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Abstract. We have obtained six new infinite series of trigonometric solutions to
triangle equations (quantum K-matrices) associated with the nonexceptional
simple Lie algebras: sl(N), sp(N), o(N). The i^-matrices are given in two
equivalent representations: in an additive one (as a sum of poles with matrix
coefficients) and in a multiplicative one (as a ratio of entire matrix functions).
These ^-matrices provide an exact integrability of anisotropic generalizations
of sl(N), sp(N), o(N) invariant one-dimensional lattice magnetics and two-
dimensional periodic Toda lattices associated with the above algebras.
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1. Introduction

In the theory of two-dimensional integrable systems of quantum field theory and
statistical physics a specific importance is attached to the special system of
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algebraic functional equations called triangle equations (or Yang-Baxter
equations)

MΪM ) W ) * m . (l.i)
Here θ,θf are complex variables, the indices run over N various values. The
summation over the repeated indices is assumed.

Each solution of the triangle Eqs. (1.1) can be treated, on the one hand, as an
exact factorized S-matrix in some 1 +1 -dimensional field theory [1, 2] and, on the
other hand, as a vertex weight matrix of an exactly soluble statistical model on
plane lattice [3,4]. Besides, the triangle equation arises as the consistency
condition for the Bethe anzatz solution of quantum-field models [5-7] and those
of one-dimensional magnetics [7]. Triangle equations also make a part of the
quantum inverse problem technique [8, 9]. Finally, studies of triangle equations
resulted in a new mathematical object called quantum groups [10].

Thus, each solution of the triangle equations is associated with quite a number
of exactly soluble models from field theory and lattice statistics.

Usually Eq. (1.1) is written in a more compact form using matrix notations. We
shall consider Rj^iθ) as matrix elements of some matrix R(θ) acting in the tensor
product of two vector spaces (CN®<CN. The matrix R(θ) is called a (quantum)
K-matrix. Introduce the matrices Rί2(θ), Rι3(θ), R23(θ), acting in the tensor
product of three vector spaces (DN ®(EN (g)(£>N according to the rule

)^ —Kii

[R13(θ) and R23(θ) are defined similarly, they act identically in the second and first
spaces, respectively]. In new notations, Eqs. (1.1) become

Rl2(θ)Rί3(θ + θ')R23(θ') = R23(θ')R13(θ + θ')Rί2(θ). (l.i')

The quantum i^-matrix is called quasi-classical if it depends on the additional
parameter φ (playing the role of the Planck constant) so that for small φ,

R{θ, φ) = ί+ 2φr(θ) + O(φ2). (1.2)

Substituting (1.2) into (l.Γ), one obtains the classical triangle equations, quite
essential for the theory of integrable classical systems [11]:

ίrAθlrl3(θ + θ') + r23(θ')-] + lr13(θ + θ%r23(θf)-] = 0 (1.3)

[ , ] denoting a commutator. The quantity r(θ) is called a classical r-matrix.
Note, that Eq. (3) is written only with the help of commutators. Therefore, one

may assume that r e ^ ® ^ , ^ being a Lie algebra. It becomes clear then that the
solutions of (3) can be written in an invariant form, i.e. independent of the
representation of (S. However, the corresponding solutions to the quantum
Eqs. (1.1) depend essentially on the representation of <§.

Intensive studies [12-24] of Eqs. (1.1) and (1.3) over the last years led to the
discovery of a great number of new integrable models and provided extensive
"experimental" material that has clarified essentially the general structure of
i^-matrices. Let us enumerate here some characteristic properties of ^-matrices.

(i) All known ^-matrices are meromorphic functions of θ expressed via
rational, trigonometric, or elliptic functions only.
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(ii) Trigonometric and elliptic ^-matrices possess an automorphicity prop-
erty. In the trigonometric case, this property is described as

) = (U®l)R(θ)(U(g)ίΓ1=(ί(g)U)-ίR(θ)(l(g)U), (1.4)

U being the matrix in (CN of finite order g, i.e. U9=\.
(iii) Most ^-matrices (excluding ^-matrices [18, 19], as well as some others)

possess a crossing symmetry
ι , (1.5)

where V is a matrix in (CN, ρ is some constant, tί means taking the transpose in the
first space (£N.

(iv) The relation R(0)~P takes place, P being a permutation matrix in

& j (1.6)

It is convenient to choose a normalization in which R(θ) has a pole at 0 = 0, i.e.

ResR(θ)\θ = 0^P. (1.7)

It follows from (1.4H1.7) that R(θ) has poles for θ = kπ, θ= - ρ + fcπ, fceZ.
Equations (1.7) and (1.1) imply

(v)Unitarity

£ being a unit matrix in ( C ^ ® ^ , Φ(θ) some (scalar) function of 0.
Note, that the properties (i)-(v) alone [i.e. without Eq. (1.1)], are rather hard

restrictions on the form of R(θ). In [22], matrix functions of the form

Λ(0) = A + Pctgθ-P ί l ctg(θ + ρ), (1.9)

where 4̂ is independent of 0, satisfying the requirements (i)-(v), were considered.
[Relation (1.6) is fulfilled trivially because U = l, g = l.] The great bulk of the
solutions obtained (though not all of them) proved to automatically satisfy the
triangle Eq. (1.1). In this way more than 30 new solutions to triangle equations
were constructed in [22]. Comparing this observation with the method [20] for
proving Eqs. (1.1) for elliptic .R-matrices [19] by the Liouville theorem and with
the analogous method used in [24] for Eq. (1.3), we found out that the properties
(i)-(v) complemented by conditions

(vi) R(θ) has no poles at 0φ/cπ, 0 + - ρ ' + fcπ, keΈ,

R±= lim R(θ); I R ^ o o , #iV*iV*23 = #2+3#ί3#ί2 (1.10)
Θ-* ± i oo

result in the fulfillment of (1.1). For the proof see [25] and Sect. 4 of this paper.
The concept of automorphicity (ii) for classical and quantum i^-matrices was

introduced in [19] where its connection with automorphisms of the Lie algebra
was also established for the case ^ = sl(N). In [24] a rather complete classification
of nondegenerate ι solutions (1.3) for all simple Lie algebras was made using this
idea. In particular, all elliptic and trigonometric r-matrices were found. Elliptic
r-matrices turned out to be connected with the sl(N) algebra and be exhausted by
those constructed in [19] where the corresponding quantum i^-matrix (in the
fundamental representation) was also found.

1 An r-matrix is called nondegenerate provided det||rμv | | ΦO, where r = rμvE
μ®Ev, Eμ is the

basis in ^



474 V. V. Bazhanov

As for the trigonometric r-matrices, constructed in [24], which are not
degenerate elliptic ones, their corresponding quantum ^-matrices were known
only in a few particular cases [15, 17].

In the present paper, six new infinite series of trigonometric quantum
^-matrices corresponding to the fundamental representations of the nonexcep-
tional simple Lie algebras sl(N), sp(N), o(N) have been constructed. The technique
we applied consisted of constructing .R-matrices obeying the above-mentioned
properties (iH vO a n d possessing the quasi-classical limit (1.2) with the classical
r-matrices found in [24] 2. The .R-matrices constructed are given in two equivalent
representations: in an additive one (as a sum of poles with matrix coefficients) and
in a multiplicative one (as a ratio of entire matrix functions). From the point of view
of the above properties (i)-(iv) these representations complement each other: the
additive representation possesses the explicit crossing-symmetry while the multi-
plicative one possesses the explicit unitarity. The main results of the paper were
published briefly in [25-27]. Note that our methods were also generalized to the
case of .R-matrices connected with Lie superalgebras [28, 29].

An alternative approach to the construction of quasiclassίcal trigonometric
^-matrices were introduced in [30]. The point of this approach is an interwinding
relation for the quantum L-operators for generalized periodic Toda lattices. In this
way the connection between quasiclassical trigonometric ^-matrices and quan-
tum Kac-Moody algebras [10, 30] is established.

We shall proceed as follows. In Sect. 2 some necessary information from the
theory of Lie algebras is presented. In Sect. 3, trigonometric classical r-matrices of
[24] are considered. In Sect. 4 the corresponding quantum K-matrices are
constructed. Section 5 contains a discussion of the integrable quantum systems
associated with these K-matrices: 1) two-dimensional generalized Toda lattices; 2)
anisotropic generalizations of the sl(N), sp(N), and o(N) invariant models
of one-dimensional magnetics. In Sect. 6, factorized representations for trig-
onometric .R-matrices are obtained. A representation of this type was first
obtained in [31] for an elliptic K-matrix [19]. It is expressed with the help of the
ordered exponent

Γ θ+2φ )

ί r(s)ds\, (1.12)
θ-2φ )

where r(θ) is the corresponding classical r-matrix, normalized at θ = 0 by the
condition

r{θ)= — ^ - + const + 0(0); (1.13)

P is the permutation operator (1.6). As it was recognized in [32], Eq. (1.12) may be
rewritten in the form

(1.14)

where the function

o 1
f r(s)ds>σo (1.15)

2 This technique, however, is not applicable to the .R-matrices for the non-fundamental
representations of ^, because these ^-matrices do not possess the property (vi)
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can be interpreted as a matrix generalization of the Weierstrasse elliptic σ-function
\_^r(s) is treated, accordingly, as a matrix generalization of the elliptic (-function].

We make use of this analogy to introduce the matrix generalizations of the
trigonometric functions, corresponding to the obtained trigonometric ^-matrices.

2. Some Information from the Theory of Simple Lie Algebras

This section presents briefly some necessary information from the theory of simple
Lie algebras. For details and proof see [24].

Let ^ = @(N) be a Lie algebra of N by N matrices. In this paper we restrict
ourselves to the consideration of the classical matrix Lie algebras sl(N\ sp(N\ o(N)
in the fundamental representations:

sl(n) = {X e Mat (n, <C)|Sp X = 0},

sp(2n)ά= {X e Mat(2w, C)|Z f = - SXS (2.1)

φ)d=

where t denotes taking the transpose, while the n by n matrix S and the In by In
matrix S are of the form

S =

0 1

0

0

-s 0

(2.2)

The Killing form has the invariance property

[ , ] denoting a commutator. The tensor of the Killing form is

Let {Ei} be the basis of generators in @(N). The scalar product in ̂  is specified by
the Killing form [note, that the definitions (2.1) entail SpΛr = 0]:

(2-3)

^ ^ j ) . (2.4)

In order to describe the trigonometric solutions of'Eqs. (1.3), one has to use the
concept of the Coxeter automorphism of algebra ^ (see, e.g., [24]).

An automorphism of a Lie algebra is a one-to-one linear transformation that
preserves the commutation operation. An inner automorphism is a product of a
finite number of automorphisms of the form eΆdx, x e f , with adx being a linear
operator acting by the rule

e'S. (2.5)

Let ^ be a simple Lie algebra. Any automorphism of ^ can be represented as
Φint * <Px> where φint is an inner automorphism and φτ is induced by the
automorphism τ of the Dynkin diagram of algebra ^ .
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Let us fix the automorphism τ of the Dynkin diagram. The automorphism
Ac = φint φτ is said to be a Coxeter one provided

1) algebra $o

d= {Xeg\Ac[_X]=X} is Abelian,
2) Ac has minimum order among the automorphisms A' = φ[nt • φτ such that

the algebra &f

0 is abelian.
In the following the pair of the algebra and its Coxeter automorphisms will

be denoted by the symbol § = (^,AC). For classical Lie algebras An-ί=sl(n),
Bn = o(2n + ί), Cn = sp(2n\ Dn = o(2n) there are seven infinite series of pairs:
@ = Ai

n

1lu Aψn, A%>_19 Biι\ C^, D^\ D{

n

2). In these notations, the numbers in
parentheses show the order of the automorphism τ of the Dynkin diagram.

The explicit form of the Coxeter automorphisms for the algebras (2.1) under
consideration is given in Table 1 borrowed from the paper [24]. The notations: h is
the order of an automorphism, Ac [X~\ is the image of an element I e ^ under the
action of an automorphism, ω = exp(2π//7z), σx in the definition of the matrix T for
the series, D(

n

2) denotes a diagonal 2 by 2 block with the elements σ n = σ 2 2 = 0;
σ 1 2 = σ 2 1 = l.

The eigenvalues of Ac equal ωj, j e Έ. Therefore, ^ may be represented in the
form fc-1

/ ^ ω j X } . (2.6)

Note that by the definition of a Coxeter automorphism the algebra ^ 0 is abelian.
Let r = dim^0. There exist elements eQ,...,ere

<&1\ fo,...,fre
<&-ι;

Ko, ...,hr_1 G ^ 0 , such that
1) e0,..., er form the basis in ̂ 1;f0, . . . ,/ r formonein^_ 1 ;/ί 0 , ...,/ί'r_1 form the

basis in ̂ 0 , normalized by the condition

[hbhJ) = 2δij] (2.7)

2) The following relations are satisfied:

[ £ β A ] = 0 , (2.8)

ίfίa,ej = φi9 tfaJJ^-afift, (2.9)

Table 1. Coxeter automorphisms of the classical Lie algebras

A^i sl(n) n TXT'1 co^^diag^co"1^2, ...V"")
Aψn sl(2n + l) 4n + 2 -TX'T^1 Sdiag(l,ξ, ...,ξ2n); ξ= -ω
A{

2

2^i sl(2n) 4n-2 -TX'T'1 Sdiag(l,ξ,...,f 2

iξ
n"\ξn~\ξn,...iξ

2n~2) i ξ= -co
C{1) sp(2n) 2n TXT'1

B{

n

1] o(2n + l) 2n TXT'1

D(

n

1} o(2ή) 2n-2 TXT'1 d i a g ( l , c o ' \ . . . ,ω 2 ~ B ,ω 1 ~ / I ,ω 1 " / I , ι
D{2) o(2n) 2n TXT'1
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with

( a i , a i ) = r £ α?α?, {**$='Σ α?ffβ. (2.11)
a=1 α = 1

The r-dimensional vectors α7- = (α°,..., off*) are called simple weights for the (<g, Ac)
pair. The explicit realizations for the generators Ka, eb ft and for the systems of
simple weights are presented in Appendix A.

T h e m a t Γ i X t = λΣg»Et®Ej, (2.12)

plays in important role in describing the solutions of the triangle equations. Here
we choose 1 = 1 for A^l 2 and λ = 2 for other series; tensor glJ is inverse to tensor of
the Killing form (2.4). It follows from the invariance of the Killing form (2.3) that
for any I e ^ ,

[ X ί ί X ] 0. (2.13)

As may be easily checked, {A® A) [f] = t. Hence, t may be represented as

h

Σ y j J j

t-h-1 Σ ω~%4c(x)ir[ί],
n = 0

h being the order of Ac. Note, (2.7), (2.12), (2.14) entail that

Σ (2.15)

3. Classical Triangle Equations

The most complete results for the solutions of the classical triangle Eq. (1.3) were
obtained in [24]. Below we present some necessary information from this work.

3.1. Classical r-Matrίces

As has been noted in the Introduction, Eq. (1.3) is written in terms of commutators.
Therefore, one can assume r(θ) e ̂ (JV)(χ)^(iV), ^ = &(N) being a Lie algebra of N by
N matrices.

For any Lie algebra, there is a simplest rational solution to Eq. (1.3) of the form
[19,23],

r ( 0 ) = - . (3.1)

For these solutions, Eq. (1.3) reduces to relation (2.13). The trigonometric
solutions for Eq. (1.3) are obtained [24] via "averaging" (the term introduced in
[33]) the elementary pole (3.1) over the one-dimensional lattice θ = kπ/μ, keZ,
using the Coxeter automorphism Ac of the algebra ^
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where tj are defined in (2.14), μ is a constant. Thus, the trigonometric solutions
are determined by the choice of the pair # = (^, Ac). Remember, that for
classical Lie algebras there are six infinite series of pairs listed in Table 1.
Formula (3.2) was obtained in [24] for the generic case, and in [34, 35] for the
series A{*lu B£\ C{*\ D^. Note that the function r(θ) is unambiguously
determined by the following three properties:

1) r(θ) is meromorphic in θ with the set of poles θ = kπ/μ, keZ, and at zero it
has the residue ί,

o ~ f . (3.3)

2) Automorphicity (quasi-periodicity)

r(θ + π) = μ c ® l ) [ r ( θ ) ] = ( l ® A c ) - 1 [ r ( θ ) ] . (3.4)

3) Asymptotic behavior

r(0)| β - ± ί α o =+iί o , (3.5)

where t0 is given in (2.14). With the help of Eqs. (2.14) and (3.2) one can easily derive
an additional property of r(θ):

4) Classical unitarity
r(θ)=-Pr(-θ)P, (3.6)

P being the permutation matrix (1.6).
Reference [24] contained a highly simple and elegant proof of the fact that r(0)

satisfies the classical triangle Eq. (1.3). This proof will be given below. It is based on
the abovesaid properties l)-4) of the function r(θ). Let us denote by ψ(θ, θ') the left-
hand side of Eq. (1.3) and consider it as a function of θ, keeping θ' fixed. By virtue of
(3.3), (3.4) it is quasi-periodic,

Ψ(θ + πg/μ,θ') = (Ac®ί®ί)lΨ(θ9θ')-], (3.7)

and has simple poles at θ = kπ, θ = - 0' + fcπ, k e TL. Using relations (2.13), (3.3), (3.6),
(3.7), one can readily exhibit that the residues in these poles vanish. It follows from
(3.5) that ψ(θ, θ') is finite when 0-» + ιoo. Together with the periodicity oϊψ(θ, θ') in
θ (with the period gπ/μ) this means that ψ(θ, θ') is independent of θ. Similarly, we
can show ψ(θ,θ;) to be independent of θ'. Now, tending θ-±ico, and then 0'->/oo,
using (3.5) and remembering that t0 e ̂ Q®^0> where ^ 0 is an Abelian subalgebra
of ^, one finds ψ(θ,θ') = 0.

In our next section we shall construct the quantum ^-matrices, corresponding
to the classical r-matrices (3.2), for the fundamental representations of the algebras
(2.1) in question. In this connection, it is useful to rewrite relation (3.2) taking into
account the explicit form of t for the representations (2.1). Choosing some
particular basis in ̂ , it is easy to show that 3

tsl(N) = ΛΓ ,

3 In the case oϊsl(N) algebra we drop in (3.8) a term, proportional to unity in (C^CC^, which does
not affect Eq. (1.3)
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where λ was defined after Eq. (2.12), P is the permutation matrix (1.6), ίί means
taking the transpose in the first space <EN. Here and after we use boldface letters to
denote products of the form A®\, e.g.

U=ϊ/(g>l, (3.9)

where S, S were defined in (2.2).
Let U be a matrix in <EN of a finite order g, Uβ = l. Introduce the function

) = Z{θ,P) = g~1Σ UkPlΓfectg((6>-fcπ)/g). (3.10)

It is easy to check that Z(θ) obeys the relations

0 = P, (3.11)

( Z(-θ)=-PZ(θ)P. (3.12)

Let us now choose in Eq. (3.2) μ - 2 for the series A%9 42« - 1 and μ = 1 for the other
series. Using (3.8)-(3.12) and the expression for A[X] from Table 1, we can
represent the function r(θ) in the form

r(0) = Z(0), # = 4 ^ i > (3 1 3 )

( 3 1 4 )

The values of g and the matrices U and B for each series are presented in Table 2, t1

denotes taking the transpose in the first space <EN

JO, § = BΪ\CΪ\DΪ\DΪ\
ί/2 I ^ S Cίπ/2

Note, that the matrix U possesses the property

BUB-l = U'K (3.16)

Let us give one more useful formula resulting from (2.14) and (3.8):

ίP, § = A^
to-\Pκ # Φ 4 V

 ( 'o-\P-κ,

Table 2. The parameters of the solutions of triangle equations. The quantities h, T for each series
are given in Table 1. S, S are defined by Eqs. (2.2)

Ser. g B U ρ {ca},fl = 0 , . . . , « - l

A2,! ^β T T(Vyι Nφ-π

2 c f l = - l
42

n

)_1 hβ T
C{

n

ί] h S T
B{

n

1] h S T (N-2)φ ca=-a/n
D(

n

1} h S T {N~2)φ cβ = 0
D(

n

2) h S T (N-2)φ <;„_!=(); c



480 V. V. Bazhanov

where

p = g - i * Σ U k P l Γ \ (3.18)
k = 0

d (3.19)

(3.20)

(PtΛJψ = δ. • δ G 21Ϊ
\ Γ Λiί2

 UHl2υjij2' \J'Δi)

Here N is the matrix dimension of ^.

3.2. Classical Toda Lattices

In this subsection we consider a class of integrable classical systems related to the
r-matrices (3.2), called by the two-dimensional generalized periodic Toda lattices
[36, 37].

Consider the pair @ = (&,AC) where ^ is a simple Lie algebra and Ac is its
Coxeter automorphism.

The system with the Lagrangian

V(u) = m2 £ -*—e2{a»u), (3.22)
ί = o (α^α,-)

i - l

(cchu)= X α X ,

is called a two-dimensional Toda lattice associated with §. Here ua = ua(x,t),
α = 0, ...,r — 1, is α set of scalar fields in two-dimensional space-time, r = dim^ 0 ,
{oίj} is a system of simple weights § [see Eqs. (2.7)—(2.11)]. The equations of motion

2 ^ F ( ) ( 1 2 3 )

can be represented in Zakharov-Shabat's form

3 t L - δ x M + [L, Af] = 0, (3.24)

) = dtu + λmeΆάuI + + λ~ιme'ΆdΊ_ , (3.25)

uI++λ-ιrne-aduI_, (3.26)

u= Σ u"ha, λ = exp(-2iθ/g), (3.27)
α = 0

ί t = Σ « h / - = Σ / i (3-28)
i = 0 i = 0

The operator adw was defined by (2.5), the values of g can be found in Table 2.
The canonical Poisson bracket has the form

δ(χ-y)δab, (3.29)

with π = y~1dtu.
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The most efficient approach to integrable systems with an ultralocal (i.e.
having no derivatives of ^-function) Poisson bracket is the r-matrix technique
[11]. It is based on the fact that a Poisson bracket of two L-operators can be
written in the so-called r-matrix form:

{L(0, x)®L(θ, xr)} = iyδ(x - xf) [L(0)<g> 1 + 1 <g> L(θ% r{θ' - 0)], (3.30)

where r(θ) is a classical r-matrix.
For the L-operator (3.25) and r-matrix (3.13), (3.14) this relation was proved in

[24]. We will not present the proof here since relation (3.30) can be treated as a
quasi-classical limit of the relation (5.4) for the corresponding quantum
L-operator, discussed in Sect. 5.

4. Quantum Triangle Equations

In the present section we shall construct quantum ^-matrices, corresponding to
the classical r-matrices (3.14), for the series Aψn, A%>_19 B\l\ C{

n

ι\ D{

n

ι\ B{

n

2\ The
quantum K-matrix for the series A{

n

ί} was already known; it will be given in the end
of this section. As has been pointed out in the Introduction, quantum ^-matrices
depend essentially on the representation of algebra <S. In the present paper we limit
ourselves to the consideration of fundamental representations of rS, defined in
(2.1).

4.1. A Simple Theorem

The basic idea of our approach is to employ the following theorem [25].
Let R(θ) be a meromorphic function of θ with the following properties
(i) Automorphicity (quasi-periodicity) and invariance:

R(θ + π) = (U®ί)R(θ)(U(g)ίyi=(l®UyιR(θ)(ί(g)U), (4.1)

where U is the matrix in C N of finite order g, i.e. Ug = l. It follows from (4.1) that
R(θ) is periodic with the period gπ.

(ii) Crossing symmetry:

R(θ) = (V®ί)(PR(-θ-ρ)P)t>(V®iΓί. (4.2)

Here ρ is a constant, ρ φ 0; V is a matrix in <£N, t x denotes taking the transpose with
respect to the first space (CN, P is the permutation matrix (1.6).

(iii) Unitarity:

R{θ)PR(-θ)P = EΦ{θ), (4.3)

with E being a unit matrix in (CN®<CN, while Φ(θ) is some scalar function of 0.
(iv) Asymptotic behavior:

R(θ) is finite when 0-> ± /oo , (4.4)

Rΐ2Kΐ3R23 = R23RΪ3RΪ2l R ^ = l i m R ( θ ) . (4.5)
<9-> ±ioc

(v) Pole structure: R(θ) has simple poles, which are located at θ = fcπ,
θ= — ρ + fcπ, fceZ, only. The residue of R(θ) for θ = 0 is proportional to P:

0^P. (4.6)

The remaining residues are fixed by the properties (i)-(ii).
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Theorem. It follows from (i)-(v) that R(θ) satisfies Eq. (1.1).

Proof Let us denote by ψ(θ, θ') the difference between the right- and left-hand sides
of Eq. (1.1) and consider ψ(θ, θ') as a function of θ keeping θ' fixed. It follows from
(i), (v), that ψ(θ, θf), similarly to R(θ), possesses the automorphicity property, is
periodic with the period gπ and has poles at θ = fcπ, θ = — ρ + fcπ, θ= — θ' + fcπ,
θ= — θ' — ρ + fcπ, keΈ. Using (ii), (iii), and (v), one can show that the residues at
these poles vanish. (Note that due to automorphicity it is sufficient to consider only
four poles.) Next, Eq. (4.4) entails that ψ(θ,θ') is finite for θ->±ioo. This means
[provided periodicity ofψ(θ, θ') is taken into account] that ψ(θ, θ') is a constant, i. e.
independent of θ. Similarly ψ(θ, &) may be proved to be independent of θ'. Letting
now 0->zoo and then θ'-^ioc and using Eq. (4.5), we obtain Ψ(θ, 0') = O. Q.E.D.

Remark ί. It is not difficult to obtain a generalization of the above theorem to the
elliptic case. For .R-matrices with one series of poles [19] [i.e. having no property
(ii)] the theorem was used in [20].

Remark 2. The property of i^-matrix to be quasi-classical has not been used in the
proof. Therefore, the theorem can be applied to nonquasi-classical ^-matrices as
well, in particular to those of [22] (the corresponding calculations were performed
by O. Vasiliev).

It would also be interesting to investigate new ^-matrices, found in [38], from
the point of view of the above theorem.

4.2. Quantization of Trigonometric r-Matrices

Below we construct a quantum i^-matrix jR(0, φ) which obeys the conditions of the
theorem of the previous subsection and has the quasi-classical limit (1.2) with the
classical r-matrix (3.14).

An analysis of known .R-matrices for the cases Aψ [17] and Cψ [15] shows
that they may be represented in the form

1l7 (4.7)

= l+(cos2φ-l ) ίg , (4.8)

U = 1/(8)1, (4.9)

where t0 is given in (3.17), the other notations are defined by Eqs. (2.14), (3.10),
(3.14) and Table 1, C(φ) is a diagonal matrix in (CN, such that

] = 0, (4.10)

= BC~\φ), (4.11)

where K is defined in (3.19)4. It is convenient to write C(φ) in the form

|)=Vu. (4-12)

4 Condition (4.11) eliminates gauge freedom in choosing C(φ) connected with the transformations
R-*(D®D)R(D®D\ where D is a diagonal matrix commuting with the matrix B
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where {ha} is the basis in ^ 0 , r = dim^ 0 . Note that in our realization of ^,

K = ea,a-eN-a-l,N-a-ll (eίj)aβ = ^ίa^jβ , ( 4 13)

N being the matrix dimension of ^ (see Sect. 2 and Appendix A).

It seems very reasonable to use Ansatz (4.7)-(4.12) in a general case. Indeed,
with the help of relations (3.11), (3.17), (4.8) it is easy to show that JR(05 φ\ so defined,
satisfies conditions (i), (ii), (v) of the previous subsection. Note that in (4.2)
V=C(φ)B. Next, it follows from the definition (2.14) and the explicit form of
Coxeter automorphisms (Table 1), that t0 is a diagonal matrix and

ίg + fc = ίS; k>\. (4.14)

Exploiting (3.10), (3.17), (4.7)-(4.9), (4.14) we get

2 i Θ ' g ) , R±=eτ2iφt0. (4.15)

Since ί o e^ o (x)^ o , ^ 0 being an abelian algebra, relation (4.5) is satisfied trivially.
Thus, conditions (i), (ii), (iv), (v) are checked and it is left to check the unitarity

condition (4.3). The substitution of (4.7) into (4.3) leads to a system of equations for
C(φ) and ρ, which allows us to define C(φ) and ρ unambiguously provided (4.11) is
taken into account. The required calculations are simple, but tedious. The result is
given in the author's work [25] 5 and we reproduce it in Table 2. Fortunately there
exists a more simple method to prove unitarity for K-matrix (4.7), using the
quantum L-operator for generalized periodic Toda lattices. This proof will be
given in Sect. 5. The most essential point of the proof is that ρ and C(φ) from
Table 2 are determined unambiguously by the system of equations

o; j = O,l,...,r, (4.16)) ; j , , , ,
gφ

where α", 7 = 0, ...,r, is the system of simple weights of (&,AC) (see, Sect. 2), A is
defined by (3.15).

Assuming now that the unitarity condition is proved, let us calculate the
function Φ(θ) from the left-hand side of Eq. (4.3). Denote by Φ(θ) the left-hand side
of (4.3). Φ(θ) is a meromorphic function of θ and may have the poles at θ = kπ,
θ= ± ρ + feπ, keZ. By means of (4.1), (4.6), (4.15) it is easy to show that

a) Φ(θ + π) = (U®l)Φ{θ){U(g)ίy1, lim Φ(Θ) = E, (4.17)
θ -+ ± i oc

where £ is a unit matrix in (
b) When θ = kπ, keZ, Φ(θ) has the second order poles

(4.18)

Next, at θ= — ρ + feπ, fceZ, the residues of R(θ) are degenerate matrices

(4.19)

5 In the present paper we use slightly modified (but, of course, equivalent) definitions of Coxeter
automorphisms (cf. Table 1 and Table 2 form [25] and present paper)
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where the notations (3.20) and (4.9) are used. Since detK = 0,

detl?fc = 0 (4.20)

and consequently,

det(Re S a(0) | θ = T ρ + k π ) = O. (4.21)

The only way to make (4.21) agree with the matrix structure of the left-hand
side of (4.3) is to require

c) ResΦ(θ)U T ρ + fcπ = 0. (4.22)

Now, using the Liouville theorem, we can recover the function Φ(θ) unam-
biguously by the properties (a)-(c) given above,

S ^ ) . (4.23)

Thus, the quantum K-matrix for the series Aψn, Aψn^u B{

n

ι\ C{

n

ι\ D{^\ B{

n

2\
defined by (4.7) and by the values of C(φ) and ρ from Table 2, satisfies all the
conditions of the theorem from the previous subsection and, hence, satisfy Eq. (1.1)
as well. In the quasi-classical limit (1.2), Eq. (4.7) yields the corresponding classical
r-matrix (3.14).

For § = A(

n

1li the quantum K-matrix has been known before [18]. In our
notations it looks like

R(θ, φ) = R0± sin2φZ(θ), (4.24)

where Z(θ\ Ro was defined by (3.10), (4.8) respectively and the matrix U entering
the definition of Z(θ) was given in Table 2. Clearly, (4.30) has a correct quasi-
classical limit with the classical r-matrix (3.13).

To conclude this section, we note that the ^-matrices (4.7), (4.24) have the PT-
symmetry and invariance properties

(4.25)

(X®X)R(Θ) (X®Xy1= R(θ), (4.26)

where ί t ί 2 denotes taking the transpose in <EN®<EN, and X is any diagonal matrix
obeying the relation

1 1 (4.27)

5. Integrable Quantum Systems

5.1. Quantum Toda Lattices

In this section the quantum variant of generalized periodic Toda lattices will be
discussed. For these models we construct the quantum L-operators [26, 30, 39]
satisfying relation (5.5). Apparently, this means that they can be integrated by the
quantum inverse scattering technique [8, 9].

For the series § = Λi

n

1l x this problem was solved in [40] (see also [41, 42]). We
shall handle the other series from Tables 1, 2.
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In the quantum case the Poisson bracket (3.29) is replaced by the commutator

[πa(x\ub(y)~]=-iδabδ(x-y), (5.1)

where π;1=γdtua, y = 2φ.
The ultraviolet regularization is achieved by introducing a spatial lattice with a

(small) spacing δ. Let us define the variables

Mβ(n) = δ - 1 nT»(y)dy, Pa(n) = iXTdtu(y)dy9 (5.2)
xn xn

[pjn), uh{n')~] - - iφδabδnn,. (5.3)

To apply the quantum inverse problem method [8, 9], it is necessary to
construct a quantum L-operator L(θ, p, u\ satisfying the relation

Llφ)L2

n(θ>)R12(θ> - 0) = R12(θ' - θ)L2

n(θ')Ll(θ) + O(δ2), (5.4)

Studying the known L-operators for the cases of Λ^ [8] and Aψ [17], we
observed that they could be written in the form [26, 30],

,p,u) = ep(\ -ίδrn[λeddul + + λe~&duI^)ep, (5.5)

where p = {p, h); u = (u, h) and the rest of the notations were defined in (2.5), (3.27),
(3.28). Note, that in the quasi-classical limit we have φ-»0, p-+ — iφδπ(x) and

L(θ9p9u)c~i+ δLc(θ, π, u) + O(φ2), (5.6)

where Lc(θ, π, n) is the classical L-operator defined by relation (3.25).
it turns out that Eq. (5.5) works for all the algebras under consideration. We

shall show below that the L-operator (5.5) and ̂ -matrix (4.7) obey relation (5.4).
Let us enumerate some features of the L-operator (5.5),

)=U-1L{θ)U, (5.7)

where the explicit form of U is presented in Tables 1 and 2,

L(θ)(C(φ)B)Lt{θ-ρ)(C(φ)B)-1 = ί+O(δ2). (5.8)

Here t denotes taking the transpose of L as a matrix in (£N; the matrices B, C(φ) and
the constant ρ are presented in Table 2. For θ^> ±ioo,

(5.9)

J± = imδepe±adul±ep. (5.10)

Equations (5.7) and (5.9) follow directly from the definition (5.5). Equation (5.8)
is proved in Appendix B, using a new representation for ρ and the matrix C(φ) in
internal terms of the pair (^, Λc),

(5.11)

where Ea, α = 0, . . . ,r— 1, is a basis in ί¥ 0, cn and ρ are determined by the equations

J = 0, l , . . . , r , (5.12)

gφ
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where ocp j = 05 ...,r, is the system of simple weights of (&,AC) ( s e e Sect. 2), zl is
defined in (3.15). The solution to system (5.12) always exists and is unique.

Now turn to the proof of Eq. (5.4). As in Sect. 3, the main idea will be to apply
the Liouville theorem. Consider the difference Ψ(θ, θ') between the right-hand side
and left-hand side of Eq. (5.4) as a function of θ for fixed θ'. Since L(θ) is an entire
function of θ, then Ψ(θ,θf) as well as R(θ-Θ') has simple poles at θ= -θ' + kπ;
θ=-θ'-ρ + kπ; fceZ. As follows from (4.1) and (5.7), Ψ(θ,θ') possesses
automorphicity:

Ψ(θ θ') (Ul)1Ψ{θθ'){Uί) (5.13)

and is therefore periodic in θ with the period gπ. The residue oΐR(θ) at θ = 0 is of the
form

P , (5.14)

and at 0 = - ρ it is defined by (4.19). With the help of (5.8), (5.13), (5.14) one can
show that the residues of Ψ(θ, θ') are of the order of O(δ2). Thus,

Ψ(θ,θ') = entire function of Θ + O(δ2). (5.15)

Consider next the limits θ->±ioo. Using (4.15) and (5.9), we obtain

2 i θ f g ) , (5.16)

(5.17)

^ (
(5.18)

where J± and R± are defined in (5.10) and (4.15), respectively. Using (2.9), (2.15),
(5.1), one can easily exhibit that the commutator in (5.17) vanishes. Hence, up to the
terms of the order of O(δ2), Ψ(θ, θ') is independent of θ:

. (5.19)

In the same fashion it is proved that Ψ(θ, θ') does not depend on θ\ i.e. that Ψ + (0f)
is a constant. The simplest way to calculate it is to let θ'-^ — ico in (5.18). Using
(5.12) one obtains

Ψ+(θ') O(δ2). (5.20)

It follows from (5.19), (5.20) that Ψ(θ,θf) = O(δ2\ which does prove (5.4).
Note that in the quasi-classical limit (1.2), (5.6) relation (5.4) reduces to

Eq. (3.30).
One more important observation is as follows. When proving (5.4), we used 1)

automorphicity of the K-matrix (4.7); 2) the expression for the residues (4.19), (5.14)
and Eqs. (5.12), which define C(φ) and ρ 3) the asymptotics (4.15). These properties
define the i^-matrix unambiguously. Thus, relations (5.4) and (5.5) may be taken as
the basis to calculate the jR-matrices (4.7)6. This program was recently realized in
[30, 39].

Using Eq. (5.4) it is not difficult to prove the unitarity of ^-matrix (4.7).
Applying Eq. (4.5) twice, we have

' This possibility was pointed out to the author by V. A. Fateev
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where Φ(θ) denotes left-hand side of Eq. (4.3). Expanding the product of two
L-operators in a series in δ, we obtain that Φ(θ) commutes with any matrix of the
form 1®X and X®i,XeG. Hence, Φ(S) is proportional to the unity in <EN®(EN.

5.2. Integrable Models of Magnetics

The ^-matrices (4.7), (4.24) allow us to construct integrable models for magnetics

in a standard way. The Hamiltonian is of the form

= ΣHn,n+\-> {D.21)
n

HU2 = id/dθ(PR12(θ,φ))\θ = 0. (5.22)

When φ is purely imaginary, ]H is real, and with account of (4.25), hermitian.
The magnetics (5.21) are anisotropic generalizations of sl(ή), o{n\ s/?(n)-invariant
magnetics considered in [7].

6. Factorized Representations for Quantum /^-Matrices

6.1. Preliminary Remarks

Let f(z) be a meromorphic periodic function of z, /(z + π) = /(z), bounded when
z-^ + ίoo, and having in the strip 0^Rez<π simple poles at z = cιki with the
residues ck and zeros at z = bk, k = 1,..., r. It is well known that such a function can
be represented both as a sum of cotangents,

f(z)= Σ qctg(z-αk) + const, (6.1)
fc=l

and as a product of sines

/(z) = const Π ^ 7 ^ τ ( 6 2 )

The trigonometric ^-matrices, considered in Sect. 4, are meromorphic quasi-
periodic matrix functions of 0. They are bounded at 0—• + ioo and have simple poles
only. The representations (4.7), (4.24) for these ^-matrices may be treated as a
matrix analogue of the representation (6.1) for ordinary periodic functions. Note
that the representation (4.7) allows one to check without difficulty the crossing-
symmetry (4.2) of the corresponding ^-matrices. However, checking the unitarity
property (4.3) is not trivial.

In this section we shall construct new multiplicative representations for the
^-matrices (4.7), (4.24), playing the same role as the representations (6.2) for
ordinary functions. For that, we introduce elementary matrix multipliers (in
general, noncommuting) which should be naturally considered as matrix gen-
eralizations of the functions sinz and cosz. For these new representations, the
unitarity of K-matrix becomes an easily checked feature.

62. Matrix Generalizations of Trigonometric Functions

As is known (see [43], Sect. 22.4), the function

1'], (6.3)
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may be chosen as the basis for the theory of trigonometric functions. The prime at
the sum sign means that the value m = 0 is omitted. Then the function sinz is
defined as the solution of the equation

^ (6.4)

with the initial condition,

f(z) = z + O(z2); z ^ O . (6.5)

Let us introduce the matrix analogues for ctg(z — A) and sin(z — A), where A is a
constant. Let ζ(θ) be a meromorphic matrix function in CN(χ)(CN, with the
following properties:

(i) Quasi-periodicity:

(6.6)

(6.7)

where U is the matrix of finite order g, i.e. U9 = l.
(ii) ζ(θ) has only simple poles when Θ = kπ + A, keZ. For Θ~

where M2 = M, (6.8)

MN{1-M) = O. (6.9)

(iii) ζ(θ) is finite when 0-> ±ioo,

0) |<oo, θ^±ioo. (6.10)

It is natural to consider the function ζ(θ) as a matrix generalization of the function
ctg(z — A). The meaning of the requirements (6.8), (6.9) will clear up later on.

Define a matrix generalization of the sine function, σ(θ), as the solution of
equation i

— =ζ(θ)σ(θ) (6.11)

with the initial condition

σ{θo) = σo; θo + A+kπ, keZ, (6ΛV)

σ0 being a matrix in <EN®<EN.
Let us show σ(0) to be an entire function of θ. It is sufficient to prove that σ(θ) is

entire in the vicinity of singular points of Eq. (6.11), at Θ = A +kπ, keΊL. Let us
consider Eq. (6.11) in the vicinity of the point Θ = A.

Represent σ(θ) as
σ(θ) = eMlndΣ(θ), (6.12)

eMln~θ = l-M + MΘ; Θ = Θ~A. (6.13)

The second equality has been obtained taking into account Eq. (6.8). The
substitution of (6.7), (6.12) into (6.11) yields

= e Λ m e M ) m ^ + a o + o φ ) \ Σ φ h

uu \ u ) (0.14)
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Therefore Σ(θ) and, hence, σ(θ) are regular at θ = 0. Due to the quasi-periodicity
of ζ(θ), Eq. (6.6), the above reasoning hold for other singular points of Eq. (6.11),
i.e. θ = A+kπ, keZ. The scheme of the above proving that σ(θ) is single-valued
was borrowed from [32].

The function σ(θ) may be written as an ordered exponent,

σ(θ) = σ(θ,θo)σθ9 (6.15)

ί θ> 1
σ(0 l 5 0 2 ) = P e x p < - J ζ{s)ds} =σ{θ1)σ-1{θ2). (6.16)

The integration contour here is arbitrary because of the already proved uniqueness
of σ(θ).

Note, it follows from the conditions (i)-(iii) on ζ(θ) [without taking into
account (6.9)] that

) = Z(θ-A,M) + δ. (6.17)

Here δ is a constant matrix in ( C ^ ® ^ , commuting with ί/®l, whereas the
function Z(Θ,M) is defined by relation (3.10), with P replaced by M,

9 ctg((0-kπ)/g). (6.18)

6.3. Two Types of ζ- and σ-Functions

The above rather general definitions of the functions σ(θ) and ζ(θ) were given
without the connection with the structure of the ^-matrices (4.7), (4.24). Now we
are going to concretize these definitions.

Let # = (^, Ac) be one of the pairs from Tables 1 and 2 and g, 5, U, C(φ) take the
corresponding values from Table 2. [We identify the matrix U in (6.6) and (4.1).]
Let us define two types of the functions ζ(θ) with the same matrix U but different
residues (the function ζ2 is not defined for

.)-iδί/2, (6.19)

ζ2{θ) = {Z(θ-Δ,K)-iδ2)/N. (6.20)

Here Z(θ, M) is defined in (6.18), /V is the matrix dimension of ̂ , A is given in (3.15),
matrix K is defined in (3.20),

P ± = i ( l ± P ) ; PX

±=P±, (6.21)

Σ g), (6.22)

δ2 = ig" ] Go V (I/® I)"*ctg(fcπ/g)Tr([/*), (6.23)
k= 1

S Ί = δ i G 0 . (6.24)

The matrices P and P r were defined by (1.6) and (3.21). The projection matrix in
(CN®(CN, Go, entering into (6.24) is defined by

(Gj£ = <5i-β.A + «.A+i.Jv-i; α = 0 , l , . . . , N - l . (6.25)



490 V. V. Bazhanov

Remember, the matrix indices run over the values 0,1,..., N — 1, the indices z, j refer
to the first space <£N, and the indices fc, / refer to the second one. Henceforth the
indices in ^-symbols are considered modulo JV, i.e.

^ij — & i (mod N),j {mod N) (6.26)

The matrices δu δ2 may be calculated using the explicit form of U from Table 1.
Table 3, given on page 498, represents the vectors {d\t2}, α = 0, ...,r — 1, related
to <5l5 δ2 as

S A — faK), (6.27)

where ( , ) and ha are defined by (4.12), (4.13).
Immediately from the definitions (6.19) and (6.20), it is easy to show that the

functions C1(θ) possess classical unitarity

i, u SU2=-PδU2P, (6.28)

and have the following asymptotic expansions at 0—> + zoo,

(6.29)
where P and K are defined by (3.18) and (3.19).

Applying (6.19) —(6.23), one can easily verify that ζίf2(θ) satisfies conditions
(6.6)-(6.10). Hence, the functions σ1>2(0), defined via ζU2(θ) with the help of (6.11),
are the entire functions of θ.

Note, the function σλ(θ) for the series A^l t (in a more general, elliptic case) was
introduced in [32].

Using the definitions of the functions σl2(θ) and their analytical properties,
one can obtain their explicit expressions via the function (6.18). These calculations
are performed in Appendix C.

Let us enumerate some properties of σ γ 2(θ) following from (6.6), (6.7), (6.11),
(6.15), and (6.19)-(6.23):

2, (6.30)

where Λλ2 is independent of 0,

(θ)\θ = o = X'1P^ (6.31)

σ2(A) = (N-K)X2, RQsσ2\θ)θ = Δ = X'2K, (6.32)

where Xu X2, X'u X2 are some matrices.
Next, by virtue of (6.28), for the ratio of two functions σ(0) defined in (6.16), one

σU2{θue2) = PσU2{-θu -Θ2)P. (6.33)

6.4. Factorization of Quantum R-Matrices

Here we present the factorized representations for the quantum R-matrices (4.7)
and (4.24). The derivation of these representations is contained in Appendix D.
The definition of the functions σί2 are given in Sects. 6.2 and 6.3; the ratio of two
functions σ1>2J

 σi,2(^i> $2)? is defined in Eq. (6.16); the matrices δu δ2 are given in
(6.22), (6.23). The matrix C(φ) and the constant ρ entering into (4.7) are determined
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from (5.11) and (5.12) and also presented in Table 2; N is the matrix dimension of
algebra (S.

Let us define the matrix

0 (6.34)

where Go is given by (6.25). As follows from (4.12), (4.13),

P^P = ̂ ~\ (6.35)

Below it will be suitable to use the Λ-matrices R(θ) differing from (4.7) and (4.24)
by the normalization

R(θ) = ήnθ R(0)/sin(θ + 2φ). (6.36)

6.4.1. § = A[1li; g = sl(n).

(6.37)

(6.38)

This formula is a particular case of a more general result of [31] where an elliptic
i^-matrix [19] connected with algebra sl(N) was considered. Note that in the
trigonometric limit the elliptic K-matrix of [31] goes not into R(θ), but into the
equivalent K-matrix J£~~1R£?~ί. That is why Eq. (6.37) contains an additional
factor <£ comparing with formula (4) from [31].

6.4.2. § = B^\ D^\ D{

n

2); & = o(2n + \), o(2n), o(2ή).

(6.39)

+5'1)); ρ = (N-2)φ. (6.40)

6A3. $ = i1)

(6.41)

(6.42)

Note the difference of the signs in Eqs. (6.39), (6.40), and (641), (6.42).

6.4.4. Φ = A % ; & = sl(2n + l ) .

\ (6.43)

(6.44)

The initial conditions for σ2(0) in (6.11) are chosen in the form

σ 2(0) = σo = l - G o + ( - i r ( G t t + Gπ + 1)/2. (6.45)

Here Gα are defined in (6.25). Equation (6.43) was reported in [25].

6.4.5. y = A(£>_1; & = sl{2n).

{Θ) ' φ \ ' (6.46)
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The initial conditions for σ2(θ) are chosen in the form

(6.47)

(6.48)

where the In by In matrix \\Σkι\\ is (the omitted matrix elements equal zero)

n-2

1 i 0 1 0 0

1 1

(w-1)

\\ΣJ =

Γ

The matrix i f is of the form

where

V = diag(ω

Next,

1 0 1 1

1 0 - 1 1

0 1 0 0

-.1

1 1

1

N - 1

(V~k®Vk)ctg

"~ \ of 2

,..., ω, 1, - 1 , ω

(6.49)

(6.50)

(6.51)

(6.52)

where σι(θuθ2) is defined by relations (6.11), (6.19) where U, g, δu and P are
replaced by V, N, δγ, and P respectively, where
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In the same basis as Eq. (6.48), we have

n-ί

(n-1)

P =
1 I
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Appendix A

This appendix contains an explicit realization of relations (2.7)-(2.10). Remember
that the discussed realizations of the algebras sl(N), o(N), sp(N) are defined by (2.1),
the Coxeter automorphisms are given in Table 1. Let be the matrix dimension of ^,
^ 0 be the subalgebra of ^, defined by (2.6), r = dim^0. Define the N by N matrices

£ α = - e f l , f l + e j v - β - i , j v - « - i > α = 0 , . . . , r - l , ( A . I )

(e*β)ij = Kiδβj> ( A 2)

and the r-dimensional vectors

(A.3)

Equations (2.7)-(2.10) contain the elements eb fb and ^ and the simple weights
α, . We choose a normalization so that fi = e\. Below we list the sets {ebcn^.

1. Series A{£\ & = sl

Generators:

^ l , r = n.

Simple weights:

Generators:

Simple weights:

^2, r = n.

^ l , r = n.



494 V. V. Bazhanov

Generators:

^0 = ( ^ 2 π - l , 0 - ^ 2 n . l ) 5

 βι = βι - 1, i ~ e2n - ί, In + 1 - i, Ϊ = 1 , . . . , W - 1 ;

^n n— 1 ,n n,n+ 1 '

Simple weights :

α o = ε i + ε 2 ; α , = - ε ί + ε / + i , i = l , . . . , n - l ; ccn=-εn.

4. Series C{

n

ι\ ($ — sp(2n), n ^ l , r = n .

Generators:

Simple weights:

5. 5 m e 5 D{

n

x\ <g = o{2n\ n^3,r = n .

Generators:

e 0 = ( e 2 » - 2 , 0 - ^ 2 » - l , l ) 5 ei = ei-Ui-e2n-l-U2n-i> i=\,...,Π-\\

^n==\^n-2,n ^n - 1, n + 1)

Simple weights:

α o = ε i + ε 2 ; α£ = — ε£ + ε ί + i , α n = - £ „ _ ! - £ „ .

Generators:

^ 0 = e n , 0 ~ ^ e n

Z = 1 , . . . , W I , β n = β n - ι ^ n €n-l,n+l "•" ̂ n . « + 2 &n+ l,n + 2

Simple weights:

α = ε l 3 a^-Ci + e^!, α n =~£ π .

Appendix B

Here we shall obtain relation (5.8) for the quantum L-operator (5.5). List first some
properties of the matrices hω ek, fk, entering into relations (2.7)-(2.10)

B4fl- 1 = -exp( + 2i2l/g)ek, 5/ k

ί β- 1 =-exp(-2fzl/g)/ / c , (B.I)

where B and g are defined in Table 2, A is defined in (3.15). For G + sl(N), when
A=0, the Eq. (C.I) are trivial consequences of the definitions (2.1). In the case of
G = sl{N), G = Aψn, Aψn^ l 5 when Δ=πβ, the Eqs. (C.I) follow from the definition
(2.6) of the subspaces Gj (remember that ek e Gu ^eG^^ and from the relation
Qxp(2ίA/g) = ω = Qxp(2πi/h\ h being the order for the Coxeter automorphism Ac.
Next, for our realizations of G and Ac the matrices ha e Go are diagonal (see
Appendix A). Therefore, Eq. (2.9) may be rewritten in the form

(ek)M - %j) = Φάj, (fkHK - K) - - α2(Λ)f/. (B.2)
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Besides, it follows from (A.I), (2.1), (5.3) that

where the notations are the same as in (3.22), (5.3), (5.5).
Let us come to the proof of (5.8). With the help of the definitions (3.28), (5.5) and

the properties (B.1)-(B.3) one can easily show that

BLt(θ-ρf)B'ι=e'Plί+imδ(edduT,λ + e~'άduT_λ~ί)^e'p, (B.4)

where ρ' is some constant, and the matrices 7+ are defined by relations (3.28), with
ek, fk9 changed by ek, Jk,

ek = ek e x p ( - iφ(cck9 cck) + 2i(ρf + A)/g),

fk = fk exp( -f iφ(ak, cck) - 2i{ρ' + A)/g).

The last two equalities may be written down as similarity transformations,

ek = C(φ)ekC ~^)\ fk = C(φ)fkC ~ \ψ), (B.6)

C(φ) = exp(c,h), (B.7)

provided there exists an r-dimensional vector c satisfying the system of equations

(B.8)

where ocκ are simple weights of $. Obviously, the vector \c defines a point,
equidistant with respect to (r-f 1) points with the coordinates αfc, fe = 0, ...,r, in an
r»dimensional Euclidean space. Since akφαz when KΦ/5 the vector c and the
constant ρ' are determined by (B.8) unambiguously.

Using the explicit form of the system of simple weights {otk}, given in
Appendix A, one can easily get convinced that the quantities C'(φ) and ρ', defined
via (B.7) and (B.8), coincide exactly with the result of [25] for C(φ) and ρ given in
Table 2,

ρ; = ρ. (B.

Taking into account (B.6), (B.9), we may rewrite (B.4) in the form

(B.10)
whereof one can immediately obtain Eq. (5.8).

Appendix C

In this appendix we shall discuss the main properties of the functions σ^θ) and
σ2(θ), defined by the relations (6.11), (6.19), (6.20).

ί. The Function σ^θ). A particular choice of the initial condition (6.1 Γ) is
inessential for the representations (6.37), (6.39), (6.41), (6.43), since they contain
only the ratio σ1(θ1 θ2). We can use this freedom to simplify the calculations. It is
convenient to replace (6.1Γ) by the initial condition of the form

, (C.I)
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where P + is defined in (6.21). This is possible because of the special structure of the
expansion coefficients in (6.7) for ζ{(θ) (remember that A = 0 in this case). It follows
from the definitions (6.7), (6.22) that

M = P_, N=-ίP + δι = -ίδ1P^, (C.2)

whereof it can be readily shown that in Eq. (6.14) ao^P^a'o, and hence

Substituting the last equation and Eq. (C.2) into (6.12), we get convinced that (C.I)
is equivalent to the initial condition £(0)= 1 for Eq. (6.14).

The function σ^θ), normalized by the condition (C.I), possesses both the
general properties (6.30), (6.31) with M = P_, and the additional property [32],

Pσ1{θ) = σι{-Θ). (C.3)

The latter is a consequence of (6.11) and the invariance of (C.I) under the
transformations (C.3). Consider next the ratio of the form (6.16),

Φιψ) = σ j(0 -2φ,θ + 2φ) = σ ,{6 ~2φ)σ^1(θ + 2φ). (C.4)

The function Φ^θ) is a meromorphic function of θ and possesses the following
quasi-periodicity property

1 . (C.5)

As follows from (6.31), it has poles at 0= — 2ψ + kπ, keZ, and

(C.6)

Some analysis of the form of ζ1 shows that it is sufficient to choose the matrix
A^ψ) to be diagonal. Then it follows from (C.5), (C.6), the definition (6.16)
and the finiteness of ζx at 0-> ± too, that

Φι(θ) = Aί(φ)Z(θ + 2φ,P_) + Bί(φ). (C.7)

Here Z is defined in (6.18), and the matrices A^φ) and Bλ(φ) are calculated by
considering the limits of (C.7) when β-^ + zoo. Using (6.29), one obtains

Ax{φ) = -2e 2 i φ δ ' sin2φ cos(2φP) 5 Bλ{φ) = e2iφδι cos(2φ(P- 1)), (C.8)

with δί defined by (6.22) and P defined by (3.18). In the derivation of (C.8) we
exploited the property

P = P\ (C.9)

Similarly one may consider the function sin(θ + 2φ)Φί(θ)/sm(θ — 2ψ). Writing
for it the representation of the type (C.7) one has

(CIO)

where Aλ(φ) is given by (C.8). This representation, in particular, gives

Φ 1 (2φ)=-s in" 1 4φ P + A^φ). (C.ll)
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Let us obtain one more expression for Φx{θ). It follows from (C.3) and (C.4) that

Φί(kπ) = VkPV'\ keZ. (C.12)

Consider the function sin(# + 2φ)Φ1(θ)/sin#. It is meromorphic and has poles at
θ = kπ,keΈ, with the residues given by (C.12). At 0-> ± ioo its asymptotics is easily
calculated by means of (C.7), (C.8). Therefore, it is easy to write for it an expression
like (C.7). Thus, one comes to

e2iδ^ + {cos2φ- \)P2 + sin2φZ(θ, P)}. (C.I3)Φ^θ)

2. The Function σ2(θ). The initial conditions become important for the function
σ2(θ\ when one considers the series A2

2^ and A2

2^_1 They will be specified at the
appropriate place (see Appendix D). Here we shall examine the following ratio of
two functions σ2(θ) for the case of ^ = o(N) and sp(N)

where N is the matrix dimension of algebra (S. Repeating the analysis that has led
to relations (C.7), (C.8), we obtain

K being defined in (3.20). The matrices A2(φ) and B2(φ) are of the form

A2(φ)= -smφeίφδ2cos{φY), B2(φ) = eiφδ2cosφK, (C.I 6)

where K, δ2, and Go are defined by (3.19), (6.23), and (6.25)

K = G0+Y, G2

Q = G0, G0Y = Y, Y3 = Y. (C.17)

It follows from (C.14) that

Φ2(θ,φ)Φ2{θ-Nφ,-φ) = \.

Putting here θ=Nφ and substituting (C.15), we obtain

Z(Nφ,K)A2(-φ)K= - A2\φ)B2{φ)A2{-ψ)K. (C.18)

This relation will be used in Appendix D.

Appendix D

In this appendix we will prove Eqs. (6.37), (6.39), (6.44), (6.46).

Equation (6.37) is a simple consequence of relations (4.24), (C.4), (C.I3).

2. $ = B(

n

1\ D[ι\ D{2\ & = o(2n + l)9 o(2n)9 o(2n).

Let us calculate the function

R(θ) = σ2(θ + 2φ1θ-ρ)%R(θ)Vσ2(θ + ρ,θ-2φ), (D.I)

where R(θ) was given in (4.7), while all other notations were defined at the
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beginning of our Sect. 6. R(θ) may have poles when θ = + ρ + kπ, θ = 2
θ = kπ. Let us show that the residues of R(θ) turn out to be nonzero only when
θ = kπ,keZ. It follows from (4.10) and (6.30) that

(D.2)

Therefore, it is sufficient to consider only one pole of each series, e.g. ±ρ,2φ,0.
Assuming in (4.23) θ=—ρ and applying (3.20) and (6.35), one obtains

(D.3)

where X is some matrix, ̂  is defined by (6.34). Together with Eqs. (3.21) and (6.32),
the last equality yields

Res/?(0)|β=ρ = O. (D.4)

By analogy, one can prove that

Res£(0)|,= _e = O. (D.5)

For the consideration of the case θ = 2φ we shall employ the formula [which is
valid for G = o(N)~]

r€ = Qxp(-iφ{ό1 -δ2)). (D.6)

It is proved by an immediate substitution the values from Tables 2 and 3, into
(D.6). Using (3.11) and (C.I5) we get

ResR(θ)\θ = 2φ = σ2(4φ, 4φ - Nφ)<$F, (D.7)

(D.8)

with K and A defined by (3.19) and (C.I6), respectively. Substituting (4.7) into (D.8
and using (C.I8), one has

(D.9)

Table 3. The values of dx and d2 entering into Eqs. (6.27)

4 = (4α -f 2 — n)/n,
4 =(4
4=0,

4""1) = 0; 4=(2α+l)/(2n-l),
4 = 0; da

ι=(2cι — n)/n,
4 = 0; da

2 = (a-n)/n,

4=o,

4 = 0,
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where Ro is given in (4.8). After some calculations involving the relations

P + K = K, P_K = 0, (D.10)

where P+ are defined in (6.21), we obtain that

F = exp(— iSxφ) {[cos(2φt0) + cos(2φPJ] sin φ cos(φ Y)

-s in2φcos[φ(G 0 +Y)]}K. (D.ll)

Go and Y are specified in (6.25) and (C.I7). Now it is not difficult to calculate the
explicit form of the matrices t0, Go, Y proceeding from the definitions (3.17), (3.18),
(3.19), (C.I7) and verify that for all the cases we are considering

F Ξ O . (D.12)

Substituting the last equality into (C.7), one comes to

Thus, we have demonstrated that R(θ) has no poles at θ + kπ, keZ. The
residues of R at θ = kπ, fceZ, are calculated with the help of (5.14), (6.35), (6.33),

whereas the asymptotics for θ->±ίoo is found applying (4.15), (6.29), (D.β).
Restoring R(θ) by (D.14), (D.I 5) with the help of the Liouville theorem and using
(C.4), (C.I3), we obtain that

where ££ was defined in (6.40). Equations (D.I) and (D.16) lead immediately to the
representation (6.39).

3. $ = C{£\ ^ = sp(2n).

The proof of (6.41) is in a complete analogy with the above proof of Eq. (6.39).
Note that in this case Eqs. (D.6) and (D.10) are replaced by the relations

, (D.I 7)

4. & = A<£1 A^.u g = sl(2n+ί\ sl(2n).

Remember, that the initial conditions for σ2(θ) in Eq. (6.11) for the series ASQ
and A{2n- \ are given by the relations (6.45) and (6.47) respectively. Thus, we have

^2(θ) = σ2(θ,0)σ0. (D.I 9)

From (6.6) one has
\ (D.20)

U = l - G 0 + G0(E/xl), (D.21)

V = l - G 0 + G 0 (7xl) 9 (D.22)

where

V~k = σo ιU~kσ2{kπ, 0)σ0. (D.23)
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Using (C.I5), it can be shown

0, fc + 0(modiV)

It follows then that the eigenvalues of the matrix (G0V) are

λα = exp(2πzα/iV), α = 0 , . . . , N - l . (D.25)

For σ0 in the form of (6.45) and (6.47) the matrix V is diagonal and defined by the
relation

(D.26)

and by the relation (6.41) for # = >12

2)_1.

Turn now to the proof of (6.43). The matrices (6.20), (6.21) in this case become

K= V (-ω)"αGα, K = G0, (D.27)

with the matrices Gα defined by (6.25). Substituting (D.27) into (6.20) and summing
over k, one has

- 1 θ\ 1 (- i rG α exp[ iθ( iV-2α)/ iV] j . (D.28)
α = l J

This entails, in particular, that

C2(O) = /JV-1 V ( - l ) α G Λ . (D.29)
α = 1

The relation (C.I5) in this case takes the form

σ2(θ-Nφ,θ) = -Nsinφ C2(θ) + co$(φG0). (D.30)

Then it follows from (D.29), (D.30), (6.45) and the relation GaGβ = Ga + β that

Consider now the function

Rψ) = σ~ \θ - Nφ)^R{θ)%σ2{θ + Nφ). (D.32)

By virtue of the properties of σ2{θ), R(θ) has no poles at θ = π/2 ± Nφ + fcπ, keZ.
The residues at poles at θ = kπ are easy to calculate with the help of (5.14), (6.33),
(D.20), (D.26),

lJ-k. (D.33)

Exploiting the asymptotic values following from (D.31)

σ 2 ( % . ± ί w - ^ G ( ] V ± 1 ) / 2 β τ ^ + l - G 0 + ..., (D.34)
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as well as Eqs. (3.17), (4.15) and

(D.35)

we obtain

R(θ)\θ_>±ix=%-1e + 2i*p%-\ (D.36)

where P and <» are defined by (3.18), (6.34). As follows from (D.33), (D.36), (C.I3),

-ίδφί. (D.37)

Substituting (D.37) in (D.32), we obtain the representation (6.43). The proof of

Eq. (6.46) is similar (though more cumbersome) and is therefore omitted here.
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