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Abstract. We describe a method for obtaining Formal Group Laws from the
structure constants of Affine Kac-Moody groups and then apply a group
manifold quantization procedure which permits construction of physical
representations by using only canonical structures on the group. As an
intermediate step we get an explicit expression for two-cocycles on Loop
Groups. The programme is applied to the Affine SU(2) group.

1. Introduction

In recent years Kac-Moody algebras, and the Affine ones in particular, have
acquired more and more relevance in Theoretical Physics. Thus, for example, these
algebras appear as algebras of hidden symmetries of two-dimensional chiral
models [1-3], in self-dual Yang-Mills theory [3], in completely integrable
dynamical systems [4, 5], Bose-Fermi correspondence [1,6], string theory [7-9],
conformally invariant field theories [10], etc.

As is well known [11], there exists an isomorphism between the Affine Kac-
Moody algebra L(A) and the unique one-dimensional non-trivial central exten-
sion, Clζt=Ύϊ®L(Λ\ of the gauge-like algebra C f r ί " 1 ] ® ! ^ ) . The cocycle Σ
that fulfills the extension is

Σ(X®t\ Y®tm) = *nδnt _wτ(X, 7), VX, YeL(A), (1.1)

where τ is the killing form of the classical algebra L(A). We have
2 ^ l C)= 1.

* Research partially supported by the Conselleria de Cultura de la Generalitat Valenciana, the
Plan de Formacion del Personal Investigador, and the Comision Asesora de Investigacion
Cientifica y Tecnica (CAICYT)
** On leave of absence from the IFIC, Centro Mixto Universidad de Valencia - C.S.I.C. and the
Departamento de Fisica Teorica de la Universidad de Valencia



376 V. Aldaya and J. Navarro-Salas

The above structure for L(Λ) or, rather, the corresponding one for groups, is
shared with many basic physical symmetries, the simplest example of which is the
central extension of the Galilei group, G(m), associated with the quantum free
particle. This kind of group, and more generally the groups which also have the
structure of a principal bundle with U{\) as the structure group (Quantum
Groups), has been used to a great extent to obtain the wave functions of physical
systems [12-15] through a Group Quantization Formalism (GQF) [12] which
only makes use of the group manifold and of the canonical structures defined on it.

In this paper we apply GQF to the principal bundle Ϊ2G, the central extension
of the space of loops in the simple group G, and work out explicitly the wave
functions carrying the representations of ΩSU(2) as functions on the group
manifold. To start with, the formalism requires a local group law in local
coordinates at the identity. We calculate this group law and, in particular, we give
an explicit expression for the two-cocycie of the group using the intrinsic group
coordinates. In this respect, our procedure diverges from that of reference [16,17].
As a general feature the GQF recuperates what would be the Kostant-Souriau
Geometric Quantization [18, 19] of the Kirillov-Kostant co-adjoint orbits [19]
and solves the problem of the ambiguity of the polarizations in the finite
dimensional case as well as that of finding an invariant integration volume. The
wave functions that we obtain arise naturally accompanied by a weight function
for the invariant scalar product [20].

The fact that we have to resort to a power expansion to find the group law can
be seen as a drawback of the procedure. We must note, nevertheless, that the
description of a physical system in this way would look like a perturbative one but
with the additional advantage of being finite.

We finally remark that obviously GQF provides Hamiltonian (Lagrangian)
models in which Affine Kac-Moody algebras are realized not only as infinitesimal
actions but also as conserved Noether invariants whose Poisson bracket closes. It
must also be noted that "normal ordering" is automatically incorporated into the
formalism (through the choice of a polarization) in such a way that central charges
already appear at the classical level (in the Hamiltonian-Jacobi version).

II. "Perturbative9' Expansion of the Group Law

Formal Group Theory [21] can be converted into an approximate method for
computing local group laws of Kac-Moody groups (although the process can of
course be applied to any group). We start with formal power series in two variables
of "Z" x dimG -f 1 components:

Fa(X\ X) = X'a + Xa + Bl jX
/iXj

~B
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where i,j, /, meZ x {1,2,... dimG} and oc = ij,... or 0, the [/(I) index. For this
formal series to be a formal group law we only have to impose the associativity
conditions [22],

F{X\ F(X\ X)) = F(F(X'\ X'\ X), VI", X\ X. (2.2)

The structure constants of the Lie algebra are obtained from the expressions

Blj-Bl^Cΐj, (2.3)

to be referred to in the sequel as the second order conditions.
As is well known [21] the Lie algebra determines the formal group structure and,

accordingly, the constants B<fl^inJn+l^jm (m>2) are determined modulo a group
isomorphism by the structure constants Q 7 . From condition (2.2) a set of
constraint equations follow for Ba

iχ %Λn W n + l jm order by order. Thus, for example,
the lower orders look like:

3 r d order

4 th order

_ nα
),£m

(2.4)

(2.5)

l e
In general, for n^.3 there exist n —2 independent equations (corresponding to

D

1 iι iaj. m\...mn ~a - 1

X
b= l,...,a

μι....μbe{ί,...,a}

n t h o r d e r y ™ Λ Λ , Λ ΏP . (2.6)
A ΛJpi1...iμι...iμ2...iμb...ia,mί...mn- a - i ̂  ι μ ι i μ 2

 ι^b^ '

Σ
c = 1,...,/j — α — 1

v i . . . v c e { l n — a— 1)

y R? . A RP
i i . . . i α , m j . . . m v i . . . m V 2 fWvc

 f w n - α - \P j . w i v l . . . m V c

The system (2.6) has the Jacobi identity as the compatibility condition. By
successively solving the different sets of equations the formal group law is
"perturbatively" derived. It is important to realize that this perturbative expansion
is not uniquely determined; there is a certain freedom in the way we choose the B's
in the left-hand side of (2.3)-(2.6) to each order [23]. This "gauge" freedom, which
in general corresponds to a group isomorphism, corresponds in particular to the
coboundary ambiguity of the central extensions in the case of Affine Kac-Moody
groups. Then a rule is needed in working out any formal group law. We point out,
however, that GQF is unsensitive to the special choice of the rule so that we may
adopt the more advantageous one in each case.

III. Formal Group Law for ΩSU{2)

In the concrete case of the group ΩSU(2) the above procedure can be simplified due
to the fact that we can write down a formal group law for the SU(2) subgroup. A
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formal Laurent expansion of the parameters of the SU(2) group then provides the
solution for all the F s but for those with upper index φ. We write the local SU(2)
group law in a fibre bundle chart of the Hopf fibration SU(2)^S2 \η — eιθl2

parametrizes the fibre and 2z, 2z* the north pole neighbourhood [24]

2z*
z "* = z'*η2 + x'3z* - [ 2 Z ' = y + z'z*η - 2-j >

1 ~\~ Xτ

(3.1)

z*z;y/*y/'
l + x 5 []/ 2 [/ 2 ' ' ]/ \+x'3]/ l + x 3

Y = l / T Ί Γ 4 7 7 * γ r / — v ' Y _ 7 f 7 * 7

/ t 1 " 2 _1_ 7*'7V]2\
Λ3 — J/ 1 H-ZZ , Λ3—Λ3Λ3 Δ\Δ Δ ϊ\ T Δ Lϊ\ ) .

In these coordinates a formal group law for ΩSU(2) is given by:

z" — z -f- z — iz' _ ^ — z __ _ z z* — z'*_ — z z

— 2z ;_ _ z*z — x z ; _ _ θ θ + . . . ,

— 2z'* z; z^-J^z'* θ 6̂

where summation of repeated indices is understood.
The procedure of Sect. II is now applied to extend the group law (3.2) to that of

ΩSU(2), i.e., to compute explicitly the group two-cocycle ξ. Using the "gauge"

BΨ •= — B^ ί i = z z* θ

we obtain for φ'\

ξ(g'9 g), g',ge ΩSU(2),

ξ(g\ g) = ί W2z;*z_n + 2z;z* n + θ'nθ_n) + i(m - n)z'nzlθn_m (3.4)

Had we taken another "gauge" for computing the Bφ's we would have obtained an
equivalent (i.e., differing in a two-coboundary) two-cocycle ξ.

TV. Group Quantization and Representations:
The ΩSU(2) case

The basic structure of the GQF [12] is a Lie group G, the "quantum" group, which
in turn is a (say) right C/(l)-principal bundle (or a R-principal bundle then leading
to a classical theory) with a 1-form Θ naturally selected among the left-invariant
1-forms which is a connection form. In the simplest case, and roughly speaking, G
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might be either a (global) central extension of a group G by £7(1), characterized by a
cocycle ξeH2(G, 1/(1)), or a finite dimensional semisimple group with 1/(1) in the
Cartan subgroup. In both cases a vertical left-invariant 1-form is globally defined
either by cohomological criteria [20], in the first case, or by means of the Killing
form from the fundamental (vertical) left-invariant generator of G in the second
one. However, a semisimple quantum group G can also be (equivalently) handled
as if it were a central extension by making use of a "pseudo-extension" [25], i.e., a
trivial extension by U(ί) which modifies the structure constants of the algebra.
This can only happen if the cocycle, "pseudo-cocycle," is locally generated by a
linear function on the parameter of the structure subgroup [1/(1) or K] of the
principal bundle G. This set of coboundaries is a group strongly related to the
cohomology group of a contraction. The connection form Θ for pseudo-extended
groups is obtained as the left-invariant 1-form dual to the central (7(1) generator.
We must remark, nevertheless, that in spite of the local considerations just made
about the pseudo-cocycle, the associated form is globally defined [see later in this
section the comments concerning the 5(7(2) pseudo-extensions]. This construction
was explicitly done in the case of the Poincare group considered as a principal
bundle having the time translation subgroup as the structure group [15].

Going from finite to infinite dimension opens new possibilities as the
Whitehead lemma no longer holds. Thus, for example, central extensions are
not forbidden for semisimple Lie groups.

The Full Polarization ^ , which generalizes that of ordinary Geometric
Quantization [18, 19] is defined as a maximal horizontal (with respect to the
connection Θ) subalgebra of left invariant vector fields containing the character-
istic subalgebra of (9 [12,15], i.e., the algebra generated by the left invariant vector
fields that annihilate Θ and dΘ [26]:

(4.1)

Thus, the full set of conditions on Ψe J^G, <C) characterizing the wave functions

Ξ - Ψ = iΨ, X L Ψ = 0, \/XLe0>, (4.2)

where Ξ is the fundamental vector field (generator) of the principal bundle G. On
these functions Ψ, which are constrained by means of left invariant vector fields,
the right invariant vector fields act as ordinary derivations defining the physical
operators of the theory. The fact that (in general) left and right vector fields
commute is important for the stability of the wave functions subspace under the
operator actions.

To apply the GQF to the special case of ΩSU(2) we start writing a (formal)
group law which exhibits a specific principal bundle structure. To this end we note
that besides the principal bundle structure associated with the local central
extension characterized by (say) the cocycle ξ in (3.4), the Hopf fibration of the
SU(2) subgroup itself defines a Z-parametrized family of pseudo-extensions to be
taken into account in writing the group law for the φ parameter. In fact, these
pseudo-extensions precisely account for the irreducible representations of the
SU(2) subgroup; otherwise SU(2) would be trivially represented. As above
mentioned, these pseudo-extensions are realized by means of coboundaries locally
generated by linear functions on the local parameter θ0 of the 1/(1) subgroup of
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SU(2) [27] (ξcob(g',g) = δ(g'*g)-δ(g')-δ(g)). Taking into account the global
structure of the involved subgroups, the only possible group laws for the (7(1)
central subgroup of the pseudo-extended group are (ζ = eιφ, η0 = eιθo/2 = eιδ^9)\

ζ'^ζ'ζiη'Wo-'rioΎ, NeZ. (4.3)

Thus, an integer constant (the winding number) appears in the characterization of
the representations.

Equation (4.3) along with (3.1) constitute the local group law adapted to the
globally defined (7(1) pseudo-extended SU(2) group, Sί7(2)(g)[7(l). As a principal
bundle S[7(2)<g) 17(1 )->SC7(2) is characterized by the Cech-coboundary gaβ{ξ)
= π*gaβ(ζ) = gaβ(ζ + σζ)> where π is the S[7(2)-»S2 projection, gaβ is a Cech-cocycle
associated with the SU(2)->S2 fibration, ξeS3cC2 and σ are the Pauli matrices.

We now propose as the final group law for ΩSU(2) the law given by (3.2) plus

ccξ(g\ g) + Nξcob(g\ g),

From the group law (3.2), (4.4) we only have to derive the left-invariant fields,
the Θ form (dual to the φ generator) by means of the duality relations and to obtain
the Full Polarization subalgebra. We shall proceed, of course, order by order.

Left-Invariant Vector Fields:

~L*_ 3 S δ

+ -|Yα -i-)z -i-nθz

XL - — - z — iz* — I" a

Φ L~J ^ JL '

Oψ

Lie Algebra Commutators:

(4.6)
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Quantization Form Θ:

(4.7)

Characteristic Subalgebra. Both solving the equations iχΘ = 0 = iχdΘ, we find the
following possibilities (depending on the values of α and N):

i , i "«n f o r VαφO, NφO (4.8a)
^ generated by ~ r ~ r ~ r

J ' v L v L

0 , X 4 for VαφO, iV = 0. (4.8b)

Equation (4.8b) corresponds to a £1/(2) subalgebra [indeed (4.8b) is the
original SU(2) subalgebra] while (4.8a) can be seen as the Cartan subalgebra of
SU(2).

Full Polarization Subalgebra. Unlike the finite dimensional case there may exist
more than one non-equivalent polarization. Indeed we are faced with a "no
conjugacy" theorem similar to that of Borel subalgebras [28] of infinite
dimensional semisimple algebras [29] to which polarizations parallel. This means
that non-equivalent dynamics are associated with different unequivalent polariz-
ations. To each one of the possible choices of rSΘ we find the following essentially
different polarizations (any other is obtained by conjugacy):

= <χiί0,X^0,X^^, (4.9a')

% = <x9

L

0, I t xk>^b=<xί s u, x';q s „, x% s u>, (4.9b)

Mimicking the denomination used for Borel subalgebras [29] we call (4.9a) the
natural polarization while (4.9a;) will be referred to as the standard one. It must be
noted that (4.9a') and (4.9b) have the same structure; (4.9b) is obtained from
(4.9ar) by adding to it the generator X *̂ which appears in the corresponding ^Θ.

We shall be concerned in what follows with the more general case of (4.8a)
and, in turn, restricted to the (4.9a) choice which is going to provide us with a set
of non-explicitly worked out (Verma module) representations. Exactly the same
procedure can be applied in the other possibilities. It will be done elsewhere.

Wave Functions. The wave functions are the [/(l)-functions on ΩSU(2) satisfying
the Full Polarization conditions, i.e., functions on ΩSU(2) verifying Ξ Ψ = iΨ and

(4.10)
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Equations (4.10) can be solved order by order leading to the following set of
"Fock" states:

|α, iV> - C W{θ, z, z* α, N), (the vacuum)

g ( Zi Όq-mLm 2 2^ σq-p-mσp*m
q-m<0 q — p — m<0

p<0

y z
/ i q — p -

o-2iβ 0

q—m<0 g—p—m<0
p < 0

X ) Zk ~ l L υk- mZm — 2 L ( ? q, K E IL ,
k-m<0 k-p~m<0

p<0

ΌnΔq / S yy

Zq~ϊ Σ ^-mZm+ }' Π>0,
q-m<0

(4.11)

where the weight function takes the form

Σ m m
m<0

p z * m _ p + . . . . (4.12)
m< 0

Once the wave functions are known, the group law [(3.2), (4.4)] can be used to
obtain group representations parametrized by α and N. This is accomplished by
means of the left translations acting on Ψ,

L9,Ψ(g)=Ψ(g'*g), g',geΩSU(2). (4.13)
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As mentioned earlier the right-invariant vector fields XR (which generate the
finite left translations) act on the wave functions as ordinary derivations and define
the basic (Lie algebra) operators.

Right-Invariant Vector Fields: Basic Operators and Lie Algebra Representations:

XR- d iβ 5 d

zq

zz* p, ^ VJmwn — m--q Λ

ozn z ozn

z*z* A + Z * θ ± + + \(aq+i

N\,*

.TV

( 4 1 4 )

The derivative of the wave functions with respect to (4.14) provide an approximate
expression for the basic operators (indeed a 3 r d order one) that, of course, could be
improved by going further in the group law series. Nevertheless this 3 r d order
calculation allows us to conjecture a full expansion which is a posteriori tested by
making use of the Lie algebra commutators and the fact that part of the operators
are exactly known. As an example we give the action of XR on the basic states, i.e.,
[α,JV>, [_0L,N;θny, n > 0 , and [α,iV;z*>, V<?eZ:

q>0,

Xl\a,N;θa> = δqJx,N>, q>0,

X«Ja,N;z*y = -i\a,N;z*_,> + iaφ,N; z*θ_,>,

l > (4.15)

s b m i . . . m s > 0

x ---ia(q + m1 + ...+ms) \\ac,N;θmi...
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Z * > = - 2 Σ - - - Σ
s o m i . . . m s > 0

N

p s 5 m i . . . m s > 0

Ύ N' Π R 7*7* \

= —2 y - - y
^ Z- I ZJ

s ά ! m i . . . m s > 0

s S m\. ..ms > 0

x | α 5 J / V ; θ w l l . . . θ m s z ? _ ί _ W l _ . . . _ m s > s

s ( 5 + I ) ! mi. .ms>0

The expressions for general states [α, N; θ...θz*...z*} are easily obtained because
of their factor structure.

Equations (4.15) generalize the much simpler case of the SU(2) representations
on Fock states in terms of which coherent ones can be given. Putting α = 0 in the

N „ „ „
previous equations, the set of operators ( XQ0— -- Xf, X^q, X?*q I for fixed q^

represents the SU(2) Lie algebra on the subspace H = {
ΪN'z* z* \ ΪN'iz* )mN> )•

Xfl

RJH |N; (z* ,)'">= - i ( m - y j |N;(z* „)'">,

(4.16)

where [ΛΓ z*^) can be now summed up (by ignoring the θn, n + 0, and zp, z*p,

Equations (4.16) clearly reveal the "spin" character of the half-integer JV/2.



Kac-Moody Groups and Group Quantization 385

The above operators (4.15) leave invariant the volume (LχRμ = 0)

M= Π ^n)Λθfβ.n)ΛθfZk)Λ0fz* fc), n , k Z , n > 0 , (4.18)
n,k

where θ^ are (horizontal) components of the canonical 1-form, in terms of which
an invariant hermitian form could be defined.

We shall discuss in detail these representations as well as those associated
with the case (4.8b) in a future publication where the ΩSU(2) group will be
enlarged to incorporate the 1 + 1 "space-time translations." Here we shall only
point out that physical models can be built immediately in this group quantization
framework which allows us to construct Noether invariants (ίχRΘ), equations of
motions, etc. [20, 30]. For instance, for the Ήamiltonian" — iχR Θ we obtain

θo

X-/a«z* A +.. .+ ^ i : z * n z n + . . . , (4.19)

where a term depending on the winding number N does appear.
The meaning of the characteristic algebra <gΘ is also worth mentioning. Apart

from providing the equations of motions, the characteristic group (the generators
of which generate ^Θ) constitutes the symmetry of the vacuum ([α, N} in our case),
as can be easily derived from the general formalism [12, 20, 30]. In this way the
addition to the group law of ΩSU(2) of that we could call a uWess-Zumino" cocycle
(pseudo-cocycle indeed) break the original symmetry (4.8b) to (4.8a).

To conclude, we mention that the above procedure can be applied to any Affine
Kac-Moody group ΩG by following the same steps given here for the SU(2) case.
The only peculiarity (apart from the difficulty of writing down the group law for an
arbitrary simple group) is that in general the dimension of the pseudo-cohomology
group is greater than one. Thus, several indices of the N type must appear. More
concretely, for a general finite dimensional simple Lie group G with Cartan matrix

), we shall have the following basic commutation relations:

Ξ + Nβδ"'°Ξ,

(4.20)

A simple look at (4.20) permits us to write the first terms in the expansion of the
presymplectic form dΘ:

n>°den

βΛdeZn

β + ..., (4.21)

where h" stand for the parameters associated with the generators tn®Hi and en

β for
those associated with tn®Eβ\ there are only ί(rank^) independent winding
numbers Nβ and they characterize a highest weight of the Lie algebra of G, ̂ . We
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are able from (4.20) to determine the characteristic subalgebra for the case

analogous to that of (4.8a),

(4.22)

and the essentially two unequivalent Full Polarizations,

0> = (Hn,nSO;Πβ,neZ,β>O), (4.23)

0>' = (Hn,n^O;E(=°,E<°J>O); (4.24)

any other Full Polarization can be obtained by restricting some Lie algebra

isomorphism to either (4.23) or (4.24). It must be stressed that in general only the

class of 0*' is suitable for unitary representations.
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