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Abstract. In this paper, we prove that in the case of holomorphic locally Kahler
ίlbrations, the analytic and algebraic geometry constructions of determinant
bundles for direct images coincide. We calculate the curvature of the
holomorphic Hermitian connection for the Quillen metric on the determinant
bundle. We study the behavior of the Quillen metric under change of metrics in
the fibers, and also on the twisting vector bundles. We thus generalize the
conformal anomaly formula to Kahler manifolds of arbitrary dimension. We
also study the Quillen metrics on determinants associated with exact sequences
of vector bundles. We prove that the Quillen metric is smooth on the
Grothendieck-Knudsen-Mumford determinant for arbitrary holomorphic
fibrations.
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This is the third of a series of three papers devoted to the study of holomorphic
determinant bundles and direct images. Parts I and II of this work will be referred
to as [BGS1, BGS2]. Also the Introduction of [BGS1] contains a general
description of our results.

Let π: M-*B be a proper holomorphic map of complex manifolds, and let ξ be
a complex holomorphic vector bundle on M. For y e B, let Zy = π ~ l ( y ) be the fiber
over y. Let gZy be a Kahler metric on Zy which depends smoothly on y, and let hξ be
a smooth metric on ξ. If / = dimZy, let

O^E°,-ΓE
1

y...-ΓE',^0 (0.1)

denote the d complex associated with the restriction of ξ to Zy.
In [BGS 2], when the metrics gZy are the restriction to the fibers Zy of a Kahler

metric on M, we constructed analytic torsion forms of any degree associated with
the direct image of the vector bundle ξ by the map π.

In this paper, we study in detail the determinant bundle of the direct image.
In Sect. 1, when the fϊbration π is locally Kahler, we construct a holomorphic

structure on the C°° line bundle λ of Bismut and Freed [BF1,2] and the
corresponding Quillen metric. We calculate the curvature of the associated
holomorphic Hermitian connection, which is given by a differential form version
of the Riemann-Roch-Grothendieck Theorem. We use two facts:

• The truncation procedure of [Q2, BF1,2], which approximates the line
bundle λ by the determinant bundle of finite dimensional eigenspaces of (d + δ*)2, is
compatible with the holomorphic structure on the infinite dimensional Hermitian
vector bundles E°, ...,E*, at least when the metric gz is the restriction to Z of a
Kahler metric on M.

• We establish in Theorem 1.23 a generalization of the conformal anomaly
formula for Kahler manifolds of arbitrary dimension, i.e. we prove the result
stated in [BGS 1, Theorem 0.2].

Observe that the construction of Sect. 1 is purely analytical, and that in
particular the holomorphic structure on the line bundle λ has been constructed
analytically. One of the purposes of the next two sections is to compare the
holomorphic line bundle λ with the holomorphic line bundle /1KM of Knudsen and
Mumford [KM].

In Sect. 2, we first establish [BGS 1, Theorem 0.3]. Namely we calculate the
Quillen norm of the canonical section σ of an alternate product of determinant
bundles associated with an exact sequence of holomorphic Hermitian vector
bundles on M. To obtain this result, we use in an essential way the results of
[BGS 2]. When π is projective, we prove in Theorem 2.12 that λ and λκu are
canonically isomorphic as smooth holomorphic line bundles.
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In Sect. 3, we prove that in general, the canonical isomorphism of fibers
λy~λfM defines a smooth isomorphism of line bundles, even when π is not locally
Kahler. We also prove that when π is locally Kahler, this isomorphism preserves
the holomorphic structures. We thus prove [BGS1, Theorem 0.1] in full
generality.

We use in this paper many of the techniques we developed in [BGS 1, BGS 2].
In particular we are able to calculate the term of order 0 in a singular asymptotic
expansion as ί||0 in order to establish the generalization of the conformal
anomaly formula of [BGS 1, Theorem 0.2]. Also we constantly use the formalism
of the Bott-Chern classes of [BGS 1], and the superconnections of Quillen [Q 1].

We refer to [BGS 1, BGS 2] for notations and terminology. In particular if K is
a Z2 graded algebra, and if A, B e K, [A, #] denotes the supercommutator of A and
B. Also the notations Tr and Trs are used for traces and supertraces.

On a complex manifold B, P denotes the set of smooth differential forms which
are sums of forms of type (p,p). P' is the subspace of P which consists of the forms
ω E P such that ω = dBη + dBη'.

The results contained in this paper were announced in [BGS 3].

I. The Analysis of Holomorphic Determinant Bundles

In this section, we construct a holomorphic structure on the C°° line bundle of
Bismut and Freed [BF1] associated with the family of operators dy + 5*, and we
derive the essential properties of this line bundle.

In a), we give the main assumptions and notations. In b), we describe the line
bundle λ. Although our construction imitates [BF 1], it is somewhat different. In
fact, we use the same approximating line bundles λa as in [BF 1]. However, our
transition maps are not the same.

In c), we prove that the approximating line bundles λa are naturally
holomorphic, and that λ inherits the corresponding holomorphic structure.

In d), we construct the Quillen metric on the bundle λ. This metric differs from
the metric in [BF 1].

In e) we calculate the curvature of the holomorphic Hermitian line bundle λ in
the special case where the metric on Z is the restriction of a Kahler metric on M.

In f) we briefly identify our line bundle λ with the bundle λ' of [BF 1, BF2] as
smooth bundles with metric and connection.

In g) we prove that the holomorphic structure on λ does not depend on the
special Kahler metric on M which was used to construct it. This is done by purely
analytic methods. Of course in the light of our final result λ = λKM, it is very natural
that such a direct proof can be given.

In h), we prove the result stated in [BGS 1, Theorem 0.2] which describes how
the Quillen metric varies with the metric gz in one given fiber. This is done by using
again non-trivial identities on traces, anticommuting variables, the heat equation
and Brownian motion.

Finally in i), we prove that if the fibers Z are endowed with any family of Kahler
metrics gz, the curvature of the holomorphic line bundle λ endowed with the
Quillen metric is given by a differential form version of the Riemann-Roch-
Grothendieck Theorem.
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a) Assumptions and Notations

We now do the same assumptions as in [BGS 2, Sect. 2], and we use the same
notations. In particular (π, gz, THM) is a Kahler fibration and ω = ωz + ωH is an
associated (1,1) form.

Let ξ be a holomorphic Hermitian vector bundle on M and Vξ the
corresponding Hermitian holomorphic connection, Lξ = (Vξ)2 its curvature. We
use the notations of [BGS 2, Sect. 2] with m = 0. In other words, we consider the
case of one single twisting bundle ξ. The associated trivial chain complex ξ is
simply 0— >£—>(). In particular ι; = 0, v* = Q.

Recall that for O^/?^/, j e B, Epis the set of smooth sections of ΛPT*(0 l]Z®ξ
on Zy. Also:

17+ /τ\ 17 p J7 ~ fT\ J7P 77 P1 ~*~ <T\ ΓΓ ~
-O — vT/ 5 — vTy ' — 3̂̂  *

peven podd

acts on the fiber Ey. Let D+ be the restriction of D to E±. Then we

D= °

foj Description of the Determinant Bundle

We now describe the determinant bundle associated with D. Our description is
inspired from Quillen [Q2] and from Bismut and Freed [BF 1]. However, since
we are especially interested in the explicit construction of an holomorphic
structure on this line bundle, we must proceed differently from [BF 1].

For every ye B, the spectrum of Dy is discrete. For fo>0, O^Ξprg/, let Kb

y'
p be

the sum of the eigenspaces of the operator Dy acting on Ep for eigenvalues < b.
Since D] is elliptic on Zy,K

b

y'
pCEp.

Let Ub be the open set:

On the open set Ub, Kb'p is a smooth finite dimensional vector bundle. Set

Kb> + = 0 Kb>p, Kb>-=@Kb>p, Kb = Kb> + ®Kb>- . (1.1)
p even podd

We now define the line bundles λb and λ'b on L/b,

By [BGS 1, Sect, la) 3.], there is a canonical isomorphism f from λb into λ'b.
For 0<b<c, if ye C/&n(7c, let K$? c) p be the sum of the eigenspaces of D2

y in
Ep for eigenvalues μ such that b<μ<c. Set:

peven podd

K(6,C) = K(h,c),
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We also define λ(bίC\ λ'(b'c} as before, and denote by i(b'c} the canonical isomorphism
from λ(b>_c} into λ'(b>c\

Let 3(b'c) and D(b'c) be the restrictions of d and D to K(b'c) D(ί'c) is the restriction
of D to K®'^*.

The chain complex

(1.3)

is acyclic. By [BGS1, Definition 1.1], λ(b'c) has a canonical non-zero section
T(d(b'c)) which is smooth on Όbr\ Uc. Also detD(+'c) is a smooth non-zero section of
Λ' ( f e ' c )over UbnUc.

For 0<b<c, over t/bnt/c, we have the C00 identifications

(1.4)
= ( x .

We identify Λ6 and Ac over UbnUc by the C°° maps

(1.5)

Note that the identifications (1.5) are not compatible with the isomorphisms f
and f .

Definition 1.1. λ (respectively λ') is the C°° line bundle over B which coincides with
λb (respectively λ'b) on Ub with the transition functions (1.5) on Ubr\Uc.

Only the line bundle λ' was considered in [BF 1] (under the name of λ).

c) A Holomorphic Structure on λ

As a smooth subbundle of E over Ub, Kb inherits the Hermitian product defined in
[BGS 2, Eq. (1.38)]. It follows that over Ub, λb, and λ'b are endowed with smooth
Hermitian metrics | \b and | \'b. The map f is an isometry from λb into λ'b.

For y E Ub, let Pb be the orthogonal projection operator from Ey on Kb. Since
KbcEy, Pb is a smooth family of regularizing operators. Similarly for 0<b
<c < + oo, over Ubr\Uc, P(b'c} is the orthogonal projection operator from Ey into

J£θ»,c)
^y .

Definition 1.2. Let Pb denote the connection on K& over [7& such that if h is a C°°
section of Kb over Ub, then:

Vbh = PbVh. (1.6)

The connection P& preserves the metric of 7C&, and induces connections °F& and
QV'b on A& and λ'b, which preserve the metrics | \b and | |/&.

In the same way, forO<έ><c< + oo, over l/bnL/c, λ(b'c), and λ'(b'c} are endowed
with smooth metrics | |(fe'c) and | |/(δ'c) and unitary connections °P(ί)'c) and °F/(b c),
which are induced by the connection F(b'c) on K(b'c\

We now prove an essential result:
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Theorem 1.3. Over Ub, there is a uniquely defined holomorphic structure on the
smooth Hermitian line bundle (λb, \ \b) such that ° Vb is the corresponding holomorphic
Hermitian connection.

Similarly for 0<b<c<+co, over Ubr\Uc, there exists a uniquely defined
holomorphic structure on the smooth Hermitian line bundle (λ(b'c\\ |(&'c)) such that
°P(b'c) is the corresponding holomorphic Hermitian connection. T ( B ( b ' c } ) is a non-zero
holomorphic section of λ(b'c) over UbnUc.

The holomorphic structures on (λb, Ub] patch into a uniquely defined holomorphic
structure on the line bundle λ on B.

Proof. By [AHS, Theorem 5.1], to prove the first part of the theorem, we only need
to prove that the curvature of the unitary connection °P7fe is of type (1, 1).

Since Pb is a smooth family of regularizing operators, for any YE TB, VΎPb is
regularizing. If K(b> +00) is the orthogonal of Kb in £, by [BF 1, Proposition 1.13],
VΎPb interchanges Kb and K(b> + G0). Thus if Y, Y'eTB, [VΎPb, VTP

b~\ map Kb and
X(b' + o o )into themselves.

By [BGS 2, Theorem 1.14], V\Y, Γ) is a first order differential operator acting
fiberwise. It follows that PbV2(Y, Y')Pb maps Kb into itself. An obvious compu-
tation shows that the curvature of the connection °Pb on λb is given by

Trs{PbF2P5}

By [BGS 2, Theorem 1.14], F2 is of type (1,1). So we should prove that
Ίτs{Pb[VPb, FPδ]Pfo} is of type (1, 1).

Set Qb = I — Pb. Since Trs vanishes on supercommutators, we find that

Trs{Pb[PPb, VPb~\Pb] = -Ίτs{Qb[yPb, PPb]βb) . (1.7)

Since [£>2,5] = 0 it is clear that:

= dPb. (1.8)

Also by [BGS 2, Theorem 1.14], F"δ = 0. Using (1.8), we find that

[(P"P*),3] = 0. (1.9)

Take Y9Y'eT(Q »Z.Set

S=yγpbyγ,pb. (1.10)

From (1.9), we find that

[S,3] = 0. (1.11)

We claim that

Trs[βb5βb]^0. (1.12)

If μ is an eigenvalue of D2, let Tμ be the orthogonal projection operator on the
corresponding eigenspace. Since S is trace class, we know that

Trs[β*Sβ&]=£ Trs[Tμ5TJ. (1.13)
μ>b
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If K{μ} is the eigenspace in Ep corresponding to the eigenvalue μ, we have the exact
sequence

Q^K{

Q

μ}^K{μ}-+...-j+K{f}^(). (1.14)

By [BGS 1, Proposition 1.3], we find that:

0. (1.15)

Equation (1.12) follows from (1.13) and (1.15).
Using (1.12), we find that Ίτs{Pb[_VP\ VPb]Pb} is of type (1,1). Therefore we

have proved that (°Γ6)2 is of type (1, 1). Similarly since F"d = 0, if Y, Y'eT(0 VZ9

(F(b'c})2(Y,Y') commutes with d(b'c\ Since the chain complex (1.3) is acyclic, by
[BGS 1, Proposition 1.3], we find that:

Trs[(F(fe'c)}2(}ζr)]=0, (1.16)

and so (°p(ft'c))2 is of complex type (1, 1).
We now prove that T(<3^'c)) is a holomorphic section of λ(b'c\ Since the complex

(1.14) is acyclic, each K(b c)'p splits into

and the two vector spaces in the right-hand side of (1.17) are orthogonal. Also

dim£(fe'c)'/> = dim(^^ (1>18)

Since K(b>c} is a C00 bundle on Ubn Uc, dimK(b>c)>p is locally constant on L/6n Uc.
Equation (1.18) shows that ά\m((P'c}K(b'c)'p) is locally constant on UbnUc.

Therefore, 5(b'c)K(b'c)-p and d(b^K(b^p are smooth bundles on UbπUc.
Let 5°, ..^s^"1 be locally defined C00 non-zero sections of

Then by [BGS 1, Definition 1.1], we know that:

T(d(b<c}) = (s0Γί®ds0Λs1(g)(ds1Λs2Γ1® .... (1.19)

Let U(b>c}'p be the orthogonal projection operator from K(b^p on &*•<** κ(b c)-p+1.
The connection P(b'c) splits into V(b>c}= |7(&'c)/+ y^^\ where P(&'c)', F(Z> C)" are the
holomorphic and_ antiholomorphic parts of Γ(&'c). Since by [BGS 2,
Theorem 1.14], F"d = 0, we know that:

Since d(b'c} vanishes on d(b^(K(b^p~l) and since in the right-hand side of (1.17), the
two vector spaces are orthogonal, we find that:

and so

j7(b,c)"/^-sp-l Λ sp\ jj(b,c),p-ly(b,c)"sp-l [j(b,c),py(b,c)"
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°P(*'C) also splits into V'') = °(7(&'c)' + op<MΓ Using (i.2l), we find that:

(h'c)) = 0. (1.22)

T(d(b*c}) is thus a holomorphic section of Λ(M).
We now prove that f o r O < f r < c < + o o , over UbπUc, the canonical map

sελb->s®T(d(b>c})eλc (1.23)

is a holomorphic map from the holomorphic bundle λb into the holomorphic
bundle λc. In fact, since κc'p = Kb>p®K(b'c)'p, it is clear that if s is a smooth section
of λ\

°Pc(s®T(3(*'c))H°^s®T^ (1.24)

Using (1.22), we find that:

°Pc"(5®T(3(b'c))-°Pb"5(x)T(δ(6'c)). (1.25)

(1.25) exactly means that the map (1.23) is holomorphic.
We have thus shown that the holomorphic structures on (λb, Ub) patch together

into a uniquely defined holomorphic structure on the line bundle λ on B. The
theorem is proved. Π

d) A Metric and a Holomorphic Connection on λ

We now construct a natural metric on the holomorphic bundle λ. Our
construction is inspired from Quillen [Q2] and Bismut and Freed [BF 1]. Take
0<i><c<+oo. Over t/bn Uc, consider the acyclic chain complex (1.3). The K(b'c) p

are Hermitian bundles. We can thus define the analytic torsion τ(d(b'c}) of the chain
complex (1.3). By [BGS 1, Proposition 1.5], we know that:

>c} = τ(δ(M). (1.26)

Also, since Kb and K(b'c] are orthogonal subspaces of Kc, we find that if seλb,

\s®T(d(b>c})\c = \s\bτ(d(b>c}}. (1.27)

The metrics | \b clearly do not patch into a metric on λ because of the discrepancy
(1.27). £

Recall that Nv= — iωz'c + - is the number operator on E, i.e. if ηeE", Nvη
= pη. Set Qb = I-Pb.

Definition 1.4. For _ye Ub, Re(s)>Λ set

^(s)=-Trs[]Vv[D2]-sβb]. (1.28)

Similarly if 0<b<c<+ oo, for yeU" nl/c, seC, set

θf'c\s)= -Trs[ΛΓF[D2ΓsP(ίl'c)] . (1.29)

Equivalently:

βfc) = ̂  T "s " ' Trs INy exp( - uD2)Q"^du ,

(1.30)
_ 1 +00

θ<f'<\s)= I M -^r.CJ
I (s) o
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θb

y extends into a meromorphic function which is holomorphic at s = 0. The same is
true for θ(b>c\ Also, for 0<b<c< + oo, on UbnUc,

θb = θ(b>c) + θc. (1.31)

Finally, by [BGS 1, Eq. (1.64)], we know that

Log[τ2(d(*'c))] = -#(&'c)'(0). (1.32)

We now extend (1.32) to the case where c= + oo.

Definition 1.5. For ye Ub, let τy(d(b' + co]) be the positive real number

τ^ + oo)) = exp{-^'(0)}. (1.33)

Let || f denote the metric on the line bundle (λb, Ub\

|| ||* = | |\(δ(6' + GO)) (1.34)

and 1 Vb the connection on (λb, Ub\

ip* = °F* + δ*Logτ2(^'+oo)). (1.35)

We now prove the following key result:

Theorem 1.6. The metrics || \\b on (λb, Ub) patch into a smooth metric \\ \\ on the line
bundle λ. The connections * Vb patch into a connection 1V on λ. The connection 1V is
the unique holomorphic Hermitian connection on the Hermitian line bundle (λ, \\ ||).

Proof. For 0<b<c<+oo, take s in λb.
Then

\\s\\b = \s\bτ(d(b> + co}},
(1.36)

||5(g)T(δ(&'c))||c-|5|6τ(β(&'c))τ(a(c' + oo)).

By (1.31), we know that

τ(d(M))τ(d(c'+ °°>) = τ(d(b>+ °°>). (1.37)

From (1.37), we get

\\s®T(d(b^\\c=\\s\\b. (1.38)

Equation (1.38) exactly means that the metrics || \\b patch into a C°° metric || || on
λ. Clearly lVb is the unique holomorphic connection which is Hermitian with
respect to || ||&. Since the holomorphic structures on (λb, Ub) and the metrics || ||&

patch together, the connections 1 Vb also patch together into a connection 1V on 1,
which is holomorphic and preserves the metric || ||. Π

e) Evaluation of the Curvature of 1V

We now calculate the curvature of 1P7. By [BGS 2, Theorem 2.11], as w

[/ ί rr\ \ ~\
(l/uD+^-L exp(-Λ2) \=0(u). (1.39)
V 4]/uJ J
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Since c(T) is of degree 2 in the Grassmann variables of Λ(T*B\

(1.40)

By [BF2, Theorem 3.3], we know that

(1.41)

Using (1.40), (1.41), we thus reobtain the result of [BF2, Theorem 3.4] which
asserts that as wjjO,

It follows that as wj, JΛ

Trs[exp(-u£2)PDDβ5] = 0(l). (1.42)

We now define the differential form δb

0 as in [BF 1, Definition 1.14].

Definition 1.7. Let δb

0 denote the smooth 1 form on Ub:

+ 00

δb

0= J Trs[Gxp(-uD2)FDDQb]du. (1.43)

The integral in (1.43) is well defined by [BF2, Theorem 3.4] or by [BGS2,
Theorem 2. 11].

Let [7(ί)' + 00) be the connection on K(b> + co} such that if h is a C00 section of
£<*. + «» on 17*,

F(ft' + 00)ft = β^Λ. (1.44)

p(b, + 00) is the naturaι extension of F<* c) for c= + oo. Similarly D(b> + CG\ d(b' + 00),
,̂ + co)* are the restrictions of ̂  5; 5* to χ(&, + co)

Using again [BF2, Theorem 3.3], we find that

- - u Trs [(exp( - u(D(b> + ̂ }2}(V(b< + ̂ D(b> + ̂ }D(b> + °°>] . (1 .45)

Since v^ + ̂ D(b^^ = QbVDQ\ we get

. (1.46)

Using (1.42H1. 46), we find

o l

bTheorem 1.8. Over Ub, the following identity holds:

δl=- (dB - 3*) [Logτ2(5(6' + °°>)] . (1 .48)
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Proof. Clearly

-Logτ2(δ(b> + ̂ ) = θb'(Q).

Also

_ 1 + o o

0*(s) = J w

s-1Trs[]VFexp-(P(b' + co) + ]/t/D(b'+GO))2](0)^. (1.49)
1 (S) o

Then, by proceeding formally as in the proof of [BGS 1, Theorem 1.9], but
using instead the C°° kernels of the relevant operators as in [B 1, Sect. 2], we find
that:

dB Ίrs(Nv exp - (V(b< + 00) + }/uD(b< + G0))2)

= Trs(|T(b' + 00) + \/uD(b> + «>\ Nv exp - (V(b' + G0) + }/uD(b> + co))2])

exp - (V(b> + oo) + γuD(b + 00))2)

wOexp-^^^ (1.50)

Identifying the term of degree 1 in (1.50), we get

x exp - ( | P ( b ' + «»D(b> + GO) + w(D(&' + G°))2))<1> . (1.51)

Since Γ"3"=0, P'δ* = 0, we find that

p/(&, +ao)"jj(b, + o o ) _ Q pz(b, +oo)'^(b, + o o ) * _ Q (152)

We can now use the degree counting argument of the proof of [BGS1,
Theorem 1.9] to obtain

s(δ(&' + °°>* exp - (Γ(&' + 00)

SB Trs [JVF exp - u(D(b> + ^)2]

= -]/ulΊvs(d(b^^Q^-(V(b^^ + ]/^D(b^ (1.53)

and so

(dB - dB) Trs INV exp - w(D(&' + 00))2]

-|ATrs[D(b' + co)exp-(P(b' + co) + /w/)(b' + co))2](1). (1.54)

Using (1.49), (1.54), we find easily that

(1.55)

Now by (1.42), (1.46), we know that as wJJO,
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We thus find that

(dB - dB)θb' (0) - - 7° 4= [Trs(D(5' + w)exp-(P(b' + co) + lAD(b' + co))2)](1)^.
o ]/u

V (1.56)

and by (1.47), we get:

(dB-dB)θb'(ty = δb

0. (1.57)

Equation (1.48) follows. Π

We now calculate the curvature of the connection 1 V on λ.

Theorem 1.9. The curvature (1V}2 of 1V is given by
(2)

(1 58)

Proof. The curvature of the connection °P& on (λb, Ub) is clearly given by

-Trf((F*)2). (1.59)

Therefore, the curvature of 1 Vb on (λb, Ub) is given by

Since by Theorem 1.8, (dB-(ϊB)θb'(Q) = δb

θ9 we find that

dB8Bθb'(Q) = ±dBδb

). (1.60)

The curvature of 1 Vb on (λb, Ub) is thus given by

-Trf((P*)2)-«. (1.61)

By Bismut and Freed [BF 1, Theorem 1.18] (especially [BF 1, Eq. (1.77)]) and by
[BF2, Theorem 1.21], we find that (1.61) is exactly the right-hand side of (1.58).
The theorem is proved. Π

Remark i.iO. Assume that the family D has index 0. Let U° be the open set in B,

U° = {yεB',Dyis invertible} .

If yeB, for α>0 small enough so that [0,α]nSp(D2) = φ, λa~C. The sections
1 e λa patch together into a non-zero holomorphic section of λ over (7° which we
note T(d).

If ye (7°, set

θ«(s)= -Trs[NF[D2Π, τ(5) = exp{-i0°'(0)}. (1.62)

τ(<9) is exactly the Ray-Singer analytic torsion [RS] of the complex (£, δ). Clearly

\\T(d)\\=τ(d), (1.63)

and so on £7°

[ /—z

ί
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f) Identification of the Metrics and Connections on λ and λ'

Recall that in Bismut and Freed [BF 2] a metric and a unitary connection were
constructed on λ', whose curvature is exactly given by (1.58). This fact, together
with the proof of Theorem 1.9, suggests that λ and λ' are in fact the same bundles.
We now explicitly construct an isometry from λ into λ1.

We first briefly recall the construction of [BF 1,2].

Definition 1.11. For Re(s)>^, b>0, ye 17, set

ζb

y(s) =4 Tr [(D2) ~sQb] , (1.65)

or equivalently

1 +00

^5)=ϊrn f uS~lΊrtQχv(-uD2ϊQbldu'

ζb extends into a meromorphic function on C which is holomorphic at s = 0. Set

τ'(D(b+ + ̂  = exp {-iC&'(0)} . (1.66)

Definition 1.12. \\ \\'b denotes the metric on (λ'b, Ub) given by

Let 17fb be the connection on (λ'b, Ub):

From [BF2, Proposition 1.11 and Theorems 1.14 and 1.21] we find:

Theorem 1.13. The metrics \\ \\'b and the connections 1 V'b on (λ'b, Ub) patch together
into a smooth metric \\ \\' on λ' and a smooth connection 1V on λ' which is unitary with
respect to \\ \\'. The curvature of^V is exactly

_rΠΊ(2)
Trlexp-— . (1.68)2*[j I A 1 ^Λp

2ιπ J [_ 2ιπ JJ

We now identify λ and λ'.

Definition 1.14. Over Ubjb denotes the linear isomorphism from λb into λ'b given
by

We now have:

Theorem 1.15. The C°° isomorphisms jb:λb-+λ'b patch together into a C°° isomor-
phism j: λ^-λ'. j maps the metric \\ \\ on the metric \\ \\' and the connection 1V on
the connection * V.

Proof. To show that the / patch together, we must prove that for 0 < b < c, on
UbnUc, ifseλb, then

(ί'c)-/(s® T(d(b>c}}). (1.70)
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Clearly

)). (1.71)

To simplify notation, we write | |' instead of | |'(b'c).
By [BGS 1, Proposition 1.5], we know that

τ(ff(b'c})
z ( b< W(M))H ^pψdetDΐ-). (1.72)

Using (1.71), (1.72), we find that

By (1.37) and also by [BF1, Eq. (1.39)], we know that

τ(d(b +m}} = τ(δ(b'c))τ(d(c' + ^),
(1.73)

A + 00 h

Using (1.71 HI. 73), we find that (1.70) holds. Recall that f is an isometry from
(AM \b) into (/I'M \b). Also if

Therefore; maps || || into || ||'. Also ib maps the connection ®Vb on λb on the
connection °F6 on λ f b . If 5 is a C00 section of λb on t/&, we find that

^)5 (1.75)

and so

i P'*/(S) =/(i p^5) + i[(3» _ 5β) Logτ2(δ(b' + °°>) - <5&

0]j,(5) . (1 .76)

By Theorem 1.8, we find that:

vVlbj\s)=jb(lVbs). (1.77)

The theorem is proved. Π

g) The Holomorphic Structure Does not Depend on the Kahler Metric in the Fibers

We now again assume that B is a complex manifold. Assume that (π, gz, THM) and
(π, Tf*M, gf) are two Kahler fibration structures on TZ with associated closed (1,1)
forms ω = ωz + ωπ and ωl — ωf+ ωf. We again consider one single holomorphic
Hermitian vector bundle ξ over M.

By Theorem 1.3, we can construct two holomorphic Hermitian vector bundles
λ and A! over B, associated with (TZ, THM,gz) and (TZ, TfM,gf). For j; e 5, let
Hy(E\ ...,Hy(E) be the cohomology groups associated with the restriction of the
vector bundle ξ to the fiber Zr For every yeB, we have the canonical
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identifications

(1.78)
..

Therefore for every y<=B, there is a canonical isomorphism:

Φy λy->λΐty.

Consider the double chain complex:

0 0

0 »£* >£* >0

Γ
: : (1-79)

r_r
I
0 0

Here i is the identity mapping. In the first column, E°, . . ., Ef are endowed with the
metric corresponding to gz, in the second column they are endowed with the metric
corresponding to gf. The lines of (1.79) are obviously acyclic, and so φ is the
Knudsen-Mumford section of /I"1® λ1 [KM].

Theorem 1.16. The map φ is a smooth holomorphic isomorphism from λ into λv.

Proof. At this stage, it is not even clear that φ is smooth. The statement to be proven
is clearly local on B. Let U be an open set in B, which is relatively compact. There is
ε > 0 such that for any yεU, c e] — ε, 1 4- ε[, if gf?>, is given by

, (1.80)

then {gz

?c} is a smooth family of Kahler metrics.
For ce] — ε, 1 -f ε[, set

l . (1.81)

The restriction ωf of ωc to TZ induces the Kahler metric gf . Let TC

HM be the
orthogonal of TZ with respect to ωc. By [BGS 2, Theorem 1.5], (π, gf, TC

HM) is a
Kahler fibration, and ωf is an associated (1,1) form. For every ce] — ε, 1 +ε[ we
can construct the holomorphic Hermitian line bundle λc over U associated with
(π, TfM, gf). Of course AO - 1

For ye 17, ce] — ε, 1 +ε[, let δ*c be the adjoint of dy with respect to gf. Then
Dy9C = dy + d*c is a smooth family of first order elliptic operators. By proceeding as
in [BF1] and in Sect. Ib), we can construct a C00 line bundle λioi over U
x] — ε, l+ε[ which coincides with λc over Ux{c}. λtot restricted to U x {c} is
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endowed with a connection 1 Vc which depends smoothly on c. We now define a
connection 1 V on /ltot. If 5 is a smooth section of /ltot, if Ye TyB, set

To define 1 F, we now only need to define 1 Fa_.
dc

The bundles Kj f, K£5C, λ^b ... are taken as in Sect. Ib), simply replacing
everywhere y by y, c. We otherwise use the same notations as in Sect. Ib). Note that
KyiCis a vector subspace oϊEy (which does not depend on c), which is endowed with
the Hermitian product defined in [BGS2, Eq. (1.38)] associated with gf. Let Pb

tC

be the orthogonal projection operator from Ey on Kb

iC.
If s is a smooth section of λtottb over

Vb = {(y, c) E U x ] - ε, 1 + ε[, b φ specD'.J ,

set

1rb

ds = Pb

ytC-?-s. (1.82)
Tc dc

Similarly for 0 < b < b', we define 1 Vf ' & / ) acting on λiot(b>b>} by simply replacing Pb

tC

~dc

in (1.82) by the orthogonal projection P(b;b'} from Ey on K(bf\ We claim that the

operators 1Pδ

b patch together into a smooth differential operator of order 1 on λtot.
~dc

If 0<b<bf, if 5 is a smooth section of Λ& over Vbr\Vb\ we have

)̂̂  (1.83)
dc dc dc

Fix c e] - ε, 1+ ε[. For |c' - c| small enough, P^^^ is one to one from K(b^Ί into
K(b$'\ Also P^'c?'} commutes with d. It is thus obvious that

T(d(b;P) = P(b;b'}T(d(b:b'}) . (1 .84)

Since (P(bf))2 = P(bf\^-P(bf) maps K(b^ in its orthogonal. Using (1.83), we find
that ' όc

From (1.83), (1.84), we get

y)). (1.85)

Equation (1.85) exactly means that the operators 17$ patch together into an

operator 1 Vd on λ. So λm is now endowed with a (non-unitary) connection 1 V.
Ik

Let KyjC be the eigenspace corresponding to the eigenvalue 0 of Dy c. For every
yeB, K° is a vector bundle over {y} x ]— ε, 1 +ε[. Let λy°^° denote the corre-
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spending determinant fiber. Clearly λl

y^ ° is canonically isomorphic to λ™c. Also
for every ye U, /l^1;0 is a smooth vector bundle over ] — ε, 1 +ε[.

Let φytC be the canonical isomorphism from λ™Q into λ™c. Clearly φyΛ = φr

Let PytC be the orthogonal projection operator from Ey on K^c. P° c is one to
one from k£ 0 in K°tC. Also if s e ̂ 6° and if c, c' e] - ε, 1 + ε[,

φy,c,s = P°,c,P
0

y,cs. (1.86)

Since -^-Py,o maps X£c in its orthogonal, using (1.86), we find that:

1F0y t C5 = 0. (1.87)

Equivalently, if seΛ,^, φy,cs is the parallel transport of 5 along c-*(y,c) for the
connection 1 V. Therefore, φytC depends smoothly on (y, c). In particular φy = φy^ ± is
a smooth isomorphism from λy into λyΛ.

We now prove that φytC is a holomorphic section of(λyt 0)~ * ®^,c If C P)2 is the
curvature of 1 P, since 0y?c(5) is the parallel transport of 5 e λy> 0 along c-+(y, c\ it is
equivalent to prove that if Ye Γ(0' ί}B, then

Let Vc be the connection on E over 5 associated with the Kahler fibration
(π,$Tc

HM). By [BGS2, Theorem 1.14], we know that

[^",3]=0, ^=0. (1.89)

Using (1.89) and by proceeding as in the proof of Theorem 1.3, i.e. by eliminating
the co variant derivatives of the projectors Pb, we find that for b > 0 not in the
spectrum of Dy c:

By (1.89), we have

[|:M=o. (1.9D

By [BGS 1, Proposition 1.3] we find that

Λ

We now calculate — Vγ acting on Ey. Let Vc be the holomorphic Hermitian

connection on T(1'0)Z associated with the metric gf. By [BGS 2, Theorem 1.7], the
torsion tensor Tc associated with the Kahler fibration (π, gf, T^M) is of complex
type (1,1). We can assume that Y is a smooth section of T(0' 1}B. Let YC

H be the lift of
Y in TC

H(0 1}M. If Γ is a smooth section of T(0' 1}Z, since ΓC(7C

H, F) - 0, we find that

r^r-[yc

H,y/]=o. (1.93)
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Set

A=~ΎC

H. (1.94)
dc

Clearly Ae T(0'1}Z. From (1.93), we find that

d
^-(P?H)Γ = [^,r]. (1.95)

Let LZ

A be the Lie derivative operator on Z associated with A, and dz be the
exterior differentiation operator on Z. Clearly

Lz

A = dziA + iAd
z. (1.96)

Using (1.95), we find that if α is a smooth section of AP(T*(QΛ}Z\ ~-(F?*α) is the
component of complex type (0, p) of LZ

A%. Equivalently ^c

More generally, if Λ is a smooth section of A(T*(0'ί)Z)®ξ, we deduce from
(1.97) that

— (V}Hh) = (dzίA + ίAd
z)h. (1.98)

dc

Since V$= Vfy, we find from (1.98) that:

d ~
^-Γί = 3zix + ixδ

z. (1.99)
dc Y A A

TakeιyeKj f C . Clearly

g η = g *Λ = 0. (1.100)

Therefore if η, η' e K^?c,

η'y = (η,iAdηfy + (d*η, iAη
ry = 0. (1.101)

Using (1.92), (1.101), we find that (1.88) has been proved.
Since φy = φy^, we have proved that φ is holomorphic from λ into λ±. Π

Remark 1.17. Theorem 1.16 exactly says that the holomorphic structure on the line
bundle λ does not depend on the specific Kahler fibration structure which is
considered.

h) Dependence of the Metric of λ on (gz, hξ)

We now calculate how the metric on λ depends upon the metrics (gz, hξ). For this
we need only to consider a single fiber, so we assume that B = {y0} is reduced to a
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single point. Let ce#->gf denote a smooth family of Kahler metrics on T(1'0)Z
and cεR-+h% a smooth family of Hermitian metrics on ξ. Let #f and Iίc be the
curvature of the Hermitian holomorphic connections on (T(1' 0)Z, gf ) and on (ξ, hf).
Let Kc denote the scalar curvature on Z for the metric gf .

Let λioi be the Hermitian line bundle over R constructed in the proof of
Theorem 1.16. For every c eR, its fiber λl

c

oi is the determinant line λc associated to
(gf, Λf). There is a canonical isomorphism of line bundles φc : λ0->λc, i.e. a section of
λ~l®λc. Let \\φc\\ be the norm of this non-zero section. We shall study how \\φc\\
depends upon c.

For every ceR, let*c be the complex star operator associated to the metric
gf. It maps (p,q) forms on Z into (f — p,έ — q) forms, for p,q^0. The operator

d(*c)1 — - —(*c)
oc

maps (/?, q) forms into (/?, g) forms. Therefore it induces an endomor-

phism of Ep and E. The following result is closely related to a result of Ray-
Singer [RS, Theorem 2.1].

Theorem 1.18. As i/jjO, for every fceN, ί/zere is an asymptotic expansion

[ ί fl(*}

r;')—1 +(Λ«Γ l

V C

= Σ

Furthermore

(1.102)

(1.103)

Proof. The existence of the asymptotic expansion above follows from Greiner [Gr,
Theorem 1.6.1].

To simplify our computations, we shall now assume that hξ does not vary with
c. Remember that \_A, B~\ denotes the supercommutator of A and B.

Let d* be the adjoint of d for the metric gf , so that Dc = d + d*. For b eR we
have (with D = DC)

~

Furthermore

\ D,— \

- 9ΰc

exp(-uD

(1.104)

- Trs(exp( - uD2 + bNv))\b=0 = Ύrs(Nv exp( - uD2)).

Moreover

4
Using (1.104), (1.105), we get

b=0
(1.105)

(1.106)
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By [BGS 2, Theorem 2.6], we know that

Clearly

Set

From (1.107), (1.108), we find that

=-Ml*c
c >dc

-_d*=-Γ3* 01
Λ UC L^C 5 V5cJ '

(1.107)

(1.108)

(1.109)

(1.110)

As before, we will omit the subscript c. Using (1.106), (1.107), (1.110), we get

Tr<
d_

~db

= Tr, *JL
'δb

(1.111)

By proceeding as in (1.105), since [<?*, £>2] = 0, we get

,--
δb 6 = 0

= -̂  exp(-wD2-W)2)| fc=0= — exp(-wD2).

From (1.106), (1.111), (1.112), we get

S m ,,
--u^Trs(αexp(-uD2)).

(1.112)

(1.113)

We can find Z»0 such that D2, has no eigenvalue in ]0, &]. The dimension of
KerD2 does not depend on c. Therefore for c close enough to 0, D2 has no
eigenvalue in ]0, ί>]. In the sequel, c will be chosen in this way.

For O^p^Λ set Kc

0 p = KerD2n£p, K° = @K°'P. Let P° be the orthogonal
o

projection operator from E on K°, for the Hermitian product on £ associated
with(gf,h«).

For Re(s) large enough we have

exp( - uD2)) - Tif 2 (1.114)c v / r(s)δ L

Using (1.113), and the fact that Trf?(ΛfF) does not depend on c, we find for Re(s)
large enough

?\ \ <*> d
uD*)}du. (1.115)
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When u\ + oo, Trs(Qc(exp( — uD^} — P°)) decays exponentially. Integrating by parts
in (1.115), we obtain, for Re(s) large enough:

(1.116)

(1.117)

Under this identification, φc sends 5 e λ% to φc(s) = P°(s).
Let < , >c be the Hermitian product on E attached to gf and hξ. If η and 77 ' are

forms in the kernel of DQ, we have, by definition:

<Λ°?,Pey>e = J <Pc°ι/ Λ*cPcV>w. (1.118)

Using (1.102), we find

The line bundle λc is canonically identified to

If I I is the L2 metric on λ° induced from (£,gf), we get from (1.119)

The operator - c sends K° to its orthogonal complement for the metric gf.

Therefore, from (1.118), we get:

(1.119)

(1.120)

(1.121)

(1.122)

Sc Log\φc(s)\ = Trs(β0P°).
c=0

By (1.34), we have,

From (1.117), (1.120), and (1.121) we find

c = 0

In general, if c, c' eR, the canonical isomorphism φCtC, from λc to λc, satisfies the
equality

We thus find that

/^

—

We can then use (1.122) to get (1.103) for arbitrary c. When hξ also depends on c, the
computations are essentially the same and are left to the reader. Π
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Our aim is now to compute M0 0. Set

(1.123)

We first compute Q in terms of Clifford multiplication operators. Let ωf be the
Kahler form associated with the metric gf, i.e., if X, Ye TZ,

Let el,...,enbe an orthonormal basis of TZ for the metric gf. In the sequel the
Clifford multiplication is done with respect to the metric gf.
Set d

ώc=^-(ωz). (1.124)
oc

We will write ώ instead of ώ0. Also to avoid possible confusions, we will

temporarily adopt the notation i = ]/ — 1.

Proposition 1.19. The following identity holds

+ ̂ ώ(eί,J
zeί). (1.125)

^
Proof. Let w 1 ? . . ., w^ be an orthonormal basis of Γ(1'0)Z for the metric go, w 1 ? . . . , w^
the conjugate basis in T(0' 1}Z. Denote by < , > the scalar product < , >^z. We get

Q—^Γ1

^ϊ
2

Therefore

Q= --4— (ώ(wί9 wj)c(wί)c(w7Hώ(wί,wJOc(w/)c(wj))+ -̂y— ώ(Wi, W f ) . (1.126)

Also

.) =iώ(wl, J
zwf) =^6,, Jzef) . (1 .127)

From (1.126), (1.127) we deduce (1.125). Π

Let now D = D0 and let V be the holomorphic Hermitian connection on
/t(T*(0'1}Z)(g)ξ associated to the metrics (go,hξ). We also introduce odd Grass-
mann variables dα and dά which verify the same assumption as in [BGS2,
Sect. 2ί)]. In particular they anticommute with c(et).

Theorem 1.20. The following identity holds

(1.128)
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Proof. For freIR, we have:

= Ίrs((bQ - D2} exp( - uD2 + ubQ))

) . (1.129)

By differentiating this equality at b = 0 and proceeding as in (1.105), we get

. (1-130)
b = 0

Clearly
l\ (1.131)

and using DunhameΓs formula, we get

d
iTrs

= Trs

By (1.130), (1.131), (1.128) follows. Π

We now prove a generalized Lichnerowicz formula which extends [BGS 2,
Theorem 2.15]. We use the notation

where Rz

c is the curvature of the holomorphic connection on (T(1'0)Z,gf).

Theorem 1.21. For any u>0, the following identity holds:

-uD2- daD - dά\_D9 β] + dadάQ

1
/ --v-i, / „ -Iώ(ek9et

2|/2w 2]/2u

-^-ώ(epJ
zej)-]/-dά^- Veiώ(epJ

z

ej}

^. (1.132)

Proof. Using (1.125), we get

[A β] = l/^ΪEA ϊώ(e, e;)c(e;)c(ej.)] + ic(e,) Ve ώ(ep JzCj). (1.133)
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Recall that the metrics gf are Kahler, i.e. the differential forms ωf are closed. The
same is true for ώ. Since V has no torsion, we find that for i Φ j, i Φ fc, j φ k

Ve.ώ(ep ek] + Veώ(ek, et) + V

and so

;)Φί)Φ;)] = -^Veώ(eb β,.)φ;) + ώ(eb e^Vej . (1.134)

Using Lichnerowicz's formula as in [BGS2, Theorem 2.15], we immediately
obtain (1.132). Π

The following theorem is the main result of this section:

Theorem 1.22. For any j^ —2 we have M j>c = 0. Furthermore

! V
(1.135)

and

dc
Γ / ΛfAΊΊ

(1.136)

Proof. By Theorem 1.18, we only need to show this theorem when c = 0. We first
assume that h\ does not vary with c.

Using Proposition 1.19 and the methods of [B 1, Sect. 4], we find that

lim uΎrs(Qexp(-uD2))= ~ fώra(-JφTr[exp(-L*)] . (1.137)

Therefore Mjt 0 = 0 for j ^ — 2 and M _ 1 ? 0 is given by the right-hand side of (1 . 1 35).
We now calculate M0 0. As u||0 we have the expansion

u . (1.138)

Using (1.128) and (1.138) we find that

/ / u \\dada

lim Trs exp - -D2 -\\fuiaD -\da]fu[_D, Q] + dadάQ = M0 0 .

wi^i)= -2Tr (gf)'1^- . (1.139)
[_ ΰC Jc = 0

In Theorem 1.21, the operator on the right-hand side of (1.132) is exactly of the
same type as the curvature of the Levi-Civita superconnection [Bl, Sect. 3].
Therefore, we can use the methods of [B 1, Theorem 4.12] to calculate M0 0. Take
x 0 eZ and let 7 (̂ , •) be the smooth kernel of

exP ( —-^D2— ^~ daD— ^— da[D, Q] + dadaQ
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with respect to the volume form η of Z for the metric gf. Let w1 be an Euclidean
Brownian bridge in TXOZ (for the metric gf) with WQ = W } = O and let Pl be the
probability law of w1 on C([0,1]; TXQZ).

As in [B 1] we shall use in an essential way the fact that dac(e^ dάc(ek) and dadά
span a Heisenberg algebra. If γ and / are forms on Z, we write y = y'ify and / have
the same component of degree n. Set

= 0

Using Theorem 1.21 and proceeding as in [Bl, Theorem 4.12], that is using
formula (1.132) and doing the formal changes required to use (1.132) instead of
[B 1, Theorem 3.6], we get

lim Ύτs(Tu(x0,x0))η(x0)
M||0

-
2|/2

xdP^TrCexpi-L'*)]. (1.140)

The left-hand side of (1.140) is an even form. Therefore it does not contain any
multiple of da. We thus find

lim Ύrs(Tu(xQ9x0))η(x0)
u U O

^
(1.141)

Clearly

1 1

ί cφv1, dw1) = ί {w1, JzUd\v1 > .
o o

Therefore

xexp{-i6Tr(ϋ)-iTrΛg})t=0dP1(w1)Tr[exp(-Lί)]. (1-142)

Using the same notation as in the proof of [BGS 2, Theorem 2.16], we find that:

(1.143)
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From (1.141 HI-143) we find that

(1.144)

By proceeding as in [B 1, Sect. 4], we also find that:

(U45)

The theorem follows from (1.138), (1.144), and (1.145). Π

Let gz, g'z be two Kahler metrics on T(0' 1}Z, and hξ, h'ξ two Hermitian metrics
on ξ. Consider a smooth family of metrics c e [0, 1] ->(gz , hi) on T(1> 0)Z and ξ such
that:

(g&ΛSHfeW and (g zM) = (g'z/^).

By the results of [BGS 1, Sect, le)], the form

(1.146)

defines an element in P/P' which depends only on (gz, /z^) and (g/z, /z/<?).
According to [BGS1, Theorems 1.27, 1.29 and Corollary 1.30], the compo-

nent of degree (/, f) of α represents in P/P' the corresponding component of the
Bott-Chern class

TO(gz, g'z)cfc(Λ*) + Td(g'z)dι(h^ h't) . (1.147)

Let /l,^' be the Hermitian determinant line fibers associated to the metrics
(gz, hξ) and (g/z, h'ξ). Let φ e /l~ 1 (x) A' be the canonical isomorphism from A into A'.

Theorem 1.23. The following identity holds:

\\φ\\2 = exp f J (M(gz, g'z)c/ϊ(^) + Td(g'z)dι(tf, h'ξ))\ . (1 .148)

Proof. Since the space of Kahler metrics on TZ is convex we may assume that (gf ) is
a smooth family of Kahler metrics such that gz = gz, gf = g/z. The theorem then
follows from Theorem 1.22. Π
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Remark 1.24. When g'z is not Kahler, α is still defined but we do not know what
exp (ί oΛ represents. Also observe that when only the metric hξ is allowed to

change, Theorem 1.23 is a special case of Theorems 2.4 and 2.8.

i) The Curvature of λ for the Quillen Metric: The General Case

We now work again under the general assumptions of [BGS2, Sect. lc)].
Our datas are then:
• The connected complex manifolds M and B.
• A smooth proper holomorphic map π M-»£, with connected fibers Z.
• A holomorphic Hermitian bundle ξ on M with metric hξ.

Definition 1.25. The fibration π will be said to be locally Kahler if there is an open
covering tfί ofB such that for any U e <%, there exists a Kahler metric gυ on π~l(U).

Remark 1.26. Professors J. P. Demailly and N. J. Hitchin have pointed out to us
that there are holomorphic fibrations whose fibers are Kahler, and which are not
locally Kahler, a typical example being the fibration of the K3 surfaces over their
moduli space. This last example is fully developed in Bingener [Bin,
Example (3.9)].

From now on, we assume that π is locally Kahler.
For U e<%, let gf/ be the Hermitian metric on TZ over π~1(C7) induced by gυ.

Let TtfM be the orthogonal of TZ in TM for the metric gv. Finally let

ωu = ω% + ωζ be the Kahler form of (π~\U\gv\ By [BGS2, Theorem 1.5], over
£/, (π,gz, TJfM) is a Kahler fibration and ωυ is an associated (1,1) form. By
Theorem 1.3, we can define the holomorphic Hermitian line bundle λυ over U.
Note that the construction of λv involves gz explicitly. Also by Theorem 1.16, the
canonical isomorphism φυr^v:λυ-^λv is an isomorphism of holomorphic line
bundles.

Let now gz be any smooth Hermitian metric on TZ, which induces a Kahler
metric on the fibers Z. By proceeding as in Sect. Id), we construct a smooth
Hermitian line bundle λ associated with the family of operators d + d* (where d* is
now calculated with respect to gz).

The metric on λ is of course the same as in Theorem 1 .6. Namely for each y e B,
we endow λy with the corresponding Quillen metric associated with the metrics

(g^.A4).
Note that since in general, gz does not come from a Kahler metric on M, the

construction of Sect. Id) does not define a holomorphic structure on λ. However
on U e ̂ , we have a canonical smooth isomorphism φv :λv ̂ λ. Therefore over [/,
λ inherits the holomorphic structure of λυ. Since the canonical isomorphisms
Φunv '- λv^λv are holomorphic, the holomorphic structures on λ are compatible, λ
now becomes a holomorphic Hermitian line bundle over B.

Let Pz be the holomorphic Hermitian connection on T(1'0)Z associated to the
metric gz. Let Rz be the curvature of Pz.

Theorem 1.27. The curvature of the holomorphic Hermitian connection 1 V on λ is

gίvenby
(U49)
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Proof. Take Ue%. Let Rz'ϋ be the curvature of the holomorphic Hermitian
connection on (T(1'0)Z,g^). By Theorem 1.9, we know that the curvature of the
holomorphic Hermitian connection on λv is given by:

z'u

Let av be the form in P defined in (1.146), associated with the metrics (g§, hξ)
and (gz, hξ}. By Theorem 1.23 we know that

M'- [K]»

Also, by [BGS 1, Theorem 1.27], we know that

(1.151)

Also
dBdBLog\^v\\2= Γ|^MαJ<2>. (1.152)

Now the curvature of 1 V is given by

1 V Γ / _ » z , t f \ -p
— hra — ̂ - Tr[exp(-L«)] +3^Log||0J|2. (1.153)
inJ \_z \ 2ιπ ) \

Using (1.150H1.153), the theorem follows. Π

Remark 1.28. As we shall see in Theorems 2.12 and 3.14, the holomorphic
structure on λ is exactly the holomorphic structure of Knudsen Mumford [KM].

It follows from Theorem 1.27 that under the assumptions of this theorem, if the
complex (£, d) is everywhere acyclic, and if τ(d) is the Ray-Singer analytic
torsion of the complex (£, δ) [RS], then

Γ ί-Rz\ Γ /_rΛΊΊ(2)
J Td — - Tr exp (-±) . (1.154)

LZ \2ιπ J L V 2m ) \ J

2. A = λKM: An Analytic Proof

We prove here that if π is projective, λ and λκu are canonically isomorphic as
holomorphic line bundles on B. We also establish [BGS 1, Theorem 0.3].

In a), we consider an acyclic exact sequence of holomorphic Hermitian vector
bundles

and the associated holomorphic vector bundles λθ9λl9...,λm. We thus define a
_ m

holomorphic non-zero section T(d + v) of the line bundle Π(^ί)("1)l

_ i
In b), we prove that || T(d + 1;) || is exactly given by the formula for || σ || in [BGS 1 ,

Theorem 0.3]. This is essentially a simple consequence of the results of [BGS 2].
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In c), we prove that T(d + v) is multiplicative with respect to double complexes
(ξitj) on M. This is again proved by analytic methods.

In d), we prove by brute force that T(d + v) coincides with the Knudsen-
Mumford section σ described before [BGS 1, Theorem 0.3]. We thus complete
the proof of [BGS 1, Theorem 0.3].

In e), we prove that λ~λKM when π is projective as a consequence of [BGS 1,
Theorem 0.3].

In f), we complete the proof of [BGS 1, Theorem 0.1] when π is projective.

a) Infinite Determinants and Exact Sequences

We make the same assumptions as in Sect. la). In particular (π,gz, THM) is still
assumed to be a Kahler fΐbration, and ω is an associated (1,1) form. Let ξ0 be a
holomorphic Hermitian vector bundle on M, with associated holomorphic
Hermitian connection VξQ. Let Lξo = (Ϋξo)2 be the curvature of Vξo. We use the
notations of Sect. 1, except that we introduce the index 0 at every stage. The infinite
dimensional complex E0 is written

λ0 denotes the holomorphic Hermitian line bundle on B associated with £0, || || 0 is
the metric of λ0 and 1P0 the corresponding holomorphic Hermitian connection.

Let

be an acyclic holomorphic chain complex of holomorphic Hermitian vector
bundles over M, which starts at ξ0, i.e. provides a resolution of ξ0.

We will use the same notations as in [BGS 2, Sect. 2]. We thus have a double
complex E

00 0

0 0 0

Also for 1 ̂ 7^m, we consider the holomorphic Hermitian line bundle λj9 with
metric |( || j and holomorphic Hermitian connection * F). For 0 ̂  i ̂  /, 0 ̂ j ^ m, let
Hl(Ej) be the f-th cohomology groups in the complex Ej. For (y, a) e B x C, we
consider the double chain complex E with differential operator d + av. The adjoint
of d + av is d* + av*. We can extend the construction of Sect. 1 in this situation.
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Namely we construct the determinant bundle I over B x C associated with
(£, d + av). Jis a holomorphic Hermitian line bundle on B x C, with metric || || , and
holomorphic Hermitian connection 1 V. Let IB be the restriction of I to B. Clearly
as holomorphic Hermitian bundles on B, we have the identifications:

Let ρ be the projection (y,a)εB x C

Proposition 2.1. The curvature (17)2 of the connection ^Vonλ is given by:
z - ( 2 )

. (2.1,

Proof. The proof is the same as the proofs of [BGS 2, Theorem 2.2] and of
Theorem 1.9. Π

Equation (2.1) does not contain the variable a. This means in particular that for
every y e B, the connection 1 V is flat on { y] x C. Therefore we can identify the fibers
{%y,a}aec w^h %$ using parallel transport along any C°° curve in {y} x C which
connects (y,a) and (y,0). So we have identified the C°° Hermitian bundles over

I-..J-.

Notice that ρ*IB is naturally a holomorphic line bundle on B x C.

Proposition 2.2. TTze identification

λ = ρ*ZB (2.2)

identifies the holomorphic structures of λ and ρ*Iβ.

/ Let 7 be a C°° section of TB. Since (2.1) does not contain da or da, we find
that

(2'3)

From (2.3), we immediately deduce that if TQ is the parallel transportation operator
in {y} x C from (y,a) into (y,0), if σ is a section of I (i.e. σ(y . α) e I(J, . α)), then

τβ

0

1Γyσ=1Fy[τSσ]. (2.4)

Similarly, since I is flat on {y} x C, we have

The proposition is proved. Π

Clearly for any a e C

(2.5)

α)+=0. (2.6)

Moreover for any a e C*, the complex (£, d + at/) is acyclic. By Remark 1.10, over
B x C*, we can define a non-zero holomorphic section of I, which we note
T(d + av).

With our conventions, for (y, a)eBx C*, T(<3 + av) E I?.
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Theorem 2.3. The section T(d +1;) is a non-zero holomorphic section of λB. It defines
a holomorphic isomorphism from λQ into ^(gU^"1®....

Proof. By Proposition 2.2, as holomorphic bundles over BxC, λ = ρ*IB. Since
T(d + av) is a holomorphic section of I over B x C*, T(d + v) naturally defines a
holomorphic section of IB. Π

b) Evaluation of \\T(d + v)\\

Our purpose is now to prove that T(d + v) coincides with the Knudsen Mumford
section of λB. We only need to do this fiberwise, i.e. for one fixed y0 e B. In this
subsection only, we will assume that B is reduced to one single point y0. However,
we still use the notation I.

T(d + av) is then a section of the line bundle I over C*.
Remember that in [BGS1, Sect. lc)], to the holomorphic Hermitian chain

complex (ξ, v), we associate ζ'ξ(<ΰ) e P. For 0 rg; ̂  m, let χ7 be the Euler characteristic
of Ep i.e.

(2.7)

Set

m

^=.Σ(-i)J'+1;X (2.8)

Theorem 2.4. a~dT(d + av) is a non-zero parallel section of λ over C*. Moreover

2 / 1 V

Log
ad 2in

(2.9)

Proof. We first assume that 0 = 1. Since the complex (E,δ + ι;) is acyclic, with
the notations of [BGS 2, Definition 2.19], we have the equality

Log||T(3 + ι;)||2=-αθ) (2.10)

[remember that here B = {yQ], so that the right-hand side of (2.10) is a real
number].

By [BGS 2, Theorem 2.21], we know that

Rz)ζ'ξ(Q). (2.11)

Equation (2.9) is proved for a = 1. If a E C*, by [BGS 1, Sect. 1 c)], we know that if v
is changed into av, ζ'ξ(Q) is changed into

ίJ(0) + 2Log|α|Trs[JV f lexp(-L«)].

Also by the Atiyah-Singer Index Theorem, for O gy'rgw,

L^)] . (2.12)
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Equation (2.9) immediately follows for every αφO. Since - -ά - is a holo-

morphic section of I over C* whose norm is constant, it is parallel. Π

Remember that we have identified by parallel transport the fibers λa with I0.
Using this identification, and also Theorem 2.4, we find for any a e C*,

.

Assume temporarily that the cohomology groups of £0, . . ., Em are all 0. Let τj(S)
be the Ray-Singer analytic torsion of the complex (Epd) [RS].

From Theorem 2.4, we deduce

Theorem 2.5. The following identity holds:

f Td(-Rz)ζ'ξ(Q). (2.14)
z

Proof. Clearly d = Q. Moreover using the notations of Theorem 2.4, we know that
since the complexes (Epd) are acyclic, the section T(d) of λ is well defined and
moreover that as αeC*-»0, then T(d + av)^T(d). Equation (2.14) is now a
consequence of (1.63) and of Theorem 2.4. D

We now do not assume any more that any of the complexes E7 is acyclic.

c) Multiplicativity Properties of T(d + v)

In [BGS1, Sect. Id)], we verified that Q(0) verifies certain additivity properties
with respect to double complexes and exact sequences. We will verify that
T(d + v) verifies the analogous multiplicativity properties. Of course we still
assume that B is reduced to one single point {y0}.

Assume first that ξ is a double holomorphic Hermitian chain complex over Z,

0 0

'Sm' ,0 ~> ζm',

1'
0

We assume that the lines and columns of ξ are acyclic.
To the chain complex ξit. (O^Ξίrgw7) we can associate the corresponding

determinant fiber If. and the non-zero section Tt t.(() + v) oϊlf. by the construction
of Sect. 2b). Similarly to the chain complex ξ.j (O^j^m) we associate the
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determinant fiber λBj and the non-zero section T.tJ{d + v') of IBj. We have a
canonical identification of determinant fibers

We now claim

Theorem 2.6. The following identity holds:

v^-lίJ. (2.15)

Proof. We proceed very much as in the proof of [BGS 1 , Theorem 1 .20] . For α e C,
we consider the double chain complex (ξ, υ' + aυ\ which is acyclic. Associated with
the corresponding d complex, we construct the holomorphic Hermitian determi-
nant bundle λ" over C and a non-zero holomorphic section T"(d + v' + aυ).

By the proof of [BGS1, Theorem 1.20] (and more precisely by [BGS1,
Eq. (1.75)]), we know that for any αeC, if (£f + 7(0) is the differential form on Z
associated with (ξ9av + v')9 then (Cf + 7(0) is constant in P/P'.

By Theorem 2.4, we find that || T"(d + υ' + av)\\ does not depend on a. Therefore
λ" is a flat bundle, and T"(d + v' + aυ) is a parallel section ofλ". By trivializing λ" by
parallel transport, we get

T"(d+v')=T"(δ+v + υ'). (2.16)

Interchanging the roles of v and v', we find that

T"(5+ v) = T"(d + v + v'). (2. 1 7)

Equation (2. 1 5) follows from (2. 1 6), (2. 1 7). Π

Similarly let

be two holomorphic Hermitian acyclic chain complexes over Z, with ξm appearing
in ξ and ξ' with the same metric. Let (ξ", v") be the holomorphic Hermitian acyclic
chain complex

Let λB,λ'B,λ"B be the determinant fibers associated with ξ,ξ',ξ". One has the
canonical identification

(2.18)

Let T(d + υ), T'(d + v\ T"(d-\-v) be the corresponding non-zero sections of
TPJ'BJ"B.

Theorem 2.7. The following, identity holds:

-\(-l)m" (2.19)
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Proof. We first assume that m' = 2. We use the double complex constructed in the
proof of [BGS 1, Theorem 1.22], whose lines and columns are acyclic. We apply
Theorem 2.6 in this situation. The lines or columns of the type 0-^E -̂ -̂ O only
give a trivial contribution. Theorem 2.7 is proved when m' = 2. By splitting the
exact sequence ξ' into short exact sequences, we obtain the theorem in the general
case. Π

d) T(8 + v) is the Knudsen-Mumford Section

We now again assume that we are under the assumptions of Sect. 2a). Let us briefly
recall how the Knudsen-Mumford section of I is defined in [KM]. Assume first
that ξ is a short exact sequence, i.e. that m = 2. We then have a long exact sequence
in cohomology.

H\E2]

(2.20)

#°(£2)

where δ is a coboundary operator.
By the construction of [BGS 1, Definition 1.1], to the exact sequence (2.20), we

can canonically associate a non-zero section σ of ®[detHl(Ej)](~l}l + J + ί.
Also, for every j (0 ζj ^ 2), we have the canonical identification

Therefore σ defines a non-zero section of XB = λ0®λϊί®λ2, which is the
Knudsen-Mumford section.

When m ̂  2, we split the sequence ξ into short exact sequences, and define σ
multiplicatively.

Theorem 2.8. The following identity holds

σ. (2.21)

Proof. Using Theorem 2.7, it is enough to prove the theorem for m = 2.
We will use the fact that for αφO, by (2.13),

n™-d - , (2.22)

and we will prove that

lim j^-=σ. (2.23)
α-^o a
α Φ O

Incidentally, note that (2.22) makes sense because we used the parallel transport

trivialization of I. On the contrary, since -ά is a section of λa and σ a section

of IQ, (2.23) is a differential geometric statement, which can be verified locally.
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_Note that if #'(£,.) = 0 for O^i^, 0^2, (2.23) is trivial. In fact d = Q, and
T(d) is well defined. In this case by (2.22), T(d + aυ)=T(d) and tautologically
T(d) = σ.

So we now assume that not all the Hl(Ej) are reduced to 0, so that 0 is in the

spectrum of Dy0. There is b>0 such that Dyo has no eigenvalue in ]0,b]. We can
choose ε>0 such that, for |α|^ε, b is not an eigenvalue of (D + Fα)^0.

The double complex E has a total grading. For |α ^ ε, 0 _^ g rg 3/, let K^ be the
sum of eigenspaces of total degree q of (D + K0)^ for eigenvalues < b. Note that for
0 < \a\ < ε, since (E, 5"+ av) is acyclic, 0 is not an eigenvalue of (D + Ffl)2. Identifying

e
the kernel of D 0̂ with 0 #'(£,), we find that

i= 1

. (2.24)

Also, the various K* are smooth vector bundles on (|α|<ε). Let Pa be the
orthogonal projection operator from Eyo on Ka = ®Kq

a. We can take ε>0 small
enough so that Pa is one to one from K0 into Ka and so P0 is one to one from Ka

into K0.
Recall that we identify K0 with 0/f (Ey). We first give a description of σ, by

using [BGS 1, Definition 1.1]. Choose an element σ^eΛH^Ej) such that v(σi

j) is
non-zero in det^/f^.))) for; - 0, 1, and δ(σί

2) is non-zero in det((5(ff(E2))). We get

Λ σ

Q Λ σ})~ 1 ® (vσ\ Λ σ^)® (δσ^ Λ σg)~ 1 (x) . . . . (2.25)

Let s^eΛK^Ej) be the element representing σj. If 7 = 0, 1,
represents t (σj). Furthermore the representative of ^(σ^1) in ΛK1

0(E0} can be
described as follows:

Let nί = dQg(si

2~
1\ β^Λ^E^1, and a^A^E^ be such that

v(βύ = sl

2-
 1 , d(β^ + φ;) = 0 , dfo) = 0 .

Then P0(
αi) represents 5(σl

2~
 :). Therefore, when Kl

0(Ej) is identified with Hl(Ej), σ is
represented by

5})

(2.26)

We now fix α such that 0<|α|<ε and we describe the canonical section
T(d + av) considered as a section of (x) det(X^)("1)9t \ For this, according to

q^O

[BGS1, Definition 1.1], we have to find, for all g^O, a generator of

Note that Pa induces an isomorphism det(^)^det(K^). Furthermore, for all
ij, since Pa commutes with d + av:

(2.27)

oi-1
^2
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Set
0(0 = deg(si>) + deg(5Γ *) + 2 deg(5'2-

 l ) .

Since (av)(si

j) = aάeg(s^υ(si

j) and counting dimensions, we see that dQt((d + aυ) (Kl

a))
admits the non-zero generator

α^PΛΦo) Λ Φι~ ') Λ 4" ') = (^ + ™)( Wi>) A Pβ(sΓ !) Λ Pβ(α£ + α"%)) . (2.28)

One checks that y (_tVώ(0 = d

i ^ O

Therefore T(d + av) is represented by:

Λ s " 1

20 2)Λsg)- 1®...). (2.29)

When α->0, the quotient T(d + av)/ad tends to σ as represented by (2.26). Π

Remark 2.9. It is striking that the proof does not involve estimates on the lowest
eigenvalue of (D + Va)2.

Incidentally note that a priori, T(d + v) depended on the metrics (gz, hξ). A by-
product of Theorem 2.7 is that it does not depend on these metrics. Note that such
a result could have been easily obtained by the methods used in the proof of
Theorem 1.16.

e) The Case where π is Projective: λ is the Knudsen-Mumford Determinant

We make the same assumptions and use the same notations as in Sect. la). In
particular (π, gz, THM) is still assumed to be a Kahler fϊbration, and ξ is a
holomorphic Hermitian vector bundle on M.

For yεB, Hy(E\...,Hl

y(E) denote the cohomology groups of the complex
(Ey,dy). Let us temporarily assume that for i i^l, Hl(E) = Q. Clearly

Then H°(E) is a smooth vector bundle on B, which is a subbundle of E°. H°(E)
inherits the Hermitian metric of £°. Let P° be the orthogonal projection operator
from £° on H\E\

Theorem 2.10. Let V be the connection on H°(E)

Then V is unitary. There is a unique holomorphic structure on H°(E) such that V is the
associated holomorphic Hermitian connection. If U is an open set in B, a smooth
section ye U->hyeHy(E) is holomorphic for V if and only if h is holomorphic on
π~l(U). The canonical isomorphism λ^(dQtH°(E))~1 is an isomorphism of holo-
morphic line bundles.

Proof. Clearly V is unitary. By [BGS2, Theorem 1.14], we know that

F"d = 0. (2.30)
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If h is a smooth section of H°(E\ dh = 0 and so using (2.30), we find

5F"ft = 0. (2.31)

We thus find that

V"h=V"h. (2.32)

By [BGS 2, Theorem 1.14], we know that the curvature (V)2 of V is of complex
type (1,1). By (2.32) we find that (V"}2 = 0. Since V is unitary, we also have (V'}2 = 0.
Therefore the curvature (P)2 of V is of complex type (1,1).

By [AHS, Theorem 5.1], there is a unique holomorphic structure on the vector
bundle H°(E) such that V is the associated holomorphic Hermitian connection.

Let h be a smooth section oϊH°(E) on U. Clearly h defines a smooth section of ξ
on π'^C/). Since dh = Q, by [BGS 2, Theorem 2.8] we find that

V"h = dMh. (2.33)

Using (2.32), we get

V"h = dMh. (2.34)

By (2.34), it is now clear that F'7ι = 0 if and only if dMh = 0.
Given y0 e B, we can find b > 0, such that D2

Q restricted to Eyo has no eigenvalue
in ]0, b~\. Since KerD2n£ = /f°(E) has constant rank, we can find an open
neighborhood U oΐy0 in B such that iϊyeB, D2 restricted to Ey has no eigenvalue
in]0,&].

If {Kb'p}0^p^ are the vector bundles on U which were defined in Sect. Ib), we
find that for y e U

Kb'° = H°(£), Kb>p = { 0 } ; p ^ l . (2.35)

Also in Definition 1.2, a connection Vb was defined on Kb. It is clear that Vb= V.
Therefore, from Theorem 1.3, we find that the canonical isomorphism
λ ̂  (det H°(E)) ~1 is holomorphic. Π

Remark 2.11. The first part of Theorem 2.10 would of course be obvious if £ had
been an ordinary finite dimensional holomorphic vector bundle.

We now formulate the main result of this section. Namely, we assume that the
fibration π is locally Kάhler in the sense of Definition 1.25.

We also make the following assumption:
(A) There exists a resolution

0^ξ = ξ0^ξί-7+...-^ξm^ (2.36)

of ξ by holomorphic vector bundles on M such that, for every yeBJ=l,...,m and
ϊ= 1,...,/, the cohomology group Hl(Zy, ξj) vanishes.

By [Q 3, Sect. 7.27], this hypothesis is satisfied if the map π: M^B is projectίve,
i.e. admits a factorisation

M—

B
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where j is a closed immersion and P(E) - >B is the projective space over B asso-
p

ciated to a holomorphic vector bundle E on B. Note that if π is projective, then π is
locally Kahler.

In [KM], Knudsen and Mumford defined a holomorphic line bundle over B

^^(detORπ^))-1 (2.37)

For 0 ̂ j ^ w, if λ™ is the Knudsen- Mumford line bundle associated to ζjy for every
y e B, we have a canonical isomorphism of the fibers

- (2.38)

Therefore for every yeB, the fibers λ™ and /l; ^ are canonically isomorphic.

Theorem 2.12. // π is locally Kahler and if assumption (A) is verified, the canonical
isomorphism of the fibers λy~λfM induces a smooth isomorphism of holomorphic
line bundles.

Proof. Since the statement of the theorem is local on the base B, we can as well
assume that (π, gz, THM) is a Kahler fibration.

We first prove the theorem when ξ = ζj (1 ̂ j^m). Then H°(Ej) has constant
rank. Also in Theorem 2.10, H°(Ej) has been endowed with a holomorphic
structure. Moreover the characterization of the holomorphic sections of H°(Ej)
shows that H°(Ej) is endowed with the same holomorphic structure as in Knudsen-
Mumford [KM]. Also by [KM, Proposition 8] the identification λfM~dQtH°(Ej)
is an isomorphism of holomorphic line bundles. Using the final part of
Theorem 2.10 we find that the canonical isomorphism λj~λfM is holomorphic.

By [KM], the Knudsen-Mumford section σ of IKM = Π(λfM)(~1)J is holo-
_ o

morphic. By Theorem 2.3, we know that T(d + v) is a holomorphic section of
m

I=Π(Λ, )(~1)J. Also by Theorem 2.8, for every ye£, T(d + v)y~σy. Since for j^ l ,
o

the canonical isomorphism λj~λJ M is holomorphic, it is now clear that the
canonical isomorphism λQ ̂  λ™ is also holomorphic. The theorem is proved. Π

Remark 2.13. In Sect. 3, we will establish an analogue of Theorem 2.9 which is valid
for all the cohomology groups, and not only for H°(E). This will permit us to prove
Theorem 2.12 even when assumption (A) is not verified.

f) A First Proof of Theorem 0.1

We now assume that the assumptions of Sect. 1 i) are verified, i.e. π defines a locally
Kahler fibration. gz is still a smooth Hermitian metric on TZ, which induces a
Kahler metric on the fibers Z. ξ is a holomorphic Hermitian vector bundle with
metric hξ, which is such that assumption (A) is verified.

In Sect. 1 i), we have constructed a holomorphic line bundle λ endowed with
the Quillen metric associated to (gz, hξ).

From Theorems 1.27 and 2.12 we obtain the result of [BGS 1, Theorem 0.1].

Theorem 2.14. The canonical isomorphisms of fibers λy~λfM is a smooth holo-
morphic isomorphism of line bundles over B. The curvature of the holomorphic
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Hermitian connection on λ ~ λKM associated with the Quillen metric of λ is given by

[ ί
1(2)

r τ r - (139)

3. λ = λKM: A Sheaf Theoretic Proof

In this chapter, we give a proof of λ ~ λKM valid for any locally Kahler fϊbration, and
we obtain [BGS 1, Theorem 0.1] in the general case.

In a) we recall some facts about the Knudsen-Mumford theory of determinant
line bundles [KM] and indicate how these extend to the category of smooth and
analytic sheaves.

In b) we show that λ and λKM are isomorphic as smooth line bundles. This
follows from Theorem 3.5, which gives two descriptions of the smooth sheaves of
cohomology of a family of vector bundles.

In c) we prove that the smooth isomorphism λ^λKM preserves the holo-
morphic structure, by comparing the d operators.

In d) we give a proof of [BGS 1, Theorem 0.1.]

a) Determinants of Perfect Complexes

In this section, we outline the basic properties of determinants to be used later on.
In particular, given a complex manifold B, we want to know which results of
Knudsen-Mumford [KM] (which is written for schemes) extend to the categories
of coherent analytic sheaves and modules over the sheaf of C°° functions.

Let @B be the sheaf of holomorphic functions on B, and (9B the sheaf of C00

functions. We write PB (respectively PB) for the category of locally free (9B

(respectively (9B) modules of finite rank. Let LB (respectively Lβ) be the category of
(9B (respectively &B] line bundles (more precisely graded line bundles (L, α), where
L is a line bundle and α : B -»Z is a continuous map as in [KM] but we shall forget
about α, as indicated in [BGS 1, Remark 1.2]).

Let Lisβ, Lis^, Pisβ, and Pis^ be the corresponding categories of
isomorphisms.

The determinant functors
det:Pisβ-»Lisβ

and

are given by maximal exterior powers. If

0-»F-^F-^F"-»0

is a short exact sequence in Pβ, there is an isomorphism

ί*(α, β) : detF'<g>detF"AdetF

given locally by the formula

i*(oί9β)(x1 Λ ... Λ XpΛ.βy, Λ ... Λ βyq)

— (XXί Λ . . . Λ OίXp Λ yl Λ . . . Λ yq .
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A similar isomorphism z'*(α,/?) exists for det^. These satisfy compatibility
properties given by Proposition 1 in [KM]. Furthermore, there is a canonical
isomorphism

OB

One can also define the determinant det(F) of a vector bundle V with sheaf of
sections Γ(V) in a such a way that detΓ(F) = Γ(detF).

Let C'B (respectively C^00) be the category of bounded complexes in PB

(respectively Pβ). By the same method as in [KM, Theorem 1], we have

Proposition 3.1. There is one, and, up to canonical isomorphism only one determinant
functor

(/, i) : C'lSβ^LiSβ (respectively (/, z)^ : C'is^ -^Lis%)

satisfying the conditions of [KM, Definition I'].

Remark 3.2. Proposition 2 of [KM] still holds, with affine open sets being replaced
by small open sets (or Stein open sets in the analytic case). Again

(/, 0. (K®ΦS}~ ( ((/, i) (K)} (x) (9%

if K is in C'isβ.
Let R = ΘBoτ (9β. A complex F' of ^-modules is called perfect if, locally on

there exists a quasi-isomorphism

with G'a bounded complex of locally free ^-modules. As in [KM] we may extend
the functor (f, i) [respectively (/, z)^] to the category of perfect ^-modules. The key
lemma is:

Lemma 3.3. Let G'be a bounded complex of locally free R-modules (R = (9B or (9% )9

and F' an acyclic complex of R-modules. If

is a map of complexes, there exists an open cover B = (J Ua of B and nullhomo-
topies ha:G\Uχ-*F\Uχ such that had + dhoc=f\Uoc.

 α

Proof. The assertion being true when B is reduced to a point, for every y e B we can
find an homotopy hy :G'y->Fy between 0 and fy. Since each Gl has finite rank and G*
is bounded, hy extends to a map h in a neighborhood U oίy. The identity dh + hd=f
is true in some (possibly smaller) neighborhood of x. Q

From this lemma, we obtain a modified version of [KM, Proposition 4], where
affine schemes are replaced by sufficiently small open sets. The results analogous to
Theorem 2 in [KM], and the remark after it, are true.

Let π : M^B be a proper map of complex spaces. By a theorem of Grauert [G],
if F is a coherent sheaf of 0M-modules, for all j'^0, the ^-module Rlπ^F is
coherent. If />dim(M), then Riπ^F = Q. The functor Rπ^ maps the derived
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category of $M-modules to tne derived category of (^-modules, and sends
coherent sheaves to complexes with coherent cohomology. If B is a complex
manifold, for every y e B, the local ring &Bty is regular, hence all coherent analytic
sheaves on B are perfect, and more generally any complex with bounded coherent
cohomology is perfect. Hence we obtain (see [KM, p. 46]):

Theorem 3.4. Let π:M-*B be a proper morphism of complex spaces, with B a
complex manifold. Then to every complex F of (9M-modules with bounded coherent
cohomology, we can associate a (graded) invertible holomorphic sheaf det^π^F) on
B. For every true triangle on M,

0-»F-»G^#-+0,
we have an isomorphism

which is functorial with respect to isomorphisms of true triangles.

For F a coherent sheaf on M we define

the Knudsen-Mumford determinant attached to F and π. Proposition 8 of [KM]
is also true in our case. In particular, if Rkn^F is locally free for all fe, we get

When Rkπ^F — 0 for every k> 0 we have

Let now π : M^B be a smooth proper map of complex manifolds and ξ a finite
dimensional complex vector bundle over M. Let

be the complex of smooth vector bundles over B considered in [BGS 2, Definition
1.10]. Call $' the complex of C^ -modules given by smooth sections of E'. We
know from Sect. Ib) that, given yeB, we can find an open neighborhood U of y
and a smooth complex Kb of finite dimensional vector bundles on U which is
quasi-isomorphic to E' on U. Therefore $' is a perfect complex of β^ -modules.
By what we said above (before Lemma 3.3.), we can define an invertible sheaf
det(<f* ) over B. This is precisely the sheaf of C°° sections of the line bundle λ
defined in Definition 1.1.

b) The Knudsen-Mumford Determinant is Smoothly Isomorphic to λ

Let M be a complex manifold. We write &M for the sheaf of Dolbeault complexes
on M. For each p^:0, @P

M is the sheaf of C°° sections of the vector bundle
^PT*(o,i)M χhe differential dM is (9M linear. By [Go, II.3.7], if F is any sheaf of
$M-modules, the complex



342 J.-M. Bismut, H. Gillet, and Ch. Soule

is a resolution of F since $jg hence each 3)P

M is a flat $M-module [M].
Furthermore, &P

M(F) is fine by [Go, II.3.7.3]. Therefore, for any map π : M->£, the
object Rπ^F in the derived category of $β-modules is canonically isomorphic to

\ i.e. Rpπ^F is the sheaf associated to the presheaf on B:

or

Note that π#&M(F) is a complex of ^-modules.
Now suppose that π : M-+B is a smooth and proper map of complex manifolds

which is locally Kahler in the sense of Definition 1.25. Let TZ be the relative
tangent bundle (on M). The relative Dolbeaut complex 2°z is such that &p

z is the
sheaf of C00 sections of Ap(T*(0t 1}Z) on M; its differential dz is the ^-operator along
the fibers. Note that dz is both ΘM and 0£ -linear. When F is any sheaf of
$M-modules, define 2'Z(F) = F (x) 3ί'z. Taking its direct image under π we get a

complex π^z(F) of sheaves of & ]

B -modules. For every p^O, we write 3#ff(F) for
the cohomology oΐπ^z(F). This is a sheaf of &% -modules, while Rpn^F is a sheaf
of (9B-modu\Q. Notice that when F is the sheaf of sections of the holomorphic
bundle ξ,π#@z(F) = $'[cf. end of a)]. The natural map T$-+T£ induces a map of
complexes 2'M-+3>Z. Hence, on B, for every $M-module F, we get a map

π^(F), (3.1)

which induces a map on cohomology sheaves

and, by extending scalars,

QP : (Rpπ*F) (x) G%-*J#f(F) , p ̂  0 .
OB

Theorem 3.5. Suppose that π:M-»£ is a proper smooth map between complex
manifolds and that F is the sheaf of holomorphic sections of a holomorphic vector
bundle ξ on M. Then, for all p ̂  0, the map ρp is an isomorphism.

Proof. To prove the theorem it is enough to show that ρp is an isomorphism locally
on B. Therefore we shall fix y e B and restrict our attention to arbitrarily small
open neighborhoods of y.

By [G] we know that the sheaves Rpπ^F are coherent. In particular, the stalk
(Rpn^F)y is a finitely generated &Bty module. The local ring (9B y is regular, hence
any finitely generated &BtV has a finite resolution by finite rank free (9B ^-modules.

We recall a standard result from homological algebra.

Lemma 3.6. Let R be a regular local ring, and A' a bounded complex ofR-modules
whose cohomology groups HP(A), /?Ξ^O, are finitely generated. Then there is a
bounded complex of finitely generated free R-modules P' and a quasi-isomorphism
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Proof. We proceed by induction on the length of A\ If this length is zero A~ Ak is
concentrated in a single degree fe, hence Ak ~ Hk(A) is finitely generated, and it has a
resolution P'^Ak of the required form since R is regular.

Assume now that the length of A' is positive and let n = sup {k\Ak φ 0}. Choose a
free ^-module of finite rank Pn mapping onto Hn(A] = An/d(An~l). Since P" is free,
the map Pn^Hn lifts to a map φn:Pn^An. Consider the complex

From the exact sequence of complexes 0-»>Γ-».4'-»Pw-»0 we get, in cohomology,

aΠ HP(A*)~HP(A)

iϊp<n — l. Hence ^'satisfies the hypotheses of the Lemma, but Hn(A] = 0. Let now

i.e.

A': ...An-3-^An-2

The obvious map A'-* A' is a quasi-isomorphism, so A' has finitely generated
cohomology, and its length is smaller than the length of A'. Hence there is a
quasi-isomorphism

with Q'a bounded complex of finitely generated free .R-modules. We may assume
Qp = 0 if p^n. The induced map Q'-^Ά'is also a quasi-isomorphism:

^An - >0

r
Vi-2... >Qn

Since Qn = 0 we have d ° α = φn ° j8. So we get a map of complexes

... — — — —

which is easily seen to be a quasi-isomorphism. Π

Returning to the proof of Theorem 3.5, we may use Lemma 3.6 to construct a
map of complexes of ΘB ̂ -modules

which is a quasi-isomorphism and such that 0>'y is a bounded complex of finitely
generated bree 0Bj>Γmodules. By the finiteness of &'τ the map φy extends from the
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stalk at y to a neighborhood of y, giving a map of complexes of $β-modules (B
small enough)

Since both complexes have bounded coherent cohomology, and φy is a quasi-
isomorphism, the map φ is a quasi-isomorphism in a neighborhood of y. We
extend scalars and compose with the map (3.1) to get a map of complexes of
(9% -modules

Let P" be the complex of holomorphic vector bundles on B whose sheaf is
The map φ°° is induced by a smooth map of complexes of vector bundles

Lemma 3.7. The fiber

of φ at y is a quasi-isomorphism.

Proof. Let j: y^B and i:Zy = π~1(y)-+M be the inclusions. We have a commuta-
tive diagram

y

I- i
Let Cy be the constant sheaf with stalk C at y. Since P^ is equal to &'§§j*Cr it is

OB

quasi-isomorphic to n^'M(F}(^)j^C [using the fact that π^M(F) is flat over
ΘB

OB]. Now, since i*GZy = ®M®π*]*Cy, we get

flu"""

Furthermore, if Fy is the sheaf of holomorphic sections of ξy over Zy, we have

On the other hand

Hence it is enough to show that the map

is a quasi-isomorphism. The target of this map computes j^Rπ^(Fy)9 and its
domain computes Rπ^.i^(Fy). Both i and j are finite maps, so Ri^ = i^ and Rj^. =7^,
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and we get a chain of quasi-isomorphisms

Rπ*i*(Fy) * Rπ*Ri*(Fy) * R(πjJ (Fy) * *(/>*) (Fy) ^j*Rπ*(Fy) . D

This lemma just means that, to compute the cohomology of a coherent sheaf on
Zy, one may use Dolbeault resolutions on M or on Zy.

We want to pass from the ίiberwise statement of Lemma 3.7 to a global one,
saying that φ is a quasi-isomorphism in a neighborhood of y. Since (#, &g) is not an
Oka space, this does not follow directly. Using the notations of Sect. Ib), over the
open set Ub, we can introduce the subcomplex

KbcE'

of (1.1) and the corresponding (9% -module 3fb C <f (for b > 0 well chosen and B small
enough).

Lemma 3.8. The inclusion 3Cb C $' is a quasi-isomorphism of complexes of
(9%-modules.

Proof. Over the open set Ub defined in Sect. Ib), the projector Pb:E'^>Kb is a
smooth family of regularizing operators [Bl, Proposition 2.13]. The family of
operators D2 = (d + d*)2 has an inverse G on the orthogonal complement of Kb.
Since D2 commutes with Pb, d and δ*, we have

d d *G(1 - Pb) + d *G(1 - Pb)d = \-Pb.

Hence 3~*G(1 — Pb) is a homotopy between 1 and Pb, which depends smoothly
on the base point. Therefore the inclusions JfbC<f and KbcE' are quasi-
isomorphisms. Π

We can now complete the proof of Theorem 3.5. On B, we have maps of
complexes of 0£ -modules:

and

Since by Lemma 3.8, ψ is a quasi-isomorphism and ̂ 'is bounded and locally free,
we can lift φ°° to a map

OB

with \p o φ homotopic to φ00.
On the fibers over y we know that ψy and φ™ are quasi-isomorphisms

(Lemma 3.7 and Lemma 3.8) therefore φy is a quasi-isomorphism. Since P'and Kb

are bounded complexes of finite dimensional C°° bundles on B, the map φ induces,
in a neighborhood of y, a quasi-isomorphism

and, for all p ̂  0, the map ρp is an isomorphism. Π
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Corollary 3.9. Let λKM be the holomorphίc line bundle on B whose sheaf of
holomorphic sections is λKM(ξ) = dQt(Rπ^ξ)~ί. As smooth bundles, λKM and λ are
canonically isomorphic. In particular the Quillen metric is smooth on λKM.

Proof. From Theorem 3.5, we deduce that the (9% -modules JΊ?f(F) are perfect.
Therefore by [KM, Proposition 8] there is a canonical isomorphism

We know that the left-hand side is the sheaf of smooth sections of A, and, by
Theorem 3.5, the right-hand side is canonically isomorphic to

. D

c) Comparison of the Complex Structures

Let p>0 and let J^p

δ(F) = Hp(£') the cohomology of the complex S" = n^z(F) of
@B -modules. We shall define a map

such that δj = 0 and, if feθg and

SB(fh) =fdB(h) + dB(f}® h . (3.2)

Let p^O and let αe£p be a section of Λp(T*(QΛ)Z)®ζ such that δz(α) = 0.
Choose any lift oίeΛpT*(OΛ}M(S)ξ of α. The form δM(α) will map to zero in
Λp+ίT*(OΛ}Z®ξ. From the exact sequence

we get a map

Q : ker {Λp+ ^

We define dB(a) = ρ(dM(ofy.

Proposition 3.10. The map dB induces a morphism

°Bsatisfying (3.2). Its kernel contains ρp(Rpπ^F).

Proof. First notice that Sz(dB(a)) = ρ((d M)2α) = 0. To see that the class of dB(oc) does
not depend on the choice of α, let α' be another lift of α. Then α — α' is in the image of
the map

π*T*(0'

say &-oί' = β®y. We get

We have
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(since Λπ*T*(OΛ)B is stable under dM\ hence ρ(dMβ®y) = Q. Therefore

ρ(dM(oi - α')) = Q(β®8My) =

and the class of dB(κ) in Jl($(F) (x) Γ*(0' 1}B does not depend on the choice of α.
_ _ &B

Using (dM)2 = 0 we get dj = Q and (3.2) is easily shown. Finally ρp(Rpπ^F) is
killed by dB, since it is represented by sections α in Λp(T*(0>1)M)(g)ξ such that
£Mα = 0. D

Let us now consider a Kahler fibration (π,gz, THM) as in [BGS 2, Sect. Ic],
with associated (1, 1) form ω = ωH + ωz. According to [BGS 2, Theorem 1.14], we
have an operator

such that (V")2 = 0, which commutes with dz, hence induces a complex structure on
HP(S").

Theorem 3.11. For every p^O, the operators V" ana dB on Hp($") coincide.

Proof. It is enough to consider the case where ξ is trivial. Let us first recall the
definition of V" in [BGS 2, Definition 1.13]. The form ω induces maps

and

which, by definition of a Kahler fibration, induce an isomorphism _ι ωz from
T(0'υZ to T*(1'0)Z. If η is a section of T(0ϊl)B, its horizontal lift ηH is the unique
section of T(θ5l)M such that ηH-iω has image zero in τ*{1'0}Z. In other words

If αeT* ( 0 'υZ there is a unique element βeT (1'0)Z such that α = β_jωz. We
defined

where V" is the standard dM operator on the holomorphic bundle T(1'0)Z.
Let us simplify our notations by setting

AP(M) = CCO sections of

BP(M) = CCG sections of

^(Z)-C00 sections of

Bp(Z) = C00 sections of ΛPT*(0> 1}Z .

In particular BP(Z) = EP in the notations of 3. a). The key step in the proof of
Theorem 3.11 is the following Lemma.
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Lemma 3.12. For every section η of T(Q'l^B the composite map

Aι(Z}-^Al(Z}^^B\Z)

is equal to the composite

Proof. This is a statement about C00 sections of bundles on M, therefore we can
work locally on M and assume that M = ZxB, with holomorphic coordinates

z1? . . ., zn/2|i, 3>ι, ., ym By linearity we can assume that η = -^r- for some b. We omit
the summation signs and write ^b

ω = sijdzt Λ dzj + tl'dzi Λ dyf + ukjdzj Λ dyk

Since ωz the metric (slj) is positive definite. Since ω is closed we have

dsij dsip

J /Q α,and r - - r - . (3.3)
p

Let β = ζi — GA1(Z). We shall compare its two images in B1(Z). We can first

'

where the /p's are determined by the condition

5^ + ̂  = 0 V / = l , . . . , n / 2 , (3.4)

which expresses the fact that ηH —\ω maps to zero in Bi(Z). Since

we get

and

VηΉ(β) -J ωz = I —r- /p H—— I sljdz:. (3.5)
\ozp cybj

On the other hand,

ί's'V^ Λ dzj + ~ (?tie)dyk Λ dyΛ.
oyk J
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We want to restrict this form to Bl(Z) so we need only compute the coefficient of
dz. Since

we get that the image of ίηHdM(β-iω) in B1(Z) is equal to

After reindexing, we obtain

~ (ί V j) - ^r (ζtf
dzp dzj

(since ωz is closed under dz)

[by (3.3) and (3.4)]

By (3.5) and (3.6) the lemma follows. Π

Let now αe£p(Z) with p^l. By linearity we can assume that

with βjeAl(Z)J=\,...,p. A lift &eBp(M) of α is

To get the theorem, we just need to show that iηHdM(3) and F^/?! Λ . . . Λ βp)^ ωp

have the same restriction in BP + 1(Z). By Leibnitz rule we get

On the other hand,

where (*) is a sum of terms of type

(βl_ιω) Λ ... Λ iηH(βj-iω) Λ ... Λ dM(βk-\ω) Λ ... Λ (j8p_ιω),

with j Φ k. By definition
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Finally, by Lemma 3.12, we know that VηH(β^ω and iηHSM(β^ ώ) have the same
restriction in B1(Z). This implies the result. Π

Remark 3.13. Theorem 3.11 is also a trivial corollary of [BGS2, Theorem 2.8].

Theorem 3.14. The smooth isomorphism λκu~λ is an isomorphism of holomorphic
line bundles.

Proof. Since Rpπ^F is a coherent $β-module [G], there is a dense open set in B
where it is locally free. Therefore, to prove the corollary, we can assume, that, for
every p^O, Rpn^.F is locally free. If we replace B by a small neighborhood of any
point y in B we can assume that there is a real number b > 0 such that D2 has no
eigenvalue in ]0, b]. Therefore Kb C E' consists of harmonic forms. For every p ̂  0
there is an orthogonal decomposition (Hodge decomposition)

and K£ = ker(<3z)nker(5z*). The restriction of the orthogonal projection
Pb:Ep-+Kb

p to ker(3z) factors through an isomorphism Pb\Hp(E')^Kb

p. This
isomorphism is, by definition, compatible with the action of V" . From Proposi-
tion 3.10 and Theorem 3.11 we know that ρp(Rpπ^F) lies in the kernel of V" and,
since the ranks are the same, Qp(Rpn^F) = Ker(F"). On HP(E) the complex structure
induced by ρp (using Theorem 3.5) is thus the same as the one given by V". Since the
canonical isomorphism λKM~λ of Corollary 3.9 is induced by ρp, p^O, it is
therefore compatible with the holomorphic structures of these line bundles. Π

d) Conclusion

By Theorem 3. 14 and Theorem 1.27, we have now completed the proof of
Theorem 0.1 in the introduction of [BGS 1]. So let π : M -+B be a smooth proper
morphism of complex manifolds. Assume that π is locally Kahler. Let ξ be a
hermitian holomorphic vector bundle on M. Choose any Kahler metric gz on the
fibers of π, which varies smoothly with the base point.

Theorem 0.1. Under the above hypotheses, the curvature of the Quillen metric on the
Knudsen-Mumford determinant is

(2/π) Γj Td( - Rz/2iπ) Tr exp( - Lξ/2iπ)Ύ2} .

Theorems 0.2 and 0.3 in the introduction of [BGS1] follow from [BGS1,
Corollary 1.30], Theorem 3.14, Theorems 1.23, 2.4, and 2.8.

Acknowledgements. The authors are indebted to Professors J. B. Bost, J. P. Demailly, N. J. Hitchin,
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