighborhood U of some value
Ro > 0. In addition, we assume that OφU, and that E(R) has a local minimum at
Ro with E"(R0) strictly positive. We can then choose a normalized eigenfunction
Φ(R,α,β,τ2,...,τ i V_2) that is real valued for REU and analytic in R for R in a
complex neighborhood of U, so that

h(R9±Λ)Φ{R) = E(R)Φ(R).

With this notation, we can now state our main result for the case A — 0:

Theorem 2.1. Assume the situation described above with Λ = 0. Choose a non-negative
integer j , and an integer m, with — j g m rg j to specify the total molecular angular
momentum and its z component, respectively. Choose a non-negative integer n to
specify the vibrational state for the nuclei. Then given an arbitrary X, there exist
quasimode energies

K

<f«.J.m,Λ(ε)= Σ εkEn.,,,n,Λ,L
k = O

and quasimodes

so that

\\H(8)Ψε,nJtm,Λ{RΛφ,y,*,β,τ2,...,τN-2)

> Ί> <*, β, *2, ' , ?N- 2 ) II ύ O K + 1

The numbers EthhtnΛΛ,EnjjnΛ3, and ElhμnΛ5 are always zero. EnmΛ0 = E(Ro) is the
electronic contribution to the energy, and En jmΛ2 = (π 4- 1/2) [E"(R0)]1/2 is the
harmonic approximation to the nuclear vibrational energy. The formula for En ]mΛ.4
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is given in the remarks below. The zeroth order term in the quasimode is

ε

x Yjtm{θ9φ)Φ(R9<x9β9τ29...9τN-2),

where Nn is a normalization constant and Hn is the nih degree Hermite polynomial.

Remarks. 1. There may be several different choices of E(R) and Ro, depending on
the details of the electronic hamiltonian /Z(JR,O).

2. If S}

nJmίΛ(ε) lies below the essential spectrum of H(ε) for all small ε, then it
asymptotically corresponds to an eigenvalue of H(ε).

3. It is reasonable to conjecture that the quasimodes of the theorem whose
energies lie in the essential spectrum of H(ε) correspond to resonances of the
molecule.

4. If E(R) is chosen to be the ground state energy of h(R,0\ and if E(R) has a
global minimum at Ro with E"(Ro) > 0, then the asymptotics of the lowest lying
eigenvalues of H(ε) are completely described by the corresponding S>

njm0(ε), i.e.,
there are no other low lying eigenvalue asymptotics. This is a result of [5-7].

5. The formula for EnjΛ.4 depends on the electronic eigenfunction Φ, but we
can still give a fairly explicit formula for it. Explicitly,

En,hm,ΛA = ai + h + cn, where aj = j(j + l)/2(R0)
2

is the dominant term in the angular momentum dependence of the molecule's
energy;

b = < Φ{R9 θ, φ, •), \_-jAx + D0~\ Φ{R, 0, φ, •)}LHdr)

is the lowest order nontrivial coupling of the electronic and nuclear motions (Do

is the constant term in the power series in ε4 for D(ε)); and

Cn

E 'WlYΠ^.H-l,.
E"{R0)\ V288 ' 48 ' E//(KO)V32 ' 16

is the lowest anharmonic correction to the nuclear vibrational energy.
6. Through fourth order, S°njmA{£) has no m-dependence, so to that order,

each quasimode energy corresponds to 2 / + 1 orthogonal quasimodes if A = 0.
Except for degeneracies due to symmetries (e.g., identical nuclei), we expect this
degeneracy to be broken at sixth order. Note that one can use non-degenerate
perturbation theory because Jz commutes with the Hamiltonian, and the states of
different m are not coupled.

The case of A Φ 0 is not substantially different, except that one must use
degenerate perturbation theory and replace the familiar spherical harmonics
Yj%m(θ,φ) with the less familiar eigenfunctions ^\ί!,Λ(θ,φ,y) of the total angular
momentum operator for the molecule. These eigenfunctions are described in [11],
and have the form 3{£Λ(θ,φ9y) = eιmφd^Λ{θ)eiΛ\ where d^^θ) can be explicitly
expressed in terms of trigonometric functions. The following theorem summarizes
our results in the case A Φ 0:
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Theorem 2.2* Assume the situation described above with ΛΦO. Choose an integer
jέi\Λ\, and an integer m, with — j S m = ./• Choose a non-negative integer n. Then
given an arbitrary K, there exist two quasimode energies

K

^.,.m,|Λ|.+ ( β ) = Σ εkEn,jM.\Λ\ + k
fc = O

and two orthogonal quasimodes

κ

so that

\\mε)ΨFJLμniΛ]JR,θ,φ,y,a,β,τ2,...,τ^2)

" <?,,,,,,,1ΛI ±(ε) Ψ^j^iR, θ, φ,y, α, /S, τ 2 > . . . , τ v _ 2) || g C,1,,J,I,κ

77?,<? numbers EnιmiΛ]±Λ,EιιμniΛ].±}, and £,,,Λm,,Λ|,±,5 are a/vrays zero. £„,,,„,,,,, ± ; 0 =
is ί/ie electronic contribution to the energy, and ElllMiΛi±2 = (n+ l / 2 ) [ £ " ( i ? 0 ) ] 1 / 2 is
the harmonic approximation to the nuclear υibrational energy. The formula for
En / m [ Λ | +.4 is given in Remark 5 above. The zeroth order term in the quasimode is

Ψ^mΛuJRΛψ,y,^β, τ2,.. .,τN^_)

X [Nt + ^ , ( 0 , φ, γ) + 7V± S)\llΛiθ, φ, γ)},

where N*+ are constants and Hn is the nih degree Hermite polynomial.

Remark. Remarks 1,2,3, and 5 following Theorem 2.1 also apply to Theorem 2.2.
Remark 4 does not apply to Theorem 2.2 because the ground state always has
j = 0 (we are ignoring spin and statistics). Remark 6 applies to Theorem 2.2, except
for the following modifications: There are 4/+ 2 degenerate states at fourth order
instead of 2j~\-1. For each m one must use degenerate perturbation theory on the
pairs of states with hz>— +Λ. These states are necessarily doubly degenerate
through at least order ε8|Λ | because of selection rules that are obeyed by the JL
term that is responsible for breaking the degeneracy (L is the total electronic
angular momentum). See Sect. 3 [17, pp. 121 -122], or [18, p. 337]. This high order
(Λ-doubling) splitting is very small unless \Λ\ — 1. We expect all degeneracies
(except for the A -doubling and any degeneracy due to symmetries) to be broken
at sixth order.

3. Formal Derivation of the Expansion

In this section we will formally derive the results of Sect. 2. The basic ideas are
the use of the particular coordinate systems defined in Sect. 2 and the "method of
multiple scales" in the variable R.
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The method of multiple scales was already used in [14,15] to separate the
adiabatic and semiclassical effects, so we will not discuss it at length here.
Physically, the idea is that the (semiclassical) nuclear vibrations occur on a
length scale of order ε in R, and the (adiabatic) electronic states are sensitive to
nuclear motions on the order of 1 in R. So it is advantageous to introduce two
variables x = R and y = (R — R0)/ε, and treat them as though they were independent.
I.e., we will search for functions Ψεn -]m,Λ{x,y,θ,φ,y,α,β,τ2,...,τN-2\

 s o that
Ψε,nj,m,Λ(RΛR — Ro)/^θ,φ,y9oί,β,τ2,.. . , τ N ^ 2 ) will satisfy t h e S c h r ό d i n g e r
equation. This use of the two variables x and y allows one to separate variables
in the low orders of the approximation, and provides a clean formalism for
separating the high order semiclassical and adiabatic effects. Without this
separation, the analysis is prohibitively complicated.

We have split this section into two parts. The first part deals with the simpler
case of one electron, and is very explicit. The second part treats the many electron
case, but does not contain explicit formulas. We have done this to make the details
clear in a simpler situation, and to describe the general case without explicitly
writing out all the messy formulas.

3Λ. The One Electron Case. We first consider the case A = 0. To simplify the radial
Laplacian, we make the standard change of dependent variable and concentrate
on ψε(R, 0, φ, >', ot,β) = R Ψε(R, θ, φ, γ, α, β). where Ψε is the eigenfunction of H(ε). In
the coordinate system of Sect. 2, the Hamiltonian has the form

21_ δR2 R2 δa2 R2 δβ2 R δaδR R δβδR

_ 2 ^ —- -2- —-2-L — + "
R2 doiδβ R2 δa R2 δβ

where

, δ2

 nδ 1 / δ2 δ2\ 2cos6> δ2

J =^w^C0tθ-δθ~s^θW+δψ

i , ί • d o • d β d \ ί l δ nd

L J = α s i n γ ^ - β s i n γ cosγ — ----- -„ cotθ--
\ oβ da a By J\smθ cφ δγ

ί δ δ β . θ\δ δ2

-\cίcosγ — -β cos γ — + - sin γ — •— - -—,
\ oβ δa a oyJoO By

oβ dot θίz oyι caoβ \ α /da cβ cγ

R~2Y c2 ίd 1 c2 c2

2m \_occ α coί α oy cβ

R ' R[a2 + (β + δ)2Y12 Rla2 + (β-0

(here, δ is the nuclear mass ratio δ = M2/(Mι -I- M2)), and
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1 1 \Γ δ 2 1 3 1 δ2

] I i
2 ^ "*" 2

K) 2R2\v(ε) μ(ε)Jldx2 x doc α2 dy2 dβ2

We choose a non-degenerate electron energy E(R) and choose angular
momentum quantum numbers j and m, corresponding to J2 and Jz= — i(d/δφ).
We next formally change variables to do the multiple scales to obtain the equation
satisfied by the function φε(x, y, θ, φ, y, α, β). The variable R is replaced by x in some
situations and by \_R0 -f εy] in others; The operator d/dR is replaced by {(δ/δx) -f
ε" ^δ/δy)). As in [15], we also have to introduce some operators Tk whose purpose
is to change x dependence into y dependence. These operators do the bookkeeping
associated with the fact that x and y are not actually independent. Without these
operators one could not treat x and y as though they were independent. The choice
of the Tks also provides a uniqueness condition in the expansion.

The equation satisfied by φε(x,y9θ,φ,y,a9β) is the following:

d2 a2 d2 β2 d2 x d2 β d2 aβ d2

x dβdx x2 dadβ

2 2 / + + +

x2 da x2 dβ [-Ro + sj-1]2 J |_ υxdy x δctδy x δβδy

ε2 δ2

-JJ~2+ E(Ro + εy) ~ E(x) + h(x) + ε4D(ε)

+ Σ ε*[7i(Λo + εy)-Γ t(x
k = 4 /

= £(ε)\l/e{x,y,θ,φ,y,0L,β), (3.1)

where J2,L-J,L2, and h( ) are as above. It is trivial to check that a solution to (3.1)
gives rise to a solution to the original Schrδdinger equation, independent of the
choice of the Tk

9s. We will choose Tk( ) to be certain multiplication operators. These
choices will be made so that certain functions in the expansion will be independent
of x. This, in turn, will impose a uniqueness condition on the expansion. We note
that changing Tk( ) by an additive constant does not alter Eq. (3.1).

We now make an ansatz:

Φe = (Φo + εΦi+ ε2Φi + )F(x) (3.2a)

and

So + εS\ + ε2S)

2 + •••. (3.2b)

Here F(x) is a C x function of compact support that is identically 1 on an open
neighborhood of x = R0, and has support inside the set U, where £(x) is
non-degenerate.

Remark. The reader who is not interested in the formal computations but not a
detailed proof is encouraged to ignore the factor F(x) in this ansatz, and think of
the open set U as all of (0, oo). The factor provides some uniformity that is required
for the rigorous proof of Sect. 4. As in [15], we will ignore terms containing
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derivatives of F that occur below, because they do not contribute at any finite
order of the expansion. See Sect. 4.

We now determine the φn. Since F(x) = 0 for xφU, we arbitrarily set
φn(x,y,θ,φ9y,QL9β) = O for all xφU. For xeU we substitute the expressions (3.2)
into Eq. (3.1) and expand all ε dependence in its Taylor series in powers of ε. Then
we multiply everything out and equate coefficients of like powers of ε on the two
sides of the equation.

The zeroth order terms force us to take

Since this is to be true for all xeU, we are forced to take

and

φo(x, y, θ, φ, γ, α, β) = ho(x, y, θ, φ)Φ(x, y, α, β).

Because we have chosen A = 0, Φ has no y dependence. In addition, we are
simultaneously diagonalizing J2 and Jz, so we have (with a slight abuse of notation)

ψo(x, y, 0, φ, 7, α, β) = go(x, y) YjtJn(θ, <p) Φ(x, α, )5).

At this point, we will insist that g0 have no x dependence. To see that we can
impose this condition, suppose that g0 had some x dependence. Then, in our final
answer, go{x9y) would be equivalent to go{Ro + εy,y). We could then expand this
final expression in Taylor series in ε and redefine g0 to be the constant term of the
expansion. The higher terms of the Taylor expansion could be incorporated in the
higher ψn's. Thus, we can assume

φo(x, y, 0, φ, y, α, β) = fo(y) Yj,m{θ, φ)Φ(x, α, β\

where f0 is so far arbitrary.
At every order of the expansion, we will impose a similar condition, namely

that a function gn(x, y) = fn(y). By forcing these conditions, we essentially determine
the operators Tk(x). If the terms Tk(x) — Tk(R0 + εy) were not present in Eq. (3.1),
we would not be able to consistently impose this condition.

The first order terms force us to take

[h(x) - E(x) + E(R0)']φί + E'(R0)yφ0 = £0Ψi + S\ φQ.

Since this is to hold for all y and xeU, we must have

and

φι(x,y,θ,φ,y,0L,β) = hι {x, y, Θ, φ) Φ(x, α, β).

Once again, the 0, φ9 and y dependence is determined, so

We arbitrarily choose gι(x,y) = fι(y)9 which we may do for reasons that were
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explained above. So, we have

φ1 (x, y9 θ, φ, y, α, β) = fγ (y) Yjιm(θ, φ) Φ(x, α, /?),

where fx is so far arbitrary.

The second order terms require

[h{x) — E(x)^φ2 •

To satisfy this equation, we separately consider those terms that are multiples of
Φand those that are orthogonal to Φ, as in [15]. We recall that we have assumed
E"(R0) > 0. If we let w = y{E"(RQ))112, then the second order terms require

ψo(x, y, 0, <p, y, α, β) = Hn(w)e'w2/2 Yj,m(θ, <p)Φ(x, α, β),

and

Φ2(x, y> θ, φ, y, α, β) = h2 (x, y, θ, φ) Φ(x, a, β\

where Hn denotes the nth degree Hermite polynomial. By the angular momentum
considerations and the x-independence condition,

φ2(x, y, θ, φ, y, α, β) = f2(y) Y;,w(0, φ)Φ(x, α, β\

Remark. We will not worry about normalizing our quasimodes. If we were to
normalize them, the expression for φ0, above, would be multiplied by a constant.

We now consider the third order terms. There is one third order term that
contains a derivative of F. It makes no contribution to the expansion at any finite
order (see Sect. 4), so we will ignore it here. The remaining terms require

1 d2

Γ d2 a d2 β d2 Ί

\_dxdy x docdy x dβdy J ° °'

To satisfy this equation we introduce some new notation. We break up φn as

where

φn is orthogonal to Φ(x,y,α,β) in L2 -^dydocdβ I;

φn

λ is a multiple of Φ(x, y, α, /?), but orthogonal to

Hn(w)e~w2/2 in L2(dy)\ and

φn is a multiple of Hf}(w)e~"v2/2 Φ(x,y,a,β).

With this notation, we can now satisfy Eq. (3.3) by looking at the components in
the various directions in the Hubert space:

The components on the two sides of Eq. (3.3) that are x, θ, and φ dependent
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multiples of Hn(w)e~w2/2Φ(x9α,β) must be equal. From this, total angular
momentum diagonalization, and our x-independence condition, we obtain

^3=0,

and

\j/{ =cίHn{z)e-z2l2Yjtm(Θ9φ)Φ(x,<z9β),

where cλ is an arbitrary constant. Nothing is gained by choosing c\ to be non-zero,
except for keeping the normalization of the wave function (about which we do not
care), so we arbitrarily choose cL = 0. Thus,

ft' = 0.

In fact, to impose uniqueness for the higher order terms, we impose the condition
that all such secular terms, φn (n ̂  1), be set equal to zero.

The components of Eq. (3.3) that are multiples of Φ(x,oc,β), but orthogonal to
Hn(\v)e~w2/2 must be equal on the two sides of the equation. We note that the term

Γ d2 α d2 β
Ψo

\_dx6y x docdy x dβdy

in Eq. (3.3) is orthogonal to Φ(x, α,/?) in L2((ot/x2)dydoίdβ) because by changing
back to the original coordinate system,

Γ a
φ ( χ , * , β ) 9 \ - ^ r ^ R \

\_dx x doc x oβ] i LH{a/x2)d7dΛdβ)

= 0.

So,

where [Hohc — S2']7ι denotes the inverse of the restriction of [ — 2~(<32/dy2) +
iE"{R0)y2 -£2~] t 0 t n e subspace of L2(dy) orthogonal to Hn(\v)e~w2/2. We note
that ( — ^E"'(R0)y3Hn(w)e~w2/2) belongs to this subspace because of symmetries.

The components that are orthogonal to Φ(x,oί,β) in L2((ot/x2)dydadβ) must
also be equal on the two sides of Eq. (3.3). So we have

, x_, ΛdΦ a dΦ β dΦΊ\
ίh(x) - £(x)],Γ' - — - ^ -— (x, α, j8 ,

[_ dx x c*α x 67) J y

where [/ι(x) — £(x)] fΓ
ι denotes the inverse of the restriction of [/i(x) — E(x)] to the

subspace of L2(((x/x2)dyd%dβ) orthogonal to Φ(x,α,jS).
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We now concentrate on the fourth order terms in Eq. (3.1). They require

Γ a ΰ2 β d2

\_dxdy x dudy x dβdy

(3-4)

where

d2 β2 d ad2 β d2
d α c β d ad β d

dx2 x2 da2 x2 dβ2 x doίdx x ΰβdx

2 2 2
x2 dotdβ x2 doc x2 dβ

We have again ignored terms involving derivatives of F because they will be shown
in Sect. 4 to not contribute at finite order. The components of Eq. (3.4) that are
x, θ and φ dependent multiples of Hn(w)e~w2/2 Φ(x,y, α, β) force us to have

Φ(x,-),
Z,I\Q

Φ{x,
L2((c?./x2)docdβdy)

= ^ 4ifn(w)e-w Z / 2

9 (3.5)

where Pv denotes the orthogonal projection in L2(dy) onto the subspace generated
by H n (w)^ w 2 / 2 .

We note that there is no LJ term in Eq. (3.5). This occurs for two reasons.
Let x\ y\ and z' denote the rotated coordinate axes. Then, Lz, Jz, Yjm φ = 0, because
we have chosen A = 0. The remaining L-J terms do not contribute because of
selection rules ([17,pp. 121-122] or [18,p. 337]) that can be derived from the
angular momentum commutation relations. (One could also compute directly.)
The operators Lx. and Ly map states with Lz, = / into superpositions of states
with Lz, = λ±\. Thus, the contribution in the inner product in the fourth term of
Eq. (3.5) is zero.

In order for Eq. (3.5) to have a solution for all x, we choose T4(x) to be
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multiplication by

L2((z/x2)docdβdy)

With the choice, the fourth and fifth terms on the left-hand side of Eq. (3.5) cancel.
We then easily see that $± = (j(j + 1)/2RQ) + T4(R0) + (semiclassical correction
terms). This expression is equal to the one given in Remark 5 following Theorem 2.1.

From the components of Eq. (3.4) that are multiples of Φ(x,y,%,β) but
orthogonal to Hn(w)e~w2/2 we must have

Φi =&lE'"(Ro)? Yj,m(θ9φ)Φ(x,<x9β)

where Qy denotes the orthogonal projection in L2(dy) onto the subspace orthogonal
to Hn(w)e~w2/2.

The components of Eq. (3.5) that are orthogonal to Φ(x,y, α,/?) in
L2((oί/x2)dadβdy) force us to choose

where Qr denotes the orthogonal projection in L2((ot/x2)dadβdy) onto the subspace
orthogonal to Φ(x, y, α, β).

From this point on, the kth order terms Eq. (3.2) recursively yield formulas for
^k,\jjk

Li2, and ψκ The operator Tk is chosen so that gk(x,y) is independent of x.
This choice forces φki4 to be a constant multiple of Hn(w)e~w2/2 Φ(x,a, β\ which
we arbitrarily choose to be zero. Explicitly, the kth order terms require

4[(k-4)/4]
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k k-i ] k

+ y γ-τf(R0)/φ, , ,- y τ-(x)φk^ί

= Σ/iΨk-i (3-6)

The projections of the two sides of Eq. (3.6) into the subspace spanned by x, 0,
and φ dependent multiples of Hn(\v)e~w2/2Φ(x,γ, α, β) must be equal. This forces
a condition of the form

where Gfc is some function of x. To solve this, we choose Tk(x) = Gk(x), and we are
forced to have Sk — Tk(R0). Next, the components of the two sides of Eq. (3.6) that
are multiples of Φ(x,iy5α,β\ but orthogonal to Hn(w)e~w2/2 must be equal. This
condition takes the form

[Hosc — $2ΊΨk^2 = ( a determinate function),

and determines φ^- Finally, the components of Eq. (3.6) that are orthogonal to
Φ(x, 7, α, β) require a condition of the form

[/ι(x, θ, φ) — £(x)] φk = (a determinable function).

This determines φk.
In the particular case of fc = 5, one finds that the function G5(x) = 0 because

of symmetries in the calculation. Thus, we take T5(x) = 0 and have S°5 = 0. The
coupling of electronic and nuclear motions destroys these symmetries in higher
orders.

The case of A φ 0 is not substantially different, except that one must use
degenerate perturbation theory on the pairs of states with Lz, — ± A. The only
term that couples these two states is the term containing LJ. The angular
momentum selection rules to which we referred in the discussion of the fourth
order terms prevent any coupling of the A and — A states before order ε8|Λ|. Before
one reaches that order, there is no complication, except that one must always
handle two states instead of one, and the energy will contain an occasional extra
term (e.g., at fourth order, there is an additional term due to the fact that Lz-Jz,
is no longer zero, but A2). Although we have not explicitly done the perturbation
calculations through order ε8|/l' in any examples, we believe that standard physicists
formal perturbation scheme can be applied without any difficulty. We except the
degeneracy to be broken at order ε8|Λ|.

3B. More Than One Electron. The case of more than one electron leads to more
messy formulas, but does not require any substantially new ideas. So, we will not
go through the perturbation calculations in detail, but simply do the beginning of
the multiple scales argument, and describe how to proceed.

In the original independent variables, (R,θ,φ,ζ2,.. . , C N - I ) , the Hamiltonian
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has the form

where

d2 d 1 f!2

N2__^ cot 9—-
^ " dθ2 dθ ύrΓθJφ2'

To obtain the Hamiltonian in the new variables, we proceed in two steps. First,
we change to the rotating coordinates for the electrons. Then, we dilate the
electronic coordinates. When doing the first step, the only terms in the Hamiltonian
that are altered are the ones that appear in N2 and in the potential energy. The
alteration of the potential energy is straightforward. The alteration of N2 is done
by replacing d/dθ and d/dφ by new expressions. The old d/dθ is replaced by

d ( d d \ z' d
— + C0S7 p — - z ' — + -siny —
cθ \ dz cpj p oy

N~2( a ) ό

i~2J=2\ ' Hi

The old d/dφ is replaced by

.sintfl sin71 p-—-z'w~ I cosy--
oφ [_ \ oz op J p oy

dηff

After these replacements are made, the product rule for computing derivatives
produces a complicated formula for N2, but it still has the form J2 — 2LJ + L2,
where J2 is as in the one electron case.

The second step in changing coordinates is accomplished by dilating the
variables p,z ; ,η 2 i . . .,ηN-2 by R to obtain z,β,τ2,...,τN-2, as described in
Sect. 2. The only complications in the expression for H(ε) are that

dp Rda dz Rdβ' ςj R ^

and that d/dR is replaced by

d oc d B c 1 N~2

dR Rda Rdβ
r

J

After these calculations are completed, one does the multiple scales expansion
exactly as in Sect. 3A.
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4. Proof of the Main Theorems

We now must show that the formal expressions of Sect. 3 define rigorous
quasimodes. The main difficulty in this task is proving existence of all the quantities
defined formally in Sect. 3.

We let r = (ζ 1, £ 2 , . . . , ζN - 2) be the original electronic clustered Jacobi
coordinates. We define the weighted Sobolev spaces

tffs = {fe@'(M3N-6): (1 + r 2) s / 2(l - Δ)//2feL2{U3N-6)}.

W e let jf/iS d e n o t e the c o r r e s p o n d i n g space in the var iables ( y , α , β , τ 2 , . . . , τ N _ 2 )

of Sect. 2, i.e., J f / s = {g:g{y, α, β, τ 2 , . . . , τN- 2 ) = f(ζ1 , ς 2 , . . . , ζN-i) w i t n / G ^ , s }

Lemma 4.1. Lei h(R,θ,φ) denote the electron Hamiltonian in the coordinates
(R, 0, φ,y, α, /?, τ 2 , . . . , τ ^ _ 2 ) . Lei £(#) be a discrete eigenvalue of h(R, θ9 φ) for ReU,
with associated spectral projection P(R,θ,φ). Let n(R,θ, φ,z) — {z — h(R,θ.φ))"1,
and let κ(R, θ, φ, z) = n{R, θ, φ, z)(l - P(R, θ, φ)). Then n{R, θ, φ, E(R)) is a bounded
analytic family from Jf0>s to JΓ2,S f

or a^ s-

Proof. For any operator A in the coordinates (y, α, β9 τ2,..., τN _ 2 ), we let A# denote
the corresponding operator in the coordinates (ζliζ2,...,ζN_2).ltis sufficient to
do all calculations in the ζ coordinates, and prove boundedness of n#(R, θ, φ, E(R))
fromJ^Q s to J^2,s We first prove that the resolvement no{z) of the free electron
Hamiltonian is bounded from JfθΛ to % 2>s for all s if zφ[0, oo). This is equivalent
to showing that the operator

A\z) = (1 + r 2 ) s / 2 (l - Δ)(z + z4)~1(l -f r 2 )~ s / 2

is bounded on L2. To prove this, we rewrite A#(z) as

A#{z) = (1 + r 2) s / 2(l - 4 ) ( - 1 + 4)~ Hi + r2)'s/2

- (1 + z)(l + r2) s / 2(l - Δ)(- 1 + 4 ) " x(l + r 2 )~ s / 2

This last expression is bounded on L2 by Lemma 1 on page 170 of [20].
Next, we show that if (R, θ, ψ) is fixed and z is not in the spectrum of h^(R, θ, φ),

then n#(R, θ, φ, z) is bounded from j ^ Q t S to J^2 5 for all s. This is equivalent to proving

β#(z) = (1 + r 2) s / 2(l - Δ)J(R, θ, φ, z)(l + r 2 ) " s / 2

is bounded on L2. To prove this, we rewrite B#(z) as

B\z) = (1 + r 2) 5 / 2(l - 4)Λg(K, 0, φ, z)(l + r 2 ) ' ^ 2

•(1 + r 2 ) s / 2 [ l - KΛg(R,θ,φ,z)]-Hl + ^ 2 ) " s / 2

= A\z){\ + r 2 ) ^ 2 [ l - K4(Λ,θ,φ,z)]-Hl + r 2 ) - ^ 2 .

Since y4#(z) is bounded, we need only show
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is bounded on L2. This follows from a simple many-body extension of the proof
of Lemma 1 on page 170 of [20].

The operator P**(R, θ, φ) maps ^Γ0,s
 m^° ^o,s because of the exponential fall

of discrete eigenfunctions [1,2,9-11,19,20]. Thus, by the above, n#(R,θ,φ,z)
(1 - P*(R, θ, φ)) is bounded from ^ 0 > 5 into J^ 2 ; S for all zφσ(h#(R, θ, φ)) and all s.
This bound is uniform for z in compact subsets of the complement of σ(h(R, θ, φ)).
The boundedness part of the lemma follows from this by use of the Cauchy integral

n*(R θ E(R)) ^ {(R, θ, φ, E(R)) = - ^ { ™ n\R, θ, φ, z)(l - P#(R, θ, ψ)\
Zπi r& — zZπi

where Γ is a small circle around the point E(R). The proof of analyticity is
similar. •

Definition. Let -^ ; ; m ) be the set of all C00 functions /(x, y, 0, φ)(xeU) with values in
JQ 5 , such that J2f = j(j + 1)/ and JJ = mf. Let stffm)

Lemma 4.2. Let M be any operator that occurs in Eq. (3.6) other than [h(x, θ, φ) —
E(x)~\, Tι(x\ or Tf](R0) (in the multi-electron case, Eq. (3.6) must be replaced by its
multi-electron analog). Then Ji maps stf^j'm) into j / 0

( J ' m ) .

Proof. First we note that the operators of Eq. (3.6) (and its multi-electron analogs)
commute with J2 and Jz. Furthermore, functions in stfψm) have the form

where the ^]λ(θ, φ, γ) are C"° [11]. Thus, the smoothness in θ and φ (and γ) is clear.
Second, as in the proof of Lemma 4.1, it is sufficient to work in the original

electronic coordinate system and prove the analogous result in that representation.
In those coordinates, Jί is an at most second order differential operator with C00

coefficients that grow at most polynomially.
The lemma follows from these observations. •

Lemma 4.3. The formal expressions for the φk's in Sect. 3 define functions that belong
to ^ m \

Proof The electron wave function Φ(x) is analytic in xeU, and is independent of
θ, and φ. It belongs to J^2,s f° r a ^ s because of exponential fall off [1,2,9-11,19,20],
the fact that h(x) Φ(x) = E(x) Φ(x), and the fact that h(x,θ,φ) has the same
domain as the electronic kinetic energy. Thus, the explicit formulas for φθ9ψ1 =
φ[λ and φ2 = Φ21 show that these functions exist in j/2°'m). Similarly, the explicit
formulas and lemmas. 4.1 and 4.2 show that φ^ and φ\ belong to j/2

(/'m)?
and that T4(x) is a C00 function of x.

We now proceed by induction on k ^ 5. Assume S>

0,S
>

ί,.. .,S)

k^1 are
determined; φo,φl9...,φk_3,φk-2, and φt-i belong to j/2°'m); and that
T4(x), T5(x),..., Tfc_ i(x) belong to C°°(ί/).

By Lemma 4.2 and the discussion following Eq. (3.6), Tk(x) is C00 on U and S°k

is determined. Similarly, φ[

k

1_2 is determined in j/2°'m). Finally, Lemmas 4.1 and
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42 and the discussion following Eq. (3.6) show that φ^ exists in ^/2°'
m). Thus,

the induction can proceed. •

Proof of the Theorems. Choose K ^ 4; let

n = K-4-

δ{ε) =

Rί!LJk)θsφ)r \F(R);

n = 0

and compute

{H{ε)-£(ε)}Ψe(R,θ,φ,r).

Because the ψn

9s satisfy the formal equations of Sect. 3, all terms in this expression
cancel, except for two types. The first type involves derivatives of F. The R
dependence of these terms involves products of bounded functions oϊR with support
away from Ro, times polynomials in [F'(K 0 )] 1 / 2 (K - R0)/ε, times g-^oXa-Ko)2^
Such functions are easily seen to have norms that are smaller than εn for any n.
The second type of term has the form of a function whose norm is bounded as ε
tends to zero, times ε", for some n^ K. Thus, by the triangle inequality, the norm of

{H(ε)-δ{ε)}ΨB(R9θ9φ9r)

is bounded by a multiple of εκ + \ and Ψε is a quasimode of order K. The theorems
of Sect. 2 follow from this. •
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