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Abstract. In this paper, we prove that in the case of holomorphic locally Kahler
fibrations, the analytic and algebraic geometry constructions of determinant
bundles for direct images coincide. We calculate the curvature of the
holomorphic Hermitian connection for the Quillen metric on the determinant
bundle. We study the behavior of the Quillen metric under change of metrics in
the fibers, and also on the twisting vector bundles. We thus generalize the
conformal anomaly formula to Kdhler manifolds of arbitrary dimension. We
also study the Quillen metrics on determinants associated with exact sequences
of vector bundles. We prove that the Quillen metric is smooth on the
Grothendieck-Knudsen-Mumford determinant for arbitrary holomorphic

fibrations.
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This is the third of a series of three papers devoted to the study of holomorphic
determinant bundles and direct images. Parts I and II of this work will be referred
to as [BGS1, BGS2]. Also the Introduction of [BGS1] contains a general
description of our results.

Let n: M— B be a proper holomorphic map of complex manifolds, and let £ be
a complex holomorphic vector bundle on M. For ye B, let Z,=n"'(y) be the fiber
over y. Let g% be a Kdhler metric on Z, which depends smoothly on y, and let h° be
a smooth metric on . If /=dimZ , let

0—>E8—E>E; ...—E>Ei—>0 0.1)

denote the 0 complex associated with the restriction of ¢ to Z,.

In [BGS 2], when the metrics g? are the restriction to the fibers Z, of a Kdhler
metric on M, we constructed analytic torsion forms of any degree associated with
the direct image of the vector bundle ¢ by the map =.

In this paper, we study in detail the determinant bundle of the direct image.

In Sect. 1, when the fibration 7 is locally Kéhler, we construct a holomorphic
structure on the C® line bundle 1 of Bismut and Freed [BF1,2] and the
corresponding Quillen metric. We calculate the curvature of the associated
holomorphic Hermitian connection, which is given by a differential form version
of the Riemann-Roch-Grothendieck Theorem. We use two facts:

® The truncation procedure of [Q2, BF 1,2], which approximates the line
bundle 1 by the determinant bundle of finite dimensional eigenspaces of (0 + 0*)?, is
compatible with the holomorphic structure on the infinite dimensional Hermitian
vector bundles E°, ..., E?, at least when the metric g is the restriction to Z of a
Kéhler metric on M.

® We establish in Theorem 1.23 a generalization of the conformal anomaly
formula for Kédhler manifolds of arbitrary dimension, i.e. we prove the result
stated in [BGS 1, Theorem 0.2].

Observe that the construction of Sect. 1 is purely analytical, and that in
particular the holomorphic structure on the line bundle 4 has been constructed
analytically. One of the purposes of the next two sections is to compare the
holomorphic line bundle 2 with the holomorphic line bundle A*™ of Knudsen and
Mumford [KM].

In Sect. 2, we first establish [BGS 1, Theorem 0.3]. Namely we calculate the
Quillen norm of the canonical section ¢ of an alternate product of determinant
bundles associated with an exact sequence of holomorphic Hermitian vector
bundles on M. To obtain this result, we use in an essential way the results of
[BGS2]. When = is projective, we prove in Theorem 2.12 that J and A*M
canonically isomorphic as smooth holomorphic line bundles.
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In Sect. 3, we prove that in general, the canonical isomorphism of fibers
Ay~ A5M defines a smooth isomorphism of line bundles, even when 7 is not locally
Kiéhler. We also prove that when = is locally Kédhler, this isomorphism preserves
the holomorphic structures. We thus prove [BGS1, Theorem 0.1] in full
generality.

We use in this paper many of the techniques we developed in [BGS 1, BGS 2].
In particular we are able to calculate the term of order 0 in a singular asymptotic
expansion as t||0 in order to establish the generalization of the conformal
anomaly formula of [BGS 1, Theorem 0.2]. Also we constantly use the formalism
of the Bott-Chern classes of [BGS 1], and the superconnections of Quillen [Q 1].

We refer to [BGS 1, BGS 2] for notations and terminology. In particular if K is
a Z, graded algebra, and if 4, Be K, [ 4, B] denotes the supercommutator of 4 and
B. Also the notations Tr and Tr, are used for traces and supertraces.

On a complex manifold B, P denotes the set of smooth differential forms which
are sums of forms of type (p, p). P’ is the subspace of P which consists of the forms
w € P such that w= 0%+ 0%y

The results contained in this paper were announced in [BGS 3].

I. The Analysis of Holomorphic Determinant Bundles

In this section, we construct a holomorphic structure on the C* line bundle of
Bismut and Freed [BF 1] associated with the family of operators J, + J¥, and we
derive the essential properties of this line bundle.

In a), we give the main assumptions and notations. In b), we describe the line
bundle 1. Although our construction imitates [BF 1], it is somewhat different. In
fact, we use the same approximating line bundles 1% as in [BF 1]. However, our
transition maps are not the same.

In c), we prove that the approximating line bundles A* are naturally
holomorphic, and that A inherits the corresponding holomorphic structure.

In d), we construct the Quillen metric on the bundle 4. This metric differs from
the metric in [BF 1].

In e) we calculate the curvature of the holomorphic Hermitian line bundle 2 in
the special case where the metric on Z is the restriction of a Kdhler metric on M.

In f) we briefly identify our line bundle A with the bundle A’ of [BF 1, BF 2] as
smooth bundles with metric and connection.

In g) we prove that the holomorphic structure on 4 does not depend on the
special Kdhler metric on M which was used to construct it. This is done by purely
analytic methods. Of course in the light of our final result 2 =A™, it is very natural
that such a direct proof can be given.

In h), we prove the result stated in [BGS 1, Theorem 0.2] which describes how
the Quillen metric varies with the metric gZ in one given fiber. This is done by using
again non-trivial identities on traces, anticommuting variables, the heat equation
and Brownian motion.

Finally in 1), we prove that if the fibers Z are endowed with any family of Kéhler
metrics g%, the curvature of the holomorphic line bundle A endowed with the
Quillen metric is given by a differential form version of the Riemann-Roch-
Grothendieck Theorem.
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a) Assumptions and Notations

We now do the same assumptions as in [BGS 2, Sect. 2], and we use the same
notations. In particular (n, g%, T" M) is a Kahler fibration and w=w?*+w" is an
associated (1, 1) form.

Let ¢ be a holomorphic Hermitian vector bundle on M and V¢ the
corresponding Hermitian holomorphic connection, L*=(V°)? its curvature. We
use the notations of [BGS 2, Sect. 2] with m=0. In other words, we consider the
case of one single twisting bundle . The associated trivial chain complex ¢ is
simply 0—&—0. In particular v=0, v*=0.

Recall that for 0<p </, y € B, E is the set of smooth sections of AP T**VZ®¢&
on Z,. Also:

Et= @ E’, E =@ E', E=E"®E .
peven podd
D,=0,+ 0} acts on the fiber E,. Let D, be the restriction of D to E*. Then we
write:

b) Description of the Determinant Bundle

We now describe the determinant bundle associated with D. Our description is
inspired from Quillen [Q 2] and from Bismut and Freed [BF 1]. However, since
we are especially interested in the explicit construction of an holomorphic
structure on this line bundle, we must proceed differently from [BF 1].

For every y € B, the spectrum of D} is discrete. For b>0,0<p </, let K27 be
the sum of the eigenspaces of the operator D; acting on E? for eigenvalues <b.
Since D; is elliptic on Z,, K5?CEP.

Let U be the open set:

U*={yeB;b¢SpecD;}.
On the open set U%, K>” is a smooth finite dimensional vector bundle. Set

Kit= @ Khr, KM= @ KPP, KP=KMT@KMTL (L)

peven podd

We now define the line bundles A° and 1”® on U?,
A=(detK"%) '@(detK" )®(detK" ) ' ® ...,
A=(detK> *) 1 @(det K> 7).

By [BGS 1, Sect. 1a) 3.], there is a canonical isomorphism i from A” into 1.
For 0<b<c, if ye UPNU*, let K97 be the sum of the eigenspaces of D} in
E? for eigenvalues p such that b<pu<c. Set:
K(b,c), +_ @ K(b,c),p K(b,c), - — (_B KLb,c).p
y y > y >

peven podd

K00 = K0+ @KPe: (1.2)
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We also define 4?9, 1'®9 as before, and denote by i the canonical isomorphism
from A® into A'®9,

Let 09 and D® 9 be the restrictions of d and D to K9 - D% 9 is the restriction
of D to K& %,

The chain complex

0—>K(b‘c)’0 K(b,c),l K(b,c),{’_)o (13)

(b, ) db,e) " T Bb, o)

is acyclic. By [BGS1, Definition 1.1], A**9 has a canonical non-zero section
T(0®9) which is smooth on U?nU*. Also det D9 is a smooth non-zero section of
A9 over UPNU-

For 0<b<c, over UNnU*, we have the C* identifications

/1€=)»b®/1(b’c),
(1.4)
= ar@ o,
We identify A’ and A¢ over UPnU°® by the C* maps
se P -s@T(0%9)e i,
(1.5)

sSelb-s® detD®e e,

Note that the identifications (1.5) are not compatible with the isomorphisms i®
and i“.

Definition 1.1. A (respectively 4') is the C* line bundle over B which coincides with
AP (respectively A”®) on U’ with the transition functions (1.5) on U°nU".
Only the line bundle 2" was considered in [BF 1] (under the name of 1).

¢) A Holomorphic Structure on A

As a smooth subbundle of E over U, K” inherits the Hermitian product defined in
[BGS 2, Eq. (1.38)]. It follows that over U?, A%, and A"® are endowed with smooth
Hermitian metrics | [* and | |*. The map i° is an isometry from A° into A",

For ye U?, let P} be the orthogonal projection operator from E, on K?. Since
K’;C E,, P'y’ is a smooth family of regularizing operators. Similarly for 0<b
<c <+, over UPnU<, P9 is the orthogonal projection operator from E, into
KPo.

Definition 1.2. Let V* denote the connection on K® over U” such that if hisa C®
section of K® over U®, then:

VPh=P*Vh. (1.6)

The connection V? preserves the metric of K?, and induces connections °/? and
°p’® on A” and A%, which preserve the metrics | |° and | |”.

In the same way, for 0 <b <c¢ < + o0, over U nU¢, A%9 and 1'® are endowed
with smooth metrics | [*9 and | |® and unitary connections °V® < and °p’'®-9),
which are induced by the connection V< on K®©,

We now prove an essential result:
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Theorem 1.3. Over U®, there is a uniquely defined holomorphic structure on the
smooth Hermitian line bundle (A%, | |°) such that °V? is the corresponding holomorphic
Hermitian connection.

Similarly for 0<b<c< + 0, over UPnU", there exists a uniquely defined
holomorphic structure on the smooth Hermitian line bundle (29, |*9) such that
Op®:9 s the corresponding holomorphic Hermitian connection. T (0**9) is a non-zero
holomorphic section of 2% over UPnU".

The holomorphic structures on (A, U®) patch into a uniquely defined holomorphic
structure on the line bundle A on B.

Proof. By [AHS, Theorem 5.1], to prove the first part of the theorem, we only need
to prove that the curvature of the unitary connection °V? is of type (1, 1).

Since P’ is a smooth family of regularizing operators, for any Ye TB, ¥, P? is
regularizing. If K® **) is the orthogonal of K” in E, by [BF 1, Proposition 1.13],
7, P? interchanges K? and K® **). Thus if Y, Y’ e TB, [V, P, %.P’] map K’ and
K®**) into themselves.

By [BGS 2, Theorem 1.14], 72(Y, Y')is a first order differential operator acting
fiberwise. It follows that P*P%(Y, Y')P® maps K® into itself. An obvious compu-
tation shows that the curvature of the connection °F® on A® is given by

Tr,{P*V2P?} + 1 Tr { P'[VP®, VP*]P"} .

By [BGS2, ~jl"heorem 1.14], 7% is of type (1,1). So we should prove that
Tr,{P’[V P?, 7 P*1P"} is of type (1,1).
Set Q°=1I— P’. Since Tr, vanishes on supercommutators, we find that

Tr,{P’[VP", 7 P"1P*} = — Tr,{Q’[V P, 7 P"1Q"} . (1.7)
Since [D?,J]=0 it is clear that:
P*0=3P". (1.8)

Also by [BGS 2, Theorem 1.14], 7"3=0. Using (1.8), we find that

[(7"P),3]=0. (1.9)
Take Y, Y' e T®VZ. Set
S=V PV, P, (1.10)
From (1.9), we find that
[S,0]1=0. (1.11)
We claim that
Tr,[Q*SQ"]=0. (1.12)

If 41 is an eigenvalue of D?, let T, be the orthogonal projection operator on the
corresponding eigenspace. Since S is trace class, we know that

Tr,[0PSQY] = ¥, ThT.ST). (1.13)
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If Ki is the eigenspace in E? corresponding to the eigenvalue y, we have the exact
sequence

O—»Kﬁ)“}—a»K{l"}——)...—E»K{(")—»O. (1.14)

By [BGS 1, Proposition 1.3], we find that:
Tr[T,ST,]=0. (1.15)

Equation (1.12) follows from (1.13) and (1.15).

Using (1.12), we find that Tr,{P’[/'P?, 7P*1P?} is of type (1,1). Therefore we
have proved that (°V?)? is of type (1,1). Similarly since V"d=0,if Y,Y'e T*VZ,
(V®)%(Y, Y') commutes with 0. Since the chain complex (1.3) is acyclic, by
[BGS 1, Proposition 1.3], we find that:

Tr,[(V* 9P (Y, Y)]=0, (1.16)

and so (°V®9)? is of complex type (1,1).
We now prove that T(9®9) is a holomorphic section of A%<, Since the complex
(1.14) is acyclic, each K® 97 splits into

K(b,c), p— a_(b,c)[K(b,c),p - 1] (_Ba_(b,c)*[K(b,c),p-F 1] , (1 17)
and the two vector spaces in the right-hand side of (1.17) are orthogonal. Also
dim K® 7 =dim (09K ® 7~ 1)+ dim(0® 9K ®--?), (1.18)

Since K®9isa C* bundle on U°nU°¢, dim K® 9P islocally constant on U U*.
Equation (1.18) shows that dim(d®9K®9?) is locally constant on U’NU".
Therefore, 0®9K® P and g K® )P are smooth bundles on UPNU-.

Let 5% ...,s° ! be locally defined C* non-zero sections of

det[0C"K®-9 17 det[d®- " K®],
Then by [BGS 1, Definition 1.1], we know that:
T(0®=(s°)"'R0s° As'@(0s' As?) " I® .... (1.19)

Let U® -7 be the orthogonal projection operator from K®9-7 on g®-9"K®-0-p+1,
The connection V9 splits into P& =p®:9" 4 p®.9" where P p®9" are the
holomorphic and antiholomorphic parts of V®9 Since by [BGS2,
Theorem 1.14], 7"d=0, we know that:

Pl goo—(.

Since 09 vanishes on d® (K ®9-?~ 1) and since in the right-hand side of (1.17), the
two vector spaces are orthogonal, we find that:

V(b,C)”(("}'(b‘C)Sp* 9N Sp):(g(b,C)U(bw),p— Ly®.0”ep= 1) ASP
AR S R (1.20)
and so

PO@ A _ UGSyt gy
OsP L AsP N sP1 sP ’

(1.21)
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Op®.9) also splits into °p®:9)=0p®.9" 4 Op®.9” [sing (1.21), we find that:
Ov(b,c)”T(a_(bst‘))zo. (1.22)

T(0®9) is thus a holomorphic section of 1¢°),
We now prove that for 0<b<c< + oo, over U nU°, the canonical map

selb5s@T(E®)e i (1.23)

is a holomorphic map from the holomorphic bundle A° into the holomorphic
bundle <. In fact, since K@?=K>»?P@ K® 9P itis clear that if s is a smooth section
of A?,

P(s@ T(® ) ="Vs@ T(0® )+ s V- OT(9¢-9). (1.24)
Using (1.22), we find that:
WP (s@T(0®N="V*"s®@T(0®9). (1.25)

(1.25) exactly means that the map (1.23) is holomorphic.

We have thus shown that the holomorphic structures on (4%, U?) patch together
into a uniquely defined holomorphic structure on the line bundle 1 on B. The
theorem is proved. [

d) A Metric and a Holomorphic Connection on 1

We now construct a natural metric on the holomorphic bundle A. Our
construction is inspired from Quillen [Q 2] and Bismut and Freed [BF 1]. Take
0<b<c < +00.Over U nU¢, consider the acyclic chain complex (1.3). The K®-»
are Hermitian bundles. We can thus define the analytic torsion (0 ?) of the chain
complex (1.3). By [BGS 1, Proposition 1.5], we know that:

| T[4 = (30 (1.26)
Also, since K” and K® 9 are orthogonal subspaces of K¢, we find that if se A2,
Is® T(0® ) =|s|’2(0®9). (1.27)

The metrics | |° clearly do not patch into a metric on A because of the discrepancy
(1.27). /
Recall that Ny = —iw®“+ 3 is the number operator on E, ie. if ne E?, Ny
=pn. Set Q°=1—P®,

Definition 1.4. For ye U, Re(s)>/, set

03(s)= —Tr,[Ny[D?]°Q"]. (1.28)
Similarly if 0<b<c< + o0, for ye UPnU", seC, set
0®-9(s)= —Tr, [N, [D>] P97 (1.29)
Equivalently:
_ + o
0%(s)= ﬁsl) | ' Tr,[Nyexp(—uD*Q"]du,
° (1.30)

__1 + _ ¢
0 5)= g | w7 TRINy exp(—ub)P®Tdu.
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6% extends into a meromorphic function which is holomorphic at s =0. The same is
true for 9. Also, for 0<b<c< + o0, on UPNU,

6 =009 4 ¢ (1.31)
Finally, by [BGS 1, Eq. (1.64)], we know that
Log[¢2(@®9)] = —0®-9/(0). (1.32)

We now extend (1.32) to the case where ¢= + co.

Definition 1.5. For ye U®, let 1,(0® **)) be the positive real number

(0 * ) =exp{—36%(0)} . (1.33)
Let | ||° denote the metric on the line bundle (1%, U?),
I 1°=] [P0 ") (1.34)
and 'V’ the connection on (4%, U?),
Lypb_Opb | 5B L og(J +*)). (1.35)

We now prove the following key result:

Theorem 1.6. The metrics | ||? on (A%, U®) patch into a smooth metric || || on the line
bundle 2. The connections *V° patch into a connection 'V on ). The connection 'V is
the unique holomorphic Hermitian connection on the Hermitian line bundle (A, || |).

Proof. For 0<b<c< + oo, take s in A°.

Then
IslI®=s|z(3® =), (1.36)
Is@T(@®9) | =s[Pe(F (3 * ).
By (1.31), we know that
(0@ N)(0@ N =1(0® * =), (1.37)
From (1.37), we get
Is@T@* = s (1.38)

Equation (1.38) exactly means that the metrics || ||® patch into a C* metric || | on
4. Clearly 'V* is the unique holomorphic connection which is Hermitian with
respect to || ||°. Since the holomorphic structures on (4%, U®) and the metrics | ||°
patch together, the connections 'V also patch together into a connection 'V on 4,
which is holomorphic and preserves the metric || |. [

e) Evaluation of the Curvature of 'V
We now calculate the curvature of 'V. By [BGS 2, Theorem 2.11], as u} |0,

Tr, [(1/;1) + :(—‘/T;)> exp(—A,%)] =0(u). (1.39)
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Since ¢(T) is of degree 2 in the Grassmann variables of A(T*B),

[T I, <<1/5D + :—(T—)> exp(— Af))]m =[Tr,()/uD exp— (7 +1/uD)*]V.
Vu (1.40)

By [BF 2, Theorem 3.3], we know that
[Try)/uD exp—(7 +)/uD)*)]V= —uTr,[exp(—uD?)7DD].  (1.41)

Using (1.40), (1.41), we thus reobtain the result of [BF 2, Theorem 3.4] which
asserts that as u| |0,

Tr,[exp(—uD?)PDD]=0(1).
It follows that as u] |0,
Tr,[exp(—uD?)PDDQ*]=0(1). (1.42)

We now define the differential form % as in [BF 1, Definition 1.14].

Definition 1.7. Let &% denote the smooth 1 form on U®:
+ o
4= | Tr,[exp(—uD*)7DDQ"]du. (1.43)
0

The integral in (1.43) is well defined by [BF 2, Theorem 3.4] or by [BGS?2,
Theorem 2.11].

Let V7% ") be the connection on K® ** such that if h is a C® section of
K® ** on UY,

po+ o= b7h. (1.44)
p® * ) is the natural extension of V® for ¢= + oo. Similarly D®: *=) g+ <),

0® * ) are the restrictions of D, 7, 0* to K® **),
Using again [BF 2, Theorem 3.3], we find that

{TI‘S[WD(b, + oo)exp_(V(b, + m)+WD(b, + oo))z]}u)
= —uTr,[(exp(—u(D® * ©)2) (P @+ 2D, + 2Np. + )] (1.45)

Since V@ +)pt:+<) = 0bFDOb we get
{TYSEWD(b’ + oo)exp__(V(b, +w) WD(b, + ac))ZJ}(l)
= —uTr[exp(—uD?)¥DDQ"]. (1.46)
Using (1.42)—(1.46), we find

+ o
Sh=— [ —={Tr,[D®* P exp—(P®* = +)/uD® )2} Dgy.  (1.47)
0 /u

7

Theorem 1.8. Over U®, the following identity holds:
6b = —(0%— %) [Logt?(0® *=))]. (1.48)
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Proof. Clearly
—Logt*(0® **)=6(0).
Also

— + o
0b(s) = ﬁ:) [ w™ VT, [Nyexp— (V") 4 /uD® *=)2]Ody . (1.49)
0

Then, by proceeding formally as in the proof of [BGS 1, Theorem 1.9], but
using instead the C* kernels of the relevant operators as in [B 1, Sect. 2], we find
that:

dPTr,(Ny exp—(V® * ) +1/uD® * 2)?)
=Tr,([V® 2+ WDw, +o0) N exp— (P ) 4 ]/ﬁD‘“ rony)
= W Tr,([D® * ), N, Jexp—(V® * =) + ‘/&D‘h a2
/Ty (= 30 ) 4 J0 ) exp— (P )+ 1/uD® * ) (1.50)
Identifying the term of degree 1 in (1.50), we get
dBTry(Ny exp—u(D® *)2) =) /uTry((— 30 * =) 4 5+ =)

X exp— (|/up &+ OIP®: @)y gy (Db + )2 (1.51)
Since "0=0, V'0* =0, we find that
V(b, +oo)”a_(b, +oo)=0’ V(b, +oo)’a_(b, +oo)*___0. (152)

We can now use the degree counting argument of the proof of [BGS1,
Theorem 1.9] to obtain

O Tr, [Ny exp—u(D® *<)?]
= W[Trs(a_(b, + a0)* exp— (V(b, +oo) | l/;D(b, + oo))z)](l) ,
J8Tr,[Ny exp—u(D® * )]

= —)/u[Tr, (@ * @ exp—(V® " =) +|/uD® *=)2)]D (1.53)
and so
(08— Tr,[N, exp—u(D® *=)?]
=|/uTr,[D®*® exp— (PO ) ]/uD® * )20, (1.54)
Using (1.49), (1.54), we find easily that
(0 — 5")00(s) = — - +j°° Y T, (DO ) exp— (7O + ) +1/uD® * )2y,

I'(s) o 1/;

Now by (1.42), (1.46), we know that as u] |0,

LTrs[D(”’ T exp— (V) 41/ uDb + )2 = 0(1).

Vi

(1.55)
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We thus find that

(08 —0%)0"(0)= — TO 1 [Tr,(D® " exp—(V® =) 4 ]/ED(”' N Dy
’ [/1; (1.56)
and by (1.47), we get:
(08 —08)0° (0)=65. (1.57)
Equation (1.48) follows. []
We now calculate the curvature of the connection 'V on A.

Theorem 1.9. The curvature (V)? of 'V is given by

(‘7?2 =2in I:; Td(;f_j) Tr {exp <—;i—f>:|:|(2). (1.58)

Proof. The curvature of the connection °V? on (1%, U?) is clearly given by
—TrX"(7)?). (1.59)
Therefore, the curvature of 'F? on (1%, U?) is given by
K" (71)2)— 380507(0).
Since by Theorem 1.8, (0% — 3%)0"(0)= 6%, we find that
TBB07(0) = 1dBs, . (1.60)

The curvature of 'V® on (2%, U?) is thus given by
—TrX*(7)?)—1d®65 . (1.61)

By Bismut and Freed [BF 1, Theorem 1.18] (especially [BF 1, Eq. (1.77)]) and by
[BF 2, Theorem 1.21], we find that (1.61) is exactly the right-hand side of (1.58).
The theorem is proved. []

Remark 1.10. Assume that the family D has index 0. Let U° be the open set in B,
U°={yeB;D, is invertible} .

If yeB, for a>0 small enough so that [0,a]nSp(D;)=¢, 2*~C. The sections
1€ A% patch together into a non-zero holomorphic section of 4 over U® which we
note T(0).

If ye UY, set
0y(s)= —Tr,[N,[D*17*], t(0)=exp{—36%(0)}. (1.62)
7(0) is exactly the Ray-Singer analytic torsion [RS] of the complex (E, 9). Clearly

[ T(0)I|=1(0), (1.63)

and so on U°

~BAB (2 ; —R? - @
08%0% Log | T(0)|| =21n[£ Td( i )Trs [exp(—zl%—)}} . (1.64)
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f) Identification of the Metrics and Connections on 4 and 1’

Recall that in Bismut and Freed [BF 2] a metric and a unitary connection were
constructed on A’, whose curvature is exactly given by (1.58). This fact, together
with the proof of Theorem 1.9, suggests that A and A’ are in fact the same bundles.
We now explicitly construct an isometry from 4 into A"

We first briefly recall the construction of [BF 1,2].

Definition 1.11. For Re(s)>7, b>0, ye U, set
{s)=3Tr[(D})~*Q"], (1.65)

or equivalently

0(s)= %(S) T ™ Tr[exp(—uD?)Q"]du.
(b extends into a meromorphic function on C which is holomorphic at s=0. Set
(DY) =exp{— 47 (0)) (1.66)

Definition 1.12. || |'® denotes the metric on (4%, U) given by

|17 =] P =),
Let 'V’ be the connection on (1, UY):
lpt=0pb 4 148 Logt'3 (D% * ) — 158 . (1.67)
From [BF 2, Proposition 1.11 and Theorems 1.14 and 1.21] we find:

Theorem 1.13. The metrics || ||”® and the connections *V'® on (4'®, U®) patch together

into a smoothmetric || | on A’ and a smooth connection *V' on ) which is unitary with
respect to || ||'. The curvature of 'V’ is exactly
_RZ N ane)
2i Td Tr - . 1.68
w1 e e | 169

We now identify A and 2'.

Definition 1.14. Over U, j® denotes the linear isomorphism from A° into A’ given
by

,L.(g(b, + oo)) b

Selb—y’b(s): %ml (S)E/'L'b. (169)

We now have:

Theorem 1.15. The C*® isomorphisms j°: \*— J'® patch together into a C* isomor-
phism j:— 2. j maps the metric | || on the metric || || and the connection 'V on
the connection 'V,

Proof. To show that the j® patch together, we must prove that for 0<b<c, on
UPAUS, if se AP, then

J(5)® det DY =j(s@ T(0*)). (1.70)
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Clearly
Fs® T(0®) =i%s)®i®NT(0®9)). (1.71)
To simplify notation, we write | | instead of | |'®°.
By [BGS 1, Proposition 1.5], we know that
(b, ) T( 3B CY) — 7(0®9) ®.0)
TN = oy detDE. (1.72)

Using (1.71), (1.72), we find that

T(g(b,c)) T(a'(c +oo)) b

D(b :<)
IdetD(f’C)]/ T’(D(C +oo)) (s)®det

Js@T@")=

By (1.37) and also by [BF 1, Eq. (1.39)], we know that
T(a‘(b, + oo)) — ’C(a—(b"))r(g(c‘ + oo)) ,
(1.73)
(DY N =|det DT (DY T =),

Using (1.71)«1.73), we find that (1.70) holds. Recall that i® is an isometry from
(28,1 [P) into (A'%,] |"). Also if se A°,

] (a (b, +oo))
17%))1"” = (DT ) li*(s)(™. (1.74)
Therefore j maps | || into || ||. Also i maps the connection °F” on A* on the

connection °F? on A, If s is a C*® section of A’ on U?, we find that
V°j(s)=[d"(Logt(0" * )~ Logt (DY *“N1j(s) +°°V’s),  (1.75)
and so
W(s) = V"s) +3[(0% — 0%) LogeX(0® * ) — 35 1js(s). (1.76)
By Theorem 1.8, we find that:
Lybib(s)=jo(1Vbs). (1.77)
The theorem is proved. [

g) The Holomorphic Structure Does not Depend on the Kcdhler Metric in the Fibers

We now again assume that B is a complex manifold. Assume that (, g%, T* M) and
(m, THM, g%) are two Kihler fibration structures on TZ with associated closed (1, 1)
forms w=w?+ o™ and v, = w? + v¥. We again consider one single holomorphic
Hermitian vector bundle & over M.

By Theorem 1.3, we can construct two holomorphic Hermitian vector bundles
/and A, over B, associated with (TZ, T#M, ¢%) and (TZ, TF M, g%). For ye B, let
HY(E), ..., HY(E) be the cohomology groups associated with the restriction of the
vector bundle ¢ to the fiber Z, For every yeB, we have the canonical
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identifications
Ay~(detH)(E) '® detH)(E)® ... , (178)
1, ~(detHYE) '® det H(E)® .... ‘
Therefore for every y€ B, there is a canonical isomorphism:
(rby : jLy_”ll‘y
Consider the double chain complex:
0 0
0—— E — 5 E/—0
F ‘[a
(1.79)

Here i is the identity mapping. In the first column, E, ..., E* are endowed with the
metric corresponding to g% in the second column they are endowed with the metric
corresponding to g%. The lines of (1.79) are obviously acyclic, and so ¢ is the
Knudsen-Mumford section of 27'®4; [KM].

Theorem 1.16. The map ¢ is a smooth holomorphic isomorphism from A into 1.

Proof. At this stage, itis not even clear that ¢ is smooth. The statement to be proven
is clearly local on B. Let U be an open set in B, which is relatively compact. There is
£>0 such that for any ye U, ce]—e¢, 1 +¢[, if gﬁy is given by

gr.c=(1—c)gf +cgf (1.80)

then {g7 .} is a smooth family of Kéahler metrics.
For ce]—e, 1 +¢f, set

=(1—c)o+cw,. (1.81)

The restriction w? of w, to TZ induces the Kihler metric g% Let THM be the
orthogonal of TZ with respect to w,. By [BGS 2, Theorem 1.5], (r, g%, THM) is a
Kahler fibration, and w?Z is an associated (1, 1) form. For every ce]—e, 1 +¢[ we
can construct the holomorphic Hermitian line bundle 4, over U associated with
(m, T M, g%). Of course Ay=A.
For yeU, ce]—e 1+¢[, let 0¥, be the adjoint of d, with respect to gZ Then
D, .=0,+ 0. is a smooth family of first order elliptic operators By proceeding as
in [BF 1] and in Sect. 1b), we can construct a C® line bundle A*' over U
x ]—e,1+¢[ which coincides with A, over U x {c}. A" restricted to U x {c} is
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endowed with a connection V¢ which depends smoothly on c. We now define a
connection 'V on A If s is a smooth section of ', if Ye T,B, set

(1 VYS) (y’ C)= ! V;S(y, C) .
To define 'V, we now only need to define 'Va.

oc
The bundles K57, Kb ., A:P... are taken as in Sect. 1b), simply replacing
everywhere y by y, c. We otherwise use the same notations as in Sect. 1b). Note that
K? .is a vector subspace of E, (which does not depend on ¢), which is endowed with
the Hermitian product defined in [BGS 2, Eq. (1.38)] associated with gZ. Let P ,
be the orthogonal projection operator from E, on K7 ..

If 5 is a smooth section of A°"? over
VP={(y,c)eUx]—¢,1+¢[,b¢specD? },

set

IV;‘;;Sng’“éZS' (1.82)
Similarly for 0<b <b’, we define ! Vg"’” acting on 2''®?" by simply replacing P’
in (1.82) by the orthogonal projectia(:n P! from E, on K{;”". We claim that the
operators lVib patch together into a smooth differential operator of order 1 on A",
If 0<b<b’,a;f s is a smooth section of 1* over V?nV’?, we have

W (s@T@) =72 s@ T@™) + 5@ B T(@""). (1.83)
oc ac ac

Fix ce]—e¢,1+¢[. For |¢'—¢| small enough, P;*" is one to one from K% into
K®2. Also P:?” commutes with d. It is thus obvious that

T(0y:") =Py T(@D:"). (1.84)

Since (P$:2)* = PP, % P®:?) maps K in its orthogonal. Using (1.83), we find
that

eTE) =0.
oc

From (1.83), (1.84), we get
1I7é"(s® T(@®t) =1 173” SQ T(0®?). (1.85)

ac dc

Equation (1.85) exactly means that the operators '/} patch together into an
ac
operator 'V, on A. So A is now endowed with a (non-unitary) connection V.
ac
Let K9, be the eigenspace corresponding to the eigenvalue 0 of D? . For every
yeB, K° is a vector bundle over {y} x]—e¢, 1+¢[. Let A%° denote the corre-
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sponding determinant fiber. Clearly Ai°%° is canonically isomorphic to Ai%. Also
for every ye U, A% is a smooth vector bundle over ]—&,1+¢[.
Let ¢, . be the canonical isomorphism from A% into 4. Clearly ¢, ,=¢,.
Let P}, be the orthogonal projection operator from E, on K9 .. PY  is one to
one from K9, in K} . Also if se A°%° and if ¢,c’e] —¢, 1 +e¢[,

¢, o5=P° P s. (1.86)

Since 8%138’0 maps K, in its orthogonal, using (1.86), we find that:

W, s=0. (1.87)

Equivalently, if se A}, ¢, . s is the parallel transport of s along c—(y, c) for the
connection 'V. Therefore, ¢, . depends smoothly on (, ¢). In particular ¢, =, , is
a smooth isomorphism from 4, into 4, ;.

We now prove that ¢, . is a holomorphic section of (4, o)~ ' ®4, .. If (") is the
curvature of 'V, since ¢, (s) is the parallel transport of s€ 4, , along c—(y, ¢), it is
equivalent to prove that if Ye T VB, then

('v)? <a_ac“ Y) =0. (1.88)

Let ¢ be the connection on E over B associated with the Kihler fibration
(m, gZ2THM). By [BGS 2, Theorem 1.14], we know that
O 0 ~
Ve,0]= —0=0. 1.
[v,d]=0, 6ca 0 (1.89)
Using (1.89) and by proceeding as in the proof of Theorem 1.3, i.e. by eliminating
the covariant derivatives of the projectors P, we find that for »>0 not in the

spectrum of D} : ; ;
12| 2 — bl ¥ e b
('p) <ac’ Y> Trs[P (60 I7Y>P } (1.90)

0 ~ =

[% 7 a} -0, (191)

By [BGS 1, Proposition 1.3] we find that

17\2 J _ J ¢
%) (6c’ Y> =Tr, [PO <% Vy> PO]. (1.92)

0 = . . ...
We now calculate e V¥ acting on E,. Let V* be the holomorphic Hermitian

connection on T 9Z associated with the metric gZ. By [BGS 2, Theorem 1.7], the
torsion tensor T, associated with the Kihler fibration (r, g%, T* M) is of complex
type (1, 1). We can assume that Y is a smooth section of T*-VB. Let YX be the lift of
Yin THO-YM If Y’ is a smooth section of T VZ, since T(YH, Y')=0, we find that

Y’ —[Y2, Y]=0. (1.93)

By (1.89), we have
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Set

Aza%YCH. (1.94)

Clearly Ae T®YZ. From (1.93), we find that

J c ’__ %
%(VYCH)Y =[4,Y"]. (1.95)

Let IZ be the Lie derivative operator on Z associated with A4, and d? be the
exterior differentiation operator on Z. Clearly
I =d%i +i,d*. (1.96)

. L . 0 .
Using (1.95), we find that if « is a smooth section of AP(T*1Z), a~(l7yccﬂoc) is the
component of complex type (0, p) of I%o. Equivalently ¢

;LC(V;CHOC) = (0% ,+i,0%0. 1.97)

More generally, if h is a smooth section of A(T*°VZ)®¢, we deduce from
(1.97) that

%(fohh(gzi,i +i,0%h. (1.98)
Since V¢ = Vyn, we find from (1.98) that:
;ﬁc Pe— 3%, 11,07 (1.99)
Take ne K9 . Clearly
=0} n=0. (1.100)

Therefore if n,17' €K},

d 5 RN o
)2 <,7% Vyn’> =, (i40+0i ' >=<n,i,0n > +<0*n,im>=0. (1.101)

Using (1.92), (1.101), we find that (1.88) has been proved.
Since ¢,=d, ;, we have proved that ¢ is holomorphic from 4 into 4;,. [

Remark 1.17. Theorem 1.16 exactly says that the holomorphic structure on the line
bundle 4 does not depend on the specific Kéhler fibration structure which is
considered.

h) Dependence of the Metric of A on (g%, h°)

We now calculate how the metric on A depends upon the metrics (g%, h°). For this
we need only to consider a single fiber, so we assume that B={y,} is reduced to a
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single point. Let ce R—g? denote a smooth family of Kéhler metrics on T 9Z
and ce R—h¢ a smooth family of Hermitian metrics on &. Let RZ and LS be the
curvature of the Hermitian holomorphic connections on (T 9Z, gZ)and on (¢, hS).
Let K, denote the scalar curvature on Z for the metric g

Let A" be the Hermitian line bundle over IR constructed in the proof of
Theorem 1.16. For every ce IR, its fiber A\* is the determinant line 4, associated to
(gc, hf). There is a canonical isomorphism of line bundles ¢, : 1, — 4, i.¢. a section of
27 '®4. Let | ¢,/ be the norm of this non-zero section. We shall study how || ¢.|
depends upon c.

For every ceR, let*c be the complex star operator associated to the metric
gZ. 1t maps (p,q) forms on Z into (£ —p,/ —q) forms, for p,q=0. The operator

(e 09

phism of Ep and E. The following result is closely related to a result of Ray-
Singer [RS, Theorem 2.1].

Theorem 1.18. As u| |0, for every ke N, there is an asymptotic expansion

e

Furthermore

maps (p, q) forms into (p, q) forms. Therefore it induces an endomor-

a("‘)

(hé)> exp(— qu)] = inM .o +o(ub).
=73 (1.102)

)
%Loglld)c\l%Mo,c. (1.103)

Proof. The existence of the asymptotic expansion above follows from Greiner [Gr,
Theorem 1.6.1].

To simplify our computations, we shall now assume that h° does not vary with
¢. Remember that [ A4, B] denotes the supercommutator of 4 and B.

Let 0 be the adjoint of 0 for the metric g%, so that D.=0+ 0. For beR we
have (with D=D,)

%Trs(exp( —uD?4+bNy))=—uTr, ([D g’f} exp(—uD*+ bNV)>

oD
=—uTr, <% [D,exp(—uD?*+ bNV)]> . (1.104)
Furthermore

éabTr (exp(—uD?+bNy))lp=0=Tr,(Ny exp(—uD?)).

Moreover

= a—ab(exp(—uD2 +b[D,Ny))lp=o- (1.105)

a 2
[ abexp( uD +bNV)]

b=0

Using (1.104), (1.105), we get

(1.106)

b=0

(3 2 D a 2
%Trs(NVexp(—uD )=—uTr, <8 % —exp(—uD”+b[D, NV])>
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By [BGS 2, Theorem 2.6], we know that

[DC,NV]____a__i_a—c*‘ (1.107)
Clearly =% 5 Lk k! (1.108)
Set 0
I =1y 7 %
Q.= —(*: )60 c. (1.109)

From (1.107), (1.108), we find that

O a0, (1.110)
oc

As before, we will omit the subscript ¢. Using (1.106), (1.107), (1.110), we get

oD 0 )
Tr (6 abexp( uD +b[D,NV])>

b=0

=Tr,| Q (7*,—(3—exp(—uD2+b(—(7+5*)) (1.111)
ob b=0
By proceeding as in (1.105), since [0*, D*]=0, we get
[ ——exp(—uD?*+b(— 6+5*))]
"0b b=0
0 —-exp(—uD?—bD?)|,_ = iexp( uD?) (1.112)
~ b P20 bu ' ’
From (1.106), (1.111), (1.112), we get
—a—TrS(NV exp(—uD?)= —uETrs(Q exp(—uD?)). (1.113)

dc ou

We can find b>0 such that D} has no eigenvalue in ]0,b]. The dimension of
KerD? does not depend on c. Therefore for ¢ close enough to 0, D? has no
eigenvalue in ]0,b]. In the sequel, ¢ will be chosen in this way.

3
For 0<p</, set K&?=KerD?nE?, KO =@ K2". Let P? be the orthogonal
0

projection operator from E on K¢, for the Hermitian product on E associated
with (g%, h%).
For Re(s) large enough we have

;T;) °§ w T Try(Ny exp(—uD) = Tri(Ny)Jdu.  (1.114)

Using (1.113), and the fact that Tr¥¢(N ) does not depend on ¢, we find for Re(s)
large enough

02(s) =

Zoo=o ?usﬂ
0

Tr,(Q,.exp(—uD?))du. (1.115)
ou
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When ut + oo, Tr,(Q (exp(—uD?)— P?)) decays exponentially. Integrating by parts
in (1.115), we obtain, for Re(s) large enough:

i T D2y poO
5 9= F ™ Tr(Qexp(—uD?)— PE)du. (1.116)
Using (1.102), we find
(B O)=~ Mo +Tr, Q). (1.117)

The line bundle /. is canonically identified to
20=(detK? %) '®(detK>H®....

Under this identification, ¢, sends se A3 to @ (s)= P(s).
Let <, >, be the Hermitian product on E attached to gZ and hé. If y and #’ are
forms in the kernel of D, we have, by definition:

P, P?n’>c=£ (P A*CPI D (1.118)

a(PY)
oc
Therefore, from (1.118), we get:

sends K? to its orthogonal complement for the metric gZ.

The operator

=—{(Pn,QoPin’>.

0 o 0
I PO ’ = 0 L (*k 0,/
30 <Pt Pen'Dleo @ <P""”\ac( C)Pm>h§>

c=0
(1.119)
If | | is the I* metric on A2 induced from (E, g%), we get from (1.119)
0
<% L0g|¢c(s)|2> =Tr,(QoP0). (1.120)
c=0
By (1.34), we have,
I$:s)1* =1¢(s)|* exp(—02'(0)). (1.121)
From (1.117), (1.120), and (1.121) we find
a 2
=~ Log|¢.ll =M, . (1.122)
ﬁc c=0

In general, if ¢, ¢’ € R, the canonical isomorphism ¢, .. from 4. to 4. satisfies the
equality
¢c' = ¢c,c’¢c .
We thus find that

a 2 a 2
%Log |]¢L.” - oc' LOg ”¢c,c'“c’=c°

We can then use (1.122) to get (1.103) for arbitrary c. When h* also depends on ¢, the
computations are essentially the same and are left to the reader. [
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Our aim is now to compute M, ,. Set

o
Q.—:-(* %LO. (1.123)

We first compute Q in terms of Clifford multiplication operators. Let w? be the
Kihler form associated with the metric g7, i.e., if X, Ye TZ,

WHX, Y)= (X, J7Y ),z

Let ey, ...,e, be an orthonormal basis of TZ for the metric g5. In the sequel the
Clifford multiplication is done with respect to the metric g.
Set

c

o) =i(wcz). (1.124)
oc

We will write ¢ instead of @, Also to avoid possible confusions, we will
temporarily adopt the notation i=]/ —1.

Proposition 1.19. The following identity holds
0= ‘/T:—id)(ei, e)c(e)cle;) +5ile, JZe;). (1.125)

Proof. Letw, ..., w, be an orthonormal basis of T"'*?Z for the metric g&, w,, ..., W,
the conjugate basis in T>VZ. Denote by ¢, ) the scalar product {, >,z. We get

z
Q=- <(gg)_1 <%> _Owi’ Wj> ilej/\ =—)/ —1a(w;, W))i, WJ
/=1

4‘2—‘ Cb(Wi, Wj)c(wi)c(wj) .

Therefore

_W

Ew(wi, w)). (1.126)

(w3, Wy)e(wi)e(w;) + (Wi, wi)e(wi)e(W;)) + =

Also

‘2_—1“ (W, wy) =3D(W;, J2w)) =g e, 7e;). (1.127)

From (1.126), (1.127) we deduce (1.125). [

Let now D=D, and let V be the holomorphic Hermitian connection on
A(T*OVZ)®¢& associated to the metrics (g5, h%). We also introduce odd Grass-
mann variables da and da which verify the same assumption as in [BGS2,
Sect. 2f)]. In particular they anticommute with c(e)).

Theorem 1.20. The following identity holds

0
5, 4 Tr(Q exp(—uD?))

=Tr, (exp < —uD?— \/g daD — ‘/g da[D,Q]1+ daddQ))dadﬁ . (1.128)
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Proof. For beR, we have:

%Trs(exp( —uD? +ubQ))

=Tr,((bQ — D?) exp(—uD?*+ubQ))
=bTry(Q exp(—uD?+ubQ))—1 Try([D, D] exp(—uD? +ubQ))
=bTr,(Qexp(—uD?+ubQ))— 1 Try(D[D,exp(—uD*+ubQ)]). (1.129)

By differentiating this equality at b=0 and proceeding as in (1.105), we get

2 (T (exp(—ub®)

=Tr,(Q exp(—uDZ))—%TrS<Da—abexp(—uD2+ub[D, Q])> . (1.130)
b=0

Clearly
Try(Q exp(—uD?))=Try(exp(—uD?* + dadaQ))***, (1.131)

and using Dunhamel’s formula, we get

—1Tr, <D iexp(—uDZ +ub[D, Q])>

ob b=0
; u dada
=Tr, (exp(—uDZ— EdaD— idd[D, Q]>> )

By (1.130), (1.131), (1.128) follows. []

We now prove a generalized Lichnerowicz formula which extends [BGS 2,
Theorem 2.15]. We use the notation

Lf=L+3Tr(RI,
where RZ is the curvature of the holomorphic connection on (T 9Z, g).

Theorem 1.21. For any u>0, the following identity holds:
u u _
—uD?— ‘/5 daD — \/5 da[D, Q] +dadaQ
2
/ —1adle, ei)c(ek)>

da
2)/2u

C

— ;dac(ei)—

=ul|V,
( 2/2u

. i
+ ifi’@(e,., JZej)—]/de

€ .
q ) v,ale;, J%e;)

K
— U~ Scledle)®Liese). (1.132)

Proof. Using (1.125), we get
[D,Q1=)/~1[D,}d(e; e)cle)cle)] +5cle)V, e, J%).  (1.133)
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Recall that the metrics gZ are Kihler, i.e. the differential forms w? are closed. The
same is true for . Since V has no torsion, we find that for i=j, i%k, j+k

Ve oej, e) +V, ey, e) + 1, ie,e)=0,
and so
[D,%d(e;, e;)cle;)c(e;)] = — 3V, e, ej)c(e)) +ale;, e; )c(e)V (1.134)

Using Lichnerowicz’s formula as in [BGS2, Theorem 2.15], we immediately
obtain (1.132). [

The following theorem is the main result of this section:

Theorem 1.22. For any j< —2 we have M; .=0. Furthermore

M_, .= <L.>fj éd}CTd(—RCZ)Tr[exp(—Lé)], (1.135)

i , 0 z 1 08¢
70 Lol ( );5[”( RZ—b(gh)~ 7)

x Tr [exp ( —b(h)~! Mf):ﬂ . (1.136)
b=0

Proof. By Theorem 1.18, we only need to show this theorem when ¢=0. We first
assume that h¢ does not vary with c.
Using Proposition 1.19 and the methods of [B 1, Sect. 4], we find that

and

) 1Y i
ullulnouTrs(Qexp(—uDz))= <%) ;%d)Td(——Rg)Tr[exp(—Lé)]. (1.137)

Therefore M; o =0forj< —2and M _, , is given by the right-hand side of (1.135).
We now calculate M, ,. As u}]0 we have the expansion

0
%(uTrs(Q exp(—uD?))=M, o+ O(u). (1.138)
Using (1.128) and (1.138) we find that

dada
lim Trs<exp<— ~D*— ]/daD 2da]/[D 0] +dadaQ>> =M,,.

ullO
Also 5
e, I7e) =2}/ — 1, w l)——2Tr|:( 7)1 gf} . (1.139)

c=0
In Theorem 1.21, the operator on the right-hand side of (1.132) is exactly of the
same type as the curvature of the Levi-Civita superconnection [B1, Sect. 3].
Therefore, we can use the methods of [B 1, Theorem 4.12] to calculate M, . Take
Xo€Z and let T,(-,-) be the smooth kernel of

exp< 2 ‘/ daD— l/ da[D,Q]+ dadaQ)
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with respect to the volume form # of Z for the metric g4. Let w' be an Euclidean
Brownian bridge in T ,Z (for the metric g§) with wi=w] =0 and let P, be the
probability law of w* on C([O 11, T, 2).

Asin [B 1] we shall use in an essential way the fact that dac(e)), dac(ek) and dada
span a Heisenberg algebra. If y and y’ are forms on Z, we write y= =7 "if y and y" have
the same component of degree n. Set

_, 0g%
U=[(gf) fc—] .
c=0

Using Theorem 1.21 and proceeding as in [B1, Theorem 4.12], that is using
formula (1.132) and doing the formal changes required to use (1.132) instead of
[B 1, Theorem 3.6], we get

ulliff}) Tr(T(Xo, X0)1(Xo)
1\ 1 1

= < ) fexp{ [CRE(-, W', dw') +Lidada [ d(w!, dw?)
27i 0 0

4 1

_idadaTriu]— L]

/2 0

x dP,(w!) Tr[exp(— L9)]. (1.140)

7, yoen dw)dx+ 20 42 Ty [U]}
2)/2

The left-hand side of (1.140) is an even form. Therefore it does not contain any
multiple of da. We thus find

ullirlno Try(T,(x0, Xo)M(X0)

¢ 1 1
—( ! > jexp{ j<R§(-,-)wl,dw1>+%idaddj"a')(wl,dwl)}dPl(wl)
27i 0 0
x exp{—2idada Tr[U]—41TrRE} Tr[exp(—L%)]. (1.141)
Clearly

1 1

faw!,dwh)y= [ <wh, J2Udw') .

0 0
Therefore

lim Tr (T, (xq, Xo))1(xo) )4
<ul I (To(x0, Xo)( 0))
_ (L ,ji exp l} {REZ—ibJ2ZUW!, dw')
2mi ob 20 0 ’
x exp{—3b Tr(U)—3TrR%}),- odP(w") Tr[exp(—L9)]. (1.142)

Using the same notation as in the proof of [BGS 2, Theorem 2.16], we find that:

1
exp {% I<RY —ibJZle,dw1>} dP,(w,)=A'(RZ+bU). (1.143)
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From (1.141)-(1.143) we find that

Jim [Tr(Txo» Xo)1(o))] doda

1Y 0
= <%> —%[(A’(Rg+bU)exp{—%TrR%—%bTr(U)})bzo

3
x Tr [exp(— L9)] = <%> %(Td(—Rg—bU))b=0 Tr[exp(—L].
(1.144)

By proceeding as in [B 1, Sect. 4], we also find that:

. A1 ohé )
lim —Tr,| (h?) exp(—uD?)
ul 1o dc

1y o
B <2_7u> | Td=R% Tr[( ~(h) 1@ exp(— L]

LY 0 o
=<2_m> ;Td("ReZ)%[TYCXP<—L€~b(hS) E)La (1.145)

The theorem follows from (1.138), (1.144), and (1.145). [

Let g%, g'# be two Kihler metrics on T>VZ, and h%, h' two Hermitian metrics
on &. Consider a smooth family of metrics c € [0, 1]—(gZ, hé) on T 9Z and & such
that:

(gga hg) = (gZ’ hé) and (g%a h?) = (g/Z’ h/é) .

By the results of [BGS 1, Sect. 1¢)], the form
1\10 7 v ohé
={——1 (= —R%Z_ -175¢ B F P MR Rk
o <2m’> (j)ab[Td< RZ—b(g?) e Tr| exp| — L. —b(h) ae )|,

(1.146)
defines an element in P/P’ which depends only on (g7, k) and (g'% h').
According to [BGS 1, Theorems 1.27, 1.29 and Corollary 1.30], the compo-
nent of degree (£,/) of « represents in P/P’ the corresponding component of the
Bott-Chern class

Td(g?, g'%)ch(h?)+ Td(g'?)ch(hé, h'®). (1.147)

Let A,/ be the Hermitian determinant line fibers associated to the metrics
(g% h°) and (g%, h'°). Let p € A~ *® A’ be the canonical isomorphism from Z into /.
p

Theorem 1.23. The following identity holds:
lpl*= exp{f (Td(g?, g *)ch(h) + Td(g *)ch(he, h'g))} ' (1.148)
Y4
Proof. Since the space of Kihler metrics on TZ is convex we may assume that (g7) is

a smooth family of Kédhler metrics such that g4 =g? g%=g'%. The theorem then
follows from Theorem 1.22. [
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Remark 1.24. When g'? is not Kiihler, o is still defined but we do not know what
exp(f o) represents. Also observe that when only the metric h° is allowed to
Z

change, Theorem 1.23 is a special case of Theorems 2.4 and 2.8.

i) The Curvature of 2 for the Quillen Metric: The General Case

We now work again under the general assumptions of [BGS 2, Sect. 1¢)].
Our datas are then:
® The connected complex manifolds M and B.
® A smooth proper holomorphic map n M — B, with connected fibers Z.
@ A holomorphic Hermitian bundle ¢ on M with metric h°.

Definition 1.25. The fibration 7 will be said to be locally Kahler if there is an open
covering % of B such that for any U € %, there exists a Kéhler metric gz on ™~ (V).

Remark 1.26. Professors J. P. Demailly and N. J. Hitchin have pointed out to us
that there are holomorphic fibrations whose fibers are Kéhler, and which are not
locally Kéhler, a typical example being the fibration of the K3 surfaces over their
moduli space. This last example is fully developed in Bingener [Bin,
Example (3.9)].

From now on, we assume that 7 is locally Kédhler.

For U e, let g% be the Hermitian metric on TZ over n~ }(U) induced by gy.
Let T#M be the orthogonal of TZ in TM for the metric g,. Finally let
wy =%+ of! be the Kéhler form of (n~'(U), gy). By [BGS 2, Theorem 1.5], over
U, (r,g% T¥M) is a Kahler fibration and wy is an associated (1,1) form. By
Theorem 1.3, we can define the holomorphic Hermitian line bundle 4, over U.
Note that the construction of A, involves gZ explicitly. Also by Theorem 1.16, the
canonical isomorphism ¢y :Ay— 4y is an isomorphism of holomorphic line
bundles.

Let now gZ be any smooth Hermitian metric on TZ, which induces a Kihler
metric on the fibers Z. By proceeding as in Sect. 1d), we construct a smooth
Hermitian line bundle / associated with the family of operators 8+ 0* (where 0% is
now calculated with respect to g%).

The metric on A is of course the same as in Theorem 1.6. Namely for each y € B,
we endow A, with the corresponding Quillen metric associated with the metrics
(g%, h).

Note that since in general, gZ does not come from a Kéahler metric on M, the
construction of Sect. 1d) does not define a holomorphic structure on 1. However
on U e %, we have a canonical smooth isomorphism ¢ : A;— A. Therefore over U,
A inherits the holomorphic structure of Ay. Since the canonical isomorphisms
dy~v: Ay— 2y are holomorphic, the holomorphic structures on 4 are compatible. 4
now becomes a holomorphic Hermitian line bundle over B.

Let V'“ be the holomorphic Hermitian connection on T Z associated to the
metric g7 Let RZ be the curvature of V2.

Theorem 1.27. The curvature of the holomorphic Hermitian connection 'V on 1 is

given by RZ IE\11®
(1V)2=zmb Td(— Z&) Tr[exp(— ZE)]] . (1.149)
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Proof. Take Ue%. Let R*V be the curvature of the holomorphic Hermitian
connection on (T™9Z, g%). By Theorem 1.9, we know that the curvature of the
holomorphic Hermitian connection on /; is given by:

R%U )53 (2)
2i7rb Td[— in ]Tr[exp(— ﬂ)]] . (1.150)

Let oy be the form in P defined in (1.146), associated with the metrics (g%, h°)
and (g%, h®). By Theorem 1.23 we know that

Log|lpyl*= [iau]‘°’~

Also, by [BGS 1, Theorem 1.27], we know that

oMoMoy, = (237)5 [Td(— R%)— Td(— R*Y)] Tr[exp(—I%)]. (1.151)

Also _ B
0808 Log ||y |* = [ ) aMaMaqu. (1.152)
Z

Now the curvature of !V is given by

<1>[ Iif T < _2R . U>Tr [e"p(“ﬁ)]}m +3%0"Log|¢,[*.  (1.153)

2irn / in

Using (1.150)—1.153), the theorem follows. [

Remark 1.28. As we shall see in Theorems 2.12 and 3.14, the holomorphic
structure on A is exactly the holomorphic structure of Knudsen Mumford [KM].

It follows from Theorem 1.27 that under the assumptions of this theorem, if the
complex (E,0) is everywhere acyclic, and if 7(0) is the Ray-Singer analytic
torsion of the complex (E, 0) [RS], then

~ ~ —R% I 54 (2)
0%0® Log[1%(0)] = 2in B Td ( Sin ) Tr [exp <ﬁ>]:| . (1.154)

2. A=A¥M: An Analytic Proof

We prove here that if 7 is projective, A and 4*M are canonically isomorphic as
holomorphic line bundles on B. We also establish [BGS 1, Theorem 0.3].

In a), we consider an acyclic exact sequence of holomorphic Hermitian vector
bundles

0—»50—11—*51%.,.—0»5",*0

and the associated holomorphic vector bundles Ay, 4, ..., 4, We thus define a
holomorphic non-zero section T(0+v) of the line bundle [](2,)""".
1

In b), we prove that || T(0 +v)| is exactly given by the formula for ||| in [BGS 1,
Theorem 0.3]. This is essentially a simple consequence of the results of [BGS 2].
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In c), we prove that T(J +v) is multiplicative with respect to double complexes
(¢;,;) on M. This is again proved by analytic methods.

In d), we prove by brute force that T(0+v) coincides with the Knudsen-
Mumford section ¢ described before [BGS 1, Theorem 0.3]. We thus complete
the proof of [BGS 1, Theorem 0.3].

In e), we prove that A~ A*M when = is projective as a consequence of [BGS 1,
Theorem 0.3].

In f), we complete the proof of [BGS 1, Theorem 0.1] when = is projective.

a) Infinite Determinants and Exact Sequences

We make the same assumptions as in Sect. 1a). In particular (z, g%, T¥M) is still
assumed to be a Kéhler fibration, and w is an associated (1, 1) form. Let &, be a
holomorphic Hermitian vector bundle on M, with associated holomorphic
Hermitian connection V. Let L-°=(V<°)? be the curvature of V*>. We use the
notations of Sect. 1, except that we introduce the index 0 at every stage. The infinite
dimensional complex E, is written

Ao denotes the holomorphic Hermitian line bundle on B associated with E, || | is
the metric of 4, and 'V, the corresponding holomorphic Hermitian connection.
Let

¢:0-¢— ¢ — . — &0

be an acyclic holomorphic chain complex of holomorphic Hermitian vector
bundles over M, which starts at &, i.e. provides a resolution of &,.
We will use the same notations as in [BGS 2, Sect. 2]. We thus have a double

complex E 0 0 0
0 Ej . E4 e E?, 0
E} EL—0
r
0 EJ . E? ot E° >0
0 0 0

Also for 1 <j<m, we consider the holomorphic Hermitian line bundle /; with
metric | |; and holomorphic Hermitian connection 'V, For 0<i<7,0<j<m, let
H'(E;) be the i-th cohomology groups in the complex E; For (y,a)e Bx C, we
consider the double chain complex E with differential operator d + av. The adjoint
of 0+av is 0* +av*. We can extend the construction of Sect. 1 in this situation.
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Namely we construct the determinant bundle 7 over Bx C associated with
(E, 0+ av). Zis a holomorphic Hermitian line bundle on B x C, with metric || ||,and
holomorphic Hermitian connection 'V. Let 18 be the restriction of 1 to B. Clearly
as holomorphic Hermitian bundles on B, we have the identifications:

TB=2®@AT ' ®A, ... .
Let ¢ be the projection (y,a)e Bx C—yeB.

Proposition 2.1. The curvature (*V)? of the connection 'V on 7 is given by:

_R?% B i (0]
(17)?=2ino* l:; Td < i ) Tr, [exp gJ] . 2.1)

Proof. The proof is the same as the proofs of [BGS 2, Theorem 2.2] and of
Theorem 1.9. [

Equation (2.1) does not contain the variable a. This means in particular that for
every y € B, the connection 'V is flat on {y} x C. Therefore we can identify the fibers
{Iy,a}aec with /Tf using parallel transport along any C* curve in {y} x C which
connects (y,a) and (y,0). So we have identified the C* Hermitian bundles over
BxC:

T=0%]8.
Notice that ¢*1® is naturally a holomorphic line bundle on B x C.
Proposition 2.2. The identification

T=0*]® 2.2)
identifies the holomorphic structures of 7 and o*®.

Proof. Let Y be a C® section of TB. Since (2.1) does not contain da or da, we find

that
[117,{,117@_} = [IVYJ@J =0. (2.3)
da oa

From (2.3), we immediately deduce that if 7 is the parallel transportation operator
in {y} x C from (y, a) into (y,0), if o is a section of 4 (i.e. 6, 5 € 4.4), then

¥ Wo=1V[1%0]. (2.4
Similarly, since 7 is flat on {y} x C, we have
0 0
a 1l7 — L4 , a 1‘7 =_1%. 25
o aiaa é‘aTOJ 75 a%a droa (2.5)

The proposition is proved. []

Clearly for any aeC
Ind(D+V*%), =0. (2.6)

Moreover for any ae C*, the complex (E, d + av) is acyclic. By Remark 1.10, over
B x C*, we can define a non-zero holomorphic section of 7, which we note
T(0+ av).

With our conventions, for (y,a)e B x C*, T(0 +av)e Zf.
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Theorem 2.3. The section T(0+ v) is a non-zero holomorphic section of 2. It defines
a holomorphic isomorphism from A, into A, ®1;'®....

Proof. By Proposition 2.2, as holomorphic bundles over Bx C, 7=0*7®. Since
T(0+av) is a holomorphic section of 4 over B x C¥, T(0+v) naturally defines a
holomorphic section of 18, [

b) Evaluation of | T(0+v)]|

Our purpose is now to prove that T(d+v) coincides with the Knudsen Mumford
section of 7%. We only need to do this fiberwise, i.e. for one fixed y, € B. In this
subsection only, we will assume that B is reduced to one single point y,. However,
we still use the notation 7.

T(0+av) is then a section of the line bundle 1 over C*.

Remember that in [BGS 1, Sect. 1¢)], to the holomorphic Hermitian chain
complex (&, v), we associate {¥(0)e P. For 0<j <m, let y; be the Euler characteristic
of E, ie.

¢

1,=Y (—1) dimH(E,). 27)
0
Set
:f (— 1)+ Yy, 2.8)

Theorem 2.4. a~T(0+ av) is a non-zero parallel section of T over C*. Moreover

T(0 + av)|?
ad

1 12
Log = (EE) gTd(—RZ)Cg(O). (2.9)

Proof. We first assume that a=1. Since the complex (E,0+v) is acyclic, with
the notations of [BGS 2, Definition 2.19], we have the equality

Log | T(0+v)||*= —{(0) (2.10)

[remember that here B={y,}, so that the right-hand side of (2.10) is a real

number].
By [BGS 2, Theorem 2.217, we know that

CE(O)—< > [ Td(—R")[40). 2.11)

Equation (2.9)is proved for a=1.If ae C*, by [BGS 1, Sect. 1c)], we know that if v
is changed into av, {(0) is changed into

{0)+2 Loglal Tr,[Nyexp(—LY)].

Also by the Atiyah-Singer Index Theorem, for 0<j<m,

1 2
1= <2_m> { Td(—R%) Tr[exp(—L¥)]. (2.12)
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T(0 + av)

Equation (2.9) immediately follows for every a=0. Since e is a holo-
morphic section of Z over C* whose norm is constant, it is parallel. []

Remember that we have identified by parallel transport the fibers £, with 7.
Using this identification, and also Theorem 2.4, we find for any ae C*,
- T(0 + av)

T@+0)= """~ (2.13)

Assume temporarily that the cohomology groups of E,, ..., E,, are all 0. Let 7(0)
be the Ray-Singer analytic torsion of the complex (E;, 0) [RS].
From Theorem 2.4, we deduce

Theorem 2.5. The following identity holds:

. - 1Y
(—1) Logt2(d)= — <ZE> [ Td(~RA)L40). (2.14)

I 3
Ol\’]

J

Proof. Clearly d =0. Moreover using the notations of Theorem 2.4, we know that
since the complexes (E;, 0) are acyclic, the section T(d) of 1 is well defined and
moreover that as ae C*—0, then T(0+ av)—T(J). Equation (2.14) is now a
consequence of (1.63) and of Theorem 2.4. [

We now do not assume any more that any of the complexes E; is acyclic.

¢) Multiplicativity Properties of T(0+v)

In [BGS 1, Sect. 1d)], we verified that {(0) verifies certain additivity properties
with respect to double complexes and exact sequences. We will verify that
T(0+v) verifies the analogous multiplicativity properties. Of course we still
assume that B is reduced to one single point {y,}.

Assume first that & is a double holomorphic Hermitian chain complex over Z,

0 0
0_——_’ém’,0—v) ém’,m —0
0— él,o—v" ¢im —0
0 fo,o—v"fo,l—v’w—’m Soom —0

We assume that the lines and columns of ¢ are acyclic.

To the chain complex ¢;. (0<i<m’) we can associate the corresponding
determinant fiber 72 and the non-zero section T; (9 +v) of Z¥. by the construction
of Sect. 2b). Similarly to the chain complex ¢ ; (0<j<m) we associate the
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determinant fiber 7%, and the non-zero section T (J+v') of 7%, We have a
canonical identification of determinant fibers
! m

- r=flam.

0

o %

We now claim

Theorem 2.6. The following identity holds:

(T, (o) =TT T+ )V, 2.15)

o=

Proof. We proceed very much as in the proof of [BGS 1, Theorem 1.20]. ForaeC,
we consider the double chain complex (¢, v’ + av), which is acyclic. Associated with
the corresponding 0 complex, we construct the holomorphic Hermitian determi-
nant bundle A" over C and a non-zero holomorphic section T”(0+ v’ + av).

By the proof of [BGS1, Theorem 1.20] (and more precisely by [BGS1,
Eq. (1.75)]), we know that for any ae C, if ({£"**)(0) is the differential form on Z
associated with (£, av+v'), then ((&"*")(0) is constant in P/P".

By Theorem 2.4, we find that | T"(0+ v" + av)|| does not depend on a. Therefore
/" is a flat bundle, and T"(0 + v’ + av) is a parallel section of A”. By trivializing 1" by
parallel transport, we get

T'0+v)=T"(0+v+v). (2.16)
Interchanging the roles of v and v', we find that
T'(0+v)=T"(0+v+v). (2.17)

Equation (2.15) follows from (2.16), (2.17). []
Similarly let
€:0-¢—...—¢, -0,
&:0-8— .= &m0
be two holomorphic Hermitian acyclic chain complexes over Z, with &,, appearing

in £ and & with the same metric. Let (¢, v”) be the holomorphic Hermitian acyclic
chain complex

0-C—...— &1 e — - 0.

Let 12, 7% 7"® be the determinant fibers associated with &, &, ¢”. One has the
canonical identification

I//B=IB®(I/B)(—1)m+1 ) (218)

Let T(0+v), T'(0+v), T"(0+v) be the corresponding non-zero sections of
T8 7B J1E,

Theorem 2.7. The following identity holds:
T'"(0+0v")=T@+v)Q[T'(0+v)] V""", (2.19)
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Proof. We first assume that m'=2. We use the double complex constructed in the
proof of [BGS 1, Theorem 1.22], whose lines and columns are acyclic. We apply
Theorem 2.6 in this situation. The lines or columns of the type 0— E;— E;—0 only
give a trivial contribution. Theorem 2.7 is proved when m'=2. By splitting the
exact sequence & into short exact sequences, we obtain the theorem in the general
case. [

d) T(0+v) is the Knudsen-Mumford Section

We now again assume that we are under the assllmptions of Sect. 2a). Let us briefly
recall how the Knudsen-Mumford section of / is defined in [KM7]. Assume first
that £ is a short exact sequence, i.e. that m=2. We then have a long exact sequence
in cohomology.
H'(E))— H'(E,) — H'(E,)

d (2.20)

0—— HO(Eq)— H(E,)— HY(E,)

where ¢ is a coboundary operator.

By the construction of [BGS 1, Definition 1.1], to the exact sequence (2.20), we
can canonically associate a non-zero section ¢ of ®[detH{(E)] V""",

Also, for every j (0<j<?2), we have the canonical identification

2
A= @ (detH(E)) V""",
i=0

Therefore ¢ defines a non-zero section of 1#=/,®1; '®41,, which is the
Knudsen-Mumford section.

When m =2, we split the sequence ¢ into short exact sequences, and define o
multiplicatively.

Theorem 2.8. The following identity holds
T(0+v)=0. (2.21)

Proof. Using Theorem 2.7, it is enough to prove the theorem for m=2.
We will use the fact that for a==0, by (2.13),

= T(0 + av)

T(0+v) BT R (2.22)
and we will prove that
lim 040 _ (2.23)
a0 a

a®0
Incidentally, note that (2.22) makes sense because we used the parallel transport

T(0+ av)

trivialization of Z. On the contrary, since — —;—is a section of 7, and ¢ a section
a

of 7, (2.23) is a differential geometric statement, which can be verified locally.
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Note that if H(E;)=0 for 0<i<7/, 0<j<2,(2.23) is trivial. In fact d=0, and
T(0) is well defined. In this case by (2.22), T(0+av)=T(d) and tautologically
T(0)=o.

So we now assume that not all the HY(E)) are reduced to 0, so that 0 is in the
spectrum of D2 . There is b>0 such that D2, has no eigenvalue in ]0,5]. We can
choose £>0 such that, for |a| ¢, b is not an eigenvalue of (D + V).

The double complex E has a total grading. For |a| <&, 0<g <37, let K2 be the
sum of eigenspaces of total degree g of (D + V*);, for eigenvalues <b. Note that for
0<|a| <e, since (E, 0 + av) is acyclic, 0 is not an eigenvalue of (D 4+ V*)2. Identifying

12

the kernel of D} with @ HY(E,), we find that
i=1

b= @ HIE). (2.24)
itj=gq

Also, the various K? are smooth vector bundles on (jaj<e¢). Let P, be the
orthogonal projection operator from E, on K,= @K We can take £¢>0 small
enough so that P, is one to one from K, into K, and so P, is one to one from K,

into K.
Recall that we identify K, with @ H'(E;). We first give a description of ¢, by
using [BGS 1, Definition 1.1]. Choose an element o€ AHY(E)) such that v(c?) is
non-zero in det(v(H'(E)))) for j=0, 1, and 6(a?) is non-zero in det(§(H'(E,))). We get

a=(05)" ' ®(vag A ) ®(va? AT ™!
®(603 A )R Wos Aah) 1@ at AR (Boi Ay TI®....  (2.25)

Let s;e AK{(E)) be the element representing o', If j=0, 1, Pou(si) € AKY(E; )
represents v(a}). Furthermore the representative of d(¢%™ ') in AK{(E,) can be
described as follows:

Let n;=deg(s," 1), B;e AME" !, and ;€ A™E} be such that

U(ﬁi)zsiz_ ' 5(/>’i)+v(ai)=0, 0(e)=0.

Then P(a;) represents (¢~ '). Therefore, when K{(E ) is identified with H(E)), o is
represented by
(s0) ™' ®(Povsg A s)®(Povs A s3) ™!
®(Poot; A S))®(Pousg A s1) ™ ' @(PovsiAsy)
®(Pooty A '®.... (2.26)

We now fix a such that 0<la|<e¢ and we describe the canonical section

T(0+ av) considered as a section of () det(K%)~1*"", For this, according to
920
[BGS 1, Definition 1.1], we have to find, for all ¢=0, a generator of
det((0+ av) (K9)).
Note that P, induces an isomorphism det(K%)~det(K9). Furthermore, for all
i,j, since P, commutes with J+ av:

(0+av) (s)) = (av) (s}),
(0 +av) (Pav(s§)) =0, (2.27)
(0+av)P (o;+a™B;)=a*"P sy 1.
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Set
(i) =deg(sh) +deg(s’™ 1) +2deg(ss ).

Since (av)(s) = deg‘SJ’u(s ) and counting dimensions, we see that det((d+ av)(K}))
admits the non-zero generator

a?@ P (v(sp) Avlsy” ) A sy 1) =(0+av)(Pso) AR(sy ) ARy +a™By). (228)
One checks that Y (—1)ip(i)=d
i20

Therefore T(0+ av) is represented by:

a’P ((s5)” ' ®(vsgA s (vs§ A s9)7!
®((oy +a"py) )A se)®(vsg As1) @ (vs] AS3)
Ry +a™py)As3) ' ®...). (2.29)

When a—0, the quotient T(d+av)/a® tends to o as represented by (2.26). []

Remark 2.9. It is striking that the proof does not involve estimates on the lowest
eigenvalue of (D + V%2

Incidentally note that a priori, T(d + v) depended on the metrics (g%, h°). A by-
product of Theorem 2.7 is that it does not depend on these metrics. Note that such
a result could have been easily obtained by the methods used in the proof of
Theorem 1.16.

e) The Case where 7 is Projective: A is the Knudsen-Mumford Determinant

We make the same assumptions and use the same notations as in Sect. 1a). In
particular (m,g% THM) is still assumed to be a Kihler fibration, and ¢ is a
holomorphic Hermitian vector bundle on M.

For yeB, HYE),...,H(E) denote the cohomology groups of the complex
Let us temporarily assume that for i>1, H(E)=0. Clearly

—{heE;3,h=0}.

Then H°(E) is a smooth vector bundle on B, which is a subbundle of E°. HY(E)
inherits the Hermitian metric of E°. Let P° be the orthogonal projection operator
from E° on H%E).

Theorem 2.10. Let V be the connection on H(E)
V=P,

(E

» y)

Then V is unitary. There is a unique holomorphic structure on H°(E) such that V is the
associated holomorphic Hermitian connection. If U is an open set in B, a smooth
section ye U—h,e H)(E) is holomorphic for V if and only if h is holomorphic on
7~ Y(U). The canonical isomorphism i~(detH°(E))™! is an isomorphism of holo-
morphic line bundles.

Proof. Clearly V is unitary. By [BGS 2, Theorem 1.14], we know that
7'a=0. (2.30)
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If h is a smooth section of H°(E), dh=0 and so using (2.30), we find
V"'h=0. (2.31)
We thus find that
V'h=V"h. (2.32)

By [BGS 2, Theorem 1.14], we know that the curvature (¥)? of ¥ is of complex
type (1, 1). By (2.32) we find that (V") =0. Since V is unitary, we also have (V') =0.
Therefore the curvature (V)? of V is of complex type (1, 1).

By [AHS, Theorem 5.1], there is a unique holomorphic structure on the vector
bundle H°(E) such that V is the associated holomorphic Hermitian connection.

Let h be a smooth section of H%(E) on U. Clearly h defines a smooth section of ¢
on .~ }(U). Since dh=0, by [BGS 2, Theorem 2.8] we find that

V'h=0oMh. (2.33)
Using (2.32), we get
V'h=0Mh. (2.34)

By (2.34), it is now clear that V"h=0 if and only if d™h=0.

Given y, € B, we can find b> 0, such that Dﬁo restricted to E, has no eigenvalue
in ]0,b]. Since KerD?*nE=H°E) has constant rank, we can find an open
neighborhood U of y, in B such that if y e B, D} restricted to E, has no eigenvalue
in ]0,b].

If {K”?}, ., <, are the vector bundles on U which were defined in Sect. 1b), we
find that for ye U

K"°=HYE), K"*={0}; p=1. (2.35)

Also in Definition 1.2, a connection V? was defined on K. It is clear that P*=V.
Therefore, from Theorem 1.3, we find that the canonical isomorphism
A~(det H°(E))~ ! is holomorphic. []

Remark 2.11. The first part of Theorem 2.10 would of course be obvious if E had
been an ordinary finite dimensional holomorphic vector bundle.

We now formulate the main result of this section. Namely, we assume that the
fibration 7 is locally Kdhler in the sense of Definition 1.25.

We also make the following assumption:

(A) There exists a resolution

0-¢=¢— ¢ — . ¢, 0 (2.36)

of ¢ by holomorphic vector bundles on M such that, forevery ye B,j=1,...,mand
i=1,...,Z, the cohomology group H(Z,, ;) vanishes.
By [Q 3, Sect. 7.27], this hypothesis is satisfied if the map n: M — B is projective,

i.e. admits a factorisation ;
M — P(E)

A/
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where j is a closed immersion and P(E)—— B is the projective space over B asso-
p

ciated to a holomorphic vector bundle E on B. Note that if @ is projective, then « is
locally Kéhler.
In [KM], Knudsen and Mumford defined a holomorphic line bundle over B

KM = (det(Rm, &)~ (2.37)

For 0<j<m,if 2{™is the Knudsen-Mumford line bundle associated to ¢, for every
y€ B, we have a canonical isomorphism of the fibers

M~ (det HY(E)) ' ®(detH(E))® .... (2.38)
Therefore for every ye B, the fibers XY and 1, , are canonically isomorphic.

Theorem 2.12. If n is locally Kdhler and if assumption (A) is verified, the canonical
isomorphism of the fibers A,~ 5™ induces a smooth isomorphism of holomorphic
line bundles.

Proof. Since the statement of the theorem is local on the base B, we can as well
assume that (n, g%, THM) is a Kéhler fibration.

We first prove the theorem when {=¢; (1 <j<m). Then HYE ;) has constant
rank. Also in Theorem 2.10, H(E ;) has been endowed with a holomorphic
structure. Moreover the characterization of the holomorphic sections of HY(E ;)
shows that HY(E ;)isendowed with the same holomorphic structure as in Knudsen-
Mumford [KM]. Also by [KM, Proposition 8] the identification A} ~det H(E))
is an isomorphism of holomorphic line bundles. Using the final part of
Theorem 2.10 we find that the canonical isomorphism 4;~ %™ is holomorphic.

By [KM], the Knudsen-Mumford section ¢ of 7¥M=[](A*™)"" is holo-
0

morphic. By Theorem 2.3, we know that T(d+v) is a holomorphic section of
Z=T](4)"~ . Also by Theorem 2.8, for every ye B, T(0+v),~a,. Since for j>1,
0

the canonical isomorphism 4;,~Af is holomorphic, it is now clear that the
canonical isomorphism /=~ iX™ is also holomorphic. The theorem is proved. []

Remark 2.13.In Sect. 3, we will establish an analogue of Theorem 2.9 which is valid
for all the cohomology groups, and not only for H°(E). This will permit us to prove
Theorem 2.12 even when assumption (A) is not verified.

f) A First Proof of Theorem 0.1

We now assume that the assumptions of Sect. 11) are verified, i.e. 7 defines a locally
Kihler fibration. g is still a smooth Hermitian metric on TZ, which induces a
Kéhler metric on the fibers Z. £ is a holomorphic Hermitian vector bundle with
metric h%, which is such that assumption (A) is verified.

In Sect. 11), we have constructed a holomorphic line bundle 4 endowed with
the Quillen metric associated to (g, h%).

From Theorems 1.27 and 2.12 we obtain the result of [BGS 1, Theorem 0.1].

Theorem 2.14. The canonical isomorphisms of fibers A,~2x™M is a smooth holo-
morphic isomorphism of line bundles over B. The curvature of the holomorphic
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Hermitian connection on 1~ XM associated with the Quillen metric of J is given by

. _RZ? £ 1@
2z7r|:£ Td( i >Tr[exp—%}:| . (2.39)

3. .=4K¥M: A Sheaf Theoretic Proof

In this chapter, we give a proof of 2 ~ A¥Mvalid for any locally Kéhler fibration, and
we obtain [BGS 1, Theorem 0.1] in the general case.

In a) we recall some facts about the Knudsen-Mumford theory of determinant
line bundles [KM] and indicate how these extend to the category of smooth and
analytic sheaves.

In b) we show that A and A*M are isomorphic as smooth line bundles. This
follows from Theorem 3.5, which gives two descriptions of the smooth sheaves of
cohomology of a family of vector bundles.

In ¢) we prove that the smooth isomorphism A~/*M preserves the holo-
morphic structure, by comparing the d operators.

In d) we give a proof of [BGS 1, Theorem 0.1.]

a) Determinants of Perfect Complexes

In this section, we outline the basic properties of determinants to be used later on.
In particular, given a complex manifold B, we want to know which results of
Knudsen-Mumford [KM] (which is written for schemes) extend to the categories
of coherent analytic sheaves and modules over the sheaf of C* functions.

Let Oy be the sheaf of holomorphic functions on B, and (5 the sheaf of C*
functions. We write Py (respectively Pg) for the category of locally free (g
(respectively Og) modules of finite rank. Let L (respectively L%) be the category of
O (respectively Og) line bundles (more precisely graded line bundles (L, «), where
Lisaline bundle and «: B—Z is a continuous map as in [KM]; but we shall forget
about a, as indicated in [BGS 1, Remark 1.2]).

Let Lisg, Lisy, Pisg, and Pisy be the corresponding categories of
isomorphisms.

The determinant functors

det: Pisg— Lisg
and . .
det, : Pisy —Lisg ,
are given by maximal exterior powers. If
0-F -5 FL Frs0
is a short exact sequence in Py, there is an isomorphism
i*(a, f): det F'®@det F” Sdet F
given locally by the formula

*o, BY(xy Ao AXZABYI A ABYY)

Z=OX A AAXAY LA LAY,
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A similar isomorphism i¥(x, ) exists for det,. These satisfy compatibility
properties given by Proposition 1 in [KM]. Furthermore, there is a canonical
isomorphism

det,, (Fg@(%) :det(F)g@(Off.

One can also define the determinant det(}) of a vector bundle V' with sheaf of
sections I'(V) in a such a way that detI'(V)=1I'(det V).

Let Cj (respectively Cy°) be the category of bounded complexes in Py
(respectively Pg). By the same method as in [KM, Theorem 1], we have

Proposition 3.1. There is one, and, up to canonical isomorphism only one determinant
functor

(f,i):Cisg—>Lisg  (respectively (f,i),,:C'isg — Lisg )
satisfying the conditions of [KM, Definition 1].

Remark 3.2. Proposition 2 of [KM] still holds, with affine open sets being replaced
by small open sets (or Stein open sets in the analytic case). Again

(/) (K %(93’ ) = (((ﬁ i) (K))‘(D?(Qé‘j

if K is in C’isg.
Let R=0z or OF. A complex F’ of R-modules is called perfect if, locally on B,
there exists a quasi-isomorphism

G F
with G'a bounded complex of locally free R-modules. As in [KM] we may extend

the functor (f, i) [respectively ( £, i), ] to the category of perfect R-modules. The key
lemma is:

Lemma 3.3. Let G be a bounded complex of locally free R-modules (R= 0y or 0% ),
and F an acyclic complex of R-modules. If

f:G—F

is a map of complexes, there exists an open cover B=|) U, of B and nullhomo-
topies h,: Gy — F|y, such that h,d+dh,=f|U,. *

Proof. The assertion being true when B is reduced to a point, for every y € B we can
find an homotopy h,: G,—F, between 0 and f;. Since each G* has finite rank and G’
isbounded, , extends to a map hin a neighborhood U of y. The identity dh+ hd = f
is true in some (possibly smaller) neighborhood of x. []

From this lemma, we obtain a modified version of [KM, Proposition 4], where
affine schemes are replaced by sufficiently small open sets. The results analogous to
Theorem 2 in [KM], and the remark after it, are true.

Let n: M — B be a proper map of complex spaces. By a theorem of Grauert [G],
if F is a coherent sheaf of ¢,~-modules, for all i>0, the ¢y-module R'n F is
coherent. If i>dim(M), then R'n, F=0. The functor Rz, maps the derived
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category of (0,,-modules to the derived category of (yg-modules, and sends
coherent sheaves to complexes with coherent cohomology. If B is a complex
manifold, for every y € B, the local ring Oy, , is regular, hence all coherent analytic
sheaves on B are perfect, and more generally any complex with bounded coherent
cohomology is perfect. Hence we obtain (see [KM, p. 46]):

Theorem 3.4. Let w: M—B be a proper morphism of complex spaces, with B a
complex manifold. Then to every complex F of O,,-modules with bounded coherent
cohomology, we can associate a ( graded ) invertible holomorphic sheaf det(Rn, F) on
B. For every true triangle on M,

O0-F->G->H-0,
we have an isomorphism

det(Rn, F)®det(Rn, H)~det(Rn,G),
which is functorial with respect to isomorphisms of true triangles.
For F a coherent sheaf on M we define
FM(F)=det(Rn F)~ ',

the Knudsen-Mumford determinant attached to F and n. Proposition 8 of [KM]
is also true in our case. In particular, if R*nF is locally free for all k, we get

IMF)= ® det(R¥zF) 1",
k=0

When R*r, F=0 for every k>0 we have
JXM(F) = det (R, F) "

Let now n: M — B be a smooth proper map of complex manifolds and ¢ a finite
dimensional complex vector bundle over M. Let

B gt g

be the complex of smooth vector bundles over B considered in [BGS 2, Definition
1.10]. Call & the complex of OF-modules given by smooth sections of E". We
know from Sect. 1b) that, given y € B, we can find an open neighborhood U of y
and a smooth complex K of finite dimensional vector bundles on U which is
quasi-isomorphic to E" on U. Therefore & is a perfect complex of @7 -modules.
By what we said above (before Lemma 3.3.), we can define an invertible sheaf
det(&") over B. This is precisely the sheaf of C® sections of the line bundle 4
defined in Definition 1.1.

b) The Knudsen-Mumford Determinant is Smoothly Isomorphic to A

Let M be a complex manifold. We write &), for the sheaf of Dolbeault complexes
on M. For each p=0, 2%, is the sheaf of C® sections of the vector bundle
APT*O- VL The differential 0™ is 0, linear. By [Go, I1.3.7], if F is any sheaf of
0 ,-modules, the complex

DuF)=F QD
Om
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is a resolution of F since O hence each 2% is a flat @,-module [M].
Furthermore, Z5,(F) is fine by [Go, 11.3.7.3]. Therefore, for any map n: M — B, the
object Rm, F in the derived category of ¢p-modules is canonically isomorphic to
n(2y(F)), i.e. RPn F is the sheaf associated to the presheaf on B:

U H (D(F) (1 (U))),
or
RPn, F = AP, Dy(F)),

Note that n,2,(F) is a complex of ¢g-modules.

Now suppose that 7: M — B is a smooth and proper map of complex manifolds
which is locally Kéhler in the sense of Definition 1.25. Let TZ be the relative
tangent bundle (on M). The relative Dolbeaut complex &7 is such that 2% is the
sheaf of C* sections of AP(T*( D7) on M; its differential 67 is the -operator along
the fibers. Note that 0% is both 0,, and Oy-linear. When F is any sheaf of
0y~-modules, define 2,(F)=F @@Z Taking its direct image under = we get a

complex n,Z,(F) of sheaves of @“’-modules For every p=0, we write S#3°(F) for
the cohomology of n,Z,(F). This is a sheaf of ¢ -modules, while RPn, F is a sheaf
of Op-module. Notice that when F is the sheaf of sections of the holomorphic
bundle &, 7, Z,(F)=&"[cf. end of a)]. The natural map 7,§— T;* induces a map of
complexes Z;,—%,. Hence, on B, for every 0,,-module F, we get a map

1, Dy(F) -1, D(F), (3.1)
which induces a map on cohomology sheaves
RPn, F—A#L(F),

and, by extending scalars,
0, (RPm, FYR O - #HF), p=0.
OB

Theorem 3.5. Suppose that n: M —B is a proper smooth map between complex
manifolds and that F is the sheaf of holomorphic sections of a holomorphic vector
bundle & on M. Then, for all p=0, the map o, is an isomorphism.

Proof. To prove the theorem it is enough to show that g, is an isomorphism locally
on B. Therefore we shall fix ye B and restrict our attention to arbitrarily small
open neighborhoods of y.

By [G] we know that the sheaves RPn,F are coherent. In particular, the stalk
(RPm,F), is a finitely generated O , module. The local ring (U | is regular, hence
any finitely generated O , has a finite resolution by finite rank free (5 ,-modules.

We recall a standard result from homological algebra.

Lemma 3.6. Let R be a regular local ring, and A a bounded complex of R-modules
whose cohomology groups HP(A), p=0, are finitely generated. Then there is a
bounded complex of finitely generated free R-modules P* and a quasi-isomorphism

@:P'—>A".
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Proof. We proceed by induction on the length of 4 If this length is zero A'~ A* is
concentrated in a single degree k, hence A* ~ H¥(A) s finitely generated, and it has a
resolution P'— A* of the required form since R is regular.

Assume now that the length of A'is positive and let n=sup {k|4* % 0}. Choose a
free R-module of finite rank P" mapping onto H"(4')= A"/d(A" ). Since P" is free,
the map P"— H" lifts to a map ¢": P"— A". Consider the complex

Tioan 3 5 g2 OO migpn 7 g,
From the exact sequence of complexes 0— A — A" — P"—0 we get, in cohomology,
0—H" Y(4)-»H" (A)-»P">H"A)-0,

and HP(1)~ H?(4)

if p<n—1. Hence A'satisfies the hypotheses of the Lemma, but H"(A)=0. Let now

A=ker (21"—» <A" -, A")) ,
ie.

A A5 A P sker(A" 1@ P — A 0.

The obvious map 4" — A4 is a quasi-isomorphism, so A" has finitely generated
cohomology, and its length is smaller than the length of 4". Hence there is a
quasi-isomorphism

v Q.—)E.,

with Q'a bounded complex of finitely generated free R-modules. We may assume
Q?=0 if p=n. The induced map Q'— A"is also a quasi-isomorphism:

N T SN LI 1Y AL NN

I Jor Ta@ﬁ T

e—m Q" 2— "t — 0 —0
Since Q"=0 we have doa=¢" o . So we get a map of complexes
An~2 An—l A" 0

T

Qn—2 Qn—l P 0

which is easily seen to be a quasi-isomorphism. []

Returning to the proof of Theorem 3.5, we may use Lemma 3.6 to construct a
map of complexes of Uy ,-modules

¢y P>, Dul(F),,

which is a quasi-isomorphism and such that #; is a bounded complex of finitely
generated bree ¢y -modules. By the finiteness of 2|, the map ¢, extends from the
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stalk at y to a neighborhood of y, giving a map of complexes of ¢/y-modules (B
small enough)

©:P->n,Dyu(F).

Since both complexes have bounded coherent cohomology, and ¢, is a quasi-
isomorphism, the map ¢ is a quasi-isomorphism in a neighborhood of y. We
extend scalars and compose with the map (3.1) to get a map of complexes of
0% -modules

7P RQRUF >, Dy F)=6".
Op
Let P’ be the complex of holomorphic vector bundles on B whose sheaf is 2-

The map ¢ is induced by a smooth map of complexes of vector bundles

@:P—>E".
Lemma 3.7. The fiber

0, P~ E;
of ¢ aty is a quasi-isomorphism.

Proof. Letj:y—>Band i: Z,=n"'(y)>M be the inclusions. We have a commuta-
tive diagram

Z,— M

y—j>B

Let C, be the constant sheaf with stalk C at y. Since P} isequal to #°(), C,, it is
Op
quasi-isomorphic to 7,%(F) X)j,C, [using the fact that ©,Z,(F) is flat over
Up

O] Now, since i, 0, =0y @7%,C,, we get
(&3]

7, D p(F) g?j*Cyzn*@M<F0@3i*(Ozy>.
Furthermore, if F, is the sheaf of holomorphic sections of ¢, over Z,, we have
F(y@gi*(i*F)=i*(Fy).
On the other hand
Ey=n,(F) %j*cy =T,i14(D7(F))).
Hence it is enough to show that the map
T Dl F )21, Z7 (Fy) =]y, D7 (F,)

is a quasi-isomorphism. The target of this map computes j, Rn (F,), and its
domain computes Rz i (F,). Both i and j are finite maps, so Ri, =i, and Rj, =j,,
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and we get a chain of quasi-isomorphisms
Rm i (F))~Rr Ri (F)~R(n.i,)(F,)~R(j,m,)(F,)~j R (F,). [

This lemma just means that, to compute the cohomology of a coherent sheaf on
Z,, one may use Dolbeault resolutions on M or on Z,.

We want to pass from the fiberwise statement of Lemma 3.7 to a global one,
saying that ¢ is a quasi-isomorphism in a neighborhood of y. Since (B, 0F) is not an
Oka space, this does not follow directly. Using the notations of Sect. 1b), over the
open set U®, we can introduce the subcomplex

K'CE
of (1.1) and the corresponding O -module #°° C & (for b >0 well chosen and B small
enough).

Lemma 3.8. The inclusion #°Cé& is a quasi-isomorphism of complexes of
Og-modules.

Proof. Over the open set U’ defined in Sect. 1b), the projector P*: E'-»K” is a
smooth family of regularizing operators [B 1, Proposition 2.13]. The family of
operators D?=(J+ 0*)? has an inverse G on the orthogonal complement of K.
Since D? commutes with P®, § and 0*, we have

00*G(1—P")+3*G(1—P")d=1—P".

Hence 0*G(1 — P?) is a homotopy between 1 and P?, which depends smoothly
on the base point. Therefore the inclusions #°Cé&" and KPCE’ are quasi-
isomorphisms. []

We can now complete the proof of Theorem 3.5. On B, we have maps of
complexes of Of-modules:

O* P RUF—E,
Up
and
A8

Since by Lemma 3.8, v is a quasi-isomorphism and #"is bounded and locally free,
we can lift ¢ to a map

G PRUE A,
[3:]

with o @ homotopic to ¢*.

On the fibers over y we know that y, and ¢;° are quasi-isomorphisms
(Lemma 3.7 and Lemma 3.8) therefore @, is a quasi-isomorphism. Since P and K”
are bounded complexes of finite dimensional C* bundles on B, the map ¢ induces,
in a neighborhood of y, a quasi-isomorphism

P'—>K®

and, for all p=0, the map ¢, is an isomorphism. []
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Corollary 3.9. Let /XM be the holomorphic line bundle on B whose sheaf of
holomorphic sections is *M(&)=det(Rn&)™'. As smooth bundles, 2*™ and 2 are
canonically isomorphic. In particular the Quillen metric is smooth on J¥M,

Proof. From Theorem 3.5, we deduce that the Og-modules #¥(F) are perfect.
Therefore by [KM, Proposition §] there is a canonical isomorphism

det(€)~ ® detAP(F) V""",
pz0

We know that the left-hand side is the sheaf of smooth sections of 4, and, by
Theorem 3.5, the right-hand side is canonically isomorphic to

7~KM(€)g>§(9§°~ O

c¢) Comparison of the Complex Structures

Let p>0 and let #%(F)= H?(&") the cohomology of the complex & =mn,Z,(F) of
(07 -modules. We shall define a map

Oy HJ(E)>T*O VB @ AY(F),

such that d7=0 and, if fe Of and he H?(&),
0p(f)=f05(h)+ (/) ®h. (3.2)

Let p=0 and let x€ E? be a section of AX(T*©VZ)®¢& such that 0%(x)=0.
Choose any lift e APT**YM®¢E of «. The form ™(&) will map to zero in
APFIT*0DZ @ E From the exact sequence

0—-n*T* O VB T*O DN T*O0: D7 (),
we get a map
o:ker {APT(T*O VM@ ¢E— AP H(T*OVZ) @ ¢}
STFTHODBRANT*OVZ) @ .
We define d4(x) = 0(0™()).
Proposition 3.10. The map 0y induces a morphism #F(F)—T** VB 0@%%”(F)
satisfying (3.2). Its kernel contains ¢, (RPmF). i

Proof. First notice that 0%(04(x) = o((0™)*«) =0. To see that the class of J4(a) does
not depend on the choice of &, let &' be another lift of o. Then & — &' is in the image of

the ma
P n*T*(O'1)B®A”_1(T*(O’1)M)—+AP(T*(O’I)M),

say 4—d'=f®7y. We get

(M@ —&))=00™(BRY)=00¥ Ry —FRIMY).
We have

gMﬁ@yeAzTc*T*(O’”B@AP_IT*(O'“M’
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(since AT*T*© DB is stable under 0™), hence o(0™B®7)=0. Therefore
o(M@E@—a)=o(B®IMy) =0%e(f®?),

and the class of 0y(x) in Jf;"(F)@@ T*©-YB does not depend on the choice of d.

Using (0™)2=0 we get 92=0 and (3.2) is easily shown. Finally 0,(R"nF) is
killed by 0p, since it is represented by sections & in AP(T*©YM)®¢& such that
Mg=0. O

Let us now consider a Kihler fibration (r, g%, T¥M) as in [BGS 2, Sect. 1c],
with associated (1, 1) form w=w" + w?. According to [BGS 2, Theorem 1.14], we
have an operator

V' 6—T**VBRE

Og
such that (7”)2 =0, which commutes with 3%, hence induces a complex structure on
HP(&).

Theorem 3.11. For every p =0, the operators V" and 05 on H¥(&) coincide.

Proof. 1t is enough to consider the case where ¢ is trivial. Let us first recall the
definition of V" in [BGS 2, Definition 1.13]. The form w induces maps

o TOYM - T*1-00
and
@ TOOM - T*O DM

which, by definition of a Kihler fibration, induce an isomorphism _iw? from
TOVZ to T*1-9Z If 5 is a section of T VB, its horizontal lift # is the unique
section of T YM such that n _sw has image zero in T**:9Z. In other words

THO DM — ker(T© DM =2, T3 O, T*(1.0Z)
If xe T*®VZ there is a unique element fe T ¥Z such that a=p_iw? We
defined
V) (@) =Vu(p) o ”,

where V" is the standard 0™ operator on the holomorphic bundle T"-?Z.
Let us simplify our notations by setting

AP(M)=C® sections of APT1OM |
BP(M)=C* sections of APT*© DM,
AP(Z)= C” sections of APT9Z,

B?(Z)=C® sections of APT*©DZ.

In particular B?(Z)=EP? in the notations of 3.a). The key step in the proof of
Theorem 3.11 is the following Lemma.
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Lemma 3.12. For every section n of T'>V'B the composite map

wZ

ANZ)—"> BY(Z)

VaH

A'(2)
is equal to the composite

—w

ANZ) s AN M) B M) -5 B2 (M) BA(M)—BY(Z).

Proof. This is a statement about C*® sections of bundles on M, therefore we can
work locally on M and assume that M =Z x B, with holomorphic coordinates

. . 0
Zis oo Znp2ip V15 -+ Y By linearity we can assume that n= . for some b. We omit
the summation signs and write Y

w=s"dz; ndz;+ t7dz; NdF,+uMdZ; A dy, +Vidy, A dY,.
Since w? the metric (sY) is positive definite. Since w is closed we have

os4  os® d or’  0s”

057 _ _ ot 33
0z, oz, ' 8z, oy, 33

Let = C’ € A(Z). We shall compare its two images in B'(Z). We can first

l

write
0 0
H_ - -
1 _f”azp 5,
where the f,’s are determined by the condition
sPf,+t7=0 Vi=1,..,n/2, (34)
which expresses the fact that ¥ _iw maps to zero in BY(Z). Since
oo e o 000 ¢t 0
V'(h)=dz,® oz, 0z We® 55 52
we get
., ot 6('
)= 0z, f” 0z; 6yb 0z,
and
o Al s
(ﬁ)_J <0" fot 6)7,,)8 dz;. (3.9)

On the other hand,
i,,ug M(B_iw)= i,,Hé’— M({'sYdz;+ ¢ itdy,)

; T
=1nn<a(ls’)dzk/\dzj+Ez(it’)dzk/\dy,

0 . 0 ...
+ —(Eshdy, A dz, 4+ —((t)dy Ad‘).
ay(( )y[ J ayk( )yk yf
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We want to restrict this form to BY(Z) so we need only compute the coefficient of
dz;. Since F F

H__r ~ R
" =lz, oy
we get that the image of i,»0™(f_w) in B(Z) is equal to
O iimam L O s 0 ... 0 .. . _
D (pigd —({ish Nz, (PG T (piip
o5, GO (5, +< 2 9= 5 05 )) fyd2
After reindexing, we obtain

o= Lo (- 2 awn) o

R iy o, ol _
‘[a- ({'s)— a-(“b”(az afjs>fp]dzj

(since w” is closed under 9%)

ot oC v, o i C _
[8ybs ~' T, ot 5, 02" |42

(3.6)

[by (3.3) and (3.4)] [ o U+ 5 Ci ljf ] i
0y ?
By (3.5) and (3.6) the lemma follows. [
Let now o€ BX(Z) with p=1. By linearity we can assume that
a=(f; a0’ A ... A (B,
with f,€ 4'(Z), j=1,...,p. A lift e BY(M) of o is
d=Biao)A ... AB,a0)=By A ... AB) 0.

To get the theorem, we just need to show that i,»0"(@) and V,u(f; A ... A f,) 2P
have the same restriction in B *1(Z). By Leibnitz rule we get

V(B A ... /\ﬁp)_lw"=2(,b’1 A AV B A oA B aw?
=Y (Broo)n ... AVu(B)aw) A AR, w).
On the other hand, !
i”H(?M(&)=i,,H<§(—1)j+1(ﬁ1_lw)A AP A /\(ﬁp_lco)>

=Y (P10 A . Alyu0M(B; O A A (B, 0)+ (%),

where (*) is a sum of terms of type
Brao)n ... niga(Bao) A AOM(Braw) A A(B,mw),

with j= k. By definition
iy B )= (B, ™) =0.
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Finally, by Lemma 3.12, we know that ¥,=(f,) @ and i,0™(f; 1 w) have the same
restriction in B!(Z). This implies the result. [

Remark 3.13. Theorem 3.11 is also a trivial corollary of [BGS 2, Theorem 2.8].

Theorem 3.14. The smooth isomorphism XM~ ], is an isomorphism of holomorphic
line bundles.

Proof. Since R?nF is a coherent Oy-module [G], there is a dense open set in B
where it is locally free. Therefore, to prove the corollary, we can assume, that, for
every p=0, RPnF is locally free. If we replace B by a small neighborhood of any
point y in B we can assume that there is a real number b > 0 such that D* has no
eigenvalue in J0, b]. Therefore K®C E" consists of harmonic forms. For every p=0
there is an orthogonal decomposition (Hodge decomposition)

EP=Im(@%)@ K2 @®Im (7%

and Kb =ker(d0%)nker(0**). The restriction of the orthogonal projection
Pt E”—»Kb to ker(0%) factors through an isomorphism P’: H?(E)—K}. This
lsomorphlsm is, by definition, compatible with the action of F”. From Proposi-
tion 3.10 and Theorem 3.11 we know that ¢,(R"m,F) lies in the kernel of 7" and,
since the ranks are the same, QP(RPn F)=Ker(¥"). On H?(E) the comp]ex structure
induced by g, (using Theorem 3.5)is thus the same as the one given by 77", Since the
canonical isomorphism A*M~1 of Corollary 3.9 is induced by ¢,, p=0, it is
therefore compatible with the holomorphic structures of these line bundles. [

d) Conclusion

By Theorem 3.14 and Theorem 1.27, we have now completed the proof of
Theorem 0.1 in the introduction of [BGS 1]. So let 7: M — B be a smooth proper
morphism of complex manifolds. Assume that = is locally Kédhler. Let & be a
hermitian holomorphic vector bundle on M. Choose any Kéahler metric g# on the
fibers of w, which varies smoothly with the base point.

Theorem 0.1. Under the above hypotheses, the curvature of the Quillen metric on the
Knudsen-Mumford determinant is

(2im) D Td(— R?/2im) Trexp(— L</2in)j|‘2’ )

Theorems 0.2 and 0.3 in the introduction of [BGS 1] follow from [BGS1,
Corollary 1.30], Theorem 3.14, Theorems 1.23, 2.4, and 2.8.

Acknowledgements. The authors are indebted to Professors J. B. Bost, J. P. Demailly, N. J. Hitchin,
D. Quillen, and Y. T. Siu for helpful discussions and correspondence.
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