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Abstract. We attach secondary invariants to any acyclic complex of holo-
morphic Hermitian vector bundles on a complex manifold. These were first
introduced by Bott and Chern [Bot C]. Our new definition uses Quillen’s
superconnections. We also give an axiomatic characterization of these classes.
These results will be used in [BGS2] and [BGS3] to study the determinant of
the cohomology of a holomorphic vector bundle.
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Introduction

This is the first of a series of three papers, which are devoted to the study of the
determinant line bundle of the direct image of a holomorphic vector bundle. Parts
IT and III of this work will be referred to as [BGS2] and [ BGS3]. We first summarize
the results which are obtained in these papers.

Let n:M — B be a proper holomorphic map of complex analytic manifolds
and let & be a complex holomorphic vector bundle on M.

According to Grothendieck and Knudsen—Mumford [KM], the (derived) direct
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image of £ by = has a determinant, which is a holomorphic line bundle det Rz, &
on B. We call its inverse A*™ = (det Rn, &) ™' the Knudsen—Mumford determinant.
For every yeB, let Z,=n"'{y} be the fiber over y, and for i 20, let H(Z,, &)
be the i™ cohomology of Z, with coefficients in the restriction of ¢ to Z,. The fiber
AxM is by definition given by
AM = X)det H{(Z,, &) 0.1)
120
Assume now that for every yeB, there is a Kahler metric g** on Z, depending
smoothly on yeB. The holomorphic tangent bundle 79 Z is then endowed with
a Hermitian metric g%. Assume furthermore that ¢ is endowed with a Hermitian
metric h° If I =dim Z,,, let

¥

be the 0 complex associated with the restriction of ¢ to Z,.

In [Q2], Quillen suggested that the fibers A5 can be naturally endowed with
a metric, which is the product of the I? metric, deduced from integration along
the fiber, by the analytic torsion of Ray—Singer [RS]. He considers the situation
where M is the family of Cauchy—Riemann operators on a fixed Hermitian smooth
vector bundle over a Riemann surface. Quillen constructs a smooth line bundle 4
on B which has the following three properties:

—For every yeB, 4, is canonically isomorphic to A

—4, has a natural holomorphic structure.

—When endowed with the Quillen metric, the curvature of the canonical
holomorphic Hermitian connection on 4 is obtained by a differential form version
of the Riemann—Roch—Grothendieck Theorem.

In [BF1,2], Bismut and Freed considered the case of C* fibrations M —B.

They constructed a C® line bundle 4 on B associated with a family of Dirac
operators. In [BF1,2], the line bundle A was endowed with a metric and with a
unitary connection. The curvature of this connection was shown to be given by a
differential form version of the Atiyah-Singer Index Theorem for families [AS].
Finally, it was proved in [BF1] that in the case considered by Quillen [Q2], the
constructions of [BF17 and of [Q2] coincide.

In the case where M and B are complex manifolds and 7# is holomorphic, an
application of the results of Bismut and Freed [BF1,2] tells us that there exists a
connection 'V on A which is unitary for the Quillen metric, and whose curvature
is of type (1, 1). Therefore by [AHS, Theorem 5.17], we know that 4 can be endowed
with a holomorphic structure such that 'V is the corresponding unique holomorphic
Hermitian connection.

Now observe that for every yeB, AX™ and A, are canonically isomorphic.
However it is not at all clear that the isomorphism of the fibers extends into a
holomorphic, or even a C® isomorphism.

We prove in full generality that this isomorphism is smooth and that it is
holomorphic when 7 is locally Kéhler, i.e. there is an open covering % of B such
that, if Ue%, n~(U) admits a Kéhler metric (whose restriction to Z,,yeU, may
differ from g%»).
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Let R% L be the curvatures of the holomorphic Hermitian connections on
THOZ and ¢

Theorem 0.1. Assume that 7 is locally Kdhler. Then the identification of the fibers
A, = XM defines a holomorphic isomorphism of line bundles 2. ~ 2*M. The curvature
of the holomorphic connection associated with the Quillen metric on /.~ *M is the
component of degree 2 in the following form on B,

2in [ Td(— R?)2in) Tr [exp(— L%/2im)]. (0.3)
z

Let now ¢g'# be another choice of a Kéhler metric in the fibers Z, with ggociated
curvature R, Bott and Chern [Bot C, 3.28] defined a class of forms 7d(g%, g'*)
(modulo the images of " and d™) such that

(12im) 0™ M Td(¢%, g'*) = Td(— R'?*)2in) — Td(— R*)2inm).

Theorem 0.2. If g% is replaced g%, the Quillen metric on i*™ is multiplied by the
exponential of the component of degree O in

| Td(¢g% g'*) Tr [exp(— L52im)]. (0.4)

Finally, let

0-¢—¢ — - —¢,—0

be an acyclic complex of holomorphic bundles, equipped with Hermitian metrics.
Let A be the Knudsen-Mumford determinant of £;, j = 0. According to [KM],
the line bundle (X)(AM)(~1” is canonically trivial. Let ¢ be the canonical section

=0
of this line bunéle. N
On the other hand, we define in this first paper a class of forms ch(¢) on M
such that
(1/2im)oM oM ch(é) = Y (= 1)/" 1 Tr [exp(— L%/2im)]. 0.5)

j20

Theorem 0.3. The Quillen norm of o is the exponential of the component of degree 0 in
1 ) ~
) [ Td(— R?/2in)ch(¢). (0.6)
z

Also, we obtain several results on characteristic classes for direct images in
degree higher than 0 and 2. In particular, an analog of Theorem 0.3 is proved in
[BGS2] in any degree, and is related to work by Gillet and Soulé [GS1,2] on
direct images in Arakelov theory.

When the fibers are curves, some of our results were already known before. In
[BeK], Belavin and Knizhnik obtained Theorem 0.1 in relative dimension 1 for
specific line bundles. A proof of Theorem 0.1 in relative dimension 1 was announced
by Bost [Bo] and Freed [F].

Also Donaldson [D2] has used the results of [BF1,2] to extend the results of
Quillen [Q2] in relative dimension higher than one. When M = Z x B, and when
¢ has no higher dimensional cohomology, a proof of Theorem 0.1 was announced
by Gillet and Soulé [GS2].
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In the case where the fibers Z are curves, Theorem 0.2 is a well-known result.
Poiyakov’s computation of the conformal anomaly [P] can be seen as an example
of Theorem 0.2, as explained in [Al], [Bo].

Let us now describe the content of this first article. Its purpose is to study
secondary invariants attached to acyclic complexes of holomorphic Hermitian
vector bundles on a complex manifold. Such invariants have been introduced by
Bott and Chern [Bot C] and studied by Donaldson [D1]. Also Gillet and Soulé
gave in [GS2] another definition of these Bott—Chern forms.

The Bott—Chern forms are holomorphic analogs of those of Chern—Simons in
differential geometry. These are obtained by transgression from the Chern character
forms. But, in the holomorphic context, instead of writing an exact form « as
a = df, one has to solve & = ddy, and give explicit formulas for y. Such a double
transgression was first achieved in [Bot C].

In [Q1], Quillen introduced superconnections on Z, graded finite dimensional
vector bundles, to obtain non-trivial representatives of the Chern character of
difference bundles. Also the analogs of Chern—Simons forms were introduced in
[Q1] for superconnections to transgress the Chern character forms.

Here we use Quillen’s superconnections to construct new representatives of
Bott—Chern classes of an acyclic complex. Our formula in Theorem 1.17 uses in
a crucial way the number operator, which describes the Z-grading of the complex.

We also establish certain identities which will be very useful in [BGS2] when
computing certain asymptotic expansions. After giving a new proof of one of Bott
and Chern’s results [Bot C] in Theorem 1.27, we conclude with a third (and
axiomatic) construction of their characteristic classes in Theorem 1.29, along the
lines of [GS2].

This paper is organized as follows.

Section a) contains preliminaries on the determinant of a complex of vector
spaces.

In b), we establish algebraic identities on the Chern forms associated to a
holomorphic acyclic chain complex.

In c), we calculate the double transgression of such Chern forms by using higher
order analytic torsion forms.

In d), we establish how such forms behave when considering double complexes
and exact sequences.

In e), we construct the classes of Bott—Chern [Bot C] and we reprove a result
of Donaldson [D1].

In f), we give an axiomatic construction of the double transgression of the
characteristic classes associated with a chain complex. The classes which were
obtained in the previous sections are shown to verify these axioms.

The results contained in our three papers were announced in [BGS1].

a) Determinant of a Chain Complex of Vector Spaces

1. Torsion of an Acyclic Chain Complex. If E is a finite dimensional complex vector
space of dimension n, set

det E = A"(E).
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Let
(E,ﬁ_):OAEOT»El——g—»H-—»ElaO (L.1)

be a chain complex of finite dimensional complex vector spaces, with chain map 0
(and so 62 = 0). The determinant of E is the one dimensional complex vector space

A =det(E)=(det E°) ' ®det E! ® (det E?) "' ® ---.

Assume that (E, 0) is acyclic. For 0 < i <1 — 1 set n; = dim[d(E’)]. Let s;€ A™(E')
be such that ds; # 0. Since (E, 0) is acyclic, ds; A ;1 is non-zero in det(E'*!).

Definition 1.1. T(0) is the non-zero element in det(E),
TO)=(°)"1®Is°As'®Os' As?) 1®---. 1.2)

Of course, one immediately verifies that T(0) does not depend on the choices
of s%s!.... Therefore T(0) is a non-zero element of det(E) canonically associated
to (E, 0).

We shall call T(9) the torsion of the acyclic complex (E, ).

Let now (E4,d,v) be a double complex, with 0<i<m, 0< j<I, v:Ei—>El,,
and 0:E{ - EI"'. Let (E,, 0) (respectively (E’, v)) denote the chain complex (E/), . .,
respectively (E{),.,.,) with the chain map 0 (respectively v). Let 4; (respectively A7)
be the determinant of (E;, d) (respectively (E7, v)). The complex lines

Ao® () 1 ®1,®
and

/10@(/11)—1 ®12®
are canonically isomorphic. We call them the determinant of the double complex
E, denoted det(E).

If all the lines and columns of E are acyclic, we can define the torsion elements
T,(0)e4; and T/(v)el/ for 0<i<m, 0<j<I.

Using [KM, Proposition 1], one checks that

T[T ()] ' ®T,0O)® -~ =T°O®[T' W] '®T*1)® . (13)

Assume m = 2 and the lines of E are exact, i.e. we have a short exact sequence
of chain complexes,

0—>E0—U—>E1 —U—>E2—>0.
Then T°()@[T'(v)] '® T?(v) is a canonical non-zero element in det(E)=
Ao ®(4;) "' ® 4,. It provides a canonical isomorphism
A~ ®4,.
When E, is acyclic, T,(d) is non-zero in 1, and we get a canonical isomorphism,
Ao =i ® 4,

by sending sel, to s® T,(d). Therefore 4, is canonically isomorphic to 4.
When E, and E, are acyclic, the same is true for E; and the isomorphism
Ao =~ Ay maps T,(0) to T,(0).
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Remark 1.2. A theory of determinants has been developed by Grothendieck and
Knudsen—Mumford [KM]. We refer the reader to [KM] and to [BGS3] for more
details.

Let us point out that in {fKM], det E is defined as the pair (A”E, n) of the line
A"E with the integer neZ. The definition avoids the contradictions which might
arise from sign problems. For instance, if dim E = nand dim F = m, the isomorphism

det(E® F) ~ det(F ® E),

sending e; A - Ae, A fi A Af to f1 A AfAel A e, is the multipli-
cation by (— 1)"*™. Therefore the induced isomorphism

det(E) ® det(F) ~ det(F) ® det(E)

makes sense for graded lines as in [KM, p 20], but not in our case.
However, most often these sign problems will not occur below and we shall
neglect them. For us det(E) will just be A"E.

2. Determinant and Cohomology of a Chain Complex. Let
E:O—»Eo—é—éE1 — —5—>E’—>O
be an arbiprary chain complex of finite dimensional complex vector spaces. Let
0;=0 on E'. Consider the cohomology of E:
H'=Ker(3;)/Im(d;_,), i=0,...,L
For 0 <i £, there are exact sequences
0-0d(E)—>Ker(0,,,)—»H' "1 -0,
0—»Ker(5_,~+1)—->Ei“7»5*(Ei+1)—->0. (1.4
The torsions of these exact sequences provide canonical isomorphisms
det(E'*') ~det(Ker J,, ;) ®det(O(E* 1))
det(Kerd;, ;) ~det(0(E")) ® det(H'*1).
Therefore
det(E'*1) ~ det(0(E')) @ det(H'* ') @ det (A(E*1)).
We then obtain a canonical isomorphism
(detE°) " '®det E! @ (det E2)1... ~(det H®) !
®det H' @ (det H?) ' ®---. (1.5

Let A be a linear mapping acting on each E’, 0 <i <, and such that 40 =0 A.
Then A acts upon each cohomology group H'. Let Trp(A4) and Try.(4) be the
trace of A on E' and H' respectively.

Proposition 1.3. The following identity holds:

] ]
> (- 1) Trpi(A4) = ;O(— 1) Trgi(A). (1.6)
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Proof. Using the exact sequences (1.4) we get

Tryen(A) — Tryeg,, ) (A) + Tryiei(4) =0,
Trge,, ) (A) = Trpe1(A) + Trygee(4) =0.

Summing these equalities we get the Proposition. []

3. Torsion and Analytic Torsion of an Hermitian Chain Complex. We still consider
the chain complex (1.1).

Set
Et= PE, E=@E, E=E*®E",
ieven iodd
A =(detE")" 1®detE". (1.7)

Let i be the canonical isomorphisms from 4 into /.

S=50 R85, ® el—i(s)=(5g A Sy-) TR (sy A Sy A --)ER.

Assume that the E' are Hermitian vector spaces. E*, E~ are naturally endowed
with Hermitian products so that the various E' are mutually orthogonal. 4 and 2’
inherit the corresponding Hermitian metrics | | and | |, and i is an isometry
from 4 into 4.

Let 6* be the adjoint of 0. Let DeEnd(E) be given by:

D=20+0% (1.8)
and let D, be the restriction of D to E, . If sedet E ., s # 0, we define det D . e/’ by:
detD, =(s"H®D,s. (1.9)

Clearly
D*=(0+0%)>=00% + 0%0. (1.10)

For 0 <i<n, let D? be the restriction of D? to E'. The norm of det D, in A’ is
given by
|detD.|=[ [] detD}]"*=[]] detD?]"> (L.11)
ieven iodd
We now assume that the chain complex (1.1) is acyclic.
Let us recall the definition of the analytic torsion of the chain complex (1.1)
by Ray and Singer [RS].

Definition 1.4. The analytic torsion t(0) of the acyclic chain complex (1.1) is the
positive real number

1(8) = {(det D?)(det D)~ (det D2)? - } 112, (1.12)
Proposition 1.5. The norm | T()| of T(0) in A is given by
|T(@)] = 1(3). (1.13)
Moreover
o E | T(0)]
= 1.14
i[T(0)] |detD+|detD+ (1.14)

Proof. By splitting the acyclic Hermitian chain complex into the acyclic chain
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complexes corresponding to the eigenvalues A > 0 of D?, we may and we will assume
that D? has one single eigenvalue 4 > 0.
Each E’ splits orthogonally into

E'=0(E"" )@ o*(E'Y).
Take s' #0 in det 0*(E'*!). We define sedet E* by
s=5OAOs' ASP)A(OSP ASH) A -, (1.15)
Then s is non-zero. Moreover
D.s=(0s°A0*0s') A (OS2 A O*TS3) A ---. (1.16)
Also D?s' = 0*3s". If n,=dim 0*(E'*!), we find that
D,s=A"1""" (0s° AsY)A (@2 ASS)A oo,
and so
STI®D,s="" (0 A (05t A SP)A )T
®(0s° A s) A (0% A s3)ee. (1.17)
We thus find that
detD, = A"*"* [ T(0)]. (1.18)
Since i is an isometry, (1.14) follows from (1.18).
Also the complex (1.1) being acyclic, dim E' =n; + n;_, .
Moreover
Log|det D, |'* = (dim E° + dim E* + ---) Log A. (1.19)
From (1.18), (1.19) we find

Log|T(0)|* = (ng— ny + n,---) Log A = (dim E* — 2dim E? + 3dim E*---) Log 4,
(1.20)

from which we get (1.13). [

b) Number Operator and the Chern Character Forms of a Holomorphic
Hermitian Chain Complex

Let B denote a connected complex manifold of real dimension n'=2I', and let
JeEnd T B be the complex structure of B.
Let

0—>E0~v—->—+~-~—v—>Em—>0 (1.21)

be a holomorphic chain complex of finite dimensional complex holomorphic vector
bundles on B. In particular the chain map v is holomorphic and v? =0.
Set
E.= @E, E_.=@E;, E=E,®E_.

Jjeven Jjodd
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Let N be the operator on E which defines the Z grading of E, ie. N is
multiplication by j on E;(0 < j < m). Similarly let = be the operator defining the
Z, grading of E,ie. 7=+ 1o0onE,.

End E is a Z, graded algebra, the even (respectively odd) elements of End E
commuting (respectively anticommuting) with .

The graded tensor product A(T#B)® End E is also naturally Z, graded. If 4,
A/eA(Tz‘B)@)End E, we define the supercommutator [4, A'] by

[A,A]=AA —(— 1)ydeeddesd’ g/ 4

In the sequel, [A4, B] will always denote the supercommutator of A and B
(usually denoted [4, B],).
If AeEnd E, we define its supertrace Try A by
Tr,A=Tr[tA]. (1.22)
As in Quillen [Q1], we extend Tr, to A(T%B)® End E, with the convention
that if e A(T¢B) and AeEnd E,
Tr,[nA]l=nTr A (1.23)

Recall that by [Q1] Tr, vanishes on supercommutators.
We now assume that E,,...,E,, and E are endowed with smooth Hermitian
products, and that E is the orthogonal direct sum of the E’s.
Let v* be the adjoint of v. For aeC, set
V¢ =av+ av*

We will use the notation V= V1.
Let V be the unique holomorphic Hermitian connection on E. The connection
V splits into
V=V +V,
where V', V” are the holomorphic and antiholomorphic parts of V.
As in [Q1], we will consider V, V', V" as being first order differential operators

acting on smooth sections of A(T#B)® E. In particular V? is the curvature of V.
V¢ is odd in EndE. V+ V* is a superconnection on E in the sense of Quillen

[Q1].

We first have the elementary result.

Proposition 1.6. The following relations hold:

[V,.N]=0
(V" +av)* = (V' + av*)? = 0.
(V+ V2 =[V +av*, V' +av],
[V +av,(V+ V)?]=[V'+av, (V+ V*?]=0.
[v,N]=—v
[v*, N] =v*. (1.24)
Proof. The operator N is parallel with respectto Vand so [V, N] = 0. Since V'v =0,
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and v? =0, we have
V'+av)*=V"?+a%v*+aV'v=0.

Similarly (V' 4+ av*)? = 0. The third and fourth line in (1.24) follow. The final two
relations in (1.24) are obvious. []

Remark 1.7. If AeC and if I is the identity mapping on E, we can replace N by
N + Al in Proposition 1.6, without changing the commutation relations.

By Quillen [Q1], we know that for any aeC, Tr,[exp —(V + V*)?] is a closed
differential form, which represents in cohomology the (normalized) Chern character

ch(Eg—E, + E,--)=chEy—chE, +chE,--

(her]i ch E; is the class in cohomology of Tr¥s[exp — V?]).
et

TOOB—(XeT.B;, JX =iX},
TOYB={XeT.B, JX = —iX}

be the holomorphic and antiholomorphic subbundles of the complex tangent
bundle T2. Let T**-9B and T*©Y B be the corresponding dual spaces.

We denote by 0% and 6% the usual derivation operators on the smooth sections
of A(T¢B).

Let P be the subspace of smooth sections of A (T# B) made of sums of differentials
of complex type (p,p), p = 0. Let P’ = P be the set of smooth forms w in P which
can be written as w = 0%y + 08y’ (where 5 and #’ are smooth differential forms).

When w, w'eP, we write w = o' if o — w'eP’. Note that if yeP is closed and
has compact support and o = o/,

forn={a"rn.
B B

So the pairing of elements of P/P" with such # is well defined.
We first prove a simple result, which will be of constant use in the sequel.

Proposition 1.8. Let A be the vector subspace of A(T%B)® End E generated by
smooth sections of AP?(TEB)QEnd(E;, E;.,—,) for all p,q,j=0. Then A is an
algebra. Moreover if ne A, TryneP.

Proof. Tt is clear that A is an algebra. Since Tr, vanishes on End(E}, E,), ., the
end of the proposition is obvious. []

We now prove a first double transgression formula.

Theorem 1.9. For any aeC, the differential forms Trexp —(V + V%?]
and Tr[Nexp —(V+V%*] are in P and only depend on |a|. Moreover
Tr,[exp —(V + V9?] is closed. Also

0
%Trs(exp —(V+ V)= — B Tr(vexp — (V+ V)?),

0 _
37 Tr(exp — (V4 V) = — 3 Tr(v*exp — (V + V*)%),



Bott—Chern forms and analytic torsion 59

Try(avexp —(V + V*)?)= — 08 Try(Nexp — (V + V9)?),
Tr(av*exp — (V+ V)?) = 08 Tr,(Nexp — (V + V9)?). (1.25)

In particular

~

1
%Trs(exp — (V4 V)= =3P Tr,(Nexp — (V + V%),

1~
;Trs(exp —(V+ V)= — ; 0808 Try(Nexp — (V + V%)) (1.26)
a

Proof. 1t is clear that if OeR,
eiON(V + Va)e—ieN =V + Vae'f’

We conclude that Try(exp — (V + V*)?) and Try(N exp — (V + V*)?) are radial
functions of a.
By (1.24) we have
(V4 V2=V +|a]?(ov* + v*v) + aV'v + aV’v*.
So by Proposition 1.8, the considered differential forms are elements of P.
We know by [Q1] that Try(exp —(V + V“)?) is closed. On B x C the form
Tr,[exp — (V + da(é/da) + da(0/da) + V*)*] is also closed. It is equal to
Tryexp(— (V + V9)? — dav — dav*). (1.27)
By Duhamel’s formula, since Tr, vanishes on supercommutators, (1.27) is given
o Tr,(exp — (V + V*)?) —daTry(vexp — (V + V*)?)

—daTr,(v*exp — (V+ V9)?) +dadae, (1.28)
v_vhere ¢ is a differential form on B. Since (1.28) is closed under 0% + da(0/da) and
0% + da(d/da), we get the first two relations in (1.25). On the other hand

dBTry(Nexp —(V+ V) =Tr,[V+ V% Nexp — (V+ V*)?]
=Tr,([V* N]exp — (V+ V9)?)
=Tr,((— av + av*)exp — (V + V9)?).
By a simple degree counting argument this implies the final formulas in (1.25).
Finally (1.26) is an obvious consequence of (1.25). [
We now prove a second series of results which are related to Theorem 1.9.
Theorem 1.10. For a,beC, the following identities hold:
B Try(exp(— (V + V*)? + bN)) = ba Try(v* exp(— (V + V*)? + bN)),
P Try(exp(— (V + V9?2 + bN)) = — baTry(vexp(— (V + V%)? + bN)). (1.29)
Proof. Using (1.24), we find that
dP Try(exp(—(V+ V) + bN)) = Tr,{[V + V% exp(—(V + V9> + bN)]}
=bTr,{[V*N]exp(—(V+V*)?+bN)}
=bTr,{(—av+av*)exp(—(V+ V*)? +bN)}.
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Since d® = 0% 4 0%, by an easy degree counting argument, we obtain (1.29). [J

We now prove that certain differential forms produced by the superconnection
formalism are 9% or 62 exact.

Let a4, a,,a5 denote the differential forms on B which depend on aeC defined
by the relation

0 0 2
Try[ Nexp — V+daa~+daF+ Ve
=Tr,(Nexp —(V + V*)?) + dao, +daa, +dadao,. (1.30)

Since Tr,(exp(—(V + V%)% + bN)) is a smooth function of |a|?, there exist a
smooth form f,(x, a,b) (for (x,a,b)e B x C?) which depends smoothly on |a|? and
is such that

Try(exp(— (V + V)2 + bN)) = Try(exp(— V2 + bN)) + |a|* B, (1.31)
Theorem 1.11. The following relation hold:

a—alazﬁ o, = —ad® 62/)’ (1.32)
! 200270 |,_ TP 206270 |, o :

Proof. Clearly

0 A\
%Trs{exp< V+da—+da5f+V> —kbN)}b=O

pl 2
=Tr,| Nexp— V+dai+dd—_+ Vel ). (1.33)
da da

On the other hand if we expand

0 0 2
Trs{exp( — (V + daaﬁ— dd%+ V“> + bN)}

as in (1.28), the form which appears on the right of da is given by
—Try(vexp(—(V + V*)? + bN)). (1.34)
For a #0, b #0, by (1.29), (1.34) is equal to
1 -
%63 Tr,(exp(— (V + V*)? + bN)). (1.35)
Also in (1.33), we can replace d/0b by 1(6%/0b?)b. We thus find that
_1 0*

ao, = 6’35 ;b—z(Trs(exp(— (V+ V2 +bN))y=o- (1.36)

By (1.36), we find that

1 02
535 gb—z(Trs(exp(— V2 +bN)))y==0, (1.37)
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and so

=0 Tr,{exp(— (V + V)2 + bN) —exp(— V2 + bN)},_o. (1.38)

51 0%

20b%
Using (1.31) and (1.38), we obtain (1.32). The second equation in (1.32) can be
proved in the same way. [J

We now prove another basic identity. If ye A(TE B) ® C(da, da), we can expand 7
in the form

="M +dan, +dan, +dadan;; neA(T*B), 0Zi<3. (1.39)

Set )
[n]“% = ns. (1.40)

Theorem 1.12. For any (a, b)eC?,

%Trs(exp(— (V+V%?+bla]*N)) = — d®Try(vexp(— (V + V*)? + b|a|*N))

+ ba Tr,{exp(— (V + V*)? + (bla|® + dada)N — adav — adav*)}“*.  (1.41)

In particular

%IalzTrs(NeXp —(V+ V)= [Trywexp(—(V+ V) +blal*N)Jp-o

—d
Bab
+ aTr,{exp(— (V+ V*)? + dadaN — adav — adav*)}**. (1.42)
Proof. Clearly, the left-hand side of (1.41) is the coefficient on the right of da in

':da;;, Trs<exp<—<V+da%+ V“)2+b|a|2N>>:|. (1.43)

Now (1.43) is given by

{[ g <V+dai+V"> +b|a|2N:|
exp( <V+da—+V“>2+bla|2N>}

2
{([w ve <V+da§~+ V“> ]+bddaN>
2
exp< <V+da—+V"> +b|a|2N>}
a 2
=Trs{<|:V+V“,<V+da%+ V“) —b|a|2N:|

a 2
+blal?’[V4, N] + bﬁdaN)exp<—<V+ da;?;+ V“> + b|a|2N>}
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a 2
= —dBTrs{exp<—<V +da%+ V“) +b|a|2N>}

+Trs{(b|a|2(— av + av*) + bada N)

o 2
-exp(—<V+da%+ V“) +b|a|2N>}. (1.44)
By selecting the factor of da in the left-hand side of (1.44), we find that

%Trs[exp(—(V +V*?+blal*N)] = —dBTr,{vexp(—(V + V*)? + bla]*N)}
+ baTr {exp(—(V+ V*)? +bla]*N
—daav —da(— av + av*)
+dadaN)}*“. (1.45)
Also
daav + da(— av + av*) = (da — da)av + adav*, (da—da)da =dada.

Then (1.41) follows from (1.45). By differentiating (1.41) at b=0, we obtain
(142). O

One verifies easily that
Try(exp(— (V + V*)* + bla|*N)) (1.46)
is a smooth function of |a|2. We can then write (1.46) in the form

Trs(exp(_ (V + Va)2 + b]aIZN)) = Trs(exp( - Vz)) + Ialzyo(x, b) + |a|4)’1(x, a, b)s
(1.47)

where y, (respectively y,) is a form on B depending smoothly on (x,b)eB x C
(respectively on (x,a,b)eB x C?).
Using Theorem 1.10, we now give a refined version of Theorem 1.12.

Theorem 1.13. For every (a,b)eC x C*,
aiTrsexp(— (V+V*?*+bla|*N)= —gﬁBaﬂyl + ba(Tryexp(—(V + V%)?
a

+ (blal* + dada)N — adav — adav*))“*“.
(1.48)

In particular
i[|¢1[2Tr (Nexp(—(V+V9H))]= ’53631 o
da sUY EXP R A

+ aTr,{exp(—(V + V*)?* +dadaN
— adav — adav*)}*“. (1.49)
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Proof. By (1.29), we know that

P Try(exp(— (V -+ V*)? +blal*N))= — blal?aTr{vexp(— (V + V*)? + bla|*N)}.
(1.50)

Using (1.50), we find that
08 Tr[exp—V?]=0; 0%y,=0. (1.51)
Using (1.41), (1.50), we find that for a #0,

iTrs(exp( —(V+ V%% +blal*N))

da
1 =
= - 0B0BT — V)2 +blal*N
baja|? r,(exp(—(V+ V)" + blal"N))
+ baTry{exp(—(V+ V*)?
+(bla|* + dada)N — adav — adav*)} . (1.52)

Using (1.51), we can replace the first term in the left-hand side of (1.52) by
gB B
————[Tr,(exp(— (V+ V*)* + bla|*N))
bala|

— Try(exp(— V2) —alye] = — 5 3%0%,. (1.5)

Equation (1.48) follows from (1.52) and (1.53).
By differentiating both sides of (1.48) in b at b=0 and replacing d/0b by
1(0%/0b*)b in the right-hand side of (1.48), we obtain (1.49). [

Remark 1.14. In particular, we find from (1.42) that
a 2 2
5 [ Tr(N exp—(V +/uV))],—o = T[N exp(— V2)], (1.54)
u

which is not really a surprising result.

It turns out that when dealing with infinite dimensional chain complexes, the
analogous identity will be highly non-trivial, because certain singular terms will
disappear as u||0 in (1.54).

In particular the term {
[BGS3].

19244 i of utmost importance in [BGS2] and

¢) Double Transgression of the Chern Character Forms
Recall that V =v + v*. For u=0, let A, be the superconnection
A, =V + JuV.
We first note the following application of Theorem 1.9.

Theorem 1.15. For any u=0, the differential forms Tr,[exp(— A2)] and
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Tr,[Nexp(— A2)] are in P. The form Tr[exp(— A2)] is closed. Moreover for u >0,

2 Trexp(— 42) = — 5 (7 + 3 Tr,(fuV exp(— 4D)

ou
Tr,[/uV exp(— A2)] = (0% — 3%) Tr,(N exp(— A2)). (1.55)
In particular
G%Trs [exp(— A42)] = — 15363 Try(N exp(— A2)). (1.56)
u

Proof. Equations (1.55), (1.56) are obvious consequences of (1.25), (1.26). [

We now assume that the chain complex (E, v) is acyclic.

The operator V2 is then self-adjoint and positive definite. By Duhamel’s formula,
as ul + o0, Tr,[exp(— A42)] and Tr,[N exp — 427 decay exponentially uniformly
on compact subsets of B.

We now will write an integrated version of (1.56). For later purposes, we will
use a zéta function approach to the integration of (1.56).

Definition 1.16. For seC, Re(s) > 0, let {;(s)eP be defined by
1 + L
=—— 71T — A? . .
C(s) ) g u'” Trg[Nexp(— 43)]1du (1.57)

{x(s) extends into a holomorphic function on C.
In particular

{£(0) = — Tr,[Nexp—V?]
1
(p(0) = — g [Try(N exp(— A7) — Try(N exp(— Vz))]df

- T Tr,(N exp(— Af))% + (1) Tr(Nexp(—V?).  (1.58)

1

Observe that the closed form Tr,[ N exp(— V?)] is a generalized derived Euler
characteristic of the chain complex (E,v), since the component of degree 0 of
Tr,[Nexp(— V?)] is exactly the usual derived Euler characteristic

—dimEl +2dimE2_3d]mE3... .

P

For aeC*, if v is changed into av, V' is changed into V4 {(s) is changed into
la]~%{g(s) and {;(0) is changed into

{%(0) — 2 Log|al{£(0) = {;(0) + 2 Log |a| Tr,[N exp(— V*)]. (1.59)
Theorem 1.17. If the chain complex (E,v) is acyclic, then

du _

Ja

Tr,[exp(— V?)] = — d205(}(0). (1.60)

iy:” Tr(V exp(— 42)) (@" — 3%)2,,(0),
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Proof. Equation (1.60) is a trivial consequence of (1.55) and (1.56). [

Remark 1.18. In Remark 1.7, we have seen that the commutation relations (1.24)
still hold if N is replaced by N + Al (with 1eC). It is easy to verify that when N
is changed into N + A1, {%(0) remains constant in P/P".

Remark 1.19. The second line of (1.60) has a natural interpretation in degree (1, 1).
Namely Tr,[ — V2] is the curvature of the holomorphic Hermitian line bundle

A=(detE,) ' @det E; ®@(det E,) 1. (1.61)

By Definition 1.1, 2 has a canonical holomorphic non-zero section T(v). By
Proposition 1.5, we know that if t(v) is the analytic torsion of the chain complex
(E,v), then

| T(v)| = t(v). (1.62)
If Q)(s) is the component of degree 0 in {(s), one verifies trivially that
(9(s)= — Tr, (N[V?17°). (1.63)
Using (1.12), we get
Log[t(®)]* = — (5" (0). (1.64)
So in degree (1, 1), we obtain from (1.60) the relation
Tr,[ — V2] = 8808 Log | T(v)|> (1.65)

Thus — (;(0) is the natural generalization in P of the logarithm of the analytic
torsion.

d) Multiplicativity Property of the Generalized Analytic Torsion

Consider a double chain complex E of finite dimensional holomorphic Hermitian
vector bundles

0
T
0—+E6—U—> - E! -0 (1.66)
13
19 18

0-ES—E%—>... > E%2 -0

with holomorphic chain maps d and v which are such that 3% = 0,v% = 0,9v + v0 = 0.
The orthogonal direct sum E = @ E/ is also a holomorphic Hermitian vector bundle
on B.

Let E; (respectively E’) be the chain complex of the i column (respectively j™
row) in (1.66) with the chain map 0 (respectively v).

The double chain complex E carries naturally a horizontal grading, a vertical
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grading and a total grading. Let N, N, be the horizontal and vertical number
operators. N acts on E; by multiplication by i, and N, acts on E/ by multiplication
by j.

Then N = Ny + N, is the total number operator.

Let g4, 1) be the operators defining the horizontal and vertical Z, grading, i.c.
1y=t1on E/,t, =+ 1 on E} Clearly

[NH7NV] =0, [TH,TV] =0.

Moreover t = 141, defines the total Z, grading of E,ie.t=+1on E,.

The algebras A(TE!B)QEndE, A(T¥B)®EndE/, A(T!B)®EndE are
naturally endowed with supertraces, which we note Trf Tr® and Tr,.

We still note V=V’ +V” the unique holomorphic Hermitian connection on

every EV. ~
If 0*, v* are the adjoints of 0, v, the following commutation relations are verified
[0,v] =[0%v*]=0 (1.67)
(remember that [3,v], [0*,v*] are supercommutators).
Set
D=0+40*% V=uv+0v* (1.68)

Assume that (E;,0)(0 <i<m) and (E’,0)(0 < j <) are everywhere acyclic.
Let 7,(0) (respectively t/(v)) be the analytic torsion of (E;, 9) (respectively (E7, v).
It is a consequence of (1.3), (1.13) that

[0(0)1[z1(0)] ™ [72(0)] -+ = [z°(@)I[*" )] [*(@)] -
Using (1.64), we find that
(= s 0)= (= 105 (0). (1.69)
We will generalize (1.69) in any degree.
Theorem 1.20. Assume the rows and columns of E are acyclic. Then
Z(— 100 = (= 1) {5(0). (1.70)

Proof. Let E be the chain complex on B x C whose fiber at (x,a)eB x C is E, with
differential J + av. Since the columns of E are acyclic, E is also acyclic.

Let {;(s) be the z€ta function associated to E,and ¢,:B— B x C the imbedding
given by ¢,(x) = (x,a). When Re(s) > 0 we have

¢ (Cx(s )—Z(—l)‘CE Z f jus U TrE(exp — V+\/>D)2 u. (1.71)

Set

—foru=1,

+ o0 1
= ETrff[NVexp—(V+\/sz)2]dh.
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—foru<1
el E; 2 2 ’
b= =] TH[Ny (exp— (V + JhD)? — exp(— V?))1dh — 3, (0).
0

As ult + oo, ¢, decays exponentially.
Using (1.56) and (1.60), we find that for Re(s) >0,

1 1 + o
—— [ w ' Trf(exp — (V+ /uD)?*)du = “363[— us‘laudu]. 1.72
T b { p—(V+/u o 7
Furthermore the differential form
(s) ! TO s~le,du (1.73)
=—— | u 3 .
1 I'(s) o

extends holomorphically at s=0.
Using (1.71), (1.73), we find that

$§(L3(0) = Z(— 1), 0). (1.74)
The proof will now consist in showing that for any aeC,
¢ ((50)) = ¢ (C5(0)). (L.75)

In particular (1.75) holds at a = 1. By interchanging the roles of ¢ and v, we
will thus obtain (1.70).

So we now concentrate on the proof of (1.75).

By Theorem 1.17, we know that

0% CaPC(0) = — Tr,[exp(— V?)]. (1.76)
In particular the right-hand side of (1.76) does not contain da or da.

Also there are differential forms on B, 6,,6,,0,, 05 which depend smoothly on
(x,a)eB x C, such that

5(0) = 0 + dab, + dab, + dadab,. (1.77)

Clearly
0o =X [L5(0)]. (1.78)

Since 8%"€0”*€(%(0) does not contain any term involving dada, we find easily
that
0%6, 5001 =500, <5 4
Fase— e — 023370, =0, (1.79)
One readily verifies that 0,, (00,/0a),(06,/da), 05 are smooth functions of |a|?
and thus smooth function of |a|. We will thus write 0,(|al),(00,/da)(|al)....
Also if f is a smooth function on R™,

—i[f”(lal)+%f’(lal)} (1.80)
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Using (1.79), (1.80) we find that there exists a form H(x) on B such that for r > 0,

690( )_M aBI

r 90,

i 20, ( ,b)bdb

4 aBj 2 (x.b)bdb + - aBaBje (x, b) bdb. (1.81)

Since (06,/0r)(x,r) is smooth at r=0, we find that necessarily H(x)=0. It
immediately follows from (1.81) that
0o (x,7) = 0,(x,0). (1.82)
Using (1.82), we find that (1.75) has been proved. We have thus completed the
proof of the theorem. []

Remark 1.21. Take aeC*. If we change v into av, by (1.59), we know that
{5i(0) is changed into {%,(0) + 2 Log|a| T[N, exp(— V*)].
On the other hand

Z(= 1)/ Try’ [Nyexp(—V>)] = X(— 1)i Trf [exp(— V?)].
Since the various E; are acyclic, we find that
Z(— 1) Tr¥[Nyexp — (V?)]=0. (1.83)

Equation (1.70) shows that in P/P’'X(— 1)/{;;(0) does not depend on acC*,
a#0. Of course this fits with (1.83).
Let now

E:0-E, —u->E1—->--~—>Em—+0,

E/:O-_)Em —v—_)Em+1_')”"_')Em+m’—_)0

be two exact sequences of holomorphic Hermitian vector bundles with a holo-
morphic chain map v. In E and E', E,, is of course the same holomorphic Hermitian

vector bundle.
Let E” be the exact sequence of holomorphic Hermitian vector bundles,

E”:O'—)EO“"_)El—)"‘ —”_)Em—l —-')—2—>Em+1 *v—>---——v—>Em+m,—>0. (1.84)

We now prove a property which generalizes a property of the standard analytic
torsion.

Theorem 1.22. The following identity holds
{pr(0) = C5(0) + (— 1" 13 (0). (1.85)

Proof. We first assume that E’ is a short exact sequence, ie. m' =2. We thus
consider the double complex
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0 0 0
1 T T
0-0 - Em+2_)Em+2_>0
T T Ti
0—)Em 7 Em+1_)Em+2_)O
To T2 1
0—>Em_1—i—+Em_1—>0 -0
Tv T 1 (1.86)
0-E, —i>E1 —-0-0
To To T
0-E, —E, -0-0
T T T
0 0 0

The chain maps E, — E, are the identity maps i.

The rows and columns of (1.86) are trivially acyclic. We now use Theorem 1.19.
Note that the rows and columns of the type 0 » E, — E, — 0 have a zéta function
which is exactly '

+ o
L [ w ! Tr¥[exp(— V? — u)]du = Tr¥[exp — (V?)]. (1.87)
I'(s) o

So (1.87) is constant in s. Its derivative at 0 is 0. So such lines or columns do
not contribute to equality (1.70) for the double complex (1.86).

It is now easy to obtain (1.85) when m' =2.

For general exact sequences E’ we apply (1.85) repeatedly to short exact
sequences and thus we obtain (1.85) in full generality. [

¢) Bott—Chern Classes

Let E be a finite dimensional complex holomorphic vector bundle on the manifold
B. Set k=dim E.

Let M be the set of smooth Hermitian metrics on E. We endow M with the
topology of uniform C® convergence on the compact subsets of B.

If geM, xeB, let A% be the subset of End E, of metrices which are Hermitian
with respect to g.

If geM, we can identify the tangent space T,M with the vector space of smooth
sections of 47 on B. In fact a metric g is an element of End(E, E*). If he End(E, E*)
is an infinitesimal deformation of g in M, g~ ! h is the corresponding element in A°.

Let d™ be the exterior differentiation operator on M. We shall use below the
one form n =g~ *d™g on M, with coefficients in A.

Let X be the complex manifold of frames in E. X is a principal GL.(k) bundle
over B. Let 7 be the projection M x X — B. An element ue X is a linear isomorphism
from C* into E,,.
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Let 0 be the equivariant representations of #. Namely 0 is the | form on M x X
with values in End(CF),

0=u"'n*(g 'd™g)u.
If geM, let w? be the unique holomorphic connection on E which is Hermitian

with respect to g. w? is a 1 form on X with values in End C*.
Let €29 be the corresponding curvature 2 form on X. We have the identities

Fof = — (@), For— o, (1.88)

The space of connections is affine. So dMw? is a 2 form on M x X taking its
values in End C¥, and d™w? is the equivariant representation of a 2 form y on
M x B with values in End E.

Note that A(T¥B)Q@EndE is a Z, graded algebra. We will use the notation
[,] for supercommutators as in Sect. la).

We first have the elementary result.

Proposition 1.23. The following relations hold

M= —0% 0= —[w0]—do. (1.89)
Proof. In local holomorphic coordinates, we know that w®=g '0%g. Also
=g 'd™g.
Clearly

(@ +d") (0 + %) + (0 + w?)? = 0.
Equation (1.89) immediately follows. []

Let V? be the covariant differentiation operator corresponding to w?. V? splits
into V/=V?4+V?, where V¥ is the holomorphic part of V¢ and V¢ the
antiholomorphic part of V9.

€27 is the equivariant representation of the curvature tensor (V9)2.

The scaled Chern character forms Tr[exp — (V9)?] can be pulled back to forms

on M x B.
We now prove the basic result of Bott—Chern [Bot C, 3.28].

Theorem 1.24. The following identities hold
d™ Tr[exp — (V?)*1= 0° Tr[yexp — (V*)*],
Trlyexp — (V9)2]= — ®Tr[g 'd™gexp — (V9)?]. (1.90)
In particular
dMTrexp —(V9)2] = — 0208 Tr[g~ 'd™ gexp — (V9)?]. (1.91)
Proof. For every geM, o’ is a one form on X. The pull back of w? to M x X
defines a connection w on the bundle E over M x B.
Using (1.88), we find that
@™+ d o= -0 +d"w+ Q.

Then d¥w+Q is the curvature form of E on M x X. Therefore
Trexp —(2 + d"w)] is a closed form on M x B.
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Also by Duhamel’s formula
Trlexp — (2 + d™w)] = Trexp — Q] — Tr[dMwexp(— 2)]+ C, (1.92)

where C is of degree = 2 in the Grassmann variables on M.

Since (1.92) is closed, the first line of (1.90) follows by a simple degree counting
argument.

Let z be an odd Grassmann variable.

Clearly

Trlexp(— 2+ z0)]=Trexp — Q2] + zTr[fexp — 2]. (1.93)
On the other hand
X Trlexp(— 2+ z0)] = Tr[(— 0¥ Q2 — z0* ) exp(— 2+ z0)]. (1.94)
By (1.88), we have
*N=[0 v] (1.95)
Using (1.89), (1.94) we find that

X Trexp(— Q2+ 20)]1= — Tr([w, — 2+ z0] exp(— 2+ z0)) + z Tr(dw exp(— 2))
(1.96)

The first term in the right-hand side of (1.96) clearly vanishes. Using (1.93), (1.96)
and identifying the coefficient of z we obtain the second line of (1.90). Equation
(1.91) follows from (1.90). [

The form d™ Tr[exp — (V9)?] is the “gradient” of Tr[exp — (V¢)*] on M.

The question arises to know if Tr[g~'d"gexp — (V?)?) is also a gradient on
M. This question was first settled by Donaldson [D1, Proposition 6]. We here
give a new proof of Donaldson’s results.

z again denotes an odd Grassmann variable.

We first prove an intermediary result.

Theorem 1.25. The following identity holds:
M Tr[exp(— (V)* + 2~ 1d"g)] =3P Tr[(V"g ')
exp(—(V9)* + 29~ 1d"g)] — 30" Tr[(V"g ' d"g)
-exp(— (V92 + zg~1d%g)]. (1.97)
Proof. Clearly
dMTrlexp(— 24 z0)]=Tr[(— d"Q— zd™0)exp(— 2+ z0)]. (1.98)
Using (1.88), (1.89), we find that
dMQ=0%0%0 + [Q,0] — [w,5%0]. (1.99)
So from (1.89), (1.98), (1.99), we get

dM Trlexp(— 2+ z0)] =Tr[(— 0¥0%X0 + [w, 0% 0]) exp(— 2+ z0)]
+zTr[0? exp(— Q)] + Tr([0, 2] exp(— 2+ z0)).
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Since
Tr ([0, 02— z0]exp(— 2+ z6)) =0, (1.100)
we find that

dM Trexp(— 24 z0)] = Tr[(— 0%X0%¥0 + [w, 3% 0]) exp(— Q+ z0)]
—zTr[6%exp(— 2)]. (1.101)

Let 2’ be an even Grassmann variable (which is such that Z'? =0, and which
commutes with 0%, 08... and with z). Clearly

Tr[exp(— Q2+ 20 + 2 (2%0 + [, 0]))] = Tr[exp( — 2+ 26)]
+ 2 Tr[(0%0 + [w, 0]) exp(— 2+ z6)],
Trexp(— 2+ z0 + 2/ 0%0)] = Tr[exp(— 2+ z6)]
+z' Tr[0X0exp(— 2+ z0)]. (1.102)
Using (1.88), (1.89) we find that

X Tr[exp(— Q-+ 20 + 20 + [, 0]))]
= Tr[(—20%0 + 2/(3X 0% 0 + [, 0] — [w,5%0]))
exp(— Q2+ z0 + 2/ (0% + [w,0])]
=7 Tr[(0%0%0 — [w, 0% 0])exp(— 2+ z0)]
+ 2 Tr[[£2,0] exp(— 2+ z0)]
—zTr[0%0exp(— 2+ 2 (0%0 + [w, 0]))].
Using (1.100) again, we find that

O¥Trlexp(— 2+ 20+ 2/ (0X0 + [w,0])] =2 Tr[(0X 0% 0 — [w, 0% 0]) exp(— 2+ z0)]
+22'zTr[0%exp — 2] — z Tr[0% O exp(— 2+ 2 (350 + [, 6]))]. (1.103)
Similarly, by (1.88), (1.89), we get
0¥ Trexp(— 2+ 20 + 2/ 0% 0) = Tr[0* + w,exp(— Q2+ 20 + 2/0%0)] _
=Tr[(20%0%0 + 2 [w,0% 0] — 2(0%0 + [, 0])) exp(— 2 + 20 + 207 0)],
(1.104)
or equivalently

X Trlexp(— 2+ 20 +25%0)] = 2 Tr[(— 0%X0%0 + [w, 0% 0] ) exp(— 2+ z0)]

— zTr[(0%0 + [w,0]) exp(— Q+ 2/ 3% 6)].
(1.105)

If A=B+ CZ, set C = A*. One immediately verifies that
Tr[0¥0exp(— 2+ 2 (0¥0 + [0,0])))F = Tr[(3%0 + [w, 0]) exp(— 2+ 2/ 0¥ 0) 7.
(1.106)
Using (1.103), (1.105), (1.106) and identifying the terms containing z’, we get
10X Tr[0*0exp(— Q2+ 20)] — 30X Tr[(0%0 + [w, 0]) exp(— 2+ z0)]
=Tr[(—d%0%0 + [w,0%0])exp(— 2+ 20)] — z Tr[6%exp — 2]. (1.107)
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Comparing with (1.101), we obtain (1.97). [
We now consider
Trlg~'d"gexp —(V*)*] (1.108)

as a one form on M with values in P.
In particular, we find from (1.97) that

dMTr[g~'d™gexp — (V9)2]eP, (1.109)

or equivalently that
d" Tr[g~ 'd™gexp — (V)21 =0. (1.110)
Therefore Tr[g~ 'dMgexp — (V?)?] is a closed one form on M with values in

P/P.

Since M is convex, a closed one form on M is exact. We will then integrate
this form.

We fix a metric g, in M. Take geM, and let g,(0 <t < 1) be any smooth path
in M connecting g, and g.

Definition 1.26. We define f(g) in P/P’ by

flg)= —i Trlg g, exp — (V%)2] de. (L111)

Clearly, f(g) does not depend on the path connecting g, and g and moreover
dMf=—Tr[g 'd™gexp —(V9)?]. (1.112)
Note that the operator d20% acts naturally on P/P'.
Theorem 1.27. For any geM
Trlexp — (V?)?] — Trexp — (V9°)?] = 38081 (g). (1.113)
Proof. This is obvious by (1.91) and (1.112). W

Remark 1.28. The definition of f(g) and Theorem 1.27 were given by Bott and
Chern [Bot C, 3.28]. The fact that f(g) does not depend (modulo P’) on the path
joining g, to g was first noticed by Donaldson, [D1, Prop. 6].

As in [Bot C] and [D1], we remark that the definition of f(g) and the whole
Sect. le) are valid for any characteristic class and not only for the Chern character.
More precisely, let ¢: M, (C)— C be any polynomial map on (k, k) matrices (or
more generally a formal power series) invariant under conjugation by GL,(C).
Then (1.91) can be generalized to

dVp(02) =080 ¢'(Q),0). (1.114)

Furthermore, (1.97) can be extended to a general ¢. In particular (1.106) merely
expresses the fact that two cross-derivations are equal. Definition 1.26 immediately
extends to any such ¢, and (1.113) is now

B(—(V*)?) — p(—(V*)?) = 00" f (9).
In [BGS2], this will be applied to the case where ¢ is the Todd genus Td.
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f) Axiomatic Definition of the Secondary Classes of Bott and Chern
Let ¢:M,(C)— C be, as in Remark 1.28, an invariant polynomial map and

EO0—>Ey—E, — - —E, -0

an acyclic complex of holomorphic vector bundles on a complex manifold B,
equipped with Hermitian metrics g;, j =0,...,m. We assume that every E; has rank
less than or equal to k. Let £; be the curvature form of (E;,g;) and ¢(E;)eP the
form ¢(— Q;/2mi).

Let Fy=0 and F;=v(E;_,) if j>0. We endow F; with the metric g;. From
E, we get short exact sequences

§;;0-F,~E;-»F;, 0.

We ssay that E is split if, for every j = 0, the exact sequence S; admits an holomorphic
splitting which makes E; isometric to the orthogonal direct sum F; @ F;, ;.

Theorem 1.29. Fix an integer m > 0. There exists a unique way to attach to every
exact sequence E as above a class ¢ (E) in P/P' such that:

m

i) (1/270)0%08 G(E)= Y (— D)I(P(E;) — $p(F;@F;41)).

ii) For every map of ci);nplex manifolds f:B' — B,
G(f*(E)) = (f*($(E)).
iii) If E is split, $(E) =0.

Proof. Let P! be the complex projective line. Given E as above, we shall define
an acyclic complex E on B x P'. Let (1) be the standard line bundle of degree
one on P! and ¢ a section of @(1) which vanishes only at co. Given n=0 and a
bundle F on B x P! we define F(n) by the formulae

FO)=F and F(n)=Fn—1)®0(1).

When j=0,...,m— 1 the bundle F; can be mapped diagonally into E;® F;(1) by
the inclusion into E; and by id;, ® o into F(1).
Define
E;= Coker(F;— E;® F(1))(m — j),

and _
F;=F;m+1-)).

The bundle E ; maps onto (E;/F;)(m— j)= F ;+1, and we get exact sequences
§j10—>ﬁj—>Ej—>FjH—>O.
These patch together to give a long exact sequence
E:O—»EOAEI - E, —0.

For every point zeP", let i,:B— B x P! be the map sending yeB to (y,z)eB x P'.
When z # oo, we have o(z) # 0, hence i¥(E) is isomorphic to E. On the other hand
i%(E;)~F;®F;,,. Using a partition of unity we can choose a metric §; on E; in
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such a way that the isomorphisms ig(ﬁj)zEj and ii’,;(Ej):Fj(-BFj+1 become
isometries. Therefore, as acyclic complexes of Hermitian holomorphic vector
bundles, i¥(E) is equal to E and i* (E) is split.

To define a class ¢(E) having properties i), i) and iii), we consider the integrable
function log|z|* on P! (where z is the standard coordinate) and the forms qS(E ;)
on B x PL.

Let 5

I=3%(—1) jl¢(Ej)log|z|2. (1.115)
720 P
This is a form in P, and ¢(E) will be the class of — I modulo P'.

To prove i), note that the differentials B x P! decompose as ¢ =% + &, and

0=20"+0,. Since d(p(E,)) = (¢(E;)) = 0, we get

23 n= 3 (-1 V'] 3 GUE el = § (= 1)) ] 2.0, (E;)logzf
(1.116)
Let 9, be the Dirac mass at z. By Stokes formula and the current equation
(—1/27i)0,0,log|z|? = 6o — 8., (1.117)

we get
PP = g - 1)"§1¢>(E,-)5z('7zlog|2|2 —2mi Z (— DIEP(E)) — i% §(E))).
(1.118)

Since i%(E;) = E; and i* (E;) = F;® F;, , we get i).

To prove ii) we need to prove that the class of I in P/P’ does not depend on
the choice of metrics §; on Ej such that the isomorphisms ig(Ej) ~E;and i;"O(E}-) ~
F;®F;,, are isometries.

Let §; be another choice with the same properties. Consider the product
B x P! x P!, with points (y,zu). Define i,(y,u)=(y,z u), j,(y,z) = (y,z,u), and
p(y,z,u) = (y,2). On the bundle~1§j:p* Ej, we can choose a metric §; such that
ia“(Ej) is isometric to p*E;, i¥ (Ej) is isometric to F;@ F;., j§ Ej is isometric to
(Ej,gj) and ji‘;Ej is isometric to (Ej,g;.).

Let 0=0%+0,+0d, and 0=0%+ 0, + 0, be the differentials on B x P! x P!,
For all j=0,...,m define

1 =
w;=—=— [ 0,0,(¢(E;))log|z|*logl|ul’. (1.119)
270 13 pt
By Stokes formula, we get
2 2
w;= zmplf 1¢>( -0, log|z|*log|ul
= | (@(E) — % $(E)) log|ul* =0, (1.120)

uep!

since i;‘;(fj) and ij‘,‘o(gj) do not depend on u. On the other hand, since qS(E ;) is
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0-closed and J-closed,

;= b [ a0 ¢(E )log|z|?log|u|?
27 p15 pt
= | G39(E)— 5 #(E))loglz> = [ #(E;,g)log|zI?
zep! P
— [ ¢(E;,§))log|z|*. (1.121)
Pl

This implies that, modulo P’, I does not depend on the choice of ;. Therefore
ii) holds. To prove iii) just notice that §; can be taken independent of z when E is split.
It remains to show that qS(E) is uniquely determined by the Properties i), ii)
and iii). But assume that a class ¢ (E) has been defined with these properties. Given
any acyclic complex E consider the complex E on B x P'. By property i), we have

~

(1/22) 03§ (E) = Z (— VIS(E) - (F;@F, 1) (L122)

From the proof of ii) and iii) above we deduce that

}’E (— 1) [ ¢(F;@®F,,)log|z[*eP. (1.123)
= Pl

j=0

Therefore
I =(1/2mi) j aa(¢(E N log|z|? = (1/2mi) f 0,0, (d)(E))loglz[2

= i* ($(E)) — i§(P(E)).
Since i%(E) and i* (E) is split, we get, by ii) and iii) applied to ¢, I = — H(E). ®

Let us assume now that ¢ is the Chern character ch defined by ch(4) = Trexp(4)
if AeM,(C). Since ch(F;@® F;,,)=ch(F;)+ ch(F;, ) we get (see also [GS1], up
to a factor of 2)

(1/2m)0° 3" Gh(E) = Y, (— 1)/ ch(E)) (1.124)

When g, and g are two metrics on a vector bundle E we shall write c~h(g0, 9)

instead of ch((E,g,) —— (E,g)) (and similarly $(go,9)). If xeP has degree (p, p),
define o* = (2wi)’a. By linearity we extend the map o+~ a* to any aeP.

Corollary 1.30.
i) When E is any acyclic complex as above,

ch(E)* = £;(0). (1.125)
i) If g, and g are two metrics on E,

ch(go, 9)* = £ (9). (1.126)
Proof. We just need to show that (up to normalization constants) {(0) and f(g)
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satisfy the properties i), ii) and iii) characterizing ch. From (1.60) and (1.113) we
know that i) is satisfied. The property ii) is clear, and iii) is certainly true for f(g)
(ie. f(go)=0).IfEis split the map v commutes with V and vo* + v*v = 1d. So we get

(p(s)= — —— j e duTry(N exp(— V?)) = — Tr,(N exp(— V?)).
Therefore {5(0) =0 as required. W

Remark 1.31. Defining (), ,(0) = {;(0) with E = ((Eo,go) — (E;,g)) We get

Chog0) = 11(9), (1.127)
and so by the definition of f(g), we find that
{590+ 4 (0) = ,(0). (1.128)

The equality (1.127) can be shown directly by proving the formula
dM{4,,(0)= = Tr(g~ ' dMgexp(— (V9)?)),

and (1.128) also follows from Theorem 1.22.

In [Bot C, 4.18], Bott and Chern define ch(E) when m =2 and the metrics on
E, and E, are induced from the metric on E;.

Part ii) of the Corollary extends to arbltrary characteristic classes.
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