
Communications in
Commun. Math. Phys. I l l , 81-100 (1987) Mathematical

Physics
© Springer-Verlag 1987

Asymptotic Completeness and Multiparticle Structure
in Field Theories

II. Theories with Renormalization: The Gross-Neveu Model

Daniel lagolnitzer1 and Jacques Magnen2

1 Service de Physique Theorique, CEN Saclay, F-91191 Gif-sur-Yvette Cedex, France
2 Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

Abstract. The ideas developed in Part I (ref. [1]) are applied to the recently
constructed massive Gross-Neveu model. We define in this case an irreducible
kernel satisfying a regularized Bethe-Salpeter equation which is convenient to
derive asymptotic completeness in the 2-ρarticle region. As in Part I, the method
allows direct graphical definition of general irreducible kernels and is well suited
to the analysis of asymptotic completeness and related results in more general
energy regions.

A large part of the paper is devoted to a new self-contained construction (via
phase space expansion) of the Gross-Neveu model. The presentation is
somewhat simpler than previous ones, is more complete on some points and is
best suited to our purposes.

1. Introduction

In all models that involve renormalization, a phase-space analysis [2-7] is needed,
e.g. to control ultraviolet divergences. A method that has proved convenient is to
introduce a suitable decomposition of momentum space into slices with, for each
slice, cluster expansions with a conveniently scaled lattice. An analogue of the
cluster expansion, with respect to momentum slices, is also a priori needed.
However, a somewhat simpler method can be applied in fermionic theories such as
the massive Gross Neveu model [0], which is a fermionic model in 2 dimensions
with quartic interaction a colour number ^>2, and which is asymptotically free. In
fact, in contrast to bosonic models, it is useful to expand the exponential of the
interaction which is of the form

exp \λ j (W)2(y)dy] as a sum £ — Γj (^)2(y)dy~\ .
L A J n \_Λ J

Each field is decomposed into fields ι^(0 depending on the momentum slice /, and
cluster expansions are now applied for each i to

integrals of the form J Π <A(000 Π ^(ί)C
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Some of the vertices yv or yw occur in several slices and "connect" the various slices
together.

Several approaches to the G.N. model, which involve slightly different
renormalization procedures, can be considered. In all of them, a momentum space
cut-off ρ, which is the number of momentum slices, is first introduced and one starts
from a coupling constant λβ which will tend to zero in the ρ-> oo limit in a way such
that the renormalized coupling constant /lren is different from zero (non-triviality).
The construction presented below, which follows the same essential ideas but differs
from earlier ones [8,9] on some technical points, seems the simplest and most
convenient for our purposes.

The model is described in Sect. 2.1. The expansion of connected functions
arising from cluster and Mayer expansions in each momentum slice is described in
Sect. 2.2. It is shown in Sect. 2.3 to be convergent in the Λ->oo (infinite volume)
limit, at given momentum-space cut-off ρ, for \λ\ <λε M~(ρ/2) ρ~3 m2

Q and Aε suf-
ficiently small mρ is the bare mass and M > 1 is the "width" of the lowest momentum
slice. This is an appreciable progress with comparison to the result obtained without
phase-space analysis (λ-»0 as M~2ρ), but as expected, is still insufficient to control
the ρ-+oo limit, i.e. to obtain a non-trivial theory in that limit: a rearrangement of
terms of the expansion, involving renormalization, is needed. It is outlined in Sect. 2.4
where convergence and decay properties of connected functions are obtained (at
ρ infinite) with λe of the form: [ — β2 (In M) ρ + β3 In ρ + D ] ~l, \D \ sufficiently large

/ D V
(Re D £> 0) and mρ of the form ra0 —-r-:—— ρ y, y > 0 β2 and β3 are the standard

coefficients of the /{-function. The constant Arenwill be shown to be non-zero (in fact
close to D"1 for large D) in Sect. 3; the renormalized mass mren as well as the
physical mass will be of the order of m0 .

The main purpose of this article is to construct a Bethe-Salpeter (B.S.) type
irreducible kernel allowing a derivation of the discontinuity formula,

which characterizes asymptotic completeness in the 2-particle region here F+ and
F- are the boundary values of the connected, amputated 4-point function F from
above and below the cut [which starts at (2mph)

2] in the physical sheet and * is
on mass shell convolution. [More precisely, each internal line includes, besides
mass shell δ functions, the residue of the 2-point function at its pole, of the form
Z(—$ + mph) for the G.N. model.] This was achieved in previous works (see
[1] and references therein) for P(φ)2 models from the B.S. equation

F=G+GOF

where O denotes Feynman type convolution with 2-point functions. The 2-particle
irreducibility of G and related analytic properties of the 2-point function needed in
the derivation were obtained in [1] through a "4th order" cluster expansion. In a
renormalizable theory like the G.N. model the operation O introduces divergences.
One might first define, in a theory with cutoff α a B.S. kernel Gα satisfying:
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and obtain in turn the relation :

But one cannot take the limit of this equation without a supplementary analysis.
(One cannot e. g. exclude a priori an a la Martin pathology such as an accumulation
of poles of F on the real axis in that limit.) A related approach is to introduce
renormalized B.S. equations: see [10].

However, the most convenient method is to introduce a kernel GM satisfying a
regularized B.S. equation:

with a fixed ultraviolet cutoff in OM. The cutoff that will be introduced will not
modify the residue of the 2-point functions at their poles so that the discontinuity
formula for F can still be derived.

This kernel will be constructed from a fourth order cluster expansion made only
in the slice of lowest momentum that occurs in phase space analysis. In the higher
slices, propagators have such an exponential fall off in euclidean space time that
connectedness implies 2-particle irreducibility. Hence a usual first order cluster
expansion is enough in these slices. Although it does not have a simple perturbative
content, GM will then be shown to be indeed 2-particle irreducible in the required
analytic sense.

The main part of Sect. 3 is thus devoted to the introduction of this kernel. The
analysis of 2-ρoint functions is also given there.

2. Phase-Space Expansions of Connected Functions

2.1 The Model

The 4-point Green function SΛ(x1 , . . . , x4) of the G.N. model is of the form NΛ

with (formally):

(NA\(xl9.. . ,*4) = f ίK^OίK^)'^^)^^)^^,^) , (1)

where λ is the bare (unrenormalized) coupling constant, the measure dμρ is asso-
ciated with the propagator Cρ(p) = e-(p2+m^M~2eC(p), C(p) = (-f + mβ)
- (p2 + ml) ~~ 1 , with $=poσQ+pίσί: 0"o > σx are 2 x 2 matrices such that
σ§ = σf = -1, σ0σι+σισo = 0 (hence f= -p2, p2=po+p2).

By expansion of the exponential and some algebraic calculations, one gets the
following form of (NΛ)β and an analogous form of ZΛtQ, which are as a matter of fact
the correct definition of the model

= Σ f *,...*.«to n\ in x^yiyi". ynyn
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where
ί 11* u I

(3)|"1 I'»j=det(Cβ(M ί,pJ)) .
(Vl ' ' ' Vn)Q

The spin, respectively colour, indices of each field, which take 2 values, respectively
a finite number Ξ> 2 of values, have been left implicit.

2.2 Phase-Space Expansion (Before Renormalization)

The propagator Cρ is written in momentum-space in the form:

) , (4)
ί = l

where
- (5)

(6)

(60

for a given integer M > 1 , which will remain fixed α will be chosen e. g. equal to one
in Sects. 2.2 and 2.3; it is convenient to choose it equal to 2 in Sect. 2.4.

The corresponding decomposition of CQ in euclidean space-time [by Fourier
transformation of (4)] yields expressions ofNΛte and ZΛtΰ in which the determinant
( )ρ is replaced by a sum of products of determinants corresponding to different
slices (in each of which C is replaced by C(ί)] with some vertices x or y occurring
possibly in several slices. Cluster expansions are made independently in each slice
for each determinant. They are obtained here by replacing each propagator
C(I)(x, y) by C(l)(x, y s), according e. g. to the procedure described in Sect. 3.1 of [1 ].
[Note that a product of propagators C(uhVι) is missing there in (20)]. Variables sΔtΔ

are here those associated with pairs of squares containing points x or y. A Taylor
expansion is then applied to the determinant. The lattice DI will be chosen different
in each slice. In fact, we note that C(l)(x) satisfies the bounds:

|C(1)(x)|< const έΓm"w , (7)
i

|C(ί)(*)|< const M^~2M 2 ( I~1 ) W 2, />! , (7')

obtained by direct inspection. [In contrast to C or C(1), which has in/?-space a pole
singularity zip2 = — m2

Q away from euclidean space, C(ί) has no pole. Hence C(ί)(x)
decays faster than any exponential e~α 'x ' in euclidean space-time.] The lattice
spacing in slice z, />! will be taken equal to M~l: this is the optimal way of
decomposing the integration domains in space-time into cells where C(l} is
approximately constant and such that the sum over cells is controlled by the
exponential fall off of C(0 uniformly in / :

r ji/2(i-i) η
£ exp -- - — ί/2(0, A) < const independent of i.

ΔeDi L 2 J



Gross-Neveu Model 85

Thus, in the bounds, the local and non-local aspects (in t-space) will be decoupled :
the couplings between squares of the same lattice will be controlled by the (scaled)
fall off of the propagators each vertex can then be localized in a square, and bounds
on each contribution follow from power counting, with factors Mi for each
propagator C(l) and M~2t for the summation of one vertex in a square of Dt( = the
surface of the square).

As in Part I, we put apart the bare propagators Cρ linked to the external vertices
x1,. . . ,.x4. In view of the extension of Sect. 3, a 4th order expansion in the
momentum slice 1 will be used, but it is sufficient to use 1st order expansions in all
other slices, since in fact exp [— jM(2 l"1) |x|2]<conste~4m'x' if e.g. M>4m.
A Mayer procedure is also applied in each slice. The connected function
Hc

A^Q(z^. . . ,Zj), /^4, is then expressed as a sum

veG

' - (8)

where the sum runs over connected graphs G defined as follows. In each slice i, G has
Nt^ 0 vertices v = 1 , . . . , Nt to which will be associated squares Δv ofDt . Each vertex
v, or square Δυ, in each slice is equipped with nv^Q "original" interaction vertices
and with nf

v^Q "derived" interaction vertices, with nv + riv^.l. Each interaction
vertex has 4 legs, 2 "i/r" and 2 "^" which are distributed between 1,2, 3 or 4 slices;
the vertex is said to belong to each of these slices. It is (by definition) an original
vertex in the slice of highest index (to which it belongs). It is a derived vertex in the
other slices (to which it belongs). Original and derived vertices in different slices
corresponding to a common interaction vertex (to which the same point y or z will
be associated) will be joined by lines --- .

Each interaction vertex (0, r) corresponding to a point zr always occurs as an
original or derived vertex in slice 1 with a leg corresponding to the propagator Cρ to
which the point zr is attached. In each slice i, pairs of vertices Fmay be joined by
Mayer lines, or by the propagator line (ψ) - (ψ) that runs between original or
derived interaction vertices they contain, with at most pt lines - between any
pair (v, v') of vertices of G if the order of the cluster expression in slice / is pi . The
graph G has to be connected with respect to the set of all vertices v occurring in
different slices when all lines are taken into account.

For each G, the sum Σ' runs over all possible sets {A} of squares varying in A
subject to the following conditions. Two squares linked by a Mayer line must
coincide and a square in a slice i must be contained in a square of a lower slice
whenever corresponding vertices v are linked by a line --- (since these squares
contain a common point y or z). On the other hand, if v contains an original or
derived vertex (0, r) then the square A must contain the point zr .

For each point (y(f\ . . . , y(fy in the integration domain, R is is a product of
factors (which are propagators and determinants) associated for each slice to each
part of <jr connected in the slice by lines - , of factors — 1 for each Mayer line and
of a further symmetry factor (smaller than one). The first factors are those arising
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Fig. 1. A configuration of squares contributing to a connected function #£ ρ . Each vertex has two
legs ψ and two legs iβ, only some of which are indicated explicitly. All fields of slice i are to be
labelled by L rw^s\ denotes a Mayer line

from the cluster expansions. An example of a set of squares {Δ } for a given graph G,
with indication of corresponding points y^ and zr and of lines arising from those of G
is shown in Fig. 1 . The factor associated e. g. to the connected part in slice 2 (p = 1)
on the left is equal, up to a sign, to

,
where s is the variable associated to the pair of squares; the propagators

Λ,yβ\s) involved in the determinant are equal to C(2)(>>α, yβ), respectively to
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sC(2)(yΛ,yβ), if ya, yp belong to the same square, respectively do not belong to the
same square. In the terms { } there is one point ya in the first line, respectively yβ in
the second line, for each leg ψ, respectively ij/9 attached to j>α, respectively^, except
those already linked by explicit lines .

We conclude with some definitions. Being given a connected graph G, we shall
denote by ε ί j f e its connected components obtained by removing the part of G that lies
in slices < /, by Giίk the connected components εi>k that have at least one leg in slice z
and by Litk the restriction of Gik to slice i (i.e. L ί>fc is connected when the lines
and Mayer lines of slice z, as also possible connections via slices > z, are taken into
account). The external legs of ε ί>k or Gi)k are legs of G that lie in slices < i and are
hooked by lines to vertices of είtk or Gi>k.

A graph ε ί?fc or Gi}k is called a r-point subgraph if it has r external legs. A skeleton
graph G is associated to each graph G by defining skeleton graphs for each
connected component Li>k in the same way as in Part I except that possible
connections via slices > i play here the same role as the lines of slice /. (The
skeleton is defined for each Liίk by starting e.g. from the lowest vertex.)
Contributions that have the same skeleton graph G can be regrouped together and R
is replaced in Eq. (8) by a corresponding factor R.

2.3. Convergence (/L-»oo, Q fixed)

We begin with some preliminary lemmas:

Lemma 1 [9]. Given a slice z, a set if squares Δ ofDί and in each square Γ(Δ) points
y'j>A, Γ(Δ) points y"^A, (some of which may coincide), with ]Γ Γ(A) = Σ l"(Δ\

Δ Δ

there exists a constant C independent of the number and position of the squares and
of the point y', y" in these squares such that'.

(})
.(s)

μ(Λ) /Q\
J 5 (?)

Δ

where l(A) = Γ(A) + Γ'(A).

A stronger version of this result is given in [9]. An alternative and simpler proof
is given in appendix. The following Lemmas 2 and 3 can be found in analogous
forms in various previous works in constructive theory or in statistical mechanics.

Lemma 2. Given an integer />^1, any set of squares A0, Al9. . . ,AN of the lattice
Di,A^ Aβ ifaή=β, and, in each square ΔΛ9 q(ά) points ylfΛ9 . . . , yq(a)tΛ (some of which
may coincide) , the following bound holds for i > 1 (with a constant C2 independent ofi,
N, AQ, . . . , AN and of the points y) :

ί / /)<C! , (10)
G leG

ifC1 is small enough, where the sum runs over all connected or non-connected graphs G
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composed of lines joining points of different squares^ with at most p lines between any
N

pair of squares, d(l) is the distance between the squares linked by line I and q = £ qa .
α = 0

We give the proof for simplicity at/? = 1 . The sum Σ is bounded by the sum over
all ways of drawing from each point y of each square ΔΛ zero, one or more lines
joining y to points of squares Δβ^ΔΛ, with at most one line between y and each
square Aβ. For each y, the sum is bounded by a constant independent of TV, y and of
the number and position of the squares if:

e ~const M^d(Δu,

leDi

Lemma 3.
fi/N

y _ _ y e -const Ml Ί(Δ0,...,ΔN)<gff / j j \

T V ^ O N Aίt...tΔNeDi
Δv*Δβ if α Φ j B

for i > 1, where C" is arbitrarily small if C' is small enough', l(A0ί. . . , AN) is the
shortest length of all graphs joining zJ0, . . . , AN, with possible intermediate points (or
squares of Dt), and connected with respect to A0, . . . , AN.

This bound can be obtained e. g. by noting that l(A0,. . . , AN) is larger than one
half the minimal length of trees joining A0, . . . , AN without intermediate points or
squares. The left-hand side of (1 1) is thus bounded by introducing for each TV a sum

over all trees with factors exp -- - — Mi ~ 1 1/| for each line of the tree. The end of

the proof is then analogous to that of (46) of [1].

We now state :

Proposition 4. For any ρ > 0 and λ sufficiently small, H^ ρ has a well defined limit HC

Q

when Λ-+CO. Moreover Vε, ε>0, ΞUε>0 independent of A and ρ such that

J dz2.. .dzι\HΛ%e(zl9.. .,zz)|<const|λe|V

Δ2,.
2.','ΔιeDι (12)

if \λ\<λεM~Ql2 Q-*m2

Q .

Remark. In this section, the lattice spacing in slice 1 can be taken of the order of mρ~
1.

Thus in slice 1, Lemmas 3 and 4 still apply (with Ml ~l replaced by mρ). The factor m2

Q

in the bound on \λ\ in Proposition 4 arises from the surface of the squares of this
redefined slice 1.

Proof of Proposition 4. The function R (see end of Sect. 2.2) satisfies, for any given
set {A}, the bound (derived from Lemma 1):

I Π (CΊ

• Π Π e-"'-1" Π ίΓ"*1'1, (13)
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where fe (i) means a leg ( = field) in slice /, the last products run over lines - , and
I/I is the distance between vertices y or z joined by line /. We have used the inequality :

M2(i~1} Ί
-=-γ- \'\2exp I/I 2 |<const e'2M m . (14)

It will be convenient to write, Vz > 1:

γ[ e

 MτJ-l/l

to attribute each factor exp |/| L respectively e m& '*', to slicey, respectively

to slice 1 and to replace |/| in the bounds by the distance between the corresponding
squares of Dj (or jDJ, in each slice that contain relevant vertices y or z. On the other

hand, factors (A^!)"1 will be replaced on the bounds by Π C^/J)"1 with
k

independent vertices v for each connected component (/, k). As in Part I, a common

factor e~
(mβ~ε)l(zι"'"zι) [up to a multiplicative factor Π (const)Nl, which will give a

i

constant for each square] can be extracted for all terms from parts e~
(mβ~&}\l\ of the

factors e~mg\l\ occurring either in (13) or in (15). Remaining factors e~ε^ will be
used for convergence.

(i) A "fixed" interaction vertex of G, i. e. correspondingly a "fixed" vertex y or z
is chosen in a slice ^/ for each connected component Li}k. This is e.g. zx in slice 1
(where there is only one connected component L±). More generally, if Liίk contains a
vertex already occurring as a fixed vertex in a slice < i, this vertex is again chosen.
Otherwise, a vertex of Giίk that has a leg in a slice / ' < / is chosen. One starts by
summing all the non-fixed vertices of slice ρ. In each Li>k there is by construction a
tree of exponential fall of factors connecting the fixed vertex to all the vertices of Li>k

which have not been already summed (in slices ρ, . . . , z + l). Each fixed vertex
(except zj) will be integrated directly in the square of the highest slice to which it
belongs and where it is no longer "fixed."

(ii) (power counting)
The bounds (13) yield factors Mi/2 for each leg in each slice i, and a factor M~2i

is obtained (by integration in squares of Dt) for each vertex y or z of slice /, except
those already integrated in higher slices and "fixed" ones. By writing, following [8]

i i

Mί/2=Yl M1/2, M~2ί=Γί M~2, a factor M1/2, respectively M~2, can be
j=ι j=ι

attributed to each leg, respectively each vertex y (or z), except one, of each connected
component ε,-^. The product of these factors is equal,

for />!, to Π Mίtk where:
a,k)

Miίk= Π ^1/2 Π M~2 = M(~1/2}(eί'k~4} , (16)
/eε ί j k vertices «eε l > k

minus one

where eitk is the number of external legs (in slices < /) of ε^. Since eiik^2, this factor
is bounded by Π M.
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Finally, since any εitk contains at least two vertices u (y or z) and since any vertex
occurs at most in ρ connected components Gίtk, the bound (Mρ/2)n+l is obtained,
where n + / is the total number of vertices u.

(Hi) For each set of vertices v (or squares A) in each slice and each set (nv}9 the
number of all possible attributions of legs in slices ^i for each original interaction
vertex of slice / is bounded by 4/3^4ρ3.

(iv) The further summation over all possible sets of lines joining interaction
vertices gives, in view of Lemma 2, a further constant in the bound for each
(original) interaction vertex: here, part of the decay factors of the lines has
been used to apply Lemma 3. Remaining exponential decay factors will provide the
fall-off factor sexp [—const Ml~1l(AQ,... ,AN)] needed to apply Lemma 4 for each
connected component Liιk. (The choice of λε allows one to get sufficiently small
constants.)

(v) The summation over all possible values of nv( = nΔ) in each square A then
gives a constant for λε sufficiently small:

£ [λ xconst Me/2ρ3m~2]nυ<const (17)
nv^0

for \λ\<λεM-Ql2ρ~3m*.
Moreover, if the square A contains at least one original interaction vertex, the

sum runs over nv ̂  1. The constant obtained in the right-hand side of (17) is then of
the form const λε. This is used in turn to give an (arbitrarily small) factor const λε

f4

for all squares.
(vi) Final bounds are obtained by independent summations made in the same

way as in [1 ], now using Lemma 3 for each connected component (/, k) in each slice
and all possible values of Ni>k. For each one, an arbitrarily small constant is
obtained (for λε small enough). The summation over all possible numbers of
components (/,&) in each slice and over all slices is then possible and leads to
the bounds (12). The same type of argument as in [1] shows moreover that Hc

ΛtQ

has a well defined limit HC

Q when yl-»oo, which is analytic in λ in the region

2.4. Renormalization

In contrast to Sect. 2.2, cluster and Mayer expansions are first made only in slices 2
to ρ. Scalars δλρ9 δmρ, δζρ are defined by the formulae:

δλρ = ̂  Sc

(ρ](ul,u2,u3,u4)\me=0du2du3du4 , (18)

δmQ = ! Sfa(ul9U2)du2 , (19)

yvδζρ = J (M! -u2) vS
c

( ρ )(u1, U2)du2 , (20)

where 5(c

ρ) is the connected 2 or 4-point function of slice ρ, i.e. the sum over
connected graphs Gρ of slice ρ with 2, respectively 4 external legs hooked at u1,u2,
respectively w 1 ? . . . , w 4 , of corresponding functions G(e)(uί9u2), respectively
G(β) (MI ,. . ., w4). [S(

c

ρ) is independent of the slices < ρ to which external legs belong.
Two or three of these legs may on the other hand be attached to the same vertex UΛ.
This gives a contribution to Sc

(ρ} including ^-functions o(ut — Uj).} The fact that the
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functions S(ρ) and the integrals (18), (19), (20) are well defined in the Λ-+OO limit is
proved by the same methods as in [1] and Sect. 2.3. The functions G(ρ} and S(

c

ρ) are
also euclidean invariant at A infinite. Hence δλβ, δmρ and δζρ are independent of HI .

We then define the "regularized" functions:

S(ρ)reg(wι> >u4) = S((>)(uι, , "4) ~δλρδ(u1 - u2)δ(uί -

= [S(β)(«l , . . . , W4) -%(«! , . . . , K4)lmβ=θ]

% reg(wι,W2) = S(ρ) (u^u2)-δmρ δ(uΐ~u2) -δζρ^δ(uί -u2)

= Σί?((?)reg(Hl JK2) , (22)

where the functions G!

(ρ)reg are defined in the same way as Sc

(ρ)τeg. (The functions 5(

c

ρ)

are replaced by functions G(ρ)? and δλρ, δλρ δζρ are replaced by the corresponding
quantities.)

We note for later estimates that :

f 5(ρ)reg(wι , . . . ,

+ J ^7 Gto)(«! , . . . , w4)|m> lA(^ι) . . ψ(u4)dult. ..du4 , (23)

where the indices zΊ . . . /4 ( < ρ) of the external fields and indications of fields if are
left implicit. Each factor ψ(Uj) — 'A(^i) can be written:

. (24)

The factor Uj— u^ will be associated to G(ρ) and will be called an "internal
regularization" factor while the gradient is applied to an external field. Equation
(24) can on the other hand be symmetrized with respect to w l 5 . . . , w4.

Similarly:

f / N / Λ / . .. . 8 d= J (M! — u2)μ(Uι — u2)vG(ρ)(u
duμ duv

(25)

This yields again internal regularization factors and external gradients. The
quantity δmρ can be written on the other hand in the form:

where
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and

Formula (26) follows from the relation:

Σ<5Gβ|m=0 = 0 , (28)

which is due to the fact that the 2-point functions S(ρ) contains an odd number of

propagators: the propagator C(ρ)(/?)|m=0 in/7-space is an odd function of p and

thus S(ρ)(/7)L=0 = 0.

The derivative — — δG0(m') is a sum of terms obtained from the action of—— on
dm dm

one of the propagators involved in the expansion of δGρ, with a total number of

terms bounded by 2 times the number of vertices u of the graph GQ I ^ Π 2 J,
\ vertices u J

while :

dm' [ M2(ρ~1} Ί
-- ~ - |wι — u2\

2 (29)

i. e. a factor M& has been gained in comparison with (?') : each derivative thus plays
in power counting the role of an internal regularization factor. (A similar
modification holds in Lemma 1, as can be seen e.g. from the proof given in the
Appendix.) We remark that no external gradients are associated to these internal
regularizations. These remarks apply in a similar way to the derivatives djdm' in the
last term of (23).

From the above rearrangements of terms, it can be checked that an expansion
analogous to (8) is obtained in slices 2 to ρ, with the following differences :

(i) The coupling constant attached to each interaction vertex is either λQ = λ if
this vertex has a leg of index ρ (i.e. is an origianl vertex of slice ρ) or is equal to

(30)
otherwise.

(ii) A new class of vertices with 2 legs in slices ij ^ ρ — 1 , of the type δmρ ifa ψj or
δζρψitfψj, is introduced.

(iii) The class of graphs G is thus replaced by a new class of graphs G(Q} which
may include links between interaction vertices in slice ρ (that will correspond to
internal regularization factors u± —u2 or d/dmf), and attributions of gradients to
some legs in slices < ρ.

Contributions associated with each new graph G(e) are those corresponding to
the rules introduced above. They involve some displacements of the points to which
external fields are attached. This will lead only to unessential changes in the proofs
of convergence and decay.

We next define

δλe-ι=$ 5$̂  i)(ttι,. . .,U4)\mβ=odu2du3du4 , (31)

where S(ρ
(-i) is the connected 4-point function of slice ρ— 1, i.e. the sum, over

connected graphs Gj>βl i with 4 external legs and no external gradient in slices < ρ — 1 ,
of functions G$-I}(UI,. . . , M4). The quantities δmρ-1 and δζβ-ι are defined
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similarly. This procedure is pursued up to slice 2 (included). This gives an expansion
in which :

(i) The coupling constant attached to an interaction vertex of highest slice i is

λi = λi + ι+δλi + 1 = λQ + δλQ + δλQ-ι + ...+δλi + 1 , (32)

where δ λj = J S$+ί)(uί9. .. ,u^du2du^duA. and >S(

C//+1) is a sum over 4-point
subgraphs Gp + 1) with no external gradient (in slices </).

Q

(ii) The coefficient attached to a 2-leg vertex of highest slice / is ^ δπij( = mρ

β j = i + l

— raO, respectively J] <5ζj ( = l — Q.
./=i + ι

(iii) The class of graphs G(2} is obtained from the inductive procedure. In
particular, all 4-ρoint subgraphs G$ of the graphs G(2\ respectively all
2-point subgraphs, have at least one external gradient attached to one of their
external legs, respectively at least two external gradients.

Finally, in the last slice, we first resum in the propagator (at sufficiently small λρ ,
hence small δm^ <5Q all 2-point insertions. This gives (together with an analytic
continuation in λ, as needed for later purposes) an effective propagator C1 :

i=2 i = 2

-1,λ1))Γ1 , (33)

where φ^(p) is the sum of 2-point insertions and V1 = (p2 + m2

2)M~4, and where the
expression in the right-hand side of (33) will follow from Eqs. (34), (35), (36) below.

Q

It will be shown later that 1 — ]ζ δζίe'~Vί is close to 1 and that mβ — ]Γ δmie~Vί is
i=2 i=2

closetomρ + Σ|δmί|. By choosing M"1 and^ small enough (i.e. \D \ large enough),
C1 (p) will have a unique pole at a mass of the order of ra0 .

A cluster expansion of order 4 (relative to Q) and a Mayer procedure are then
applied in slice 1. The result is a final expansion of HC

Q of the type already described
in slice 2 to ρ. Concerning slice 1 , the propagator is C1 and on the other hand there is
no 2-point function with 2 external legs in slice 1.

We now put :

(34)

, (35)

Cβ = l , (36)

where y = lim lim — r~- , and outline the proof of convergence and decay

[for |/)| sufficiently large depending on ε in Eq. (37) below] of HC

Q in the ρ-»oo
limit. More precisely, the following bound is obtained:
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<const (e)μ1|ίr<'»-'ϊ>'<*ι^2- ^ι> (37)J Hc

ρ(z1,...,zl)dz2...dzl

with moreover λ1 φO in the ρ->oo limit. (For fixed ρ, convergence and decay are
obtained similarly for bare coupling constants whose absolute values are smaller
than |/y, where λρ is defined in (34), but λί will tend in general to zero in the ρ-» oo
limit for choices of bare coupling constants different from (34).)

To obtain (37), it is proved by induction that

<*-*\ +0(0] , (38)

(39)

(40)

where α= -j82lnM, b= -β2 In M[-β2 In Af+j83], and

v^-e-v^(e-v-^-e-v^ . (41)
p

These formulae will entail in turn that :

Γ1 , (42)

j^ const wo , J< — 0 . , . , (43')
— p2 In M

with | /( ί ) |<l , | f i f (OI<l/2,3/2> |C i |> l/2.

Outline of the Proof of Eqs. (38), (39), (40)

(i) (Power counting) Each regularization factor, respectively each gradient acting on
a field of indexj, in a subgraph Gik gives a factor M ~l, respectively Mj. This leads to
replace in the bounds the product Π Miίk by Π ^7,fc> where:

(ί,k) ' (i.fc)

M i Λ/T — \/2(e'i k ~ 4 + 2 (number of internal vertices of type ψψ)
i,k~ιvι ' •>

ί̂ k = £. k + 2 (number of internal regularizations)

—2 (number of (internal) gradients) . (45')

As a consequence e ̂ Sup (e/>/c,6).
Equation (45) is true because of our definition of the first slice : the contribution

to the power counting of a vertex ψψ in slice />!, is M~2(i+a~2} -M(i+a~1)

= M~ ί~α + 3^M"1 for />!, and e.g. α = 2.
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In view of this power counting, the bound

UMίtk£ Π M~hJ^ (46)
i>k vertices u

holds; h(u) is the difference between extremal slices containing legs attached to u.
This factor allows one to sum over possible attributions of momentum slices to each
leg of each vertex u.

(ii) Coefficients in Λ| and /If of δλi in (38) are obtained by explicit computation of
first order graphs. The remainder term of δλi is then treated by the same methods as
in Sect. 2.3, now applied to functions Sc

(ί} of slice i.
(iii) Formula (39) for δπii is obtained by explicit computation of leading

contributions, which come from graphs of the form

including only one insertion (Note that λk— λt~ Σ O(λf)^(k—i) O(λ2) and
j=ί + ί

that, for a given k, a factor M ( l\ which will control the factor k — z, arises from
power counting of this diagram.)

(iv) Formula (40) of δζt is obtained similarly by inspection from the leading
contributions : the latter have two vertices which are either of the type (^)2, \j/\j/ or

(v) It will be convenient to write λi = K(λiK~i).
Convergence properties in slice 2 to ρ (including the control of remainder terms)

are ensured by choosing K small enough, by choosing D such that \λiK~1\^l,Vi,
and by considering M ~ * small enough. Values of K&nd M ~1 are here independent
of ε and such that the vertices K(\(i\l/}2, (Σδζj)ψί/lψ9 (Σδm^il/ψ are small enough. By
this we mean that the product of the coefficient times the contribution of the
vertices to the power counting is small. For the mass term the coefficient is bounded
[see (43 ')], and the contribution to the power counting is bounded by M ~ * [see (45)].
For the O/^/O2 the power counting is zero and the coefficient is bounded by
1/D and small for D large. Finally for \ji$\l/ the power counting is also zero, for z
large |<5ζi|;^ const λ2 and for i = 2 |<5ζ2|^const M~4; more precisely, (44) holds and
shows that the coefficient is small for M"1 small.

In slice 1, convergence is ensured for any given ε by choosing |D| large enough
(depending on ε) so that all coefficients λiK~l be sufficiently small. We note as a
matter of fact that a factor (/ί^"1)1/4 can be attached to each field of slice 1. This is
obvious if this field is attached to a vertex λ^ψψ)2. Other fields are external legs of
connected graphs which have r ̂  4 external legs. One checks that these graphs made
of O/π/02, *A'A? ΨΦΨ vertices contain at least r/4 vertices (ι/n/02.
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3. Irreducible Kernels

As announced, we wish in this section (i) to reobtain the non-triviality of the theory
(Aren φ 0) (ii) to establish the analytic structure of the 2-point function (analyticity up
to (4mph)

2 — ε apart from the pole at/?2 + m2

ph = 0, whose position defines the physical
mass) and (iii) to define the 2-particle irreducible kernel GM satisfying the
regularized B.S. equation:

F=GM+FOMGM . (4?)
The proof of (ii) and (iii) is close to that given in [1] with, however, some
complications: in particular, 2-point functions are not directly exhibited in the
graphical expansion of the 4-point connected (non-amputated) function. This is
due to the fact that the particle analysis was made only in slice one. We have thus to
reconstruct a B.S. like equation. The result is the regularized equation (47), where
OM is the convolution with modified 2-point functions that have now a sufficient
decrease in euclidean directions. Their residue at the pole is the same as that of the
2-point function (as required to derive asymptotic completeness: see introduction).
On the other hand, we note that the quantities such as CQ and φ are matrices and not
scalars. However they do commute (since by invariance properties they can be
expressed in terms of the matrices jp and 1). This justifies the formulae below.

In all the following, irreducίbility properties are to be understood with respect to
the lines of slice 1: a graph is r-particle irreducible in a given channel if it cannot
be divided into two parts by cutting r lines of slice 1 or less. As in [1], the
expansions of the functions Hc(z1,..., z/) give a corresponding expansion of the
4-point connected function Sc(xl, x2, x$, x*) which, by direct graphical inspection
can be written:

Γ 2 η r 4 η
Sc(xl9...,xJ = ί \ Π S'(xkίuk)\F'(uly...,u4)\ Π S'(uk,xk) \dUl...du4 (48)

L*=ι J L*=3 J

with (in momentum space):

p) , (49)

(490

where ψ2 is the 2-point 1 -particle irreducible function and <p = Φι+<p2 [φi was
introduced in (33)]. F' is defined by an expansion analogous to that of S° except that
it is restricted to graphs that are 1-particle irreducible in all l-»3 channels. (The
propagators CQ are those attached to the points z^ , . . . , z{ .) The last equalities in (49)
follows from (33) and (4).

We note from (48) that:

S>(p} = e-^-^S"(p}= " ^ _^ . (50)
yι

This implies that Sf is symmetric like S" so that in (48) the factor S' for the in and
outgoing particles is the same.
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The 2-point function is equal, by direct inspection, to

Cρ (51)

and satisfies the relation:

S = AS' , (52)

(53)

For any ε > 0 and \D | > D0 , D0 sufficiently large (depending on ε), φ is known by the
methods of Sect. 2 to be analytic and bounded in modulus by m0 + const (ε)\λι \ in the
region s < (3ra0)

2 — ε : in fact φt = — ra0 + O(λ±) and φ2 = O(λ±). On the other hand

Cβ(l -^-^(-^H-m,)'1 [1 -e(p+(M-*-M-}} is analytic

(without pole) and bounded in that region. More precisely, one sees easily that, for
λ1 sufficiently small and M large enough (depending on m0), the functions A and
A ~ 1 are analytic and close to 1 . Thus S ' and S have a common (unique) pole at the
physical mass mph defined by the equation:

p2[l-ae-Vί]2 + [mρ-be-γι]2=Q , (54)

where we have put:

and by an easy calculation S is shown to be of the form

P

where K is analytic up to (4mp^)2 — ε (and bounded in euclidean directions). We have
used the equality at p2 -h m2

ph = 0 :

where B is any matrix of the form bγ$ -f b2. From (54) we note that:

= 0 , (54')

where the left-hand side is by definition —mph + mρ—( — amph + b}e~Vl taken at
p2= -m2

ph.
In view of (48) and (53), the connected, amputated 4-point function Fis equal to :

*=ι
(55)

F', and hence F, are known by the methods of Sect. 2 to be analytic and bounded in
euclidean space (and in a strip around it). Similarly A r e n, i.e. the value of Fat zero
momentum is itself shown to be equal to λ ± at first order in λ1 and is then as
announced different from zero at small λ± (non-triviality).
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Finally, let G'M be defined as F' except that the sum is restricted to graphs that are
3-particle irreducible in the 2->2 channel considered and let GM be defined as:

Γ 4 T1

I K I —I

By direct inspection, G'M satisfies the equation

'^F' , (57)

where OM is defined with functions S" on internal lines. This shows in turn that:

0MF (58)

with OM now defined with functions SAeVe~Vl on internal lines, i.e. functionsM
~VlSAe~Vl in the ρ->oo limit.

Since, in view of (53) and (54'), AeVe~Vl = 1 at p2 = —m2

ph and when^ is replaced
by — mph , the residue of SAeVβ ~ Vί does coincide with the residue Z( — j/> + mph) of S
at the pole.

Irreducibility properties of G'M [and in turn of GM in view of (56)] are established
by combining methods of Sect. 2 and of [1]. (See some more details in [10].)

Appendix (with the collaboration of J. Feldman)

In this appendix we give a simplified proof of the determinant bound of [8,
Appendix 1]. To be precise we consider the determinant of the matrix whose (ij)
matrix elements are Aitj = C(xi9 yj) with xt , y$ , e IRΛ We will assume only that C and
its lowest order derivatives DmC obey:

\DmC(x,y)\^K(m)Lδ+\m\e-L\χ-y\ . (A.I)

This is true for the propagators we use in the main body of this paper with d=2,
δ = l and L — Ml. C may of course be equipped with spinor indices, but these play
absolutely no role in the bound and we suppress them from the notation. If D is a
paving of IR^by cubes of side L"1 we define nΔ and ήΔ to be the number of xfs and
yfs respectively in A e D. We also define n = ΣnA = ΣήA.

A Δ

The most naive bound on \A \ is gotten simply by expanding the determinant and
ignoring potential cancellations between terms. If Pn is the set of permutations of
{1,2,-..,*},

\A\^B = X Π K(Q)L*e-L]*-y*u* . (A.2)
πeP" i=l

Using a small amount of the exponential decay to turn the global n \ into local nΔ !'s
in the usual way we have, for any ζ > 1 ,

Π fo!)1/2fa01/2 sup Π e-(L/c)l^-^ωl . (A.3)
Δ

The improved bound is
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Theorem. Let r be any positive integer. IfC obeys (A.I) for all m with |m| ̂  4dr, then :

Remark. K is an unimportant constant which depends on r, the AΓ(m)'s, and the
number of values the suppressed spinor indices may take.

Proof. Let σ be the number of values spinor indices may take.

n
Divide each cube Δ e D into „ A

1n cubes each of side
2σdp

The integer p will be chosen later. We will denote the new smaller cubes AΛ, their
centers za and the number of x's they contain na. Then we may write the iih row of A

2σdp

-
nΔ J

^(p-l)i

-0 (**-*<)] , (A.5)

where zlα is chosen to contain xt . Expanding out the dot products (xt — zα) D, the z t h

row is written as a sum of 1 + d+ d2 + . . . +dp^dp + 1 vectors. Thus, by the row-
wise multilinearity of the determinant we get a sum of at most (dp + 1)n determinants.
Consider any one of these new determinants which is non-zero. Of its «α rows having
xteAa, all but at most σdp must be pth order derivative terms from (A.5).
Furthermore, by (A.I) and the fact that every component of xt — zα is bounded by
(2σdp/nA)

lldL~1, we have that every matrix element containing a qth order
derivative is bounded by a constant times (l/nA)

q/dLδ exp [— L\xt— y^]. Hence,
expanding each nonzero new determinant as in (A. 3),

π
LΔ a

Since

(A-6)

Interchanging the roles of rows and columns and taking the geometric mean of the
resulting bound and (A. 6) yields the theorem.
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