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Abstract. We assume the existence of sufficiently localised states, near the
edges of each Landau band. We then prove that the Hall conductivity is
quantised and the parallel conductivity vanishes, when the filling factor stays
close to an integer. The Hall integer is a topological invariant, given by the
Landau band index.

We also prove that at weak disorder, the localisation length diverges in
each Landau band.

0. Introduction

Since the experimental discovery of the integer quantum Hall effect, by von
Klitzing [1] in a system of electrons confined to move in a plane, there have been
many theoretical attempts to explain it on a microscopical basis.

The most famous one has been that of Laughlin [2], who, on the basis of a
model independent argument, concluded that the quantisation should hold quite
generally, when the electronic chemical potential lies in a gap or in the region of
localised states. Later on, Halperin [3] showed that Laughlin's argument leads to
the conclusion that the localisation length should diverge at least for some
energies, when a strong magnetic field is present, in contrast to what is presently
believed to occur in the absence of a magnetic field, for a two-dimensional system.

The first proof of Laughlin's conjecture in a model was made by Thouless et al.
[4], (TKNN), who considered a system of non-interacting electrons in a periodic
potential and a "rational" magnetic field, the electronic chemical potential lying in
a gap. Avron et al. [5] soon proved that the TKNN integers associated to the Hall
conductivity had a topological interpretation. (To a certain extent the topological
aspect of the problem was anticipated in the not so well-known work of Dubrovin
and Novikov [6], and Novikov [7] who considered mostly the case of a periodic
magnetic field.) Later on it was realised by a number of authors: Niu and Thouless
[8, 9], Avron and Seiler [10, 11], Tao and Haldane [12], Grϋmm et al. [13] that
the analysis of TKNN did not really need the consideration of non-interacting
electrons, but could be applied to any finite system of electrons, confined to move
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on a torus. The Hall conductivity is quantised as long as the ground state is non-
degenerate, and separated by a gap (in a strong sense), from the excited states.
Working with such a generality, it has not been possible however, either to show
that the integers correspond to the values actually observed, nor to prove that they
do not change when one varies a little the magnetic field or the density (this is
needed to explain the observed plateaux). Concerning this last point, however,
there has always been qualitative arguments suggesting that the plateaux owe their
existence to the presence of localised states due to disorder in the system.

In this work, we reconsider this problem in the case of an infinite system of non-
interacting electrons, under the influence of a random potential and a magnetic
field.

If the potential is weak enough, the spectrum is made of bands, called Landau
bands. Assuming that all states are sufficiently localised near the edge of each of

e2

these Landau bands, we prove that the Hall conductivity σxy = — n (n = 0,1,2,...)

and the parallel conductivity σyy = 0, when the electronic density ρ stays close to
eB

the value ρ = — n. The conductivities here considered, are those of an infinite
he

system (where the distinction between localised and extended states can be neatly
made), and are defined by means of appropriate Kubo formulas. It may be worth
noting that in order to set such formulas, the electric field has been applied
adiabatically on the system. It has been shown by G. Zumbach and the author
[14], that at least for some models, a static electric field does not give a quantised
Hall conductivity.

Finally, our proofs also lead to the conclusion that in each Landau band, the
localisation length must diverge at some energies, in agreement with Halperin's
argument.

The general strategy of our proof is quite simple. Taking first the chemical
potential in a gap, we show that it is possible to approximate the conductivity by
that of a system in a periodic potential, with sufficiently large period. For such a
system, the Hall conductivity is proved to be quantised, in essentially the same way
as in the TKNN case. (We just need an extension to degenerate bands.) The integer
then corresponds to a topological invariant. The actual value of the integer is
computed, by using the continuity with respect to the potential.

Finally, the contribution to the Hall conductivity coming from localised states
is carefully analysed. It appears that localised states may contribute to the Hall
conductivity if they are degenerate, but not to the parallel conductivity. This is due
to the absence of time reversal symmetry in the hamiltonian. Assuming therefore
the non-degeneracy of localised states, we show that the conductivity is the same as
in the case of a chemical potential in a gap. This is the expected mechanism for the
existence of plateaux for the Hall conductivity as a function of the density.

We finally comment on the possible extension of these results to larger values of
the potential.

1. The Model and the Main Result

We consider a system made of an infinite number of independent electrons of
charge e, mass m, moving in the (x, y) plane under the influence of a magnetic field B
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applied in the z direction and a random potential, due to impurities. The chemical
potential, μ, of the electrons is fixed, and the temperature taken to be zero.

eB (hcV12

Choosing the cyclotronic energy — and the magnetic length — , as units of
me \eBJ

energy and length respectively, the one electron hamiltonian reads:

H = ±v2

x + Wy + V(x,y), (1.1)

where the velocity operator v is given by

vx=-.dx + y, vy=
1

iδy (1.2)

in the Landau gauge.
Concerning the random potential V, we will simply assume that its probability

distribution is translation invariant and that it is bounded:

| |7 | | = sup|K(x,)0|<oo. (1.3)
x,y

Suppose we apply adiabatically an electric field in the y direction on the system. A
current in the x and y direction is generated. The corresponding conductivities can
be defined by an extension of the usual Kubo formulas, to infinite systems,

σxy = \im-+f e-«M(f[_vx,vy(-t)-]f)dt, (1.4)
ε I 0 IS 0

σyy = lim i 7° e " aM{f[υy, vy( - ί)] f)dt + - M(F), (1.5)
ε | θ l £ 0 £

e2

in units of —. ε is the adiabatic switching parameter and /, the Fermi projector

or f = EH(—co,μ). The notation M(A) for an operator A of kernel A(r,rf) means

M(A) = A(r,r), (1.7)

the bar denoting an average over the disorder. The electronic density ρ is given by

ρ(μ) = M(f). (1.8)

It is well known [15] that the spectrum of the hamiltonian

H0=Wx+Wy (1-9)

is made of eigenvalues only {n + ̂ ,n = 0,1,2,...}, infinitely degenerate called
Landau levels. When the disorder is small enough, i.e. || V\\ <\, it can be proved
[23] that the spectrum of the hamiltonian H is contained in the intervals An

= [w + i — II^IIJ n+ 2 + ll^ll]- Moreover under rather general conditions on the
probability distribution of the potential, we expect that these intervals will be filled

00

by the spectrum of H, with probability one. Therefore we will have σ{H) = (J An.
0
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We expect also, and this will be our main assumption, that states close to the edges
of these bands will be localised, probably exponentially.

Let us formulate more precisely this hypothesis.
Let

A; = ln+±-\\Vln+±-\\V\\+δn-],

with

0 « 5 π < | | 7 | | .

The hypothesis H is that, with probability one,
Hx) The spectrum of H in A* is pure point for all n^O and simple.
H2) The localisation length is finite.
More precisely, if φλ(r) is the unique eigenvector corresponding to the

eigenvalue λ, the following quantity is finite, for all n ̂  0,

=$d2rr2 Σ \φχ(0)\2\φλ(r)\2' (l H)
λeA±

These assumptions correspond to the current physical expectation, and have been
proven rigorously in some lattice models without a magnetic field, [16-18], using
basic results of Frόhlich and Spencer [19], and we may expect them to be
rigorously proven for some continuous model with a magnetic field, like that
discussed in [20], with similar techniques.

Using these assumptions, it is then possible to prove the quantisation of the
Hall conductivity σxy and the existence of plateaux, when this quantity is plotted as
a function of the electronic density ρ. Moreover, the result leads to the conclusion
already reached by Halperin [3] on the basis of Laughlin's argument, that the
localisation length must diverge in each Landau band. Whether this corresponds
to truly extended states (continuous spectrum) or simply a divergence of the
localisation length in the middle of the band, i.e. when e = n + \, remains open. The
results are summarised in the following

Theorem, a) Let hypothesis Hι and H2 hold, then for each integer rc §; 0, there exist
densities

Q + ,n = Q(n+%-\\V\\+δn+1)9

such that if the electronic density ρ is in the interval ρe[ρ_> / J 5ρ + > w ] , then

y ( n + ί), σyy = 0, (1.13)

n is the Landau band index. It is also a topological invariant. Moreover

b) K(An)= co (1.14)

for alln^O.
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The result (1.14) has the following interpretation. It is expected that when the
energy e is, in the region of exponentially localised states,

Σδ{e-λ)\ψλ(0)\2\ψM2

λ

\r\
decreases as exp— ——, ξ(e) being the localisation length. Equation (1.14) says that

in each Landau band An, there must exist at least one energy ec(n) such that
ξ(ec(ή))=oo. If we imagine a power law divergence ξ(e)~\ec — e\~v, then (1.14) says
v>\. Present numerical work [21] suggest that ec(n) = n-\-^ and v ~ l .

Finally, we note that a condition of weak disorder or strong enough magnetic
field is needed for the quantisation to hold, since otherwise all states would be
exponentially localised and as our results show, we would have σxy = 0. The
condition || V\\ <\ maintaining gaps in the system is too strong, and we expect the
result to hold even when this condition is violated and the chemical potential lays
in a region of localised states. In the conclusion, we present plausible arguments in
support of this behaviour.

2. Definitions and Technical Tools

In the formal expression we have given for the conductivity, operators like the
velocities which are unbounded appear. Our first task is to give proper meaning to
such formulas, but in the process of doing this, we will introduce technical tools
which will prove useful in the sequel.

Let Λv be an operator, possibly dependent on the random potential V. Av will
be said translation invariant, if

T(a)AvT(a)-ι=AVa, (2.1)

where

Va(x9y)=V(x + aX9y + ay) (2.2)

and

T(a) = exp iayx exp i(axpx + aypy) (2.3)

is the magnetic translation operator, in the Landau gauge. Examples of such
operators are the velocities vx, vy and the hamiltonian Hv.

An operator will be said to be averageable, AveW if:
1) Av is translation invariant.
2) Av possesses a kernel Av(r, r'\ continuous in (r, r') on R2 x R2.

3) |4K(0,0)|<oo.

For such operators, we can define an average

M(A) = Av(0,0) = Av(r, r), Vr (2.4)

because, their translation invariance implies that their kernel satisfies

AVa(r, r') = eiay{x " x>)Av(r + a,r' + a). (2.5)
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Such operators are self-averaging, in the sense that, for an ergodic probability
distribution of the potential

im-i- μ2rAv(r,r) = M(A) (2.6)
T/?2MI A

with probability one.
It is useful to consider the following class of operators Ave^, if
1) Av is translation invariant;
2) Av possesses a kernel Av(r, r'\ such that

\A\= sup ($\Av(r,r')\2 dr')ί/2< oo; (2.7)
V,r

|| VII fixed

3)

where

\Ay\r,a = (ί M A 0 - Ay(s9t)\2 dt)1'2. (28)

These operators are essentially operators of the Carleman type, except for the
supplementary continuities property 3). We recall [22] that an operator T is
Carleman if V/eD(T), 3fc(r), such that

\(Tf)(r)\S\\f\\k(r) a.e.

This is equivalent [22] to the fact that T possesses a measurable kernel T(r, r') such
that

IΓ|(r) = (ί IΓ(r,r')|2rfr')1/2< oo . (2.9)

Moreover, if S is bounded, TS is Carleman and

\TB\(r)S\\B\\\T\(r). (2.10)

Let us design by 23 the class of bounded translation invariant operators Bv, with

| |B| |= sup \\Bv\\«x>. (2.11)
V, II F || fixed

Then we have

Proposition 1. If Ae<g, Be93, ίΛew ABe%.

It is clear that property 1) and 2) are satisfied for AB, since

On the other hand

\ls= sup \HA(r9t)-A{s9t)\(Bφ*){t)dt\9

hence

\AB\rtS^\A\rtS\\B\\.
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The following property shows the usefulness of the introduction of the class <€ of
operators.

Proposition 2. / / Ae<£ and B+ e<#, then ABeW.

The result follows simply, from Schwartz inequality which gives \AB\ ̂  \A\ \B + \
and

We now have to prove that a number of operators which will appear later on
belong to the various classes we have introduced.

Consider first the hamiltonian

H0 = Wx + Wy (2.12)

Defining the creation and annihilation operators

a=—{vx + iυy), a+ = —= {vx-ίvy), (2.13)

satisfying the commutation relation

[α,α + ] = l , (2.14)

we see that

H0 = a + a+h (2.15)

so that the spectrum of Ho, σ(H0) is that of an harmonic oscillator

σ{Ho) = {n+in = 09ί,...}. (2.16)

The corresponding projectors Pn, are given in the Landau gauge, where vx = px + y,
vy = py, by operators of kernel

Pn(xy; x'y') = ^ +f dk e»**-*\n{y + k) φn{y' + k), (2.17)
z π -oo

where

Hn(y) being the hermite polynomial of order n.
We have

Proposition 3. G°z={z-Hoy
ι e ^ if zφ σ{H0).

Proof. G°z is translation invariant and a Carleman operator. Indeed, its kernel
G^{r, rf) is such that

\G°z\\r)= \\G«{r,rTdr> = {G«G%){r,r)= Σ ^ ^ i
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From (2.17) it follows that Pn(r9r)= — , and we have |GZ | < oo. On the other hand
2π

\G°z\f,s = (G°ZG%) (r, r) + (GZ°GZ°.) (s, s) - (G°ZG%) (s, r) - {G°ZG%) (r, s ) ,

so that

Xs= Σ
0

and since from (2.17) and (2.18) it follows that | P Π ( r , s ) | ^ — and Pn{r,s) is
continuous on i^2 x R2, we have by dominated convergence π

We have also

Proposition 4. υxG°z e ® i/ z £ σ(H0).

Proof. We have

therefore

Similarly

|| aG°z ||
 2 = sup

w 4-
||α + Gz°| |2= sup ^

φ:||φ||=l n = θ | z - n - 2 l

On the other hand we have

Proposition 5. Gz = {z-H)~ιe ^ n S , ^ G z G 93, if

inf {dist(z, σ(H)), dist(z,
F: | |F | | fixed

Proof. The second resolvent equation gives

> 0.

y y

Hence from Proposition 1, it follows that

and therefore

Similarly, the second equation gives vxGze^B. Let / be the spectral projector
£(—oo,μ). Then we have y
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Proposition 6. /e«Ή955 fvx(t)e<$nfB, VίeR.

Proof. Writing f = Gi(i — H)f, we see from Propositions 1 and 5, that
Writing fvx(t) = eitH{ί-H)fGivxe~itH, we see that fvx(t)e&. Finally writing

fvx(t) = ffvx(t), we see from Proposition 1, that fvx(t)e%>n%5.
Finally, we note that the operation M(A) has all the properties of a trace. We

have, indeed

Proposition 7.
1) M*(A) = M(A+) if A,A+e9Jl.
2) M(AA+)^0 if Ae<$.
3) | M μ β ) | g M ( y l y l + ) 1 / 2 / 2

4) M(AB) = M(BA) if

Proof 1) and 2) are evident from Proposition 2.
3) is simply Schwartz inequality following from 2).
4) is proved as follows:

M(AB) = \drΆv(0, r) Bv(r, 0),

but

l
hence, by Fubini

M(AB) = j dr Av(0, r) Bv(r, 0) = J drAv(r, 0) Bv(0, r)

by translation invariance. Since \dr \Av(r, 0)| |5F(0, r)|^|yl + | |5|, we can apply
Fubini's theorem again, to conclude.

We can now define the conductivities, from the Kubo formula, in the infinite
system, as given by

j +00

σ x y = l i m - J e - " M ( / [ ι W - 0 ] / ) Λ > (2-19)
ε I 0 IS 0

σyy= l imi +fe'aM(f\_vy,vy(~t)-]f)+ -M(f). (2.20)
εioiε o ε

For fixed ε at least, these formulas make sense. Indeed, from Proposition 6, fvx e <£,
and fvy(-t)e<g9 so that by Proposition 2: flvx,vy(-t)]feWl. Similarly /eSR,
since / = /•/, and we can apply Proposition 2.

We may also note that with probability one, the expression we give for the
conductivity corresponds to the physical definition in terms of the space average of
the local current induced by the adiabatic switching of the electric field. It might
have been more natural however to define σxy, for example, by

σxy= limi + j V e W D W - * ) ] ) . (1 2 1)
ε I 0 IS 0

But owing to the cyclicity property of M and the fact that f2 = f this is the same as
the definition we give, to the extent that expression (2.21) makes sense. We have not
proven this, in full generality however, and this is the reason why we take
expressions (2.19) and (2.20) as the definitions of the conductivity.
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3. The Gap Case

We will first consider the case where the chemical potential μ lies in a gap. This is
possible when || V\\ < \. Indeed, it follows immediately from the second resolvent
equation and the explicit determination of the spectrum of Ho (2.16), that

00

σ(H)C U Λn. Let us define
" = 0 +00

A= f e-εtvy(-t)dt. (3.1)
o

Using the spectral decomposition of H, we can write

iA,/] = J E(dλ)vyE(dλ') {λ'~f* , (3.2)
R2 ε + ι(λ λ)

E(dλ) being the spectral measure of H, and

λ

0 λ^

Taking for Γ, a contour (counterclockwise oriented) in the complex plane, crossing
the real axis at + μ, and encircling the points + iε, we have the representation

ε + i(λ-λf) r2πi z-λ z-λ'-iε' v ' ;

so that we can rewrite

On the other hand

σxy = lim M(fvxAf)= \\m^^M(fvx\_AJ~\f),
ε i o ε ε i o ε

since ImM(fvxfAf) = O, because A = A + . We can rewrite, from (3.5),

>Γ2πΓ'J'G*G*-u' ( 1 6 )

where

Using the fact that

we see that

vv = i\H-z,y\, (3.8)
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Hence

From Propositions 5 and 1, we see from the expression (3.7) that /

Moreover, Propositions 1,2, and 6 allow us to conclude that fvxfy e $R, fyvxfe $R,
and [fvxf,y]eySl. Using the cyclicity property of M, we can conclude that

y fy) = 0, (3.11)

and therefore that

σxy= Hm-2ImM[ fvx§~GzvyGzGz_iε

which gives

σxy=~2lmM^fvxj~GzvyG^ή, (3.12)

since the remainder is bounded by:
I7Ί

i ^ Π s u p l / l \\Gz-kG
2

zvyGz\\ (3.13)
Z7Γ zeΓ

by Schwartz inequality and (2.10). It follows from Proposition 5, that each term in
(3.13) is bounded. Similarly

2 Re 1 / dz
σyy= lim M{fvyfyf)+ -M(/)-2ImM fvyj — GzvyGzGz.u

ε I 0 δ β \ F -̂ TΓί

Using the equation

M+fyv,f=iifi>,f,y]-f, (3.14)

derived from (3.9), we see that

^ ^ ) (3.15)

From Propositions 5 and 6 and the cyclicity of M, we can rewrite

,> , dz _ _ _
2πι

and this can be expressed in the more transparent form, which will be the final one

σxy=-M(flfv,fx]). (3.17)
i

This can be seen as follows:
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Γ being a contour encircling Γ, but such that it still cuts the real axis in the
resolvent set of H.

Using the second resolvent equation, we can rewrite this as

Jy \2πCz"x~z"y\2πi z'-i

but

z' — z 2πi

. G, dz

dz\=Gz(i-f), (3.20)

Iz'-z 2πi

so that

-=fG,, (3.21)

Gz.υxGt.υyGt.f. (3.22)

This identity allows us to express σxy both in the form (3.16) and (3.17). The same
procedure gives

σyy = 0, (3.23)

as expected.
In order to prove that σxy as expressed in (3.17) is quantised, we would like to

introduce an approximation scheme. Let A be the square of side L centered at the
origin. Define as VL(r) a periodic potential equal to V(r) in A, of period L, i.e.
VL(x + L,y)= VL{x, y + L)= VL(x, y). Since || VL\\ = \\V\\<i when μ is in a gap of H,
it is in a gap of HL. For the system with the potential VL, we can define the Hall
conductivity as given by

JyJxD, (3-24)

where

fL=§-^-GL

z, (3.25)

fχ=§-~GzVχGz> ( 3 2 6 )

and M(AL) means

2rAv(r,r), (3.27)

which is well defined for all operators Av with a kernel continuous on R2 x R2, and
such that \Aγ(r, r)\ < oo. We call 9JΪL the class of such operators. We will see that
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We can expect that

σxy= l i m σ ^ , (3.28)
L->oo

and we are going to prove this.
First of all, it is clear that if we drop the condition of translation in variance on

the operators, we still have the analogue of Properties 1 and 2: ΛL e <#, BL e 93, then
ALBLe% and ALe%, BL+ e% then ALBLemL.

Moreover, if we call

+ L ) ί / 2

9 (3.29)

then

\M(ALBL)\ ^ m(AL) m(BL+), (3.30)

and

m(ALBL)^m(AL) sup ||fl£||, (3.31)
II VII fixed

as a consequence of (2.10).
We first prove the following technical:

Propositions, a) / L [ / / ,fx

L~]e9JίL.
b) The following quantity is finite

a= sup {IIGίll, ||GzVj, \\fx

L\\, \\fJ,m(fL),m(G^}.

Proof. Since

{ j , \\fx
Z €: / 9 JLd V? vj y

|| VII fixed

1
11 z l l -dist(/i,σ(iί 0 )+| |F| |) '

and

we see that

sup (\\<%\\,\\<%vx\\,\\fx

L\\)«x>,
ZeΓ,L y y

|| VII fixed

since sup || G°z \\ < GO. The same properties hold for Gz, Gzυx, fχ. On the other hand,
ZeΓ y y

since sup|G°|<oo and G^ = G°-f G°ZV
LG^ we have

sup |G^|<oo.

II VII fixed

From these properties it follows that fL[ff, /X

L] 6 9JΪL, and

sup m(G^) ̂  sup I Gz \ < oo ,
zeΓ zeΓ.L

L || V || fixed
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and finally

Consider now σxy — σxy. We can write

%Lfx

L) = M((f~fL)fyfx) + M(fL(fy-tf

+ M(fLfy

L(fx~fx

L)). (3.32)

We will prove that each of these terms tends to zero, when L tends to infinity. We
will use repeatedly the following:

Proposition 9. // AzeΉ, VzeΓ and supm(^4J<oo, then
zeΓ

lim j ^
2

where δVL=V-VL.

Proof. Since m(ΛzδVL) ^ 2 | | V\\ supm(v4z), it suffices, by dominated convergence to
zeΓ

show that

\imm(ΛzδVL) = 0 VzeΓ.
L->oo

But

I I F I I
z l Ύ ^ \ - ^ l d r J dr'\Az{^r'-rψ

ΛL> U A R2\Λ

and the right-hand side of this inequality tends to zero, by dominated convergence,
since jdr|,4z(0,r)|2<oo.

Consider the first term of (3.32)

M((f~fL)fyfx)= ^ .

we have

-fL)fyfx)\ ύ a ^ m(fxfyGzt δ VL),

and this tends to zero, from Proposition 9, since

supm(/JC/>7Gz*) S a2m(fx).

zeΓ

Similarly, the second term of (3.32) can be written as

M(fL(fy-fy

L)fx)

§
W{fGL

zδVLG2vyGJx) + M{fLGL

zυyG
L

z δVLGJX)} .
λni
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Therefore

and this tends to zero, from Proposition 9, since each term satisfies the condition.
Finally, the last term of (3.32) can be written as

M(fLfy

L(fx-fx

L))= § ~lM(f%LG<;δVLGzvxGz)

+ M{fLfy

LGL

zvxG
L

zδVLGz)-],

therefore

\M(fLfy

L(fx - ft))\ ύ α3 f ̂  lm(Gz*vxGz* δ VL) + m(Gz, δ VL) α ] ,

which tends also to zero, from Proposition 9. Treating in the same way

we conclude that
σxy = lim

L->oo

Finally note that we also have:

M(f)= l imM(/ L ) . (3.33)

We would like to express now the periodic Hall conductivity, in a more
L2

transparent way. Choosing L, in such a way that —- is an integer, the magnetic
2π

translation operators T(nL) form an abelian group, which commutes with HL. We
can therefore apply Bloch theorem. HL is unitarily equivalent to

~]dkx)dkyH
L(k), (3.34)

iv 0 0

where HL(k) is the operator

^dx + y + kxJ +^dy + kyJ +VL(x,y) (3.35)

defined on L2(Λ), with the boundary conditions

φ(L,y) = φ(0,y), φ(x, L) = e ~ iLxφ(x, 0), (3.36a)

and

φx(L9 y) = φx(0, y), φy{L, y) = φy{0, y),
(3.36b)

φx(x,L) + iLφ(x,L) = e ιLxφx(x,0), φy(x,L) = e ιLxφy(x,0),

and

K=%. (3.37)
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One can see that G^(k) = (z — HL(k)) ~ι is compact for all fc. Since f\_fy, fx~] commute
with T(nL), we can write the Hall conductivity in the periodic system as

< = -η^γϊ ί dkx I dky ΎrfL(k) lfy

L(k), fx

L{k)], (3.38)
IK Jb o 0

where fL(k) is the projector

fL{k)=$^G%k), (3.39)

and

ΛL(fc) = * ί : G,L(fc) ( ^ + fcJ G z W (3.40)
y r 2<τιι y y

Equation (3.38) is valid, because fL{k) [//-(fc), /x

L(k)] e 90ΐL and /L(k) is trace class.
Since

vx + kx = dkχH
L(k), (3.41)

y y y

and G (̂fc) is d in k, we can write (3.40) more simply as

fx

L(k) = dkχf
L(k). (3.42)

y y

Introducing the operator

HL(k) = \\-dx + y\ + \\-dy\ + VL(x, y) (3.43)

defined on L2(Λ\ with the boundary conditions

φ(L, y) = eik*Lφ(0, y), φ(x, L) = dkyL~iLxφ(x, 0), (3.44a)

and

) φJt,y), φy(,y) φy(,y), ^

φJίx, L) + iLφ(x, L) = eik>L " i L x φx(x, 0), φy(χ, L) = eikyL ~iLx φy(χ, 0),

we see that the projector

PL(k)=j~(z-HL(k)Γι (3.45)

Γ 2,711

is related to the old one fL(k\ by

PL(k) = eikrfL{k)e-ik'r. (3.46)

But PL(k) is periodic in k:

PL(kx + K, ky) = PL(kx, ky + K) = PL(kx, ky). (3.47)

Using (3.46), a simple computation shows that

+ i(dkχΊϊPLy-dkΊτPLx). (3.48)
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Therefore, since PL(k) is periodic in fc, we can rewrite the Hall conductivity as:

1 κ κ

 τ r
σχy = γ^ΐ ί dkχ J dK TrPL(fc) [<9fc/

L, dkχP
L~] . (3.49)

Once we have put the conductivity in this form, it is possible to show that it is
quantised, i.e.

σxy=— x integer, (3.50)

the integer being a topological invariant. This is possible by recognising in it the
first Chern number of a complex vector bundle [induced by PL{k\ on the 2-torus].
But it is also possible to give a direct and simple proof of this quantisation, and this
is what we do in the next paragraph.

Note that since σxy converges to σxy, (3.50) tells us that σxy= — x integer. The

remaining task is to compute this integer. The expression (3.17) for σxy shows that
this quantity is continuous in λ, if we replace the potential V by λV, as long as
λe [0,1]. Taking λ = 0, we are back to the free case, for computing this integer.
When there is no potential, the equations of motion give

vy{t)= —vxsmt + υyco$t. (3.51)

Putting back this result, in the expression (2.19) for σxy, and using the fact that
[yx,vy~] = i (3.52), one finds

On the other hand, the electronic density ρ is given in a gap by:

§dzM(Gz). (3.53)
Zni r

Replacing the potential V by λV, we get from (3.53),

d£ = ~§dzM(GzVGz)=~
dλ 2πι r 2πx

from the cyclicity property of M. Therefore

ρ = M ( / 0 ) = — Σ (3 5 4 )

In other words, we have proven that

σ =_LjV? (3.55)
xy 2π κ J

when

Q=Y-N9 (3.56)
zπ

N being the Landau band index.
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4. The Topological Invariant

We give here a simple proof of the quantisation. We consider now the
m-dimensional projectors PL{k\ as operators defined for all values of/ceIR2 such
that

(4.1)

where

KX=(K9O)9 K2 = (09K). (4.2)

Since PL(k) is C 2 in k, a theorem of Kato [24] ensures us that there exist m functions
{ψβ)}J= i, c2 in k, forming an orthonormal basis of the subspace projected on by
P (k). The periodicity property of PL(k), induces the following transformation of
this basis:

β β (4.3)
e

Sa(k) being a unitary mxm matrix given by

β β . (4.4)

Let us now introduce the following "gauge field" mxm matrix: Aβ(k),

A%k) = (xpik\dkβψβ)). (4.5)

In a translation of the fc's by Ka, they transform as:

S«)+ Aβ(k)S« (4.6)

as a consequence of the transformation law (4.3), (4.4), of the ψβ).

The usefulness of these matrices comes from the fact that we can write

TrP L [δ f c l P\ dk2P
L-] = dkl tvA2 -dk2 trA,, (4.7)

therefore the transformation law (4.6) for the ^4's implies that if
K K

i= μk^dk2ττPLidklp
L,dk2p

L2, (4.8)
0 0

then
K K

1= \dk2{tr{Slydk2S
l}{^k2)- Idk&τiβ2)* dkιS

2}(kuϋ). (4.9)
o o

Defining φ\k) by Sa(k) = exp iφa(k), the cyclicity of the trace implies that

1 1 2 2 O). (4.10)

On the other hand, expressing ψβ + K1+K2) either as the result of a translation
by Ku followed by one by K2, or the converse, we get the following compatibility
condition for the matrices S:

(sη+ (k) sβ(k) s«(k+κβ) (sβ(k+κa))+=i. (4.ii)
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Equating the determinant of both sides of this equation and using the fact that
Sα(fc) = expitr0α(fc), we see that

tr - φ\k) + φβ(k) + φ\k + Kβ) - φβ(k + Ka) = 2πx integer, (4.12)

and this leads to the desired result,

/ = 2πi x integer. (4.13)

5. The Localised States Case

We would like to consider now the case where the chemical potential μ lies in a
region of localised states. To fix ideas let us take

μeA: = \n + i + || V\\-dw n+\ + ||F||] . (5.1)

We will first decompose the conductivity σxy into two contributions:

σxy = σι

xy + σl, (5.2)

where σxy would be the conductivity if μ was in a gap (of index n) and σι

xy is a
contribution coming essentially from localised states. The same decomposition
holds for σyy.

Let μn be any point in the gap of index n, i.e.

μπe(n+H||7||,n+f-||*ΊI). (5-3)

Then we can write:

f = fn-Xn, (5-4)

where fn = E{- GO, μn\

n) = E(μ,n+± + \\V\\). (5.5)

Now, it follows from the fact that fnχn = χn and the cyclicity property of M, that if A
is any translation invariant observable, that:

M(fAf) = M(fnAfn) - M(χnAχn). (5.6)

This proves the decomposition (5.2) for the conductivities, σ1^ and σι

yy being given
by the expressions we have discussed previously (μn being in a gap) and the
remaining ones being given by

— 2 Im + °°
a%=lim J e-«M(χnvxvy(-t)χn), (5.7)

ε I 0 β 0

— 2 Im
' l i

1
^ J e-«M(χnvyvy(-t)χn)--M(χn). (5.8)

ε 4 0 £ 0 fi

Since we assume that the spectrum of H in the interval B = [μ, n + \ + || V ||] is pure
point only with probability one, we have

Xn= Σ Eλ9 (5.9)
λeB
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Eλ being the spectral projector of H corresponding to the eigenvalue λ. It is easily
seen, that if A e <&, then

M(ΣEλAEλ=M(AΣEλ. (5.10)
\λeB J \ λeB J

Therefore, using Proposition 6, we can write

M(χnvxvy(-t)χn) = M(Σ Eλυxvy(-t)Eλ). (5.11)

On the other hand, using the relationships

, X 1 (5.12)
y L yj

we can write

Eλ ί e~εtυxvy(-ήdtEλ=-EλxυyEλ + εEλxyEλ

o

~^yEλ. (5.13)

To the extent that all terms are finite, we have therefore

= limί EλxvyEλ) -21mM( Σ EλxyE,
ε | 0 ( ε \λeB J \λeB

lim2εImM( £ £,χ ^ y£ Λ ), (5.14)

and

< = liσ\\ = lim - {2 Im M (̂  Σ EλyvyEλ) - M ( Σ '
' ' n \λeB

Eλy I yEλ), (5.15)

and since [x, ι;y] = [x, y] = 0 and [̂ , t;y] = /, we can rewrite these expressions in the
form

( l yEλ). (5.16)

It remains, however, to check the finiteness of all the expressions appearing in σ"̂
(5.14) and σ1^ (5.15), for fixed ε.

This can be seen as a consequence of the following inequalities:

M(Σ EλACEλ) ^ M ^ f Σ EλAA+EλMil2(Σ EλC
 + CEλ), (5.17)

\λB J \λB J \λB
Σ

λeB

fΣ (Σ
\λeB J \λeB

which is a version of Schwartz inequality and

ί V Ί7 Λ T7 \ <^ AΛ ί V Ϊ7 /° T7 \ ί*\ Λ Q\
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which holds if

141

(5.19)

Σ
λeB

Eλr
2Eλ) <oo .

J
(5.20)

By assumption, the localised states in B have a finite localisation length, so that

K{B)=\d2rr2 Σ |Eλ(0,r)|2 = M(

Hence

by (5.20) and the fact that χnv
2χne^, by Propositions 1 and 6. Similarly

M(ΣJλxyEλ)

and

M Eλx :yE,

(Σ
\λeB

Σ
λeB

E^^ + (H-λfyE^<C°'

since

Σ

λeB

by (5.18). The corresponding terms in σ"y are treated in the same way.
On the other hand, there exist a δ > 0, such that the domain \λ — H\ ̂  δ (in the

operator sense) corresponds to a neighborhood Bδ oϊB, such that the spectrum of
H is pure point in Bδ and the localisation length is finite. We can therefore further
decompose the conductivities as follows:

II
σxy

yy

II, 1 , II, 2
xy +σxy
yy yy

II, 3

Xy '
yy

where

yy

Xσ£2=lim2ImM/ Σ Ex"Eλ.yEλ
yy ε | 0 /Ie5 y £ + l(A — A)

J'ΦA

xy
yy

X
QλyEλ),

(5.21)

(5.22)

(5.23)

(5.24)



142 H. Kunz

where

Qλ= w if \λ-H\>δ,
^ ε + i(H-λ) ' ' " (5.25)

Qλ = 0 otherwise.

We now prove that σ11'2 and σ1!'3 vanish.
A xy xy

yy yy

From (5.17) and (5.18) it follows that
11,3 ^ \im2K"2{B)M'l2 ( Σ E.yQlQ.yE,

ε j O U

but

by (5.18) and (5.20).
On the other hand, Schwartz inequality gives

Σ EλxEλ,χEλ^-~ -y M 1 / 2 / Σ EλyEλ/yEλ\ .
ε i O \ λeB V+(A'-A) 2 ! ' - ^ * M

\λ'=l

But by (5.18)

/ Σ EλyEλ,yEλ ^M(^ Eλy{\-Eλ)yEλ\
λeB \λeB )

\λ'eBό

\ λ ' Φ λ

and

M( Σ ^ ( i - ^ J^A) = jdr'dr" Σ EA(O, r') EA(r', r") £ λ(Λ 0)

3 K(JB)

λeB

y-/N2

λeB

We can therefore conclude from the dominated convergence theorem that

yy

We have thus proven that

(5.26)
\λeB

and

(5.27)

Equation (5.27) gives the expected result σ"y = 0. Sufficiently localised states do not
contribute to the parallel conductivity. But (5.26), without further assumption does
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not lead to σ"j, = 0. For a time reversal hamiltonian, the eigenfunctions can be
taken real and in this case σ"y = 0. But when a magnetic field is present, the
eigenfunctions will be complex and σι

xy can be non-vanishing in general. That it can
be so, can be seen by considering the free case: En + ± is of infinite dimension, and
K(B)< oo, for any B containing only n + \, and in this case it can be checked

explicitly that σ\\ = ——, if we take (5.26) for it.

A simple condition which guarantees that the contribution to the Hall
conductivity coming from localised states is vanishing, is to assume that the
eigenvalues are simple with probability one, besides the fmiteness of the
localisation length. In this case, we have indeed

% ( £ | p A (

We think that this careful discussion of the Hall conductivity in the case of
localised states shows the essential difference between this quantity and the more
familiar parallel conductivity. In any case, the assumption of a non-degenerate
point spectrum is a very natural one and can be expected to be always satisfied, as
could be proven to be the case in all the situations where localised states were
proven to exist.

We have thus proven that when the chemical potential μ lies in a gap or in a
region of localised states, the Hall conductivity is quantised whereas the parallel
one vanishes. Finally, if we describe the results in terms of the electronic density
ρ(μ) = M(f), we will have the announced result.

If all states in A» and Λ~+1 are localised in the sense of H1 and H2, then if

Λ " + 1

ρ_ nφρ+ n and — — =
2π

Moreover, when ρe(ρ_ „, ρ + J, then

1
I, σyy = 0.

Finally, let us assume that all states are localised in each Landau band, with a
finite localisation length, i.e. K(An) < oo. Then our proof shows that we would have
σxy(μn + ί) = σxy(μn), where μn is any point in the gap of index n, and μ n + 1 a point in
the gap of index n+1. This contradicts the results established previously σxy(μn+ x)

— σxy(μn)= — . Consequently K(An)= oo for all n^O.

Conclusion

Our proof of the quantisation relies on the condition || V\\ < \. In a certain sense
this condition is natural, since this means either weak disorder and strong
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magnetic field, and at strong disorder we could expect complete localisation with a
finite localisation length and therefore a vanishing Hall conductivity. On the other

hand, we could expect that we always have σxy = —- x integer when μ is in the

region of localised states, with a finite localisation length. A first step in the
understanding of this situation would be to consider our model when | |F | | >\.
There are no more gaps, but if μ is in the point spectrum, with probability one, it is
not an eigenvalue. Therefore, if we approximate the hamiltonian, as we did, by a
periodic one with a sufficiently large period L, then with probability one, μ will be
in a gap of the periodic hamiltonian. But then the Hall conductivity of the periodic

hamiltonian is of the form σxy = — nL, nL being an integer. If one could show that

σxy converges to σxy, when L tends to infinity, we would get the desired
quantisation. Finally, we might expect again that when μ is in point spectrum, σxy

is continuous in the potential (as long as changing the potential doesn't change the
nature of the spectrum). If it is so, we would prove that the integer is the same as the
one we have computed. All these arguments make the conjecture very plausible,
but we failed to turn them into a rigorous proof.

Acknowledgements. I would like to thank Ch. Ed. Pfister and G. Zumbach for many helpful
discussions. This work is supported by the Fonds National Suisse de la Recherche Scientifique.

References

1. Von Klitzing, K., Dorda, G., Pepper, M.: New method for high-accuracy determination of the
fine-structure of constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980)

2. Laughlin, R.B.: Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632 (1981)
3. Halperin, B.I.: Quantized Hall conductance current-carrying edge states, and the existence of

extended states in a two-dimensional disordered potential. Phys. Rev. B25, 2185 (1982)
4. Thouless, D.J., Kohmoto, M., Nightingale, P.P., Deh-Nijs, M.: Quantized Hall conductance

in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 1405 (1982)
5. Avron, J.E., Seiler, R., Simon, B.: Homotopy and quantization in condensed matter physics.

Phys. Rev. Lett. 51, 51 (1983)
6. Dubrovin, B.A., Novikov, S.P.: Ground states of a two-dimensional electron in a periodic

magnetic field. Sov. Phys. JETP 52, 511 (1980)
7. Novikov, S.P.: Magnetic Bloch functions and vector bundles. Sov. Math. Dokl. 23,298 (1981)
8. Niu, Q., Thouless, D.J.: Quantised adiabatic charge transport in the presence of substrate

disorder and many-body interaction. J. Phys. A17, 2453 (1984)
9. Niu, Q., Thouless, D.J., Wu, Y.S.: Quantized Hall conductance as a topological invariant.

Phys. Rev. B31, 3372(1985)
10. Avron, J.E., Seiler, R.: Quantization of the Hall conductance for general, multiparticle

Schrδdinger Hamiltonians. Phys. Rev. Lett. 54, 259 (1985)
11. Avron, J.E., Seiler, R., Shapiro, B.: Generic properties of quantum H all Hamiltonians for finite

systems. Nucl. Phys. B265 [FS15], 364 (1986)
12. Tao, R., Haldane, F.D.M.: Impurity effect, degeneracy, and topological invariant in the

quantum Hall effect. Phys. Rev. B33, 3844 (1986)
13. Grumm, H.R., Narnhofer, H., Thirring, W.: On the Hall current in quantum theory. Acta

Physica Austriaca 57, 175 (1985)
14. Kunz, H. Zumbach, G.: The static Hall conductivity in the presence of a strong magnetic

field and random impurities, Nucl. Phys. B270 [FS16], 347 (1986)



Quantum Hall Effect for Electrons in Random Potential 145

15. Landau, L., Lifchitz, E.: Mecanique quantique - MIR (1966)
16. Delyon, F., Levy, Y., Souillard, B.: Anderson localization for multi-dimensional systems at

large disorder or large energy. Commun. Math. Phys. 100, 463 (1985)
17. Frόhlich, J., Martinelli, F., Scoppola, F., Spencer, T.: Constructive proof of localization in the

Anderson tight binding model. Commun. Math. Phys. 101, 21 (1985)
18. Simon, B., Taylor, M., Wolff, T.: Some rigorous results for the Anderson model. Phys. Rev.

Lett. 54, 1589 (1985)
19. Frόhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large

disorder or low energy. Commun. Math. Phys. 88, 151 (1983)
20. Martinelli, F., Holden, H.: On absence of diffusion near the bottom of the spectrum for a

random Schrόdinger operator on L2(RV). Commun. Math. Phys. 93, 197 (1984)
21. Aoki, H., Ando, T.: Critical localization in two-dimensional Landau quantization. Phys. Rev.

Lett. 54, 831 (1985)
22. Weidmann, J.: Linear operators in Hubert spaces. Berlin, Heidelberg, New York: Springer

1980
23. Thouless, D.J.: Localisation and the two-dimensional Hall effect. J. Phys. C14, 3475 (1981)
24. Kato, T.: Perturbation theory for linear operators, Sect. 4. Berlin, Heidelberg, New York:

Springer 1980

Communicated by E. Lieb

Received December 10, 1986






