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Abstract. We construct an action-angle transformation for the Calogero-
Moser systems with repulsive potentials, and for relativistic generalizations
thereof. This map is shown to be closely related to the wave transformations for
a large class ^ of Hamiltonians, and is shown to have remarkable duality
properties. All dynamics in ̂  lead to the same scattering transformation, which
is obtained explicitly and exhibits a soliton structure. An auxiliary result
concerns the spectral asymptotics of matrices of the form M exp(ίD) as ί-> oo. It
pertains to diagonal matrices D whose diagonal elements have pairwise
different real parts and to matrices M for which certain principal minors are
non-zero.
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1. Introduction

In this paper we study four classes of classical integrable N-particle systems on the
line, which can be characterized by an N x N matrix-valued function L (referred to
as the Lax matrix) on a 2iV-dimensional phase space Ω, cf. (2.1), (2.17), (2.31), (2.32),
and (2.59) below. The symmetric functions Sί9 ...,SNoϊL are in involution, so that
the spectrum of L is conserved under the flow corresponding to any Hamiltonian
in the maximal Abelian algebra generated by Su ...,SN.

It follows from general principles (the Liouville-Arnold theorem) that there
exists a canonical transformation Φ.Ω^Ω (the action-angle map) which diagonal-
izes the Abelian algebra in the sense that the functions Sk° Φ~1 depend only on the
new generalized momenta (the action variables). However, this existence result
yields neither an explicit picture of Φ nor a precise description of the action-angle
phase space Ω. (This state of affairs is the classical analog of the quantum situation:
There the spectral theorem ensures the existence of a unitary joint eigenfunction
transformation $ for the maximal Abelian quantum algebra, but does not provide
detailed information concerning $ and related matters such as existence of bound
states, scattering, etc.)

Our main result is an explicit construction of an action-angle map Φ for the
systems mentioned above. We also determine explicitly the wave and scattering
maps for a large class of Hamiltonians, cf. Theorem 4.1. A crucial auxiliary result
concerns the spectral asymptotics as ί-»oo of two classes of ί-dependent matrices.
For the first class this amounts to a quite straightforward application of
nondegenerate perturbation theory, since the ί-dependence is linear, cf.
Theorem Al. However, for the second class the dependence on t is exponential and
the result (Theorem A2) is of independent interest.

The systems J n r and IIm studied below are commonly known as Calogero-
Moser systems [1 j . The subscript refers to the nonrelativistic Hamiltonians with
pair potential V(q)=l/q2 for 7nr and V(q)=l/sh2q for 77nr. The relativistic
generalizations presented and studied in [2] are denoted 7 re l and 77rel. The results
of this paper have a bearing on the relations of the latter systems to soliton
solutions of various nonlinear PDE, which are detailed in [2,3]. We intend to
come back to this issue in a sequel to this paper, where we shall consider systems of
particles that behave as solitons, antisolitons and their bound states [4].

For the case 7nr an explicit construction of Φ can already be found (in a
somewhat different guise) in a paper by Airault et al. [5]. They observed that there
exists a commutation relation of the Lax matrix L with an auxiliary matrix-valued
function A on Ω, which can be used to infer crucial spectral properties of L. This
state of affairs was further explained and elaborated on in a paper by Kazhdan et
al. [6]. We have followed the lead of these papers and exploit a generalization of
the commutation relation for the case 7nr to the other three cases. Further related
work includes a paper by Adler [7], who obtains detailed information about the
systems 7nr and 77nr with external potentials, and various references listed in the
survey [1].

In all cases the action variables are simple functions of the eigenvalues of the
Lax matrix L, whereas the matrix A is diagonal and depends only on the positions.
Therefore, the similarity transformation turning L into a diagonal matrix L turns
A into a matrix A whose symmetric functions are commuting Hamiltonians on the
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action-angle phase space Ω. It turns out that A is in essence equal to the Lax matrix
of one of the four cases considered here. We shall express this state of affairs by
saying that the two cases involved are dual to each other. Specifically, it turns out
that 7nr is dual to itself, cf. (2.24), 77nr is dual to / r e l, cf. (2.49-50), whereas // r e l is
again self-dual, cf. (2.73). The self-duality of 7nr (already pointed out in [5]) and 77rel

can also be expressed by saying that Φ equals its inverse when Ω and Ω are
identified in the obvious way. (More precisely, for the case 77rel this holds after a
scaling.)

It is known that the integrability of the systems 7nr and 77nr persists after
quantization, cf. [8]. As proved in [9], the systems 7re l and // r e l can also be formally
quantized in such a fashion that integrability is preserved. Elsewhere, we shall
return to the quantum version of these systems and present evidence to the effect
that the duality properties just described survive quantization, too; Moreover,
there exist again intimate relations with various well-known integrable quantum
systems [10].

We proceed by discussing the results and the organization of this paper in more
detail. Though the cases 7re l, J7nΓ, 7nr may be viewed as special cases of 7/rel, it
turns out to be quite awkward to keep the action-angle map under control in the
various parameter limits leading to the former systems. Therefore, we have opted
for a case by case construction of Φ, which is presented in Sects. 2B-2D. As a
bonus, this brings out the peculiarities of each case and leads to a clear picture of
the duality properties. However, for conceptual and notational reasons we begin
with Sect. 2A, which explains the construction and its consequences in general
terms. The reader might skip this section on first reading and refer back to it when
needed.

The construction performed in Chap. 2 only involves some simple linear
algebra, including two versions of Cauchy's identity (listed at the end of this
chapter). However, we have not found a way to avoid considerable analysis in
proving that the map Φ is indeed a canonical transformation. We have relegated
most of these analytic aspects to several appendices. Specifically, we prove in
Appendix B that Φ and its inverse are real-analytic, whereas Appendix C is
devoted to showing canonicity. In the latter appendix we make essential use of the
results of Appendix A and Chap. 3. Appendix A contains the spectral asymptotics
results already mentioned above, whereas Chap. 3 is devoted to a case by case
study of special flows whose relevant features can be established without using the
canonicity property of Φ.

Admittedly, our proof of this key property is not exactly straightforward. The
main analytic difficulty in our approach (which hinges on exploiting scattering
theory) is to justify a certain interchange of limits. Obviating this snag involves
holomorphicity arguments and the uniform estimates of Appendix A, and is
already nontrivial for the simplest case 7nr. (In the previous work on this case
mentioned above this interchange is left unjustified.) Possibly, smoothness and
canonicity of Φ can also be established by adopting a picture as presented in
[6,11], but from the information given there it is not obvious to us why the two
different descriptions involved should be related by a canonical transformation.

In Chap. 4 we study the scattering for a certain class of Hamiltonians. We
prove that all of these have the same wave and scattering maps as the special
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Hamiltonian studied in Chap. 3. For the nonrelativistic systems this in variance
principle had already been conjectured to hold in [12], where we presented and
discussed a quantum analog (cf. also [13], where similar in variance principles are
proved for several integrable field theories). Just as in [12], one may argue that due
to this invariance principle the various dynamics involved are "equally important"
from a mathematical point of view; in this picture the fundamental objects are L
and Φ, and the special Hamiltonians of Chap. 3 are singled out solely by their
simplicity and by their physical interpretation in terms of space-time symmetry
groups.

Chapter 5 contains some further developments. Specifically, in Sect. 5A we
prove an asymptotic property of the action-angle map, which may be viewed as a
generalization of the invariance principle of Chap. 4. In Sect. 5B we show that one
can get new integrable particle systems by restricting Φ to certain submanifolds.
These restricted systems may be viewed as being associated with the root systems
Cι and BCh in the same sense as the unrestricted systems are associated with A2l_ ι

and A2l, respectively (cf. [1]). In the final Sect. 5C we collect some further
observations of interest, including a striking property of matrices associated with
the case 7nr (i), a one-parameter generalization of the Lax matrix whose symmetric
functions still commute (ii), a symmetry property of Φ (iii), and last but not least,
the relation between the four cases (iv).

This paper is in essence self-contained. In particular, we do not assume
involutivity of the symmetric functions of the Lax matrix, since this information
would not simplify our canonicity proof. Of course, once canonicity of Φ is proved,
this commutativity property is an obvious corollary. Quite a few other previous
results are simplified and subsumed, as well. For instance, the explicit description
of the special flows studied in Chap. 3 can already be found in [1] for the cases 7nr

and 7/nr, and in [2] for the cases 7rel and 7/rel, but its validity is proved here with a
minimum of labor (avoiding e.g. the somewhat involved arguments of [2,
Appendix B]).

We close this introduction by listing two versions of Cauchy's identity in a
form which suits our later requirements:

α + xt - Xj

shz

Γ «2 i
><JL α ~ixi~xj7 J

5/z(z + _Vj — yβsnyz + y ; — y$ J

Note that (1.1) follows from (1.2) by setting z = otβ, y = βx and taking j8 to 0. For
further discussion of these formulas we refer to [2].

2. The Construction of the Action-Angle Map

2A. Generalities

We begin by sketching the construction of the action-angle map Φ in general
terms. The systems studied below all have a phase space and action-angle space
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given by

Ω = {(q,θ)eΈi2N\qN<...<q1}, ω= £ dq^dθi9 (2.1)
i 1i= 1

\θN<...<θ1}, ώ= £ dq^dθ^ (2.2)
i = l

They are characterized by an N x N matrix L on Ω, which also depends on certain
parameters, collectively denoted by g. These parameters take values in a region
Gc(Cz which we shall not specify here, since G and / depend on the case at hand.

The key to the construction of Φ is a commutation relation of L with a diagonal
matrix A that is a simple function of the matrix

Q = dmg(ql9...9qN). (2.3)

This commutation relation is of the form

f(g)lA9L]=e®e-F(A,L), (2.4)

where the complex-valued and matrix-valued functions / and F and the vector
e(g; q, θ) depend on the case. In all cases considered below L is diagonalizable and
has real spectrum. Thus, an invertible matrix T exists satisfying

1 =diag(A1,...,λN), ^ e R . (2.5)

Then (2.4) implies

f(g)Mλj ~ λi) = έέj - F(A> Lh ( 2 6 )

Here, we have set

A = TAT~\ (2.7)

e=Te, e=T~ue (2.8)

(where t denotes transpose).
We now render T unique by imposing several requirements. First, we exploit

(2.6) to prove that the coordinates of e and e are non-zero and that L has simple
spectrum. Thus, we may and shall require

A J V <. . .<λ 1 . (2.9)

This determines T up to left multiplication by a diagonal matrix D with Da Φ 0. We
then fix D l l 3 ...,ΌNN up to a sign by requiring

e = έ9 (2.10)

cf. (2.8). Finally, the sign is fixed by first proving that (2.10) entails e is real and then
requiring

et>0, i=l,...,JV. (2.11)

Next, we reparametrize L, e, and A with points in Ω. In particular, the
eigenvalue λt is written as a simple function of θt. By virtue of the uniqueness of T,
we obtain a well-defined transformation Φ from Ω into Ω in this way.
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To show that Φ is a bijection, one need only solve (2.6) for A and regard A and L
as functions on Ω, after which the map can be "run backwards." That is, one can
construct a map S.Ω^Ω such that

<foφ=:idΩ, Φo£ = iάh, (2.12)

which entails that Φ is bijective.
Since the eigenvalue λt of L is reparametrized in terms of θt only, the bijection Φ

diagonalizes any Hamiltonian H which is defined in terms of L (e.g., H = TrI}% in
the sense that Hog depends only on θ. In particular, for any heC£(lR) one can
define a Hamiltonian Hh such that

( ίW)(4,0)=Σ hΦt). (2.13)
i = 1

Viewed as a Hamiltonian on Ω, the right-hand side obviously generates the linear
flow

(q(t% θ(t)) = (4, + th'φά .. .AN + "*'(<U 5). (2.14)

However, it does m?ί follow from this that the pullback to Ω,

(t),θ) (2.15)

is the solution of Hamilton's equations for Hh, unless one can prove that $ is a
symplectic diffeomorphism.

We prove smoothness of Φ and $ in Appendix B in the general context of this
section. However, our proof of canonicity hinges on picking a special h, for which
(2.15) can be shown to solve the Hamilton equations for Hh without assuming
canonicity of S. An important ingredient for showing this is a description of q(t) in
terms of eigenvalues of a matrix A(t) defined below. This description (for general h)
is given at the end of each of the following sections, and amounts to an explicit
picture of the position part of the Hamiltonian flow generated by Hh once we have
proved that S is canonical.

The matrix A(t) involves h and L in a simple fashion and reduces to A when
t = 0. The notation

Ά(t)=TA(t)T-\ (2.16)

which we shall use below is therefore consistent with (2.10). We shall denote
evaluation of the matrices β, L, and Tin the point (2.15) by appending a subscript t.
Finally, we shall use the symbol ~ to denote similarity.

2B. The Case Inr

The nonrelativistic rational case Inr is characterized by the Lax matrix

L(ρ; q9 0) y = δφ^ ρ(l -<5 y )—ί—, ρ £ /R* . (2.17)
Hi Hj

Setting

A = Q, e; = l , (2.18)

f=ί/Q, F = l, (2.19)
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it is clear that L satisfies the commutation relation (2.4). Moreover, L is
diagonalizable and has real spectrum, since (2.17) implies L = L*. Thus, a matrix T
exists satisfying (2.5). Then the transformed commutation relation (2.6) reads

ρ-^μj-λ^έiβj-δij. (2.20)

Taking ί=j, one sees that 2 ^ = 1, so that the coordinates of e and e are non-
zero. Taking then i +j, it follows that λj—λi =f= 0, so that σ(L) is simple. Hence, we are
now in the position to require (2.9) and (2.10). Doing so, we may reparametrize L
and λt by setting

L = d iag(£ 1 ? . . .A) , ΰ ^ . (2.21)

Since the requirement (2.10) entails έf = ί, we can now fix T completely by
requiring (2.11). Thus, in this case the requirements amount to imposing

et = et = U i=l,. . . , iV. (2.22)

We claim that the matrix T, which has just been uniquely determined, is
unitary. To prove this, we note that we could have started with a unitary T to
diagonalize L, since L is self-adjoint. If we then require (2.9), the ambiguity left is a
diagonal unitary. But unitarity entails e = έ, cf. (2.8), so that the ambiguity can be
removed by requiring (2.22). By uniqueness one then obtains the same T as before.

At this point the reader might wonder why we did not require that T be unitary
to begin with. This would however lead to certain difficulties later on, which we
wish to avoid. In fact, we only need the unitarity to conclude that the quantities
4i = An are real. [Indeed, this is obvious from the fact that Ά = Ά* when T is
unitary, cf. (2.18), (2.7).] Combining this definition with (2.20-22) and (2.17) we
conclude

Ά = L(-ρ;θ,q). (2.23)

Summarizing, we see that we have constructed a map Φ:Ω^>Ω,(q, 0)ι—•($, θ) by
diagonalizing L(ρ;q,θ) with a uniquely determined unitary T,6t being the
eigenvalues of L and qt the diagonal elements of TQT~X.

Theorem 2.1. The map Φ(ρ; q, θ) is a smooth bijection from Ω onto Ω whose inverse
satisfies

δ{Q Λ,θ) = P°Φ{-QAξ). (2.24)

Here, P is the permutation

P(x,y)zE(y,x), ( x , j , ) e R 2 * . (2.25)

Proof Using the self-duality relation (2.23) it is obvious how to construct a map
S.Ω^Ω satisfying (2.12), and bijectivity and (2.24) then follow.

Well-known facts concerning matrix-valued holomorphic functions entail
real-analyticity, and hence smoothness, of θ(ρ;q,θ). The less obvious fact that
q(ρ; q, θ) is real-analytic, as well, is proved in Appendix B. •

As announced in Sect. 2A, we shall now conclude this section with a theorem
which, when combined with the canonicity property proved later, yields an explicit
description of the (position part of the) Hamiltonian flow generated by

R ) . (2.26)
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[Here, h(L) is defined by the functional calculus.] Note that (2.26) entails that (2.13)
holds true. The notation used in the following theorem and its proof is explained at
the end of Sect. 2A.

Theorem 2.2. Let

A(t) = Q + thf{L). (2.27)

Then

A(t)~Qt. (2.28)

Proof. We have Ά(t) = Ά + th'(L), from which it follows that

A{t) = L{-Q'Λq) + tdiagίλ'ft),...,h'(6N), (2.29)

cf. (2.23), (2.21). From this formula and the definition (2.15) of (q(t), θ(t)) we can now
conclude

Qt, (2.30)

so that (2.28) follows. •

2C. The Cases IInr and / r e l

We consider the nonrelativistic hyperbolic systems and the relativistic rational
systems alongside, since they turn out to be dual to each other. We shall use
subscripts to distinguish the two cases, unless the context prevents confusion. The
Lax matrices are given by

^ , μe(0,oo), ρe/R*, (2.31)

Ltel(β, ρ; q, % = exp ^ ( θ t + θj^ {V^2V^CJ (βρ q), βe (0, oo), ρ 6 /R* ,

(2.32)

where

1 / 2

\ίΣ\ (2.33)

(2.34)(;q)tJ

κ + qi-qj

(Here and henceforth, positive square roots are taken.)
The commutation relation (2.4), with L = Lnr, is satisfied when one sets

= exp[μβ], e^exp^J, (2.35)

/ = l / μ ρ , F = A. (2.36)
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Since L is self-adjoint, we can find an invertible T diagonalizing L, so that (2.6)
reads here

—Atμj-λ^έέj-Ay. (2.37)

Solving for A we get

A^eβfi-μQ λ^, (2.38)

cf. (2.34). We now use Cauchy's identity (1.1) to conclude

(2-39)2-/!f λ

Since \A\ = \A\ = exp [ μ l ^ J =f= 0, the coordinates of e and e are non-zero and σ(L) is
nondegenerate. Hence we may and shall require (2.9) and (2.10).

Next, we claim that (2.10) entails reality of e. Indeed, since L* = L, we could
have chosen a unitary T to diagonalize L. Then we would get e = έ, so that (2.10)
can be satisfied by multiplying this unitary T from the left with an appropriate
diagonal unitary. Hence, the resulting unitary must be equal to the previous T up
to a matrix D with Du = ± 1, and reality follows. We can, therefore, require (2.11) in
addition to (2.10), which yields a unique unitary T.

We are now in the position to reparametrize the relevant objects with points in
Ω, as follows:

), θt = λi9 (2.40)

^ J i-μQ'M^\ (2.41)

which entails

Anr = Lrel(μ,-ρ;θ,q), (2.42)

in view of (2.38) and (2.31-33). Thus, we obtain a map Φ n r : Ω^Ω, (q, θ) ι-> (q, θ).
The fact that Φn r is a bijection will be obvious from (2.40-42) and the

construction of Φ r e l, on which we now embark. When L = Lτeh we can satisfy (2.4)
by setting

A = Q, e^exp^θ^Vtfρ q)"2, (2.43)

f=ί/βρ, FΞL. (2.44)

Again, L is self-adjoint and hence there exists a matrix T satisfying (2.5). Now, (2.6)
reads

-^Aiβj-λd^έέj-δijλj. (2.45)

Next, we invoke (1.1) once more, to conclude
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Hence, the eigenvalues )H are non-zero. Taking i =j in (2.45) it follows that et and e{

are non-zero. Taking then i Φj, it follows that σ(L) is simple. Thus we can require
(2.9) and (2.10). Moreover, it follows in the same way as before that (2.10) entails
unitarity of T and hence reality of e. Thus, T can be rendered unique by imposing
the extra condition (2.11).

We proceed by noting that (2.10-11), combined with (2.45), implies AΓ > 0.
Hence we may set

θ^β-'lnλ^ (2.46)

which implies

[|] (2.47)

on account of (2.45) and (2.10-11). Finally, since Tis unitary and A self-adjoint, the
numbers q^A^ are real and (2.45), (2.30) imply

Άrcl = Lnr(β,-ρ;ff,φ. (2-48)

This completes the construction of Φ r e l.

Theorem 2.3. The maps Φm(μ,ρ; q, θ) and Φrel(β,ρ; q, θ) are smooth bίjectίons from Ω
onto Ω. Moreover, their inverses satisfy

£nτ{μ,Q'Λ,ΰ) = PoφΐQl{μ, - ρ ; £ $ ) , (2.49)

δTMQ'ΛA = P°Φnr(β,-Q'M), (2.50)

where P is the permutation (2.25).

Proof. Bijectivity and (2.49-50) are immediate from the above, cf. (2.40-42)
and (2.46-48). Smoothness follows from Theorem B2. •

We continue by defining Hh for the case IInr via (2.26) (with L = Lnr, of course).
In view of (2.40) the relation (2.13) follows again. Hence, the following theorem
gives information on the flow generated by Hh, in the sense explained in Sect. 2A.

Theorem 2.4. Let

A(t) = exp\jιQ] exp[ίμft'(Lnr)]. (2.51)

Then

A(t)~exp[pQJ. (2.52)

Proof. The analog of (2.29) reads

^(t) = Lrel(μ, -ρ;θ,q)Qxpltμάiag(h'(U1),...,h'(θN))-], (2.53)

cf. (2.40), (2.42). Hence we conclude

Tt'' exp titμh'(L)]Ά(t) exp i-\tμh'φj] Tt = exp [>&], (2.54)

so (2.52) follows. •
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Let us finally obtain the analogous theorem for the case 7rel. In this case we
must replace (2.26) by

Hh = Ίvh(β~ι\nL), heC^(R) (2.55)

(with L = Lΐel) to ensure that (2.13) holds true. The significance of the following
result for the Hh-ϊlow is detailed in Sect. 2A.

Theorem 2.5. Let

Then

A(t)~Qt.

Proof. By virtue of (2.46) and (2.48) we have

Λ(t) = Lnr(/?, -ρ;U) + t diag(Λ'(^),..., h'(θN)).

Hence, (2.30) holds here, too, and (2.57) results. •

(2.56)

(2.57)

(2.58)

2D. The Case II
rel

The hyperbolic relativistie systems have Lax matrix

where

Vi(μ,z;q)=U 1 -
sh2 1/2

shz

j8,μe(0,oo),(2.59)

(2.60)

(2.61)

Then (2.4) is satisfied with

/t = exp[μβ],

We first consider the choice

±zeί(0,π).

(2.62)

(2.63)

(2.64)

Then C is self-adjoint, so L is self-adjoint, too. Choosing a unitary T diagonalizing
L, we get for (2.6) in this case

(2.65)
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with e = e, since T is unitary and e real. Taking i =j and noting Au > 0, we see that
λi>0. Hence we may introduce real numbers Uι = β~ι \nλb in terms of which we
can rewrite (2.65) as

~(£ i + #j) 1 C(β, -z;θ)u, (2.66)

cf. (2.61). Hence, by Cauchy's identity (1.2)

sh2

(2.67)

But we have \Λ\ Φ 0 [cf. (2.62)], so that e-x φ 0 and 6t φ 6y We can, therefore, render T
unique by requiring (2.9-11).

In view of the above we have

), 6^β-ι\nλu (2.68)

and we may introduce q e 1RN by setting

έ, = e x p ^ , + |4,J V{β, -z;Uγ'2, (2.69)

so that

Ά = L(μ,β,-z;θ,q) (2.70)

by virtue of (2.66). This completes the definition of the map Φ: (q, θ) ι-> (q, θ) for the
case (2.64).

We shall now handle the case

z±yeIR*. (2.71)

For these values of z the Cauchy matrix C is not self-adjoint, but now C is real, cf.
(2.61). Since one still has Vt>0 [cf. (2.60)], L is real, too. Thus the symmetric
functions of L and traces of powers of L are real, and hence may be viewed as
Hamiltonians on Ω. Apart from this, the regime (2.71) is of interest, since it
connects the relativistic Calogero-Moser systems with the relativistic Toda

ijί
systems: The latter arise in the limit |y|->oo, where y Ξ z ± - [14].

In order to define Φ, let us fix (q, θ)eΩ and consider the spectrum of L as y varies
over R. Recall we have proved already that σ(L) is simple and positive when y = 0.
Now let ce(0, oo] be the largest number such that σ(L) is simple and positive for
|y| < c. (The existence of c follows from the continuity in y of the eigenvalues of L
and from the reality of L for y e R In fact, we shall presently prove that c = oo.) For
these values of y we can find a real and invertible T satisfying (2.5), which is
moreover continuous in y and reduces to the previous T when y = 0. (Indeed, the
uniqueness of the matrix T constructed above is readily seen to imply its reality
when z= ±ίπ/2.) This leads again to (2.66), so that e and e must have non-zero
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coordinates. Now T is, so far, determined up to left multiplication by a matrix
diag^^y), ...,dN(y)), where ^(0)^1 and dfy) continuous and positive. Hence we
can and shall fix Tby requiring e = e, cf. (2.8). By virtue of continuity in y and reality
of T it then follows that e has positive coordinates. Thus we can define q G R ^ via
(2.69), as before, so that (2.68-70) are valid again.

A priori, c depends on the point (q, θ) we have fixed. However, we shall now
prove that the assumption c < oo leads to a contradiction. In view of the above
definition of c this amounts to the assumption that for y = ± c < oo the spectrum of
L is not positive or not simple. First, assume σ(L) is not positive. Since σ(L) is
positive for \y\ <c, this implies that L must be singular when y = ±c. But we have

for any y, so that this possibility is ruled out. Hence, σ(L) is not simple when y = ± c.
But now consider the y-independent function Tr^l: By virtue of (2.66) and the fact
that e = e, it can be written

T r Λ = Σ # e x p [ - / 5 0 f ] . (2.72)
i = 1

The terms in this sum are positive, and the limits of the θt when \y\\c are bounded.
Therefore, the positive numbers eu ...,eN must remain bounded when |y||c. To
exploit this, we consider (2.66) with e = e: On one hand, one must have |C| —>0 and
hence |,4|->0 when |y| jc, since two eigenvalues of L must collide for |y| jc. On the
other hand,

does not depend on y. This is the contradiction announced above.
Summarizing, we have constructed a map Φ from Ω into Ω for both z-regimes

(2.64) and (2.71).

Theorem 2.6. The map Φ(β,μ,z;q,θ) is a smooth bίjectίon from Ω onto Ω, whose
inverse is given by

-z;θ,4), (2.73)

where P is the permutation (2.25).

Proof Bijectivity and (2.73) are immediate from the duality relations (2.68-70).
Smoothness is a consequence of Theorem B2. •

The relation between λt and 6t is the same as for the case /rel. Hence we define Hh

by (2.25) to ensure that (2.13) follows. At the end of Sect. 2A we have explained the
relevance of the following result for the Hh-ίlow.

Theorem 2.7. Set

A(t) = exp [μβ] exp [ίμ/zX/Γ1 lnL)] . (2.74)

Then

(2.75)
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Proof. In view of (2.68) and (2.70) we have

A(t) = L(μ, β,-z;θ9® exp\tμ diag(ft'(^),..., h'{θN))] . (2.76)

Hence, (2.54) holds true, provided we replace L by β~* lnL, and (2.75) follows. •

3. A Special Flow and Its Temporal Asymptotics

By virtue of the results established in the previous chapter, canonicity of $ would
imply that the trajectories {q(t),θ(ή) [cf. (2.15)] are the integral curves of the
HΛ-vector field. In this chapter we shall prove that this is true for a function h whose
choice depends on the case at hand, without assuming canonicity. The asymptotics
of this special Hamiltonian flow is then determined by invoking the spectral
asymptotics results of Appendix A. As we shall show in Appendix C, this
information can then be exploited to obtain a proof that $ is canonical. We now
present the details for the four cases involved.

3A. The Case Jn r

Theorem 3.1. Let

H = iΣθj-Q2 Σ Z Γ ^ 2 >

Then the functions

&) (3.2)

(cf. (2.24)) solve Hamilton equations and satisfy

ί ->±oo, (3.3)j J j

N-j+ί

θj (t) = Uj + O(\t\-2), ί - ± o o . (3.4)
JV-7+1

Proof. We begin by noting

H=\ΊxL2 = Hh, h{x) = ̂ x2, (3.5)

cf. (2.17), (2.26). Next, we claim that

(3.6)

(The notation used here and below is explained at the end of Sect. 2 A.) Indeed, if we
transform the left-hand side and the right-hand side with Tt+At and Tt, then we
obtain Ά(t + Δt) and Ά(i) + AtL, respectively, and these matrices are equal, cf.
Theorem 2.2 and its proof.

It now follows from (3.6) and nondegenerate perturbation theory that

tj-Ljj, qj-lT^f. (3.7)
qq
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We have suppressed the argument and subscript t, since t is arbitrary. Using the
definition (2.17) of L this can be rewritten as

But from the definition (3.1) of H one sees that the functions at the right-hand side
are equal to {qpH} and {θj,H}, respectively, so that (q(t\θ(t)) solves Hamilton's
equations, as claimed.

It remains to prove the temporal asymptotics (3.3-4). To this end we observe
that the right-hand side of (2.29), with ti(θj) replaced by θj9 is of the form (All).
Hence, (3.3-4)+ are immediate consequences of (A 12-15). To derive (3.3-4) _ from
(A 12-15), we need only transform A(t) with the reversal matrix

/0 1\
Λ= / (3.9)

\l 0/

and replace thy —s. Indeed, (A 12-15) then applies to the s-+ oo limit, since we have

Thus the proof is complete. •

3B. The Case IIm

Theorem 3.2. Let

N a2

H = i^θj-ρ2 Σ < , μe(0,oo),ρeίR* (3.11)

Then the functions

(q(t), θ(ή) = <f(μ,ρ; q1 + tθί9 ...,qN + tθN9 θ) (3.12)

(cf. (2.49)j solve Hamilton's equations and satisfy

ί ^ ± o o , (3.13)
N-j+ί

0. (ί) = ̂ , + O(exp[ + ίΛ])5 ί-̂  + oo, (3.14)
N-j+l

where

R = μmin{θ1-θ2,...,θN_ι-θN}, (3.15)

A:(θ)= Σ δ(θj-θk)- Σ δίθi-ΘΔ, (3.16)

and

(3.17)
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Proof. From (2.31) it follows that (3.5) holds here, too. The analog of (3.6) reads

(3.18)

Indeed, this relation follows from Theorem 2.4 and its proof in the same way as
(3.6) follows from Theorem 2.2 and its proof.

From (3.18) and nondegenerate perturbation theory it now follows by a long,
but straightforward, calculation that

qj = Ljj9 q-μΣLjkLkfth^iqj-q,). (3.19)

Using (2.31) this reads

J J ' J 4

 fcφ7 2 J 2 J

which equals {qp H} and {θp H}, respectively, by virtue of (3.11). Hence it remains
to prove (3.13-14).

To this end we observe that Theorem A2 applies to the matrix (2.53) with
h'(χ) = x. Indeed, the matrices

. .A) (3.21)

belong to Ji and ̂ , respectively. Therefore, we may conclude from (A 31) that

exp iμqft)] = exp [tdj] (1 + ρjt)) (3.22)

for t large. In the case at hand the numbers dj and rrij [cf. (A 29)] read

dj = μθj9 (3.23)

j-] exp Γ - | Δ0)J, (3.24)

by virtue of (3.21) and Cauchy's identity (1.1). Thus, (3.13-14)+ follow from
(A31-34) and the relation θ} = qp cf. (3.20). Finally, (3.13-14) _ can be reduced to
(A31-34) by using the reversal permutation 0t, just as in the proof of Theorem 3.1,
cf. (3.9-10). •

3C. The Case J r e l

Theorem 3.3. Let

N Γ #2 2 -11/2

H = β~ι £ expljggj Π l - ( )2 ' ^ G ( 0 , O O ) , ρ e / R * . (3.25)

Then the functions

(q(t% θ(t)) = S(β, ρ;qx + t exp[j?^],..., qN +1 exp\_βθN\ 6) (3.26)

(cf. (2.50)J solve Hamilton's equations and satisfy

"*), ί - ^ ± o o , (3.27)
N-j+1

θj {t) = 0j+O(\t\-2), ί ->±oo. (3.28)
N-j+l
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Proof. In this case we have
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I, (3.29)

cf. (2.32), (2.55). Moreover, (3.6) holds true by virtue of Theorem 2.5 and its proof.
Hence, (3.7) follows, as before. In this case we should use (2.32) to rewrite it. This
yields

(3.30)

(3.31)
k+j

Here, we used the relation

(3.32)

which readily follows from (2.33-34). If we now equate the time derivative of the
right-hand side of (3.30) to the right-hand side of (3.31) and solve for θp we obtain

,. (3.33)

Here, we also used the equality

dklnVj=-djlnVk9
(3.34)

which follows from (3.32). Since the right-hand sides of (3.30) and (3.33) are
equal to {qpH} and {θpH}, respectively [cf. (3.25)], we have now proved that
the function (q(t), θ(t)) solves Hamilton's equations.

To prove (3.27-28), we first note that the right-hand side of (2.58), with j
replaced by exp[j8#J, is of the form (All). Thus, (3.27)+ follows from (A 12) and
(A 14). Moreover, (3.30) implies

Θ^β-Hnlqj/Vj], (3.35)

so that (3.28)+ follows from (A 12-15) by using (2.33). Finally, (3.27-28)_ follow
from (A 12-15) by using 01 in the same way as before, with the relation

(3.36)

playing the role of (3.10). •

3D. The Case 7/rel

Theorem 3.4. Let

H = ί 1 Σ πplβθj] π
j; ~ 1 k + j

1 -
sh2z

β,μe(0,ao), ±2ei(0,π)u ( -iπ

1/2

(3.37)
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Then the functions

(cf. (2.73),) solve Hamilton s equations and satisfy

N-j+l

N-j+l

S. N. M. Ruijsenaars

θ) (3.38)

9 ί->±oo, (3.39)

, ί->±oo, (3.40)

where

R = μmm{exp\βθι]-cxp[βθ2],...,exp\βθN.1]-explβUN]}, (3.41)

and where Δjβ) is given by (3.16), with

sh2z
1 - (3.42)

Proof Due to (2.59) and (2.55) the relation (3.29) holds in this case, too.
Furthermore, (3.18) is satisfied by virtue of Theorem 2.7 and its proof. Thus, (3.19)
follows. The definition (2.59) of L then implies that (3.30-31) hold true, the relation

I cth I (qj - qk)CjkCkj = dk In Vj, (3.43)

[which follows from (2.60-61)] playing the role of (3.32). Thus (3.33) follows again,
so that (q(t), θ(ή) solves Hamilton's equations.

To prove (3.39-40) we note that Theorem A2 applies to the matrix (2.76) with
ft/(x) = exp[jSx]5 since one has

M = Λ(0) e Jί, D = μdiag(exp [j8^],..., exp [j8^]) e 3l. (3.44)

Thus, for t large (3.22) holds true again, with

j j (3.45)

and rrij given by (3.24), (3.16), and (3.42). Indeed, this follows from the definition
(A 29) of rrij and Cauchy's identity (1.2). The proof is now reduced to (A 31-34) by
arguing in the same way as in the proof of Theorem 3.2, using the relations
(3.35-36). •

4. The Invariance Principle for the Wave and Scattering Maps

In Appendix C we have proved that the diffeomorphisms Φ constructed in Chap. 2
are canonical by using the results of Chap. 3, which pertain to a special
Hamiltonian flow on Ω. We shall now determine the temporal asymptotics for a
large class of flows on Ω, which are defined as pullbacks under Φ of linear flows on
U. Since Φ is a canonical transformation and the Ω-flows are complete and
Hamiltonian, the Ω-flows are complete and Hamiltonian, too.
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We shall formulate the asymptotics in terms of notions from time-dependent
classical scattering theory (cf. [15,16]). To this end we first introduce the incoming
and outgoing phase spaces

. (4.1)
ί = 1

Thus, Ω+ can and will be identified with Ω [cf. (2.2)], whereas the reversal map

ΛteΓ,...,^,βΓ,...,^)Ξ(^,...,ήfΓ,^,...,θΓ) (4.2)

yields a canonical transformation from Ω~ onto Ω+ ~ Ω. It is convenient to regard
Ω± as subsets of the auxiliary phase space

Ωo = {(x, y) e R 2 "} , ω 0 = £ dxt A dyt. (4.3)
ί=l

We shall consider a class ^ 0 of Hamiltonians Ho on ί20 which depend only on
y. Hence, the corresponding flows are linear and leave Ω± invariant. The class ^ 0

consists of all functions

RN) (4.4)

which are invariant under permutations of yu ...,yN and satisfy

(dNF)(y)<...<(dιF)(y) w h e n yN<...<yx. (4.5)

Due to the symmetry of F this is equivalent to

{dNF)(y)>...>(d1)(y) when yN>...>yι. (4.6)

We are now prepared to introduce the class ^ of Hamiltonians H on Ω for
which we shall determine the scattering. This class is defined as the pullback of the
class ^o under the canonical transformation Φ:Ω-+Ω~Ω+ CΩO. Thus we have

H(q,θ) = H0oφ(q,θ) = F(θ), (4.7)

cf. (4.4). We note that for the Hamiltonians Hh defined by (2.26) and (2.55) in the
nonrelativistic and relativistic cases, respectively, we get

F(θ)= Σ Kθi) (4.8)
i = 1

cf. (2.13). Thus we have

Hhe^ <=> h\y) is strictly increasing (4.9)

cf. (4.5). In particular, the Hamiltonians Tr L" belong to ̂  when n = 2,4,6,... for Im

and J/nr, and when n= 1,2,3,... for / r e l and // r e l. In the latter two cases the
symmetric functions SU...,SN-1 of L also belong to ^, as a moment of reflection
shows.

We continue by defining the canonical transformations in terms of which the
temporal asymptotics of the flows generated by Hamiltonians in ^ can be
described. First, we introduce

T:Ω-+Ω, (4 ,Φ^(4 1 -K(φ, . . . ,4*- iJ N (ΦA (4.10)
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where

Hθ)=ΣS(θj-θ^-Σδ{θj-θ^9 (4.11)

and

0, ΛirΛel

δ(θ) = (4.12)

It is easily seen that T is a canonical transformation with inverse

Second, we set

U_=STR, U+=ST-\ (4.14)

where R\Ω~ -+Ω + is defined by (4.2). Third, we define

S=U+ιU^ = T2R, (4.15)

which amounts to

S(q^...,q^,θ^...,θ^~(q^AN(θ-),...,q;+Aι(θ-),θ^...,θ^ (4.16)

in view of (4.10-11).

Theorem 4.1. The symplectic diffeomorphisms [7_, l/ + , and S from Ω~ onto Ω,Ω+

onto Ω and Ω~ onto Ω +, respectively, are the wave maps and scattering map for any
H e %? with comparison dynamics Ho e # 0 . That is, one has

lim [etH{q,θ)-etHo(q±,θ±)'] = 0 (4.17)
t~* ± 00

uniformly on compacts of Ω, where

(q±,θ±)=U-±

1(q,θ). (4.18)

Proof. We begin by setting

(q(t),θ(t)) = e'H(q,θ), (4.19)

and noting that the above relation between H and Ho amounts to

(q(t), θ(ή) = i(g;q + t{VF) (θ), 6). (4.20)

Then (4.17) can be rewritten as

qj (t)-qj±^Aj($)-t(djF)(®)^0, ί^ + oo, (4.21)
N-j+1

θj (ή-θj^O, ί->±oo. (4.22)
N-j+l

To prove (4.21) we set

(4.24)



Action-Angle Maps 147

where g denotes the dual coupling constants, cf. (2.23), (2.42), (2.48), and (2.70).
Then (4.21) follows in the same way as (3.3), (3.13), (3.27), and (3.39), since D e 9 due
to (4.5).

To prove (4.22) we cannot proceed as in Chap. 3, since for a general F there
exists no sufficiently explicit expression for θj(t) in terms of q(t) and q(t). Instead, we
exploit the relation (4.21) and various other results already obtained. We shall only
prove (4.22) for the case 7/rel, the proof for the remaining cases being similar, but
simpler.

We begin by showing that the quantities \θj(t)\ are uniformly bounded in t. To
this end we consider the Hamiltonian

o ) = chβx, (4.25)

which is explicitly given by

P0(q,θ)= Σ chβθjVfaz q). (4.26)

[To verify this, use (2.59) and Cauchy's identity (1.2) to obtain

(4.27)

From this (4.26) is obvious.] The desired a priori bound on the \θj(t)\ then follows
by recalling that V} ̂  1 and noting that the quantity P0{q(t), θ(t)) does not depend
on t. [Indeed, it equals £ chβθj on account of (4.20).]

Next, we set

Lt = Bt + St, (4.28)

where

Bt = diag(exp[^(ί)],..., exp [/^(ί)]). (4.29)

We claim that there exists a constant C > 0 such that

\\St\\^Cexpl-\t\R/2], VίeR, (4.30)

where R is the minimal distance between the quantities du ...,dN, cf. (4.23) and
(A4-5). Indeed, the error term in (4.21) is O(exp[-|ί |K]) due to (A33), so (4.30)
follows from the definition (2.59) of L and the boundedness of the |0/ί)l (Of course,
no a priori bound is needed in the nonrelativistic cases.)

We now assert that there exist permutations τ+eSN and a number T > 0 such
that

where R is defined by \ - )

R = min {exp Iβθj] - exp [βθj+ J } . (4.32)

To prove this, we first observe that points in (C whose distance to σ(Bt) is larger
than \\St\\ belong to the resolvent set of Bt + St = Lt. Indeed, this is clear from the
second resolvent formula and the self-adjointness of Bt. Since Lt has spectrum

{exp iβθ {],..., exp | J8^]} ,
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this is equivalent to the distance of exp [/?#,-] to σ ^ ) being ^| |iS f | | for all
;e{ l , ...,JV}. But in view of the bound (4.30) we can ensure that | |S f | | <;β/4 by
picking |ί| large enough, from which the above assertion readily follows.

It is now clear that (4.22) holds true, provided we can prove that τ+ equals the
identity and τ_ the reversal permutation τr. We shall prove τ+ =id, the proof that
τ_ equals τr being analogous. To this end we introduce the eigenprojection

Pj=^IR{z9Qdz, (4.33)
Zπi Γj

where JΓJ is a circle around exp [βθj] with radius R/2, and where t > T. Then the
distance of σ(Bt) to /} is ^R/4 due to (4.31-32). Iterating the second resolvent
formula for R(z,Lt) and using the bound (4.30), one now concludes that Lt has
eigenvectors given by

Uj = Pjbτ + U) = bτ + u> + Xj9 |x7.| = O(exp[-ίR/2]), (4.34)

where {bl9..., bN} is the standard basis of <DN. Hence, the matrix Tt~* diagonalizing
Lt is of the form

Tt-' = Col(w!,...,%)diag(c1? ...,cN), (4.35)

where cl9...,cN are non-zero normalizing functions, cf. Chap. 2. But then Tt is given
by

J . . . ,v J V ), (4.36)

where

uj = bσU) + Xj, σ = τ ' , \χj\ = O(exp [ - tR/2]). (4.37)

Let us now specialize to the regime ±ize (0, oo), the point being that then Tt is
unitary. This entails that the normalizing functions satisfy

7 (4.38)

in view of (4.34-35). Thus, setting

Wj^CjVj, (4.39)

it follows from (4.36-37) that

W7 = feσϋ) + yj > W = ° ( e x P [ - tR/2]). (4.40)

We now recall from Chap. 2 that Tt diagonalizes the matrix

exp[ίD/2]Mexp[ί£>/2],

where D and M are given by (4.23) and (4.24) with g = (μ,β, —z). Hence we may
conclude that

exp \tDβ]M exp [tD/2] wj = λjWj, (4.41)

where

(4.42)
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We are now prepared to derive a contradiction from the assumption that σ φ id.
Indeed, if this holds true, then there exists j e { l , ...,iV} such that

σ(0 = i, i = l 7 — 1, σ(j) = k>j. (4.43)

Using (A 31) and setting δk = dk — dp it then follows from (4.40) that the upper j — 1
components of (4.41) can be rewritten as

MJ-i\ + O(exp[-tK/2])

ί->oo. (4.44)

[Note that the second vector at the left-hand side would be 0(1) when σ(J) =7.] Let
us now multiply this by Mj}x and take ί-»oo. Then it follows that

lim^. zexp[ίδ I/2]=0, / = ! , . . . J - l , (4.45)
f-+OO

cf. also (A33). Therefore, if we multiply (4.41) by the matrix

diag(exp[- tbxj2\ ..., e x p [ - tδj_ J2], e x p [ - tdj],..., e x p [ - tdj]) (4.46)

and take t to 00, then the left-hand side converges to 0, whereas the right-hand side
converges to nijbkή=0. Thus, we have arrived at the contradiction announced
above, so that (4.22) + follows when + /ze(0, π).

We shall now handle the second z-regime (2.71). Then Tt is not unitary, so that
we have no control over the normalizing functions cj9 and the above argument
cannot be used. Instead, we reduce this case to the previous one, as follows. We fix
(4,θ)eό and then consider the point (q(t), θ(ή), defined by (4.20), in its dependence
on y = z± ίπ/2 e R . Inspection of the bound (A 33) and the z-dependence of M then
shows that the error term in (4.21) (understood to refer to the fixed point in Ω
instead of a given point in Ω) can be chosen uniformly for y e K, where K = [ — /,/]
with Z>0. Likewise, the a priori bound on the \θj(t)\ can be chosen uniform on K.
From this it readily follows that we can choose the constant C in (4.30) uniformly
on K. But then we can find a T> 0 such that the estimate (4.31) holds true for any
y e K. A priori, the permutations τ + occurring there could depend on y. However, it
follows from Theorem B2 that $ is continuous in 7, so that the quantities | ^ (ί)l a r e

continuous in y in view of (4.20). Hence, the permutations τ ± in (4.31) must be
constant on K for a fixed t with \t\>T. Since we know already that τ+=id and
τ _ = τr when y = 0, it follows that this holds true on K, too. Since I is arbitrary, we
have now proved (4.22) for both z-regimes.

To complete the proof of the theorem, we claim that the error terms in (4.21)
and (4.22) (viewed again as corresponding to given points in Ω) are locally uniform
on Ω. Indeed, for (4.21) this is an easy consequence of the estimates (A 14) and (A 33).
But this implies that one can get a locally uniform bound on || St ||, so that our claim
for (4.22) follows from the estimate (4.31) with τ + =id, τ_ = τ r , and its obvious
analogs for the three remaining cases. Uniformity on compacts then follows from a
standard argument. •
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5. Further Developments

5A. Asymptotic Constancy

The following result amounts of a reformulation and generalization of
Theorem 4.1. It is included so as to make clear that the asymptotics of the point
exp [_tH~\ (q, θ), HeΉ, may be viewed as a special case of an "asymptotic constancy"
property of $.

Theorem 5.1. Let

where

q.{t) = q- + taτ{j), aN< ... < a γ , τeSN. (5.2)

Then one has

Qτ(j)(t)~^j(t)~^ —2^0), ί^OO , (5.3)

θτ{j)(t) — θj-+O, ί->oo (5.4)

uniformly on compacts of Ώ, where Δj is given by (4.11-12).

Proof The proof of (5.3) proceeds in the same way as for the special case considered
in Chap. 3: One need only invoke Theorems Al and A2 for the pair

(a- / r , / r e lZ)^diag(d l 5 ...,dN), dj= < , (5.5)

and recall the relation of the quantities qN(t) < ... < ^( ί) to the eigenvalues of the
matrix E(t). Here, Pτ is the permutation matrix

(Pτ) k = δτΠ k9 (5.7)

and g denotes the dual coupling constants.
To prove (5.4), we observe that (5.3) leads to (4.31)+ via the same arguments as

for the special case τ = id. Thus, we need only show that the permutation τ + in
(4.31)+ is equal to τ. This can be proved along the same lines as before; Here, the
matrix

expUί) MexpUl)

is diagonalized by P~ι TtPτ, so that one should replace w,- by wτ{j) in (4.41). Then the
assumption that στ = τ+1τή=id leads again to a contradiction, so that (5.4) results.
Finally, the uniformity assertion is easily seen to follow from (A 14) and (A 33). •

5B. Integrable Systems Associated with Cx and BCX

The integrable systems considered so far may be viewed as being associated with
the root system AN_ί9 cf. the review [1]. We shall now show that one can obtain
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new integrable systems on the phase space

2l £ dθ^ (5.8)
ί = l

associated with the root systems Cι and BCι by restricting the pair (Λ,L) with
N = 2l and N = 2l+ί to the submanifolds of Ω given by

ΩeΞE{(q9θ)eΩ\(qι,...9ql9θι,...A)eΩr

<Iι+ι = -<Iι> ~,<l2i= ~<li>θι+i= ~θb •• >θ2i= -θi} , ( 5 9 )

and

Ω° = {q9θ)eΩ\(ql9...9ql9θl9...A)eΩr9qι+1 = θι + ί=09

<ll + 2= - % ~><l2l+l= ~<ll>θl + 2= ~θl> ~->θ2l+l= - θ l } (5Λ®)

respectively. To this end we introduce the phase space

Or = {(4,0)eK2l\O<θι<...<θ1}9 ώr= Σ d&Λdθt, (5.11)

and submanifolds Ωe and U° oΐΩ via (5.9) and (5.10) (with carets added, of course),
and identify Ωe and Ω° with Ωn and Ωe and Ω° with Ωn in the obvious way. The
following theorem has various consequences that parallel results obtained above
for the root system AN_U so we refrain from spelling them out.

Theorem 5.2. The map Φ restricts to a symplectic diffeomorphism Φr from Ωr onto Ωr.

Proof. From the construction of Φ in Chap. 2 it is far from obvious that Φ(ΩS) C Ωs,
s = e,0. Therefore, we proceed in another way, exploiting results already obtained.
We only consider the case I/ r e l, the other cases having a similar, but simpler, proof.
First, we introduce the Hamiltonians

Hf(q,θ)= Σ chβθjfilqjnβqj-qjftqj + qj (5.12)

and

H%q, β) = £ chβθjnqjmiqjnfiqj-qJfiqj + qMQ Pilj) (5-13)

on Ωr, where

(5.14)

These are obtained from the Hamiltonian | P 0 , given by (4.25-26) with N = 21
and N = 2l+1, upon restriction to Ωe and Ω°, respectively.

Next, we introduce the (a priori local) flows

, θ(ή) = exp [ίfίg (̂ , 0), fe 0) e Ωr, s = e, 0, (5.15)

and define corresponding trajectories [q\t\ θs(t)) in ΩSC^. Then a long, but
straightforward calculation shows that the trajectory {qs{t\ θs(ή) is an integral
curve for the Hamiltonian Po on Ω.



152 S. N. M. Ruijsenaars

Now we have Po e ̂  in view of (4.25) and (4.9), so that

j O , ί^oo, (5.16)

%j ί->oo, (5.17)

on account of (4.21) and (4.22). On the other hand, one has, e.g.,

0^(0 = 0, VίeR, (5.18)

since the trajectory belongs to Ωs. Hence, (5.17) implies 6γ + θN = 0, with a similar
conclusion for the other θt Using now (5.16) in the same way, the desired
conclusion Φ(ΩS) C Ωs readily follows.

By duality it is clear that C may be replaced by =, and real-analyticity of the
restriction Φr and its inverse Sr is evident from the real-analyticity of Φ and $
established in Appendix B. Canonicity of Φr can be seen from canonicity of Φ,
but also follows by using Appendix C for the Hamiltonians Hs

r on Ωr: The
explicit description of the associated flows which we have just obtained plays
the role of Theorem 3.4 for H, so that we are reduced again to justifying an
interchange of limits. To prove that this is legitimate, it clearly suffices to show
that the function (q(t,q,θ),ΰ(t,q,θ)) associated with the Hamiltonian Po on Ω
has a holomorphic extension converging uniformly to the holomorphic exten-
sion of the function (q+(q,θ),θ+(q,θ)). But this follows in the same way as for
the Hamiltonian H\ One need only replace the function exp( ) by the function
βsh( ) in (C10-12), and reinterpret Qj and ρ7- accordingly. •

5C. Miscellanea

(i) (Functional equations for Inτ). The following result concerns functions of the
Lax matrix for the case /n r. Note that its proof only involves the properties of the
matrix T constructed in Sect. 2B.

Proposition 5.3. Let /:1R—>(C be an arbitrary function. Then one has

Σ f(L)u=0, (5.19)

where L is given by (2.17).

Proof We have shown in Sect. 2B that a matrix T exists such that

TLT~1=L, Te = T~ue = e, e = (l, ...,1), (5.20)

where L is diagonal. Hence we infer

= e®ef{L)e®e

(5.21)

From this (5.19) is evident. •
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(ii) (A generalized Lax matrix). Let us denote by La the matrix obtained when
one replaces the Cauchy matrix C in (2.59) by

(Qy = C(μ,z q)i} + αexp[- | f e - ^ )J, αeC. (5.22)

Proposition 5.4. The symmetric functions of Lα commute.

Proof From (2.62) it follows that

LΛ = L+aA"1e®e. (5.23)

Transforming this with T yields

La = dmg(θu...,θN) + aΆ-ιe®e. (5.24)

Recalling (2.69-70) we see that Lα is of the form

(LJo = exp - 14i\ MMj exp \~ 4j (5-25)

This clearly implies that the symmetric functions of Lα, transformed to Ώ, depend
only on 6. Since Φ is a canonical transformation, the proposition follows. •

In fact, the symmetric functions of Lα are proportional to those of L, the
proportionality factor depending only on α and z. This is a consequence of a
generalized Cauchy identity established in [9]: If one sets

(x = e~τshz/sh(τ-z), (5.26)

then the right-hand side of (5.22) can be written

ptnγshixμsh, \ xφt-^. (5.27)
\sn(τ — z)J\ shτ sn(x + z)J 2

The assertion now follows by setting

vμ-»z, v/-*τ, v-+μ/2 (5.28)

in Eqs. (3.19-20) of [9].
(iii) (Evenness in ρ and z). The following result implies that the minus signs in

the duality relations (2.24), (2.49), (2.50), and (2.73) may be omitted.

Proposition 5.5. The map Φ is even in ρ (cases /nr, 77nr, /rel>) and z (case // r e J .

/ The substitution ρ-^—ρ in the Lax matrices (2.17), (2.31), and (2.32), and
z-+—z in the Lax matrix (2.59), is equivalent to transposing L(g;q,θ). Hence, the
corresponding vector 6 is invariant, whereas

T(-σ)=T(σΓu, σ = ρ,z (5.29)

in view of (2.5), (2.8), (2.10) and the evenness of e. Now for the cases IInr and // r e l the
vector q is determined by e, cf. (2.41), (2.69). Hence, (5.29) implies q is unchanged.
For the cases 7nr and J r e l one has qt = Aib cf. (2.23), (2.48). Since A is real and does
not depend on ρ, and since T is unitary in the latter cases, (5.29) again implies q is
even. Π
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(iv) (The relation between the four cases). We conclude this final chapter by
specifying the parameter limits needed to reach the cases / r e l, //nr, and Jn r from the
case J/ r e l. To this end we substitute

z = βμρ/2 (5.30)

in (2.59-63). If we then take μ to 0, the matrices L and μ~ι(A — \) converge to the
matrices L r e l and Arel of Sect. 2C. If, instead, we take β to 0, then the matrices
β~ι(L— 1) and A converge to the matrices Ln r and Am of Sect. 2C. Finally, the
matrices L and A of Inr result by taking either μ to 0 in the matrices L and
μ~γ(A — 1) of IInτ or by taking β to 0 in the matrices β~ι(L— 1) and A of J r e l.

Appendix A. Spectral Asymptotics

In this appendix we determine the ί->oo asymptotics of the spectrum of N x N
matrices of the form

E(t) = M + tD, (Al)

and of the form

(A2)

The first type of ί-dependence arises for the rational systems Inr and Ireh the second
one for the hyperbolic systems IIm and // r e l. Throughout this appendix the
matrices D are assumed to belong to the set

@ = {dmg{d1,...9dN)\de<EN,RedN<...<Redί}. (A3)

We also use the notation

rί = Re(dί-d2), rN = RQ(dN_ί-dN),
(A 4)

rj = mm{Re(dj- 1~d^Re(</J - d J + x)}, j = 2,...,N-1,

and we set

R = min{ru...9rN}. (A5)

The matrix M in (Al) is arbitrary, whereas in (A2) it has properties to be specified
below.

We shall need information on σ(E(ή) for pairs (M, D) with M self-adjoint and D
real to determine the pointwise asymptotics of the Hamiltonian flows occurring
above. However, we also need information that is uniform on complex neighbor-
hoods of a given initial point (q, θ) e Ω, in order to obtain a rigorous proof that the
bijection Φ of Chap. 2 is a canonical transformation. Therefore, we consider pairs
(M, D) of a more general type and obtain bounds on error terms that are expressed
in terms of appropriate norms. The uniform information we need involves a ball Bo

in 2 around a fixed Do, which is given by

4}. (A6)
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Here and below, || || denotes the operator norm derived from the standard scalar
product on (CN. Note that one has

r^rOj-Ro/2^Ro/2 (A7)

for any D e Bo.
To obtain explicit formulas for eigenvalues we use some standard techniques

from fmite-dimensional perturbation theory (cf. [17, Chap. II]). Specifically,
setting

Rg,A) = {ζ-A)-\ (A8)

where A is an N x N matrix and ζ φ σ(A), we shall employ the formula

λ = TτAPλ, (A9)

valid when λ is a simple eigenvalue of A. The eigenprojection Pλ is given by

Pλ=^SR{ζ,A)dζ, (A 10)

where Γ is a circle around λ whose radius is smaller than the distance of λ to the
remaining spectrum of A. Also, here and below contours are oriented
counterclockwise.

We are now prepared to deal with matrices of the form (Al). From now
on the symbol C denotes positive numbers that do not depend on the relevant
variables, and whose magnitude is of no importance.

Theorem Al. Let

E{t) = M + tD, MeM^C), De9. (All)

Then there exists TE^.\ such that E(t) has simple spectrum for t^TE. The (suitably
ordered) eigenvalues λ^t), ...,?.N(t) satisfy

(A 12)

(A 13)

where the remainder functions obey

|| 2(| |D || rj2 + rjι), (A 14)

2( || Z> || r j ^ + r ; 1 ) (A 15)

for any t^tTE. Now fix Doe3) and let Bo be defined by (A6). Then TE can be chosen
uniformly for (M, D) in the closure of

%(K)EE{M\\\M\\<K}XB0. (A 16)

Proof. Let us introduce the auxiliary matrix

A(ή = D + Γ1M = Γ1E(t). (A 17)

We denote the circle with radius rJ2 around dj by /}. Then

||JR(z,£»)||=2r71, Vzeη, (A 18)
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so picking 7} with

j ^ (A 19)

ensures

\\ΓιMR(z,D)\\Sh Vί^7}, Vze/"}. (A 20)

Hence, the iteration of the second resolvent formula

R(z,A(t)) = R{z,D) Σ ίΓ1MR(z9D)γ (A21)
n = 0

converges uniformly on /] for any t ̂  7}, so

^ (A22)

is well defined. Moreover, Pj(t) is one-dimensional, since P/oo) is. The eigenvalue
inside /J is then given by [cf. (A 9)]

α/ί) = ̂  + r 'Myj+Γ'e/ ί) , (A23)

where

Qβ)= Λ Σ Tr(ίD + M) J ̂ D J E r ' M ^ z , ! ) ) ] " ^ . (A24)

Z7ΓΪ n — 1 Γj

But we have

Tr D J R(z, D)MR{z, D)dz = 0, (A 25)

since D is diagonal. Hence, using (A 18) and (A 20) the bounds (A 14-15) easily
follow. Moreover, putting

TE = msix{Tl9...,TN} (A26)

it follows that for any t ̂  TE the matrix E(t) has one and only one simple eigenvalue
λj(t) inside tΓj9 which is such that (A 12-15) hold true, cf. (A 17).

It remains to prove the uniformity claim. To this end we note that the above 7J
is restricted only by (A 19). Recalling (A 7), we conclude that it suffices to choose

+ ί (A27)

to handle all (M, D) in tfio(K) simultaneously. Π

To control the spectral asymptotics for matrices of the form (A 2) is a lot more
arduous. The main problem is to bypass two related difficulties: There is no
formula for the norm of the resolvent R(ζ, A) in terms of the distance of ζ to σ(A)
when A is not normal, and, secondly, the presence of diverging matrix elements (as
£->oo) can a priori cause drastic spectral changes under small perturbations. (For
instance, the matrix

0 b

0 0
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has spectrum {0} for any b, whereas

0 b

s 0

has spectrum {+ (bs)1/2} if b is big, this may amount to a sizable change even when
s is small.) However, it turns out to be possible to obtain explicit formulas for the
relevant resolvents in terms of matrices whose elements do not diverge as f-»oo,
and this is how we shall be able to avoid these snags in the case at hand.

We proceed to define the set Jί of matrices M for which we shall study (A 2). To
this end we denote by M7 the) xj matrix obtained from M by deleting the rows and
columns j+\,...,N. Then we set

^ = {MeM*(Q| |M 7 . |ΦθJ=l, . . . , JV} . (A28)

Note that Jί is an open set containing the positive matrices and the regular
diagonal ones. For MeJίviQ also set

mi=Mn, mj=\Mj\/\Mj-i\, j = λ ..,N. (A29)

Theorem A2. Let

) = Mexp(tD), MeJί, De9. (A 30)

Then there exists TE such that E(t) has simple spectrum for t Ξϊ TE. The (suitably
ordered) eigenvalues λγ(t), ...,λN(t) satisfy

λj(t) = mj exp(tdj) [1 + ρ/ί)], (A 31)

λj(ή = mj exp(tdj) [_dj + djQ](t) + ρ/f)], (A 32)

where

tr^P(\m]\,\mf\ \\Mjι\\, \\M\\), (A33)

for any t^TE, with P and Q polynomials. Now fix Doe@ and let Bo be defined by
(A6). Also, fix MQeJί and choose ε so small that the closure of

5 M o ( # { M e M # ) | \\M-M0\\<ε} (A35)

belongs to Ji. Then TE can be chosen uniformly for (M, D) in the closure of

%(S)EEBMO(S)XB0. (A36)

To prove this theorem we need the following lemma, which concerns a jxj
matrix of the form

ιG, (A37)

where G is a j x j matrix and

Δ(t) = dmg(exp(tδ1)9...9exp{tδj-ί),l), 0<Reδ> /_ 1<...<Reδ 1 . (A38)

Thus we can write

F(t) = H+V(t), (A 39)
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where

^ = ( G < i

0

 G..)> ( A 4 ° )
F(ί)Ξdiag(exp(-^1)?...,exp(-^ j_1),O)G. (A41)

Lemma A3. Suppose G^ φ 0 and let Γ be the circle around G^ with radiusilG^ l. Then
one has

| |R(z,iί)|| ^α(G), VzeΓ, (A42)

where

a(G)=12|G, 7 r 2 | |G| l2, (A43)

and || || 2 denotes the Hilbert-Schmidt norm. Now fix T such that

e χ P ( ~ TReδj-ί) \\G\\oc(G)^j. (A44)

Then one has for any t ̂  T and zeΓ,

| |K(z,F(ί))||^2a(G), (A45)

(A46)

Moreover, the matrix F(t) has one and only one simple eigenvalue e(t) inside Γ, given
by

(A47)

where

(A48)

(A49)

for any t^T, with Pl9P2 polynomials.

Proof. It is easily verified that the H-resolvent is explicitly given by

0 \
(A 50)

Hence,

1 1

\/zeΓ,
| Z G ^ | Z | (A51)

proving (A 42).
Next, we note that

α ί G ) ^ , Vί^T, VzeΓ, (A52)



Action-Angle Maps 159

cf. (A 44). Thus

00

R(z,F(t)) = R(z,H) Σ iV(t)R(z,H)Y (A53)
M = 0

converges uniformly for zeΓ and t^T, and the bounds (A45-46) readily follow.
Moreover, the projection

^ (A54)

is well defined for t ̂  T, and since the projection

° ) (A55)^ΪR(z,H)dz(
2πιi \GjJGjj..Λ

[cf. (A 50)] has rank one, P(t) is one-dimensional, too.
We conclude that F(t) has one and only one eigenvalue e(i) inside Γ given by

(A 47), where

$R(z,H)[V(t)R(z,H)γdz}. (A56)
r J

From this it is easy to verify (A 48-49) by using (A 41) and the bounds

(A 51-52). •

Proof of Theorem A2. We are going to study the auxiliary matrix

A(t) = exp(-tdj)E(ή, je{ί,...,N}. (A57)

To this end we introduce the complex numbers

δk = dk-dj, fc = l,...,ΛΓ (A58)

and the jxj matrix Δ(t) given by (A38). (Here and below we have suppressed
dependence onj to ease the notation.) Now we split up M in 2 x 2 form and write
A(t) as the sum of a "big" and a "small" matrix, as follows:

M+ΛU{t) 0\ίM++Δ{t) 0

M_J\0 )

^ ) . (A 60)

Thus, B(t) has the same spectrum as the jxj matrix

) = M++Δ{t) (A61)

(up to an eigenvalue 0 when j < N).
Next, we note that M + + = Mp so that Z(ί) is regular due to our assumption

MeJί. Moreover, if we set

ι , G = MJι, (A 62)

then the assumptions of Lemma A3 are satisfied, with G j 7 being given by

GJJ = (MT % = \MJ-1 \/\M}\ = m]-' (A63)
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[cf. (A 29)]. Hence, it follows that for ί ̂  T [where T satisfies (A 44)] B(t) has one
and only one eigenvalue b{t) inside the contour

(A 64)

which is given by

(A65)

cf. (A 47), (A 63).
We now make the key observation that the 5(ί)-resolvent can be simply

expressed in terms of the F(ί)-resolvent, as follows:

0

Indeed, the validity of this formula can be readily verified by using the above
relations between B and F. Consequently, we are able to estimate the norms of the
B(ί)-resolvent and its time derivative on the contour Γ by using the bounds
(A45-46). This yields

(A67)

for any t^T and ζeΓ, with QUQ2 polynomials. (A68)
We proceed by concluding from (A 67) that one has

j Vζef, (A69)

provided 7} is chosen such that

expίηRe^OIIMIieiί lm^lmjΓSllMΓ^UIMII)^ (A 70)

[cf. the definition (A 60) of S(ί)]. Hence,

(A71)

converges uniformly when ί^ TJ and ζe Γ. Also, the projection

P(t)=~\R{ζ,A{t))dC (A 72)
Zni r

is well defined for any t ̂  7}, and using (A 66) and (A 37-38) one infers that lim P(t)

exists and is one-dimensional, so that P(t) is one-dimensional, too.
As a result we have now shown that both B(t) and A(t) have one and only one

eigenvalue b(t) and a(t), respectively, inside Γ for any ί^TJ. Moreover, these
eigenvalues are related by

a(t) = ΎτA(t)P(ή = b(t) + ~ Tr j S(t)R(ζ9 B(t))dζ
Ini r

j 00

,β(ί))] lS(t)R(ζ9B(t))]ndζ. (A73)
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Indeed, this follows by using (A 71-72); we have gotten rid of the "big" matrix B(t)
by using

BR(ζ,B)=-l

Defining now ρj(t) by setting

(A 74)

and combining this with (A 73) and (A65), it is not hard to obtain the bounds
(A 33-34) on Qj and ρy One need only use the estimates (A 48-49) and (A 67-69),
recall the definitions (A4) and (A60) of r,- and S(t), and observe that the modulus of
the denominator in (A 65) is bounded below by \, since b(t) lies inside Γ for any
t ^ Tj. It is then obvious from the definition (A 57) oϊA(t) that E(t) has one and only
one eigenvalue λ3{t) inside Qxp(tdj)Γ, which satisfies (A31-34). Finally, defining TE

by (A 26) and noting that all bounds are decreasing in t, it follows that E(t) has
simple spectrum for any ί ^ TE, with eigenvalues satisfying (A 31-34).

It remains to prove the uniformity statement. To this end we recall that the
above 7} is restricted only by (A 70) and the requirement Tj^T, where T is solely
restricted by (A 44). These requirements are expressed in terms of functions of M
that are continuous on Jί and in terms of exponential functions involving D. The
latter functions can be uniformly majorized on Bo by using the lower bound (A 7).
Also, since BMo(s) is a compact set which belongs to Jί, the former functions are
uniformly bounded on it. Hence we can choose 7} uniformly on %0(ε), and defining
TE by (A 26) the proof of Theorem A2 is complete. •

Appendix B. Real-Analyticity

In this appendix we show that the bijections Φ and $ constructed in Chap. 2 are
real-analytic functions of (q, θ) and, therefore, diffeomorphisms from Ω onto Ω and
Ω onto Ω, respectively. In fact, we shall prove more, namely, that these maps are
real-analytic in the coupling constants, too. Just as in Sect. 2A we denote these
parameters collectively by g and their definition domain by G c C z ; this enables us
to handle all cases simultaneously.

We have occasion to use the following lemma, which summarizes some results
from nondegenerate perturbation theory. In essence, these facts can be found in
[17, Chap. II], but since this may not be visible to the unaided eye, we sketch a
proof.

Lemma Bl. Suppose M = M(z) is an N x N matrix that is holomorphic in a polydisc
around z0 e (£k and suppose that Mo = M(z0) has simple spectrum. Then there exists a
(possibly smaller) polydisc D around z0 with the following properties: The spectrum
of M is simple in D, the eigenvalues λu ...,λN of M are holomorphic in D, and there
exist corresponding eigenvectors M1? ...,UN that are holomorphic in D.

Proof Let λ0 be an eigenvalue of M o with corresponding eigenvector u0 and
consider the series

00

R(ζ,M) = R(ζ,M0) Σ ί(M-M0)R(ζ,M0)γ (Bl)
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[cf. (A 8)] where ζ belongs to a circle Γ around λ0 such that all other eigenvalues lie
outside Γ. Picking z close enough to z 0 ensures that the series converges uniformly
on Γ, so that we can define Pλ via (A 10). Then Pλ is a one-dimensional
eigenprojection of M, since Pλ(z0)= lim Pλ(z) is one-dimensional. Using Hartog's

theorem one now infers that Pλ and the corresponding eigenvalue λ [given by
(A9)] are holomorphic near z0. Hence, the function u = Pλu0 is holomorphic near
z0. Moreover, since u(zo) = Pλ(zo)uo = uoή=0, one has wφO near z0. It is now clear
how to complete the proof. •

Theorem B2. The bίjections Φ and S = Φ~^ constructed in Chap. 2 are real-analytic
functions in GxΩ and GxΩ, respectively.

Proof. We shall only prove this for Φ, since the assertion for $ is then obvious from
duality. Let us fix a point P in G x Ω. Inspection of the definitions of L(g; q, θ) and
e(g; q, θ) shows that there exists a poly disc in (Cz x (C2iV around P in which L and e
are holomorphic. Moreover, we have proved in Chap. 2 that L has simple
spectrum o n G x Ω . Hence, Lemma Bl applies, with M = L and zo = P. Using the
notation introduced there, we can now define a regular matrix

H = Col(ul9...,uN)9 (B2)

which is holomorphic in D. Furthermore, eventually performing a permutation
and multiplying H from the right by a constant, diagonal and invertible matrix, we
can achieve that H(P) equals the matrix T~i(P) of Chap. 2.

Next, we introduce the vectors

(B3)

which are holomorphic in D, as well. Now consider the functions ht = ά Jά^ Since we

h a V e άi(P) = άi(P) = ei(P)>0 (B4)

(cf. Chap. 2), there exists a polydisc U c D around P such that hu ..., hN are non-
zero and holomorphic in U. Hence, the functions r^h}12, with r t (P)^ l , are
holomorphic and non-zero in U, too. Multiplying the eigenvector ui by rb we get a
regular matrix, denoted again by H, for which the vectors a and a [cf. (B 3)] are
equal, and which is holomorphic in U. Moreover, the coordinates άu ...,άN are
holomorphic in U and positive in P.

We are now in the position to invoke the uniqueness of the matrix T,
established in Chap. 2, to conclude that we must have

H~1 = T, ά = e, V(g;q,θ)e(UnGxΩ). (B5)

As a consequence, T and e are real-analytic in GxΩ. Real-analyticity of the
functions 4j a n < 3 /̂ is then clear from their definitions, and the proof is
complete. •

Appendix C. Canonicity

The purpose of this appendix is to state and prove the following theorem which
justifies our interpretation of the maps Φ of Chap. 2 as action-angle transfor-
mations.
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Theorem Cl. The dίffeomorphisms Φ from Ω onto Ω constructed in Chap. 2 are
symplectίc.

Proof. We shall prove this for the case // r e l. The proof for the remaining three cases
proceeds along the same lines, with simplifications occurring at various points.
First, let us introduce

qt(q,β) = ̂ -ΪΔ0), (Cl)

θϊ(q,θ) = θj, (C2)

and observe [cf. (3.16) and (3.42)] that Δj can be written

^ V (C3)Π
k<j

1 -
sh2z 1/2

(C4)

From these relations it follows that it suffices to prove that the map Φ+ :Ω-+Ω,
(q, θ) h-> (q + ,θ+) is canonical. To this end we use (3.39-40) to infer

q + (q9θ) = ]imq(t9q9θ)9 (C5)
ί->00

θ + {q,θ)=limS{t9q9θ)9 (C6)
r-»oo

where

(C7)

J (C8)

Now we have

by virtue of Theorem 3.4. Since Hamiltonian flows are canonical, it follows that the
functions qp Q} have Poisson brackets

{qfiqk} = {5j,5k}=0,

{qpθk} = δjk

for any t e 1R.
In view of (C 5-6) it remains to prove that one may interchange the ί-» oo limit

and the differentiations with respect to q{ and θt implied in (C9). To this end, let us
fix (q0, θ0) e Ω with image (q0, θ0) e Ω under Φ. From Theorem B2 and its proof we
then conclude that there exists a polydisc X C <C2AΓ around (qθ9 0o) such that (q, θ)
depends holomorphically on (q, θ)eX and such that the "pair potentials" ?(θj — θk)
do not vanish on X. Hence, (q+,θ+) extends to a holomorphic function in X by
virtue of the monodromy theorem and Hartog's theorem, cf. (Cl-4).

Next, we invoke Theorem A2 to infer that there exists a polydisc Ϋ around
(g0, ^ 0 ) , whose closure belongs to X = Φ(X% and a number T e R such that the
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matrix

E(t) = L(μ, β,-z;$,4) exp [tμ diag(exp [βθj,..., exp [j8^])] (C10)

has simple spectrum for any (4, θ) e Ϋ and ί ̂  X Indeed, if we denote the matrices in
(CIO) corresponding to (q0, θ0) by Mo and Do, then it is clear that choosing Ϋ small
enough ensures that the corresponding pairs (M,D) belong to #0(

ε)> °f (A35-36)
and (A6). Moreover, it follows that on ΫnΩ we have

( C 1 1 )

exp lβθj{ty\ = (exp [βθj] +μ~ 'ρ/ί) [1 + ρ/t)] " ι )
-1/2

(C12)

cf. the proof of Theorem 3.4 and (3.30). Now ρ/ί) and ρp) are expressed in terms of
series that converge uniformly, and the terms of the series are clearly holomorphic
in Ϋ, cf. the proof of Theorem A2. Hence, ρp) and ρj(t) are holomorphic in Ϋ for
any t ̂  T. Also, the function 1 + ρj(t) in (C11) is non-zero on Ϋ, since E(t) is regular
on Ϋ. Thus, for any t ̂  T the function g7 (ί) has a holomorphic extension to Ϋ.
Moreover, we may view qft) as a holomorphic function of (q, θ)e Y = SΫ, since
(q,θ) is holomorphic in ΓcX.

At first sight the same assertion for θft) may seem to follow from (C12), but in
fact it is not clear from the above that choosing te\T,oo) ensures that the terms
[...] ~ 1 / 2 at the right-hand side do not diverge on Ϋ and that the first term does not
vanish on Ϋ. However, we shall now prove that these snags can be avoided by
eventually increasing T. To this end we first note that (Cll) and the estimates (A7),
(A 33) imply

IRete/ί) - qk(t))\ ^ Ct, V(4 θ)eΫ9 V ^ T. (C13)

Thus we can achieve that the radicands in (C12) are non-zero on Ϋ by picking T
large enough. Also, eventually increasing T once more, we can ensure that the first
term at the right-hand side of (C12) is non-zero on Ϋ for any t ̂  T. [Indeed, this is
clear from the estimates (A 3 3-34).] Thus, θjίt) has a holomorphic extension to %
and hence may be regarded as a holomorphic function in Y, for t large enough.

We are now in the position to conclude that (q, θ) has a holomorphic extension
to Y for t large enough, cf. (C7-8). Moreover, due to the bounds (A33-34) the
convergence of this holomorphic function to the holomorphic function (q+, θ+) as
t -> oo is uniform on Ϋ. But then all derivatives of (q, θ) converge to those of (q+, 0+),
so that (C9) holds for (q + ,θ+), too. •
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