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Abstract. We propose a theoretical classification of one-dimensional determi-
nistic cellular automata in two types, type S and type 0. This classification is
connected with the phenomenological classification of S. Wolfram.

1. Introduction

This paper is devoted to theoretical investigations concerning the classification of
one-dimensional deterministic cellular automata [1,2]. Such an automaton is
described (see in Sect. 2 for more precise definitions) by an evolution of the form
xt(t + l) = f(xi-rJ(t)9xl_rL + ι ( t ) , . . . 9 x l + r R ( t ) ) 9 where for each lattice site ieZ and
discrete time ί,x{(ί) belongs to a fixed finite set £, (e.g. Z/pZ).

Among all the possible properties of an automaton which one may investigate,
there is a natural one which we call surjectivity. We say that an automaton is
surjective if for any finite configuration (j^, yi+1,..., yi+n) and any time t > 0, one can
find initial conditions (x/(0)) such that xί+k(t) = yi+k for /ce{0,...,n}. It is obvious
that an automaton is surjective if and only if any finite configuration has at least one
antecedent. The main result of this paper is that a deterministic one-dimensional
automaton is surjective if and only if all finite configurations have the same number
of antecedents. This result is typical of one-dimensional automata and means that,
for such systems, surjective is equivalent to equiprobability of finite configurations,
given equiprobable initial conditions.

We thus classify automata in two types: surjective automata will be said of type
5, the other ones of type 0.

Let us comment on the connection between this classification and the one
introduced by Wolfram: In [3], S. Wolfram gave a phenomenological classification
of such automata based on computer experiments. Class I consists of automata such
that for t ̂  T the values xt(t) do not depend on the initial conditions Xj(0). Class II
consists of automata such that for t ̂  T, x f(ί) only depends on the initial values Xj(Q)
at a finite number, say m + 1, of adjacent sites with m independent of t, i.e. xf(ί) =
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F({Xj(0)}9 je&tj), where «^"M = {j(t,i)9 j ( t , ί ) + l 9 . . . J ( t 9 i ) + m}. In contrast to
class I and class II, class III and class IV are only defined phenomenologically; class
III corresponds to an apparently chaotic behavior, whereas class IV (i.e. the "other
ones") corresponds to a behavior which exhibits some complex organization.

It is worth noticing here that class II and III are distinguished by the fact that no
information is gained as the system evolves in contrast with the class IV and with the
class I which in the extreme case where complete information is obtained after a finite
time. In this respect, it could be natural to consider class I as a trivial subclass of class
IV and class II as a trivial subclass (with rL + rR = 0) of class III, (there are some
subtleties concerning class II which we refrain to discuss here). In any case, it is clear
that "interesting systems" lie in class IV and, in this respect, it is important
to have an explicit mathematical characterization of class III. Type S is the correct
mathematical definition.

The plan of the paper is the following. In Sect. 2 we introduce our conventions; in
Sect. 3 we prove the main result (Theorem 3.2) of the paper; in Sect. 4 we describe a
typical family of surjective automata.

2. Definitions and Notations

Let E be a finite set and let Ez be the set of all maps from the d-dimensional lattice Zd

to E. Consider a dynamical system <$/ with discrete time t and configuration space
Ez given a configuration x(£)eEz of j/, the value of x(t) at site ίeZd will be denoted
by Xi(t)EE. j/ is deterministic if the configuration x(t + 1) of j/ at time t + 1 only
depends on its configuration x(t) at time t, i.e. if the dynamical law is of the form
x(t + 1) = Ft(x(t)) where, for each time ί, F( is a map of Ez in itself; we are aware that
this definition may be too restrictive for some purpose but it is convenient to use this
definition here. A deterministic system s& will be called time-translational invariant if
Ft is independent of ί, (i.e. Ft = F); it will be called translational invariant if the Ft are
invariant by the lattice translations, finally jtf will be called local if, for any /eZd, the
value Fti(x)eE of Ft at site i only depends on the values xjl(i), . . . , xjki(i)EE of x at a
finite number of adjacent sites Jι(i\...,jkl(ΐ)e'£d. In the following we call
d-dimensional deterministic automaton with values in E a deterministic system j/ of
the above type which is time-translational invariant, translational invariant and
local.

In this paper we investigate properties of one-dimensional automata, so we now
suppose that j/ is a deterministic one-dimensional automaton and we introduce
some specific notations for this case. From the definitions, it follows that there are
two numbers rL and rR in Z with rL + rR ^ 0 and a map f:EfL+rR+l-+ E such that the
evolution of jtf is given by xi(t+ϊ) = f ( x l _ r L ( t ) , -VrL+1(ί ),..., xί+Γjl(ί)) /will be
called the structure function of ̂  and rL and rR will be called the left range and the
right range ofW. An interval I will be a non-empty finite ordered set of adjacent sites
I = (i, i + 1, . . . , ί + I / 1 — 1) of Z, its length \ I \ being the number of elements of /; a
configuration over I will be a map Ω:I-^E. We denote by ^ the set of all
configurations over all intervals and call finite configurations the elements of ̂  '.
Given two finite configurations Ω and Ω' over intervals / and /', we say that Ω is an
extension of Ω' if /' c / and if the restriction Ω\Γ of Ω to Γ is Ω'. Let Ω =
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(xh xi+!,..., xt+k) be a finite configuration over / = (i,..., ί + /c), we denote by dLΩ
and by dRΩ the configurations (xj and (x ί+fe) over the sites ί and ί -f k and we call
adjacent sites to Ω the sites i — 1 and i + k -f 1. Given two finite configurations Ω =
(xi9...,xi+k) and Ω' = (xi + k + l,...,xi+k + m) over adjacent intervals, their compo-
sition ΩΩ' = (x ί s . . ., xi+k, xi+k +!,..., x ί + f c + ι n) is again a well defined finite configur-
ation. For αeZ, one has the obvious notion of translation by^ of intervals and of
finite configurations; we denote by Ta:<F-+έF the corresponding map on finite
configurations. Let us come back to j/ and let ί2 = (x ί 5 . . .,x ί + f c) be a finite
configuration over the interval / = (i,..., i + fc); an antecedent of Ω will be a
configuration Ω = (y ._ Γ L , . . . ,y ί + k + r R ) over the interval (i — rL9...,i + k + rR) such
that one has xj = /Cy/_ rL, - , yJ+rR) f°r anY Je^ Notice that the set of antecedents of a
finite configuration may be empty; we say that the automaton j/ is surjectίve if any
finite configuration has an antecedent.

In Sect. 4 we show that other definitions of surjectivity lead to problems.

3. Surjectivity

In this section j/ denotes a one-dimensional deterministic automaton with values in
a set of p elements (e.g. Z/pZ) and r — rL -f rR. We shall discuss the condition of
surjectivity for s$.

3.1 Lemma. Let Nmin be the greatest integer such that the number of antecedents of
any finite configuration is greater than or equal to Nmϊn and let ̂ min denote the set of
finite configurations with exactly Nmίn antecedents. Then any finite configuration
which extends a configuration of 3Fm m is in ̂ m ϊn.

Proof. It is clearly sufficient to show that, if βe^min, then any configuration
extending Ω over one site (on the left or the right) is in «Fmin. Now, given an adjacent
site to Ω, there are p configurations extending Ω over this site. Let N1,..., Np be the
numbers of antecedents of each of these configurations. The total number of
antecedents of all these configurations is the number of extensions over one site of

the antecedents of Ω. Thus one has ]Γ Nt — pNm{n which implies Λ/^ = Nm m

for any i since N{ ^ JVmin. Π
Notice that the lemma is trivial for JVmin = 0.

3.2 Theorem. The following conditions for jtf are equivalent.
(i) Every finite configuration has an antecedent, (i.e. A^min ̂  1).
(ii) There is a smallest integer JVmax such that the number of antecedents of any

finite configuration is smaller than or equal to Nmaκ.
(iii) Every finite configuration has exactly pr antecedents (i.e. Nmax = Nmin = pr).

Proof. (i)=>(ii). Assume that (i) is satisfied and let Φ be an arbitrary finite
configuration starting at φ = dL Φ; let φ be an antecedent of φ and N be the number
of antecedents Φ of Φ which extend φ. By translation invariance of ̂ min, one can
find a βe^min with an antecedent Ω such that ί2Φis a configuration. Now, for any Φ
extending φ as above, ΩΦ is an antecedent of a fixed configuration Ψwhich extends
both ί2and Φ, so Ψe^mϊn,by Lemma 3.1, and therefore N ̂  Nmin. Thus the number
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of antecedents of Φ extending φ is less than ΛΓmin which implies, since the number of
antecedents φ of φ is less than pr + \ that the number of antecedents of Φ is less than
pr+1Nmϊn. So there is a Nmax and Nmax^pr+ίNmiΐϊ.

(ii)=>(iii). Let ^max be the set of finite configurations with exactly AΓmax

antecedents; we claim that, by the same argument as in 3.1, any finite configuration
which extends a configuration of ̂ max is in ̂ max. Indeed, let Ωe^max, choose an
adjacent site and consider the p configurations extending Ω over this site; the

i = p

number of antecedents of all these configurations is pNmax = Σ Ni9 where
i = l

Nl9...9Np are the number of antecedents of each of these configurations. This
implies Nt = Nmax for all / since Nt ^ Nmax. ^max and ̂ min are both translation
invariant so, for any element of «^max (respectively ̂ mitl) one can find an element of
^min (respectively ^max) and a finite configuration extending both. This implies
^Ίnin = J^max and therefore any finite configuration has exactly Nmίn = Nmax

antecedents, and then one necessarily has Nmin = Nmax = pr.
(iii)=>(i) is a triviality. Π

3.3 Remarks, a) (i) means that the automaton is surjective and (iii) means that the
finite configurations are "equiprobable," the equivalence of these properties suggests
that surjectivity is the "good mathematical characterization" of automata of class
III, [3], (for r "really" bigger than or equal to 2).

b) The above results are typically one-dimensional. One verifies, by inspection,
that the proof of Lemma 3.1 breaks down for automata on the d-dimensional lattice
f o r d ^ l

3.4 Definition. An automaton satisfying the equivalent conditions (i), (ii) and (iii) of
Theorem 3.2 will be said to be of type S; an automaton which is not of type S will be
said to be of type 0. Type S corresponds obviously to class III plus some trivial class
II systems whereas type O corresponds to class IV plus class I systems.

4. Examples: Quasi-Linear Automata

Let jtf be a one-dimensional automaton with values in Z/pZ and suppose that the
structure function / of <stf is of the form f(xi_rL9...9xi+rR) = φ(xί_rL9...9xi+rR_ί)

π(xt+rR) (respectively /(;x._rL,...,;xz+rJ = π(x^Tj) + φ(x*_rL+l9...9xi+rR))9 where
is a permutation of Z/pZ. Then sί is obviously a surjective automaton since

any antecedent Ω of a finite configuration Ω can be uniquely extended to an
antecedent of an extension over one site on the right (respectively on the left) of the
original configuration Ω; indeed if ί2is extended as Ωx (respectively xΩ) then there is
a unique x such that Ωx (respectively xΩ) is an antecedent of Ωx (respectively xΩ).

In the case p = 2, where E — Z/2Z, π(x) is either x of 1 + x, i.e. one may suppose
that π(x) = x by absorbing the eventual constant 1 in the definition of φ. We say that
such an automaton with π = Id£ is right linear (respectively left linear) or quasi-
linear (to cover both cases). It can be shown that, for E = Z/2Z and r = rL + rR < 4,
all surjective automata are quasi-linear (i.e. either right linear or left linear).

It is clear that surjectivity, as defined above, implies (and is equivalent to)
surjectivity for global configurations, i.e. any global configuration has an anteced-
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ent. However, surjectivity of an automaton of type S may be lost if one restricts
attention to a subclass of global configurations. For instance, let us consider the
automaton of type S with values in Z/2Z defined by xt(t + 1) = xt (ί) + xi+ί(t)m, since
/(0,0) = 0, it is natural to restrict attention to global configurations with finite
supports, i.e. configurations x = (xf) such that xf = 0 except for a finite number of
sites ieZ. Now, let us consider the configuration x defined by xί = O V z V O and
x0 = 1; this configuration has two antecedents yL and yR, with j f = 1 for i <* 0,
j f = 0 for i ̂  1 and yf = 0 for i g 0, j f = 1 for i ̂  1, but none of these configurations
has a finite support. Thus one loses the surjectivity if one restricts attention to such
configurations.

5. Conclusion

We gave a theoretical classification of one-dimensional deterministic cellular
automata (type S and type 0) which is connected with the phenomenological
classification of S. Wolfram. Related with this classification there are several
problems which we did not discuss here. One of these problems is to give an
analytical characterization of the structure functions of automata of type S. Another
very important problem is to find a subclassification for automata of type 0, since
these are candidates to describe self-organizing systems. These problems and some
other ones connected with group invariance are still in investigation.
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