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Abstract. We suggest a method to extend the theory of recursion operators to
integrable Hamiltonian systems in two-space dimensions, like KP systems. The
approach aims to stress the conceptual unity of the theories in one and two space
dimensions. A sound explanation of the appearance of bilocal operators is also
given.

1. Introduction

This paper deals with the theory of recursion operators for nonlinear Hamiltonian
equations in two space dimensions. According to a common opinion [1,2], the use
of these operators cannot be extended beyond the theories in one space dimension.
In fact, a new phenomenology occurs in two space dimensions, which seems to be
incompatible with a classical recursion scheme, its more impressive feature being the
appearance of bilocal operators [1]. Our aim is to correct this opinion. We believe
that it is due to an incomplete understanding of the potentialities of the method of
recursion operators. In our opinion, a basic element of the theory has been missed,
that is the role of the symmetry algebra. Usually, in fact, the recursion operators are
coupled with a peculiar algebra of vector fields leaving them invariant. This algebra
is (in some sense) trivial in one space dimension, and this fact explains why its role
has been so far underestimated. It becomes crucial in two space dimensions. In the
present paper the symmetry algebra is taken, since the beginning, as a fundamental
element of the theory, at the same level of the recursion operator. This leads us to
develop, in Sect. 2, the theory of the Nijenhuis G-manifolds. (For conceptual reasons,
we prefer to use the name of Nijenhuis tensor instead of the more common, but also
less specific, term of recursion operator.) The main outcome is the quite natural
notion of Lenard bicomplex. It is the basic tool allowing us to deal in a surprisingly
unified way with the theories both in one and two space dimensions. The same
differences which seemed before to cleanly mark the two cases, appear now of
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secondary importance. They accidentally arise in the concrete realization of the
same abstract scheme. An indispensable tool in order to put this abstract scheme in
action is the reduction theory of Nijenhuis G-manifolds and of Lenard bicomplexes.
It is developed in Sects. 4 and 5. The application of the reduction techniques to the
simple examples of algebraic Nijenhuis G-manifolds, constructed in Sect. 3, leads us
directly to obtain, in Sect. 6, the recursion scheme well-fitted for both KdV and KP
systems. Last (but not least) the theory of the Lenard bicomplex gives a sound
explanation for the appearance of bifocal operators, as shown in Sect. 5. A concise
but complete comparison with other approaches [3,1] using these operators is
finally given in the last section.

2. The Nijenhuis G-Manifolds and the Lenard Bicomplex

Let M be a differentiable manifold, N a tensor field on M of type (1,1). M is said to
be a Nijenhuis manifold if N is torsion-free, i.e. if it fulfils the condition

[Nφ, Nφ] -N[Nφ9 φ] -N[φ, Nφ] + N2 [φ, ψ] = 0 (2.1)

for any pair of vector fields φ, φ on M (the bracket [φ, φ] denotes the commutator of
the vector fields φ and φ the vector field Nφ is the image of φ under the linear
mapping N: 3E(M)->3E(M)). Furthermore, let G be a Lie group acting on M, such
that:

(i) the action Φ :Gx M-+M leaves N invariant,
(ii) G is itself a Nijenhuis manifold, with a left-invariant Nijenhuis tensor

A:X(G)-+X(G).
Then Mis said to be endowed with the structure of a Nijenhuis G-manifo Id (or GN-
manifold for short): it will be denoted by (M,N, G, Φ, A).

Our interest for this kind of manifolds is due to the following property. Let la

(#eg, the Lie algebra of G) be any left-invariant vector field on G leaving A
invariant. By means of the infinitesimal action of g on M, Xm = dφm(e): g -• TmM, we
construct the two-indices family of vector fields on M given by

φJ

a

k :=Nj'X-A%a , (2.2)

where Ae is the evaluation of A at the identity e of G. We claim that these vector fields
leave N invariant and commute in pairs

[φi\φι

a

m] = 0 • (2.3)

Moreover, if M is a Poisson-Nijenhuis manifold [4, 5] and the action of G is
Poissonian, they are (locally) Hamiltonian.

To prove this statement, one has to recall that on any Poisson-Nijenhuis
manifold (M, N, P) the vector fields

φj = Njφ φk = Nkφ , (2.4)

recursively obtained from vector fields φ and φ leaving N and P invariant, are
locally Hamiltonian, leave N invariant and fulfil the commutation relations

[φj,ψk]=N>+k[φ,ψ] (2.5)



Nijenhuis G-Manifolds and Lenard Bicomplexes 459

Then, one easily realizes that the vector fields Va' = A jla are left-invariant and
commute in pairs on G. By the action φ, this property is conveyed to the infini-
tesimal generators φJ

a = XΆJ

ea on M. Indeed, these vector fields leave N and P
invariant (by definition), and commute in pairs since [φJ

a, φ
k] = —dφ [lJ

a, l
k] = 0. So,

our statement follows from [φf, φι™] = Nj+ι [φk,φ™] = 0 .

We remark that neither the Lie group G nor the Nijenhuis tensor A are really
needed to construct the vector fields φjk. It suffices to know the Lie algebra g, the
infinitesimal action X and the evaluations of A and la at e, as it is shown by (2.2).
These evaluations fulfil the conditions

[Aebί,Aeb2]-Ae[b1,Λeb2]-Ae[Aebub2] + A2

e[bub2] = O , (2.6)

adα zle = zle adfl , (2.7)

which assure the existence of a left-invariant Nijenhuis tensor field A on G, and of a
left-invariant vector field la leaving A invariant. For this reason, the two-indices
family of vector fields φjk will be referred to as the Lenardbicomplex associated with
the starting symmetry a e g of the gTV manifold (M, N, g, X,Ae).

3. Examples of §N Manifolds

In this section we exhibit an explicit class of gTV manifolds modelled on associative
algebras. The model is constructed so to encompass the theories of KdV and KP
systems as particular cases. It aims to stress the unity of these two theories.

To construct the model we need an associative algebra A with unit, endowed
with a derivation D : A ~^A. This algebra is the ambient space where our theory takes
place. In A we select two particular subalgebras. The first one is the algebra
K=KerD of the elements of the kernel of D. The second one is any subalgebra V
fulfilling the following two conditions:

(V.I) V is stable with respect to D : D(F)c= V,
(V.2) A restricted to V, is kernel-free: VnK=0.

The elements of Kare denoted by (a, b,c,...) and are called the constants', those of V
are denoted by (v, φ, φ,...) and are called the vectors. The manifolds M we are
looking for are the affine hyperplanes modelled on V, defined by

M=V+{c) , (3.1)

where c is any constant such that

[c,V]aV . (3.2)

These hyperplanes are endowed with the structure of Nijenhuis manifold by
introducing the Nijenhuis tensor N(1):Mx V-+V given by

^ V = H«^">] , (3.3)
where [, ] is the commutator in A, u e M, φeV. This tensor is well-defined on M by
(3.2), and fulfils (2.1) since D is a derivation. To construct an infinitesimal action
leaving 7V(1) invariant, we consider the Lie algebra $<^K of the constants a
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commuting with c and leaving V invariant. Explicitly:

[α,c] = 0 , (3.4)

a(V)<=V , ( F ) α c z K . (3.5)

This algebra acts on M according to

^ u ) - = ίa,u] (3.6)

and this action leaves N{1) invariant (since a is a constant and D is a derivation).
Finally, we observe that g is an associative algebra with unit. Then, conditions (2.6)
and (2.7) are simply fulfilled by setting

Λ e = R a ~ , (3.7)

a = l , (3.8)

where R- denotes the right-multiplication by any fixed element αeg. So, we have
explicitly constructed a whole class of §N manifolds (M,N a \ g,X{1\ Ae,a),
depending on the choice of a derivation D and of two constants c and a.

A particular case is of special interest. It corresponds to the following choice of
D and c [6]:

D=[x, ] , (3.9)

c = x2+y , (3.10)

where x and y are given elements of A fulfilling the following conditions:

[y,V]czV ,

(g7V4) [*,;>] = 0 ,

and the bracket {,} is the anticommutator in A. The conditions: (g7Vl-2) entail
(V.I) and (V.2), (g7VΊ-3) entail (3.2), and (gN4) means that c is a constant.
Moreover, x e g by (g7V1-4), so that we can set ά = x. By using the definition (2.2) we
obtain the Lenard bicomplex of Fig. 1 a, where vx : = [x, v], vy : = [y,v],.... As it will
be shown later on, this scheme provides all the KdV and KP systems. It will be
referred to as the KP bicomplex.

A different gTV structure (related with KP systems) is constructed on the same
affine hyperplane (3.1) under the stronger assumptions

[c, V]aV , {c, K}cF, (3.2 bis)

on the constant c. The new structure is defined by the same symmetry algebra as in
the previous example, and by the Nijenhuis tensor

4N^φ=-D2φ + {Du,D-1φ}+2{u,φ} + [u,D-1[D-1φ,u]] . (3.3 bis)

The KP systems are obtained as follows. One observes that the action X^\ defined
by (3.6), leaves N(2) invariant and that c belongs to the symmetry algebra by (3.2
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Fig. 1. The Lenard bicomplexes
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bis). Then one constructs the Lenard bicomplex associated with the gTV structure
(M,TV(2), Q,Xa\Ae=Rc,a = \). The final result is given in Fig. lb. As it will be
shown later on, this scheme provides half the KP systems: it will be referred to as the
KPI bicomplex. To recover the whole KP systems, it is important to remark that a
second infinitesimal action exists leaving the Nijenhuis tensor TV(2) invariant [11 ]. It
is defined by

X^:ae§\-+{Du,a} + [u,D-l[a,u\] . (3.11)

The Lenard bicomplex associated with the QN structure (M, TV(2), g, X{2\ Δe = Rc,
a— 1) is given in Fig. lc: it will be referred to as the KP II bicomplex.

The origin of the §N structure (3.3 bis) will be explained in Sect. 4, by means of
the reduction theory of gTVmanifolds. (However, the next section is not essential for
the understanding of the rest of the paper.)

4. A Reduction Theorem for $N Manifolds

The reduction technique is a powerful tool to obtain a large class of different QN
manifolds, starting from a few ones, simple enough to be dealt with easily. In this
section it is applied to recover the gTV structure related with KP systems. We begin
by summarizing the reduction technique [4, 5].

4.1. The Reduction Technique

Let (M, TV, g, X, Δe) be a gTV manifold. In our search for submanifolds S of M
carrying gTV structures, we consider first of all the characteristic distribution of TV,
defined by

®m:=Nm(TmM) , meM . (4.1)

If the rank of TV is constant in M, 9) is integrable in the sense of Frobenius. Let S be
an integral manifold of Θ. At each point meS, the images and the kernels of the
powers of TV

}n: = {ψ(m)eTmS:ψ(m) = Nι

mφ(m) , for some φ(m)eTmS} , (4.2)

= {χ(m)eTmS:Nι

mχ(m) = O} (4.3)

fulfil the obvious inclusion relations

KerTV'+1 =>KerNι . (4.4)

We assume that there exists a finite index r (called the Riesz index of TV on S) which
is constant on S and such that for i — r both sequences (4.4) become stationary

ImTV;+ 1=ImΛς , Ker Nr

m

+1 = Ker TV; . (4.5)

Then one can show that ImTV̂ , and Ker TV̂  are integrable and intersect transversally
on S: TmS = lmN^ι®KQrι

m. If the leaves of the distribution Ker TV are connected,
the quotient space M / : = 5|KerTVr is a manifold and the canonical projection
π\S-*M' is a surjective submersion, then M' inherits a kernel-free Nijenhuis
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structure defined as

Nm, dπ(m) = dπ{m) Nm , (4.6)

where m is any point of the fiber over m'\m' = π(m). Thus M' is a new (reduced)
Nijenhuis manifold.

As for the infinitesimal action X, it suffices to restrict it to the isotropy
subalgebra §s<=c} of S, i.e. to consider only the subalgebra spanned by the vector
fields φa = X a which are tangent to S. They are automatically projectable on M',
and their projections

φf

a(mr):=dπ(m)'φa(m) (a e §s ,m e π~Λ (m')) (4.7)

define the symmetry algebra of N'. As for Δe: g->cj, we require that it leaves g s

invariant.

4.2. An Application

Let A, D, K, Fbe defined as in Sect. 3. We denote by A' the algebra gl(2,A)of2x2
matrices with entries in A, and we put u'n=u1, u[2 = u2, u21 = u3, u22 = u4. In A' we
consider the affine hyperplane M ' = V' + {c'}, modelled on the subalgebra V of
matrices with entries in V, corresponding to any constant c' such that c'(V')cz V,
(Vf)c'cz V'. A class of §N structures is constructed in M' by considering the two
families of vector fields in A' given by

φξ.(u'):=Dξ' + [u',ξ'] , (4.8)

ψξ'(uy. = [b',ξ'] , (4.9)

where u'eM', ξ'eV and b' is any given constant such that

[bf,V']czV' . (4.10)

It is easy to check that these vector fields are tangent to M' on account of (4.10), and
fulfil the commutation relations

[Φr,φn>] = 0 , (4.13)

since D is a derivation. If A is endowed with a trace form making D skew-symmetric,

Q (4.14)

they are also Hamiltonian with respect to a pair of compatible Poisson structures
on A' [4, 5]. We make the assumption that the fields φξ. define a free and transitive
action on M', i.e. that for every φ ' e F ' a unique ξf e V exists such that φ' = Dξ'
+ [M ' 5£Ί (this condition is easily verified in many applications). Under this
assumption, one can define a family of tensor fields of type (1,1) on M', depending
on the choice of b\ and given by:

N': φξ,^ψξ, . (4.15)
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They fulfil the Nijenhuis condition (2.1) on account of the commutation relations
(4.11)—(4.13). Moreover, they are invariant with respect to the infinitesimal action
(3.11), provided X{1) is restricted to the subalgebra g&c:g of the constants
commuting with b':

Qb> = {afeK>[a\c'] = [a',bf] = O, a'(V')czV\ (V')a'aV'} . (4.16)

So, for any choice of b' fulfilling (4.10), one has a QN manifold. It can be shown
that different choices of b' correspond to different "Zakharov-Shabat spectral
problems." We now proceed to the reduction of the tensor N' corresponding to
b'; = {b1=b3=b4 = O, b2 = l} over the affme hyperplane associated with c': = {c!
= c4 = 0, c3 = ί, c2=c}.

Among the integral leaves of TV', we choose the submanifold S' defined by u3 = 1,

Uγ -\-u4 = o. On this submanifold, the Riesz index is r = \ and the leaves of the null
distribution Ker^V' are given by:

0 , Dui+u\ + u2 = u . (4.17)

Consequently :
(i) the quotient manifold S'/KQTN' is identified with the affme hyperplane

M=V+{c} in A,
(ii) a suitable section of the projection τι\{μγ, u2)^>u is given by

y = {Uί=uA = 07u^Uu2 = u} . (4.18)

A simple computation which consists in:
(i) evaluating the vector fields φξ> and φξ> on the points of the section γ,

(ii) finding the unique ξ' e V such that, for any φ e V, dπ ψξ< = φ and φξ, be
tangent to y,

(iii) computing φ = dπ * φξ>,

gives the reduced Nijenhuis tensor TV :φv^>φ on M. Explicitly, one finds

{-1φ}+2{u,φ} + [u,D-1[D-1φ,u]] . (4.19)

As for the symmetry algebra (4.16), the choice of b' and c' entails that

Qb, = [a1 :a2=a3 = 0,aγ =a4 = a, [a,c] = 0,a(V)c V,(V)ac V) . (4.20)

Under these assumptions the infinitesimal generator φ'a(u'): = [a', u'\ is tangent to S'
and then is automatically projectable on M. Its projection is given by

φa(u) = [a,u] , (4.21)

so that the first infinitesimal action X^} is obtained.

4.3. An Extension

So far, the second symmetry generator (3.11) has been missed. The reason is due to
the choice of the reduction technique. Recall that, at the beginning, only the vector
fields φξ, and φξ> were available but not the Nijenhuis tensor. To define this tensor,
we were compelled to restrict our manifold to the affme hyperplane M\ in order to
make the action of φξ, free and transitive. Of course, this has reduced the symmetry
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algebra φ'a and only the symmetry generator (4.21) survived. We can overcome this
difficulty by changing the reduction technique. We shall now give a sketch of the
new procedure by using the example at hand, without claiming for any general
theory. The aim is mainly to justify formula (3.11).

Let us still consider the vector fields (4.8) and (4.9) without setting any limitation
on u' and ξf. This means that we regard these vector fields as defining two
infinitesimal actions of A' (endowed with its natural Lie algebra structure) on itself,
considered as a manifold. Each action defines its family of orbits. In particular, we
consider the orbit

0 = {u'eA' :M3 = 1 5 W I + W 4 = 0} (4.22)

of the second action ψξ,. We remark that this orbit properly includes the previous
submanifold S', since now (wx, w4) are not restricted to V. Two relevant subalgebras
are associated with any point u' of O. The first one is the isotropy algebra with
respect to the action ψξ,, i.e. the set of vectors ξ' such that ψξ> = 0 at u'. It is clearly
independent of the point u\ being given by

g g M ^ e Λ ' : £3 = 0,6 =&} . (4.23)

The second algebra consists of all the vectors ξ' such that the infinitesimal generator
φξ'iμ') is tangent to O. It is given by

= D-1([u1,Dξ3-{uί,ξ3}]-[u2,ξ3]) + 2a} , (4.24)

where ξ2,ξ3eAr and aeKare arbitrary parameters. These two algebras have the
intersection

tf3)(u') = Q$\u')π$) = {ξ'eA':ξ3 = O,ξ1=ξ4 = αeK} (4.25)

parametrized by (ξ2,ά). The commutation relations in g(3) are easily found by
considering the associated infinitesimal generators ψ(ξ2,α)> a n d by computing their
commutator as vector fields. One gets

\.Ψ(ξi,α)> Ψiηi.b)] = <P([iί2,α]-[ξ2,b],[α,b]) ( 4 2 6 )

Analogous commutation relations (not of this simple form) can be also computed
between φξ2'. = φ(ξ2,o) a n d ψξ> or φξ>, with ξ'egβK They all imply that the
commutators [φξ2, ψξ>] and [φξ2, φξ>] are still fields of the type φξ2 for a suitable
choice of ξ2, depending on the point u'eO. Then, consider the orbits of φξ2

on O. They are still defined by (4.17), without assuming ( M 1 5 M 4 ) G F . SO, the
quotient manifold M' = O/φξ2 is identified with A, and the canonical projection is
π:(uι,u2)\—>u = Dux ~\-u\ + u2- On account of the above-mentioned commutation
relations, the vector fields φξf and φξ>,ξ'eg(1), project on M'. The projected vector
fields are given by

(4.27)

[u,D-1[ξ3,u]])-[α,u] . (4.28)
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So, we started from A' with a pair of vector fields (ψξ>, φξ>), and we arrived to A with
three vector fields {ψξ3, φ'ξ3, φ'a). The last one is the first symmetry generator (4.21)
already found.

Now, we can repeat the whole process in A, by considering the vector fields
(ψ'ξ3, φ'ξ3) Let us restrict our attention to the constants b such that b(V)czV and
(V)bczV. Without loss of generality, we can then assume A = V® K, so that we can
characterize the orbits of ι//ξ3 as the affine hyperplanes modelled on V. The isotropy
algebra g(2), for each of these orbits, is the algebra Kof the constants. Fix an orbit M
= V+{c}. The algebra gjυ consists of all the vectors ξ3 = ξ + b, such that ξe V
and b is a constant commuting with c: [b,c] = 0. So, the algebra 9c3) —g (

c

1}πg (2)

consists of all the constant b such that [b, c] = 0. In particular, consider the vector
field (4.28) for ξ3 = Z?eg<3). It is tangent to the manifold M, and gives the second
symmetry generator (3.11), exactly as the vector field φξ> for ξ' = {ξ1 = ξ4 = a,
ξ2 = ξ3 = 0}Ec$ϊ gives the first symmetry generator. Finally, consider the vector
fields (4.27) and (4.28) for ξ3 = ξ e V. The action of φ'ξ is free and transitive on M.
Consequently, a unique tensor field N is defined on M such that TV: ι/̂ ι̂—>φ̂ . It is the
Nijenhuis tensor (4.19) previously found. This completes our deduction.

5. A Reduction Theorem for Lenard Bicomplexes

The reduction techniques for QN manifolds are not sufficient to recover all the
interesting examples of integrable systems known from the literature. This is due to
the rather restrictive nature of the conditions defining §N manifolds modelled on
associative algebras. Take, for example, the condition (giVl) of Sect. 3. One has to
find an element xeA and a subalgebra VczA such that x(V)a V and (V)χczV.
Clearly, these conditions entail (V)x2 a V, (V)x3 a V,. . . and so on, so that Fmust
fulfil the condition

Σ vkx
keV (vkeV) . (5.1)

Consequently, if the order of x is infinite the dimension of V cannot be finite. This
compels us to work with infinite dimensional cjTV manifolds, and so to deal with
evolution equations in an infinite number of fields. We can overcome this difficulty
by means of the reduction technique for the bicomplexes. They admit reductions
onto finite-dimensional manifolds, even if this is not possible for the entire gTV
structure. This is the new feature we aim to display in this section.

Let S be a submanifold of M, gs<=g its isotropy algebra, i.e. the set of the
elements αeg such that X a is tangent to S. We consider the linear mappings
Xj'.Q^> X(M) recursively defined by

Xj+1:=N'Xj-XjΆe , X0 = X . (5.2)

Clearly, if TS is invariant with respect to N and g5 with respect to Ae, then

(5.3)
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and S is itself a cjTV-manifold. Let us assume (5.3) to hold true even if g s and TS are
not invariant, and let us consider the subsequence of vector fields

extracted from the bicomplex. It is straightforward to check that they are tangent
to S. Indeed, (5.2) and (5.4) can be given the form

Xexp-λAe , (5.5)

φa(λ) = (expλN X exp -λΔe)a , (5.6)

by introducing the formal series

ΨaW=Σ ψkaT]> ( 5 ' 7 )

K

Clearly, X(λ) verifies (5.3) and this entails the required property for φa(λ). Thus we
can conclude that a commuting hierarchy of vector fields is naturally defined on
each submanifold S fulfilling (5.3). This hierarchy will be referred to as the standard
reduction of the Lenard bicomplex.

We now specialize our study to the algebraic QN manifolds of Sect. 3. The right
hint is given by the remark that both the Nijenhuis tensors (3.3) [with the choices
(3.9) and (3.10) for D and c] and (4.19), and the infinitesimal action (4.21) and (3.11)
have a peculiar structure. Indeed, by making explicit their dependence on the
constants (x, y, c,.. .), they can be written at any point u = v + c of M in the form

, (5.9)

, (5.10)

(5.11)

(5.12)

This suggests to consider a more general class of tensor fields of the following form:

Nv=p(Lv,Rv,Du...,Dhadxl,...,?LάXn) + Rx , (5.13)

XΌ = q(LΌ9RΌ9Dl9...,Dι,2idxι,...Mxt) , (5.14)

where p and q are polynomial functions of LV,RV and of a given set
(D1,..., Dz, ad x i , . . . , adXn) of commuting derivations leaving V invariant:

[DJ9Dk] = 0 , zdXJDk = Dk*dXJ , [xj9xk] = 0 , (5.15)

Dj(V)c:V , a d X j ( F ) c = F . (5.16)

The additional term Rx in (5.13) (where x may be anyone of the constants x1,..., xn)
is the troubling term. Due to its presence we must require condition (5.1) on V,
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preventing the reduction of N over fmite-dimensional submanifolds. Instead we
shall now show that it does not forbid standard reductions of the Lenard bicomplex.

Proposition 5.1. (Standard reduction of algebraic Lenard bicomplexes). Let M be an
algebraic QN manifold modelled on an associative algebra A with unit. Assume that:

(i) M is an affine hyperplane of equation M = V+ {c}, where Vis any subalgebra
of A fulfilling both conditions (5.1), with respect to x, and (5.16),

(ii) N and X have the form (5.13) and (5.14),
(///) g is an associative algebra with unit,
(iv) x belongs to g.
Moreover, let Q be any subalgebra of Vfulfilling (5.16) but not (5.1). Then the

vector fields

/ : = £ (-l)j(k)(Nk-j X'Rί)Ί (5.17)

commute in pairs and are tangent to the affine hyperplane S=Q + {c} modelled
on Q.

To prove this statement, we use the fact that both M and g are submanifolds of
the ambient space A to write the bicomplex (5.6) in the equivalent form

= {expλN exp - λRx) - (expλRx X - zxp - λRx) Λ . (5.18)

By setting

, (5.19)

, (5.20)

and deriving (5.17) k times with respect to λ one easily obtains:

dkφ(λ) ( d\k

^ ( λ N λ R ) l N ( λ ) R x + —\ -X(λ) \ . (5.21)

So, one has the basic relation

k

~} X(λ) \ (5.22)

entailing that the fields of the hierarchy are completely determined by the linear
mappings N(λ) and X(λ). These mappings are computed by observing that

[Rx>Lv] = 0 , [Rx,Rv]= — R[χ,V] ,

[RX9Dk] = 0 , [Rx,SLdXJ] = 0 , (5.23)

and consequently that

v RV(λ) , .

Ad*xPλRxDi = Di , Ade^^^ad^-ad^. ,
where

v(λ):=exp(-λeLdx)'v (5.25)
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is the orbit of υ for the flow generated by adΛ. This orbit clearly belongs to Q on
account of the assumption (5.16). Thus

= AdexpλRχ(p(Lv,Rv,Dk,<idXj)

=p(AdexpλRχLv,...,AdexpλRχadXj)

=p(LΌ,Roiλ),Dk,2idXJ) + Rx , (5.26)

and similarly

= q(L0,R0(λ),Dk,adXj) , (5.27)

so that N(λ) and X(λ) are obtained from N and X simply by replacing Rv by Rv(λ).
They are bilocal operators, because of the simultaneous dependence on v and v(λ).

Finally, the Proposition (5.1) is proved by observing that I N(λ)—Rx + — I and
dλ

X(λ) leave Q invariant on account of condition (5.16).

φ01 φ11

2 = φ20-2φn+φ

KP

-qx

KPI

KPII

Fig. 2. The standard reductions
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Possible variants and generalizations of this reduction scheme will not be
considered in this paper. A suitable geometrical interpretation of bilocal operators
N(λ) and X(λ) is suggested in [6].

We end this section by applying the previous result to the Lenard bicomplexes
defined in Sect. 3. One easily gets the schemes of Fig. 2, showing that KP is
equivalent to KPI + KPΠ if D = [x, •] and c =y in the last two bicomplexes. By the
first scheme, the whole KP hierarchy is obtained with a fixed step, starting from a
unique initial symmetry.

6. KP Systems

We consider a few realizations of the previous abstract schemes, in order to obtain
from a unified point of view the explicit form of KdV and KP hierarchies known
from the literature. As it has been already remarked, the present approach clearly
shows the unity of these two theories, corresponding to two different realizations of
the same abstract scheme over different base algebras.

Example 1 (KdV hierarchy). Let si [z] be the algebra of polynomials in z e <C, with
coefficients in an associative algebra si with unit (e. g., si = Matπ((C) gives rise to the
non-Abelian KdV hierarchy [7], si — <C to the usual KdV theory). In this example,
the following choices are made:

(i) A is the current algebra [8] of C0 0 functions on ]R taking their values
in si\z\.

(ii) D = djdx is the usual partial derivative with respect to x, so that Kis given by
the polynomials with constant coefficients in particular, we set c = z.

(iii) Fis the subalgebra of polynomial functions rapidly vanishing for \x\ -> oo it
fulfils the conditions (5.1) and (5.16) with respect to D and x1 =c.

(iv) M is the affine hyperplane with equation

«(x,z)=Σ vk(x)zk + z , (6.1)

where vk are rapidly vanishing functions for |x|->oo. Since c = z commute with any
polynomial, KPI is clearly trivial, whereas KPΠ takes the form shown in Fig. 3a.
The subalgebra Q of the polynomials with degree zero is the only subalgebra of V
with a finite number of field functions fulfilling (5.16). The standard reduction on
the affine hyperplane S={ueM:u = q + z} gives the vector fields of the non-
Abelian KdV chain, e.g.

φ° = φO0 = 2qx φι = φ10 -<p0 1 =K-<?*** +3{<?,<?.}) , (6.2)

and so on [7].

Example 2 ( KP Hierarchy). The algebra of si-valued polynomial functions on IR is
now replaced by the algebra A of differential operators

dk

u=Σ Ukix.y)—^ (6.3)

whose coefficients are si-valued C 0 0 functions on IR2. D is still the partial derivative
with respect to x and c = dy. Fis the subalgebra of differential operators with rapidly
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The standard KdV

z.

2φlo= ~VXXX + 3{VX,V}+4Z-VX

Xί2)

Z-
i

ι = 2Z Vx

The standard KP I

l — • - φ o o -0
N{2)

φ l o-0
N{2)

φ2O-0

V01 = Vv

= - Vxxy + {Vx, D"1 Vy] +2 {V, Vy]

+ 2Vyy+[V+dy,D-ί[D-ίVy,V+d

φO2=Vy

The standard KP II

+ [V+dy,D~1Vy]

Fig. 3. The standard realization

vanishing coefficients for x2+y2^>oo, and Q is the subalgebra of zero order
operators (the choice c = dyis essential to make Q fulfil condition (5.16)). Since c
does not commute with u, both bicomplexes KPI and KPII must be considered. By
using the notations uy: = [c, u], ux: = Du, one obtains for KPI and KPII the schemes
of Fig. 3b and c. The standard reduction on Q gives the usual (non-Abelian) KP
chains. The first equations are obtained from the schemes of Fig. 2b-c by setting

Z) = ̂ — and by restricting q to be a function q(x,y, t).

Example 3 (Unified KP Hierarchy). Let A be the algebra of j/-valued differential
operators in R 2,

(6.4)
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Fthe algebra of rapidly decreasing differential operators, Q the subalgebra of zero-
order operators, x = d/dx and y = d/δy. Clearly, all the conditions (gTVl) — (gN4) of
Sect. 3 are fulfilled, so that the abstract KP bicomplex of Fig. la can be realized in
this algebra. The first equations of the standard reduction to Q are obtained from

d
the scheme of Fig. 2a by setting D = — and q = q(x, y, t). One still recovers the whole

ex
KP hierarchy (KPI being the even component and KPΠ the odd one). This is a first
example of two different bicomplexes, defined on different algebras, whose
standard reduction over different submanifolds coincide. (As far as we know, the
idea of using the algebra (6.4) is due to Bruschi [13], see also [9, 10]).
Example 4 (Integral Representation of KP Hierarchies). In this last example, we
consider the algebra of integral operators

(6.5)
R

with the product

{u*ϋ)(x,yuy2): = \ u{x,yuy3)v{x,y3,y2)dy3 (6.6)
R

and the usual derivation D = δx.
In this case:
i) V is the subalgebra of the kernels

v(χ9yuy2)= Σ

dk

where < 5 ( 0 ) 0 Ί —y2) is the Dirac distribution, δ(k)(y1 - j ; 2 ) : = : — ( 5 ( 0 ) ( ^ — y2) and
dk

—
vk are rapidly vanishing functions.

ii) c is given by c = δil)(y1—y2) and M is the affme hyperplane

uί2 = ^ vi2k<>i2 + δvz (th e two indices notation is used for shortness)
/c^O

iii) Q is the subalgebra of the kernels v12 = qιδ[°2

).

Consequently, on M the Nijenhuis tensor TV (4.19) takes the form

$ 'φ^ 'Du32)dy3

R

+ 2 j ( u 1 3 ' φ
R

J U^ΛD-1 J (Z)" 1 φ34r-u42-u34-D
R

- j i ) " 1 Π (D-1φ1A'u43-u^'D-1φ43)dy^'U32dy3 . (6.8)
R \R

Its evaluation at the points of the submanifolds S=Q + {c} is given by

-qϊ2D-ιqϊ2D-1 , (6.9)
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where

qΓ2 = qi±q2 + (Dί+D2) , A = ̂ 0 " = l,2) . (6.10)

This is exactly the recursion operator discovered by Fokas and Santini [3].
The infinitesimal actions (4.21) and (3.11), evaluated at S, are given by

qΰD-^qπ) . (6.11)

So, we could compute the bicomplexes KPI and KPII by taking the right translation
by δyz a s Nijenhuis tensor Λe on the symmetry algebra and a — 5$ (the unit of A) as
the starting symmetry. We would obtain the KP hierarchy in the bilocal formalism
of Fokas and Santini.

7. The Relation with the Bilocal Approach

In this section we explicitly compute the bilocal operators N(λ) and X(λ) entering
the standard reduction, for every realization of the algebra A considered in Sect. 6.
This will enable us to point out the strict link between the bicomplex approach and
that based on bilocal operators introduced by Konopelchenko [1].

Example 1 ( KdV Theory). Since c = z commutes with every polynomial, the adjoint
action of c is trivial, and the operators N and X are invariant, so that

+ [q,D-1[D-1-,q]]γ X l . (7.1)

In this case, the standard reduction coincides with the usual Lenard chain [7].

Example 2 (KP Chain). In this case the adjoint action of c — dy is given by

0 , (7.2)

so that v(λ) = v(y—λ). By using the notations

[v,φ]λ = v φ-φ v(y-λ) {v, φ}λ = v φ + φ 'v(y-λ) , (7.3)

one easily obtains, at any v e V

\

D-'φU. + A^φ , (7.4)

dy,D-ί[a,v + dy]λ]λ . (7.5)
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This is exactly the formulation of the KP theory in bilocal form. Indeed, let us put

) = φ(yl9y2). Then

yi) (7.6)

and

where Nl2 and X12 are the operators (6.9)—(6.11) giving the realizations of TV and X
on the algebra of the integral operators. Consequently, the basic formula (5.22)
defining the standard reduction

= N(λ)-Rδ+-\ X(λ) l
k

(7.8)
dλj

becomes
φk = (N12)

k X12-l\fι=y2 . (7.9)

This is the "fixed-step" recursion formula for KP hierarchy first discovered by
Fokas and Santini [3].

8. Concluding Remarks

With this paper we hope to have clarified the role of the method of recursion
operators (here called Nijenhuis tensors) in the theory of Hamiltonian equations
solvable by the inverse scattering technique. The apparent drawback of this method
in 2-hi dimensions [1,2] is due rather to an incomplete understanding of the
symmetry algebra than to its intrinsic limitations. A systematic use of recursion
relations also in the symmetry algebra (leading to what we have called a qN
manifold) allows us to overcome these difficulties, and to deal with systems like KP,
Davey-Stewartson and so on with an unexpected ease. Moreover, we believe that
the technique of algebraic §N manifolds leads to a gain in clarity and unity,
throwing some light, for example, in the appearance of bilocal operators. Naturally
related to this subject is the problem of considering more general deformations than
the adjoint action by a constant element. On the basis of some interesting results of
Fokas and Santini [12] (whose deep meaning must yet be fully understood) it seems
reasonable to arrive in this way to a better understanding of Backhand trans-
formations. We hope to be able to do that in a forthcoming paper.
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