
Communications in
Commun. Math. Phys. 110, 121-155 (1987) Mathematical

Physics
© Springer-Verlag 1987

The High-Temperature Phase
of Long-Range Spin Glasses

J. Frόhlich and B. Zegarlinski*

Theoretical Physics, ETH-Honggerberg, CH-8093 Zurich, Switzerland

Abstract. We analyze the high-temperature phase of long-range Ising- and N-
vector spin glasses with exchange couplings {</i; }, iJeZd, which are independ-
ent random variables with 7^ = 0 and \Jfj\ύypP]>\i-j\~pad, p = 2,3,...,y is a

finite constant and α > \. We show that, for sufficiently high temperatures, the
equilibrium state in the thermodynamic limit is (weakly) unique, and the
quenched average of the square of connected correlations (σA; σB}β decays like
dist(^4, B)~2ad, despite of Griffiths singularities and the non-summable range of

1. Introduction: Problems, Notation, Main Results

1.1. Description of the Problems

Real spin glasses are alloys of magnetic and non-magnetic, conducting materials,
like iron and gold, manganese and copper. The magnetic atoms or ions (iron) are
impurities in a non-magnetic material (gold). The magnetic properties of such a
substance are approximately described by a classical spin system with long-range
Ruderman-Kittel exchange interactions. We propose to analyze the behaviour of
spin correlations in such systems at high temperatures.

Our methods are based on a sequence of high-temperature expansion steps
followed by suitable upper bounds on the result of an individual expansion step.
These upper bounds simplify the result of an expansion step and reduce the
number of terms generated at the next expansion step. They are valid only on the
real temperature axis, i.e. our methods only yield convergent bounds for
sufficiently high, real temperatures, but divergent ones off the real axis. This feature
permits us to avoid problems with Griffiths singularities which make full-fledged
high-temperature expansions diverge for all or, at least, for very high temperatures,
long before a transition temperature is approached.
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As may be clear from these remarks, the analytical methods which we use to
study the high-temperature behaviour of classical spin glasses are really quite
robust. It is, for example, not particularly challenging to extend our methods to
quantum mechanical spin glass models and to models with many-body interac-
tions, but the notational complexity arising in such situations makes it appear
unworthy to present details. A more interesting extension of our methods would be
to study the regime where a large external magnetic field is applied to the system,
but the temperature may be low. In this regime one also expects uniqueness of the
equilibrium state and clustering of connected correlations. While we prove such
results for systems in a magnetic field at high temperature, it is technically
complicated to analyze what happens in a strong magnetic field at low
temperatures, although there are no fundamental obstacles against doing just that.

The Hamiltonian of the spin glasses we wish to study in detail is thus given by

where σt is an Ising spin or a unit vector in ΈLN (an "N- vector"), with N = 2,3,... .In
the Ruderman-Kittel ansatz [1], the positions of the magnetic atoms with spins σi

are the sites of some lattice, Γ, which we may choose for simplicity to be Zd, but
most sites remain empty (i.e. are occupied by a non-magnetic atom or ion). For
d = 3, the RKKY exchange couplings have the form

where {nj, i e Zd, is a family of independent random variables with values 0 or 1. (If
ni = 1 site ί is occupied by a magnetic atom, if nt = 0 it is "empty.") The characteristic
features of the system described by (1.1) and (1.2) are

(i) randomness (the dilution of magnetic atoms described by the variables ni9

ieZd);
(ii) competition between ferromagnetic (Ji<;.>0) and non-ferromagnetic

(Jt 7 <0) exchange couplings which produces frustration [2];

(iii) exchange couplings of very long, nonsummable range. f If J t 7 is chosen as in

(1.2) then

i-/Ί) | i -/Γ 3 <αo, for

where ρ = ήi9 but £ \Jtj\ diverges almost surelyΛ
j J

While we think that our methods may be applicable to spin glasses with RKKY
exchange couplings we further simplify the problem, following Edwards and
Anderson [3], by replacing the RKK Y couplings by random exchange couplings
Ji} with the following properties:

(a) {Jij} is a family of independent random variables, with
(b) J^0,
(c) \Jϊ^γ

These properties retain the basic features (i)-(iii) described above, but simplify
the probability theory. A typical example of a spin glass model of the kind we are
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able to analyze has exchange couplings, Jip given by

Jij = fij\i-j\~a\ i ^ ^ l , 1 (1.3)

where the variables ftj are independent, identically distributed random variables
with mean 0 and the property that

\Efϊ\SyppU P = 2,3,..., (1.4)

and we now denote expectations with respect to {/^ by the symbol E. All our
results hold for the general class of exchange couplings, Jip described in (a)-(c),
above, but we find it convenient to present our analysis for the examples specified
in (1.3), (1.4).

The study of spin glasses, especially long-range spin glasses, is an important
task, not only in order to understand the magnetic alloys they were invented for,
but also because of applications to models of neural networks and associative
memory [4] or to problems in stochastic optimization [5]. Unfortunately, there
are only few rigorous results on spin glasses. They are among the most subtle
systems encountered in equilibrium statistical mechanics. There are no rigorous
results about the low-temperature behaviour of spin glasses, although a good
theory for the low-temperature behaviour of the Sherrington-Kirkpatrick model
[6] is available which may be exact but is certainly non-rigorous [7], and a decent
heuristic picture of the low-temperature behaviour of the nearest-neighbor
Edwards-Anderson Ising spin glasses has been developed [8, 9] which is partly
based on numerical experiments, partly on heuristic, analytical arguments.

Surprisingly, not even the high-temperature disordered or large-magnetic field
phase of spin glasses has been studied mathematically, until recently. In [10] this
problem was tackled for short-range spin glasses, while in [11] we have started to
investigate long-range spin glasses. Results on the absence of transitions and/or
ordering may be found in [12] for one-dimensional, long-range Ising spin glasses
and in [13] for two-dimensional long-range spin glasses with continuous internal
symmetry groups. In this paper we elaborate on the methods and results in [11]
and extend them to a wider range of problems. The difficulties which we encounter
in our analysis are connected with the following properties of spin glasses.

(A) Griffiths Singularities [14]. There exist, with probability one, arbitrarily large,
connected regions, A, in the lattice with the property that Jtj is anomalously large
and positive, for i and j in A, but |J f j | is small ϊoτieAJφA. The contributions of the
spins in A to the free energy of the system are believed to yield singularities of the
free energy in the complex β-plane off the real axis, but arbitrarily close to the real
axis. (Here β denotes the inverse temperature.) If the range of values of Ju is
unbounded such singularities may be arbitrarily close to the origin.

(B) Long-Range Interactions. There exist, with probability one, arbitrarily far
distant, arbitrarily large, finite connected sets, A1 and A2,in the lattice with the
property that J l 7 > const |/— j\~ad

9forieAia,ndjeA2,but |/l7|issmallif/e./ί1u./ί2,

1 If α > 1 and \ίfij\ is bounded then standard high-temperature expansions converge, for | T\ large
enough. See also [10]
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and jφΛ1uΛ2. The contributions of spins in A1 u A 21o the free energy are believed
to have singularities in β which, though off the real axis, may be arbitrarily close to
β = 0.

Griffiths' original result [14] does not quite prove the correctness of (A) and (B)
but strongly suggests that these statements are indeed valid. As a consequence we
strongly expect that full-fledged high-temperature expansions diverge for arbit-
rary \β\, or at least long before the transition point is reached. The purpose of this
article is to describe methods which overcome this difficulty and permit us to
analyze the properties of long-range spin glasses at high temperatures in detail.
Our methods are based on an iteration of high-temperature expansion steps
followed by upper bounds, only valid on the real β-axis, which reduce the number of
terms generated by the expansion step.

Next, we introduce our notation and then summarize the main results of this
paper.

1.2. A List of Notations

1) Γ denotes a periodic d-dimensional lattice, typically Zd; d arbitrary. The symbol
A / Γ indicates that A increases to the entire lattice Γ through a family, {Λn}™=0,
of subsets with the following properties: Every An is bounded; ΛncAn+ί9 for all
n = 0,1,2,... every bounded subset A c Γ is contained in a set An, for some finite n.

2) A configuration of spins on Γ is given by a family {σJ ί eΓ of spins, σf,
belonging to

\ \ N £ (O2 = l|, (1.5)
m = l J

with $! = {!, —1} for Ising spins. It is natural to also include the point σ = 0,
defining SN = SNu{0}. This will permit us to impose 0-boundary conditions (b.c.)
on subsets of Γ. The set of all spin configurations (SN)x Γ, is denoted by Ω. For σeΩ
and AeΓ, σΛ denotes the restriction of σ to A, i.e.

σΛ = {σi: ieΛ, σeΩ}, and (σill,σyl2) = {σi: ieAι\jΛ2, σeΩ}. (1.6)

Let A denote the graph of a function from Γ x {1,..., N} to {0,1,2,...}, and let A be
the projection of A onto Γ. We define

^ = Π Π (o?)nim'ι\ (1.7)
ie^l m= 1

with {(i,m,n(m,n)): ieΆ,m=ί,...,N}=A. For Ising spins, N = 1 and (σf)
2 = 1, so

we may identify A with A. In this case, Ω is a group, with σ σ defined by (σσ)i = σfσί9

for σ and σ in Ω.
We let ΣΛ denote the σ-algebra generated by {σf: m= 1,...,N, ieΛ}, for any

subset ΛcΓ, and Σ = VΛ^ΓΣΛ. The "/oca/ observables" of the system are the im-
measurable functions on Ω.

3) Sίαίβs of the system are probability measures, dμ, on the measure space
(Ω, Σ). States of finite subsystems are probability measures on (Ώ, ΣΛ), where A is a
finite subset of Γ. Let dρ be a probability measure on SN, and let dρ(σΛ) be
some probability measure on (SN)x |y i |. An example of a state for a finite subsystem
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in A is given by

JμoQ(*Λ') = dQ(σAΛA) Π dρ(σd. (1.8)

ieΛ

Let H be given by (1.1). We set

H(σΛ) = HS(σΛ):=- £ Jifl.σ.9 (1.9)
i,jeΛ

with Jij = e/.j\i—j\~ad

9 α > | , where the couplings ^ are random variables as in
(1.3), (1.4). An equilibrium state for a spin glass at inverse temperature β in a finite
region Λ c Γ with b.c. given by dρ(σΛ,\Λ) is given by

( -βHf(σΛ,) . Λ

^ . ^ (MO)

Here μ(F) = μF = J F(σ)dμ(σ). Connected expectations are defined by
Ω

μ(F; G) = μ(FG)-μ(F)μ(G). (1.11)

If dρ(σΛΛΛ)= f] δo{σ^dNσb we use the shorthand notation

dμΛQ(') = dμΛ( ) (1.12)

Let C denote some condition imposed on a subset of the couplings {J^ijer- By

we mean the state defined in (1.10), but with the couplings {J^ } satisfying condition
C. The operation ( ) | c = [( ) ] c is extended to sums and products of expectations in
the equilibrium states μΛg( ) by applying them to each factor in each summand.
For example

μ{F G)\c = μ(FG)\c-μ(F)\cμ(G)\c.

Let

Kij^βJij, Sij^SijβJij, so e[0,l]. (1.14)

If the condition C corresponds to

{Ktj = 0, ieA, jeB, βJ^Sφ ieD, jeE},

we also use the notation

^ΛQ/^ B^o = ίμΛgΠκA,B = o,sD,E (1.15)
SD,E

Here A, B, D, and E are subsets of Γ.
A derivative with respect to the variable Stj or S'tj (= s\fiJ^ ) is denoted by dtj.
4) The joint expectation with respect to the random couplings {/ί7} i e Γ is

denoted by E. As in (1.3), (1.4) we assume E to be given by a product measure, with
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for some finite constant γ. It will always be assumed that b.c. ρ are independent
of the random couplings. This assumption as well as our assumptions on the
nature of the couplings Jtj could be weakened somewhat, but that would
complicate our notations and expansion steps in a rather awkward manner.

Constants in inequalities are denoted by K, K\ Dβ, Dβ,.... Their values may
change from one estimate to another one. Restrictions on β are indicated by
®ύβ<βo, where β0 is a positive constant whose value may vary from one estimate
to another one.

5) Prominent special quantities are:
- the Edwards-Anderson order parameter

qEA(β)= sup HE E(μΛqσ0)
2 (1.16)

Q AST κ

- the spin-spin correlation μΛQ(σ0; σj), the quenched correlations

Eμ(σ0; σ/ = lim EμΛ(σ0; σ/, (1.17)
Λ /* Γ

and the "susceptibility"

Xi2\β)= ΣEμ(σo;σj)2. (1.18)

It will be shown that, in the limit A / Γ, these quantities are independent of the b.c.
ρ, for β ̂  0 small enough.

In [11] we have shown that, for Ising spin glasses at sufficiently high
temperatures, with α > \ and dρ(σ) symmetric in σ,

(1) qEA(β) = O,
(2) χ<2>(j8)<oo,and
(3) £ μ ( σ o ; σ / ^ | 7 r 2 α ί i

? a s | 7 H c x ) .
The purpose of this paper is to analyze the existence and uniqueness of the

thermodynamic limit of the states μΛq and their cluster properties for general Ising-
and N-vector spin glasses at high temperatures and in an arbitrary magnetic field.

1.3. Main Results and Contents of Further Sections

In Sect. 2, we analyze Ising spin glasses, as these models are somewhat simpler than
general N- vector spin glasses and yet illustrate all basic features of our method. We
always assume that the exchange couplings {/^ are as in (1.3), (1.4), with a>\.
The single spin distribution dρ(σ) is arbitrary, but fixed, and the boundary
conditions, dρ, are independent of {</;;}.

In Sect. 2.1 we prove

Theorem 1 (Existence and Uniqueness). If O^β<β0, for some sufficiently small

β o >0, then
jirn^ E(μΛQσA - μAq>σA)

2 = 0,

for any bounded AcΓ. For fixed A, the convergence is uniform in the choice of
A', A'DA, and in the choice of the b.c. dρ and dρf.
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For a suitably chosen sequence of finite regions {An}™=0 increasing to Γ,

n-*ao -

exists and is independent of the b.c. dρ, E-almost surely.

In Sect. 2.2, we establish cluster properties. We prove

E{μΛ(σΛ;σB)
2)^β2Cpd{Λ9B)-2Λd

9

where Cβ is a finite constant independent of A (but depending on \A\ and \B\, with
\A\ = cardinality of A), and d(A,B) is the Euclidean distance between A and B.

For A = {i}, B = {j), we can also prove that

E(μA{σύ σf)^β2Cβd{Ujy2«\ (1.19)

where Cβ is a finite constant independent of A, provided β is small enough. Hence

,σf)~β2d{Ujy2«\ (1.20)

as d(ij)->ao. Lower bounds of the form (1.19) are expected to hold true for general,
bounded sets A and B, but the complexity of the expansions necessary to establish
them makes it a rather unappetizing task to provide details.

In Sect. 3, we extend our results for Ising spin glasses to iV-vector spin glasses.
To accomplish that purpose we develop a more general, abstract inductive
construction, organizing terms in trees. In certain respects our generalized
(inductive) tree expansion is simpler to grasp than the more explicit constructions
used in the Ising model. It is, however, less explicit and makes higher demands on
abstract reasoning. This is why we felt it worthwhile to first treat the Ising spin
glass in detail.

In Sect. 4, we sketch some extensions of our methods, e.g. to proving
asymptoticity of the high-temperature expansion, propose some open problems
and draw our conclusions. It may be appropriate to emphasize that our
expansions incorporate some general principles which are applicable in a much
wider context than the one considered in this paper. We feel that they can be used
quite generally to convert asymptotic, but possibly divergent expansions in
statistical mechanics and quantum field theory into convergent estimates. It might
be interesting to try this out on perturbation theory for the vertex functions of
lattice λφ\ theory in d > 4 dimensions.

Some important technical estimates are collected in two appendices.

2. The High-Temperature Phase of Ising Spin Glasses

In this section we present a detailed analysis of the high-temperature phase of long-
range Ising spin glasses. We prove existence and uniqueness of the thermodynamic
limit and cluster properties of the equilibrium state at high temperatures. Our
results can be used to show that the standard high-temperature expansion for the
free energy or for correlations is asymptotic.
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2.1. Existence and Uniqueness of the Thermodynamic Limit

Let A, A' be finite subsets Γ, with A'DA. We define a state

dμoρ(^Λ') = dρ{σΛΛΛ) f] dρfaj), (2.1)
JeΛ

where dρ is an arbitrary probability measure on { — 1,1} which is kept fixed
throughout Sect. 2, and dg(σΛ,\Λ) is an arbitrary probability measure on
{— 1,0,1} x | y l ̂ ' whose role will be, for example, to specify boundary conditions in
A'\A. We shall always assume that the measure dρ is independent of {tfij)ieΛt jeΛ>.
The point of adding 0 to the state space of each σi9 i e A'\A, is that this permits us to
impose 0 b.c. in A'\A.

We define finite-volume equilibrium states μΛq with b.c. in Λ'\A specified by
dρ(σΛΛΛ) by

,/ (p-βH(σΛ') \

v ρ (2 2)

where ^

H(σΛ.) = H'(σA.):=- £ T^aWj, (2-3)
UjeΛ' \l—J\

for some α > \. By choosing

Π
jeΛ'\Λ

we can impose 0 - b.c. on Ac.
We set π

σA:=γ\°i (2.4)
ieA

Our first result is the following

Proposition 2.1. If O^β<β0, for some sufficiently small β0, then

Λ'DΛ

for any bounded AcΓ. For fixed A and fixed dρ(σ^ i e A, the convergence is uniform
in the choice of A', A'DA, and in the choice of the probability measures dg(σΛ,\Λ),

From this proposition we get

Corollary 2.2. Under the hypotheses of Proposition 2.1,

B m μ ^ = :μ

exists and is independent of the b.c. imposed by dρ(σΛ,^Λ), E-almost surely.

Proof of Corollary 2.2. We choose sets A and A'DA and set

and

ρ{ΛΛΛ) Π
ieΛ'\Λ

dρ\σΛΛΛ)= Π
ieΛ'\Λ

(2.5)
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By Proposition 2.1, for any bounded A and arbitrary £>0,

E{μΛQ^A ~ VAQ°A)2 < ε (2-6)

if A is sufficiently large, uniformly in A'DΛ. Since, by (2.2) and (2.5), μΛQ = μΛ>, and
μΛq' = μΛ, see (1.2), we conclude from (2.6) that

lim μΛ.σA = lim μΛσA =: μσA (2.7)
ΛSΓ ' ASΓ

exists £-almost surely, for a suitably chosen sequence of sets A increasing to Γ.
Using Proposition 2.1 again, we see that, for any ε>0,

E{μAσA-μΛρσA)
2<ε

for an arbitrary choice of dρ(σAΛA\ uniformly in A\ provided A is large enough.
This proves uniqueness and independence of b.c. of the limiting state μ, £-almost
surely. We remark that convergence holds, a priori, in L2^/^), dE\ but by passing
to diagonal subsequences of sets A increasing to Γ we obtain E-almost-sure
convergence, for arbitrary bounded subsets A C Γ. •

We now turn to the proof of Proposition 2.1.
We choose a bounded subset A of Γ. Given A, we introduce some ordering, -<3

of the sites in Γ and in Γc such that the sites in A are smaller (with respect to <) than
the sites in A\A. Further properties of -< will be specified where needed. Let fc0 be
the smallest site in A. We now perform a sequence of expansion steps in the
couplings JkojJeAc.

= E{μAρσA-μΛq,σA)
2\κ 0 + X β2\k0-JΓ2ad\ dsjY ds'koj (2.8)

jeA'\A 0 0

where ieA'\A, f-<j, in the last factor on the r.h.s. of (2.8). In the derivation of (2.8)
we have used the symmetry of E which guarantees that

β\k0 -j\ - «dE (/koj[dkoj(μΛρσA - μΛρ:σA)
2-]κkoJ = o )= 0 . (2.9)

( 8 \
I We also recall that dtj = -^—-. I Since the factor

is bounded uniformly in A, Λ\ A, ρ, g' and in the conditions, [(•)]...> imposed on
coupling constants, we obtain from (2.8)

IA = E(μAρσA-μΛQfσA)
2

ύE(μAρσA-μΛρ,σA)
2\κ 0 + aβ2 X |fco-jΓ 2 α d, (2.10)

JeA'\A

for some finite constant a > 0, independent of β and "everything else."
Next, we note that (2.8H2.10) do not depend on special choices of the

couplings, Jφ i.e. we can apply expansion steps, like (2.8)-(2.10), to the first term on
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the r.h.s. of (2.10), i.e. to

I A { K k n Λ C = 0 ) = E { μ Λ o σ A - μ A o Ό A ) 2 \ ~ ΛC-0.

Hence

V Rl\h h \-2ad

1 sk o k l

T S w i o fcc^ -
(2.11)

where C fcofc l is the condition that KkoΛc = 0, Kkoi = 0, for all i-<fcl5 and ySJΓ

fcofcl is
replaced by S'kokl = skokιβJkokl.

If dρ(σ) is symmetric then

i.e. IΛ(KkoΓ = 0) vanishes. This would somewhat simplify our analysis. Otherwise,
IA(KkoΓ = 0) needs to be reexpanded by repeating the same steps as above, for all
sites k e A. Then we may use that

(μΛ^A-μΛQ^A)κAΓ = 0 (2.12)

and the expansion will terminate. Hence we shall apply an identity analogous to
(2.11) to all terms IA(KAnΓ = 0\ for a sequence {Λn} of subsets of A increasing, with
respect to the order -<5 to A. The index n ranges from 1 to \A\, with Aί = k0,
A2 = {/c0, k\}, where k\ is the least site >k0, etc. All these terms will generate terms
like the second term on the r.h.s. of (2.11), but with slightly different conditions,
CAnkl, replacing Ckokl, imposed on the exchange couplings.

In order to make progress, we must find an appropriate upper bound on

for arbitrary finite subsets B of Γ, arbitrary A, ρ, ρ\ and C. In Appendix A.I we
prove

ρσB - μΛρ>σB)
2 + {μΛρσBσiσj - μ^o^f)1 + {μΛqσiσj - μ^^σ^/ jc ,

for some finite constant K>0. ( 2 1̂ )

Remark. Iϊ\A\ is odd and dρ is symmetric in σ, the last term on the r.h.s. of (2.13) can
be omitted, and there will occur further simplifications.

We now insert (2.13) on the r.h.s. of (2.11) and then perform a Taylor expansion
in Skokl to second order, apply (2.13) again to the resulting terms, and so on. This
yields the following upper bound:

Σ j8 2 | fc o -*iΓ 2 ^ k o f c l T^
fcieΛ\fc0 0 0 -

( 2 1 4 )



High Temperature Phase of Long-Range Spin Glasses 131

where C differs from C by the additional condition that Kkokι=0. Since there are
three terms on the r.h.s. of (2.13), the constant Dβ is given by

for some constant K1>0. The factor [(2ft)!]"1 comes from the integrals

Since we have assumed that

EfϊnSy2n(2n)U (2.17)

for some finite y > 0, the constant Dβ is finite, for 0 ̂  β < β0, if β 0 is small enough.
Moreover, Dβ is obviously increasing in β, so the bound on Dβ is uniform on
[0,/?0-<5], for any <5>0.

Now, we observe that the terms under the expectation E on the r.h.s. of (2.14)
have the structure of

IB(C)^E(μΛqσB-μΛρ,σB)
2\σ, (2.18)

where C is the condition that KkoΛC = 0, Kkoi = 0, for all i^ku and B = Λ,
(A\ko)κjku {/c0, kγ). For the term IA(C) we can derive an identity analogous to
(2.11) and bound the second term on the r.h.s. as in (2.14). (The circumstance that
the condition KkoΛC = 0 has been replaced by C does not impede this procedure!)
Thus, by iteration of (2.11) and (2.14) for IA{C), we find

UKkoΛ* = 0) ύ (1 + β2Dβ)IA(KkoΓ = 0)

Λ\A

+ β2Dβ Σ \k0-k1\-2βdE(μλtσASlkθtkι)-μΛβ.σAS()[0ίkl})
2\σ

kιeA\ko

+ β2Dβ Σ \ko-kί\-2

fciφfco (2.19)

Here, the constant Dβ is bounded by

Dβύ Σ (β2DβΣ.\k-ίΓ2*d)n. (2.20)

Hence Dβ is finite, for OL>\ and β small enough. It is increasing in β on R + . In
conclusion, Dβ is uniformly bounded on [0, β0 — δ~], for some β0 > 0, for any δ > 0.

From (2.10) and (2.19) we conclude that

Σ |/co-;Γ 2

Σ l^-fciΓ2ϊV,
iei\fc0

Σ | fco-* iΓ 2 %o.* l } (
c ' )> (2 2 1 )
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where, we recall, C is the condition {KkoΛC = 0, Kkoί = 0, for all i^k^. We remark
that if dρ(σ) is symmetric in σ then IA(KkoΓ = 0, C) = 0, for arbitrary C.

Next, we notice that the term I^^uk^'X &i E^\A, has a form similar to the
one of IA, so that it can be bounded by an inequality analogous to (2.21). More
precisely, we start our expansion of I(A\ko)KJkl at the point kί and obtain, after
repeating the steps (2.8)-(2.21),

WJC')^fl/l2 Σ \k^Γ2

jeΛ'\Λ

+ β2Dβ Σ \K-
k2eΛ\A

+ β2Dβ X | f c i - M }
k2eA\k0

k2*ki

+ β2Dβ Σ \K-k2\-2*%Mc"), (2.22)
k2eΛ

where k2*kιΛ"

c" = {κk(hΛC=o, κkΰi=o, i^ki; ̂ = 0 , κkιi,=o, r^k2}. (2.23)

The order -< may be chosen to depend on kt in such a way that the elements
k2eA\k0 are smaller, with respect to -<, than the elements fc2εΛ\^

Next, we may feed the bound (2.22) back into inequality (2.21), and iterate this
step indefinitely. At the n-th step of our iteration we start from a term
W o ^ . / C 0 1 - " ) , where

O"-» = {KkmΛ< = 0, Kkmi=0, Vi^/cm+1}r=2o, (2-24)

and we choose < such that all sites ieΛ\k0, with i^km+1, m = 0, ...,n — 2, are
smaller, with respect to -<, than the remaining sites. At the n-th step we start our
expansion steps at the site kn-v Let us summarize the main features of our
iteration encountered at the n-th step:

a) kn + /cn_ 2 , since Kkn2kni has been set to zero at the (n — l)-st step. Hence kn

φ kn _ x, kn _ 2 .
b) If kn__1=km, m = 0,...,n-49 then the term aβ2 ^ \kn-i-j\~2ad in the

jeΛ'\Λ

expansion of/(yl\fco)ufen_1(C("~1)) is absent, since KkγnΛC has been set to zero at the
(m+l)-st step.

c) If kn = km, m = 0,...,« — 3, and the interaction term Kknlkrn was the last
coupling between σkrn and σryfcw, then

where

as follows directly from (2.2), (2.3). If dρ is even in σ then /(Λ\ko>υ)cn(C
(")) = 0.

Similarly,

Ά = o ) = Q i 4 K = o ) 1 r 2 2 6 ,



High Temperature Phase of Long-Range Spin Glasses 133

d) IffeB = fcm,m = 0J...,n-3,thenthebond(A; I I_1,fe I I)Φ(fez_1,fcz),forall/^n-3,
because otherwise Kknikn would already have been set to zero at the l-th step.

e) At the n-th step we generate the following terms:
i) If fcll_] was not met before a term

Σ \K-i-J\
jeΛ'\Λ

-2tχd

ii) A term

and we note that \A\ko\ = \A\ — 1 < \A\.
iii) Terms of the form

β2ΰβ Σ K-i-KΓ
*n**n-l.*n-2

where one term has B = (A\ko)ukn, i.e. |JB| = |,4|, for which the iteration will
continue, but the other terms have |5|<|>1|.

Using (2.21) and (2.22) and iterating in the manner just described above, we
finally get the bound

_

Σ \ Σ ( W Σ Π K-i-kj-^
jeΛ'\Λ\ n = 0 kmεΛ\A \m= ί

+ (i+β2Dβ)ρ Σ {β2Dβ)"-1

n = 0

n - 1

kmeΛ\A m= 1
km + j φ ̂ m > ̂ w _ 1

00 /I

« = 1 fcneτl\fco m = 1

+ Σ (^/ Σ Π \km-i-km\-2*dIlkn_ukn}(C(n)), (2.27)
1 kΛ 1

Σ
π = 1

with C(π) = {Xfemylc = 0, Xk m ί = 0, Vf^/cm+ J ^ - V The first term on the r.h.s. of (2.27)
can be estimated by

\ \ Σ \h-JΓ2ad, (2.28)
jeΛ'\Λ

which is finite if β is sufficiently small. Here b is a finite constant with the property
that

\k-k\-2ad

fc'ΦΛ

Σ \k-k'\-2ad\kf-j\-2adSb\k-j\~2ad (2.29)
k'eΛ
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for keA,jε A'\A, and it is assumed that α > \. The series occurring in the last three
terms on the r.h.s. of (2.27) may also be estimated using (2.29). For example,

oo _ n

Σ ( W Σ Π \K-,-KΓ2Λd

n=l kmeΛ\A m=ί

β2Dβb)-' (2.30)

which is finite for β small enough.
Next, we note that the factors IB(...), B = A\k0, Λ\{ko,kn}, {fcπ_l5fcπ},

appearing in the last three terms on the r.h.s. of (2.27) have the pleasant feature that,
for \A\>2,

\B\S\A\-1. (2.31)

This offers the opportunity to induct in the cardinality of \A\. In order to complete
a proof of Proposition 2.1 by induction in \A\ it remains to be shown that

^ ^ ^ (2.32)

and

lim E{μΛσiσj - μ^σ^j)2 = 0. (2.33)

A /* Γ

This is the content of the following lemma.

Lemma 2.3. If O^β<β0, for some sufficiently small βo>0, then

jeΛc

and

\n) ^\fiΛQσiσl~lΛΛQ'σiσl) \C = ̂  Σ Σ 1̂ 0 ~J\ J

where K' and K" are finite constants which depend on β but are independent of A, ρ,
ρ' and the condition C imposed on the l.h.s. of (i) and (ii).

Proof. By Taylor's theorem with remainder

* ,, ~\2\ i V /?2|7 \-2(xd

1 Sίj

x j asij j asijEj\^i^υi^μAφ)i μAQ>σi) \c)'> \r ^)j J j

where C is the condition {Ka = 0, Vl<j, S'υ}. The integrand on the r.h.s. of (2.34) is
obviously bounded, so we obtain

jeΛc

for some finite constant a independent of β and A.
Next, we expand Ii(KiΛC = 0) in Jik, keA, to second order and obtain

liKiΛC = 0) = I£KiAeuk =
1 s'ίk

x Sdsik j ds'^EiJldliμ^σi-μ^σ^c), (2.36)
o o
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where C is the condition {KiΛC = 0, S'ik}. We now use (2.13) to bound the integrand
on the r.h.s. of (2.36). This yields

Ii(KiΛC = 0)^Ii(K i Λ C u k = 0) + βi\ί-kΓ2«dyKUi(C) + Ik(C) + J {,k)(Q] . (2.37)

The term I{itk}{C) = E(μAρσiσk — μΛQ'σiσk)2\c will be estimated in the proof of part (ii)
of Lemma 2.3. All three terms, ̂ (C), Ik(C), and I{Uk}(C\ are now expanded to second
order in S'ik again, whereupon we apply (2.13) another time. After repeating this
procedure indefinitely we obtain

IiKiΛC = 0) £ It(KiACuk = 0) + β2Dβ\i- k\ -2«dUi(C) + h(C) + / {, f c )(C')], (2.38)

where Dβ is given in (2.15); see (2.14).
Applying an inequality analogous to (2.38) to Ii(KίΛcuk = 0), for some k'>k, etc.

we finally get

IiKiΛC = 0 ) ^ l i K i Γ = 0) + β2Dβ Σ \i~k\~2«Vi(Ck) + Ik(Ck) + / { U } ( Q ) ] ,
keΛ

**i (2.39)

where Ck corresponds to {KiΛC = 0, Kik, = 0, Vfc'̂ /c}.
Now we note that

Ix{KiΓ = 0) = E(μΛqσi - μAQ>σf\KiΓ = 0 = 0 . (2.40)

Next, we apply an analogue of (2.39) to the term //(Cfe) on the r.h.s. of (2.39), use
(2.40) again and iterate. As in (2.19) and (2.20) we find

k]{Ck)-\. (2.41)β Σ \
keΛ

Combining (2.35) and (2.41) we obtain the bound

/ ; <Ξ aβ2 Σ \i ~J\ ~ 2ad + β2Dβ Σ \i ~ k\ ~ ™ • Uk(Ck) + W C J ] . (2.42)Σ \ J\ β β Σ \
jeΛc keΛ

The last term on the r.h.s. of (2.42) is bounded in part (ii) of Lemma 2.3. For the
term proportional to Ik(Ck) an inequality analogous to (2.42), with i replaced by /c,
provides an upper bound, and this can be iterated indefinitely. We find

i a Σ <β2Dβ)
n Σ l i - f c i Γ 2 " 1 . . " ' h{~2ad

n = 0 kί,...,kneΛ\i

j e Λ c

where C(n) is a condition depending on {i, kί9..., kn}, I{k_uko) = 0, and I{kθίkι} = /{£s/ci}.
The proof of part (i) is completed by using (2.29) and part (ii).

We now turn to the proof of part (ii). As in (2.10) we find by removing Jtj and Jtj,

+ aβ2 Σ (\i-j\~2oid + \l-j\~2ad)' (2.44)
jeΛc
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Next, we perform an expansion step in Jik, k e Λ\ί, using (2.11), and iterate this step
using (2.13), indefinitely, until we obtain a bound analogous to (2.19). Note that on
the r.h.s. of (2.19) the term proportional to E(μΛQσAχkoσkl - μΛqσA\koσkι)

2\σ is absent,
since ^ ^ ^ = 1, for k1eA\k0, ko = i. Hence

hi, i}{K{U l)ΛC = 0) S (1 + β2Dβ)I{U l}(KίΓ = 0) + β2Dβ\i -1\ ~ 2 % , O(CX)

+ β2Dβ Σ \i-KΓ2adΛhι,UC2) + h,UC2)}, (2.45)
kιeΛ\{i,l)

where C1 corresponds to {K{iJ}ΛC = 0, Ku = 0} and C 2 to {K{itΐ}ΛC = 0, Kim = 0,
Vm^/^}. Now we note that

W ^ T = 0) = ̂ ( K I T = 0 ) , (2.46)

where, we recall, ρ = (Jσ ι ί/ρ(σι ))2. We may and do assume that the order -< is
chosen such that if kλ eΛ\{i,ϊ] then k^l, and hence Kn = 0. The second term
on the r.h.s. of (2.45) has the same structure as I{ifl](K{Ul}Λc = 0), hence (2.45)
can be iterated.

This yields the bound

hi, i}(Ka, i)Λ< = 0) S β2Fβ(l + β2Dβ)ρI£KiΓ = 0) + β2Gβ

x Σ \i-hΓ2ad{hiMίQ + huUQ}> (2-47)
k,eΛ\{i,l)

where Fβ and Gβ are constants which are uniformly bounded in β e [0, β0 — δ'], for
any (5>0, if /?0 is chosen small enough. Moreover, C corresponds to {K{iJ}ΛC = 0,
Ku = 0, Kim = 0, Vm^ij}. The point is now that we may plug inequality (2.43) into
(2.47) by replacing the first term on the r.h.s. of (2.47) by the r.h.s. of (2.43). Then we
arrive at an inequality for the two-spin correlation /{ι ,j}(C) which can be iterated
indefinitely. More precisely,

jeΛc

+βGβ Σ lί-fciΓ2α%,fcl)(C, c)+/„,*,,(£ c)}
kieΛUUl)

+ β2Fβ(i+β2Dp)β2Lp Σ \i-j\-2*d

β ( p p Σ
jeΛ'

+β2Fβ(l+β2Dβ)\Σ(β2Dβ

2DT

(2.48)

where Lβ is a finite constant, for O^β<β0, β0 small enough; moreover,
I{koΛι] = hi,k& τ h e condition C{n) has been described after (2.27). Using (2.29), we
see that iteration of (2.48) yields an upper bound for 1{U 1}(C) which is finite and
tends to 0, as A /* Γ, provided O^β<β0, with β0 small enough. This completes the
proof of Lemma 2.3, and hence Proposition 2.1 is now proven, too.
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2.2. Cluster Properties of the State μΛ

The main result of the present subsection is the following

Proposition 2.4. For α > \ and E as in (1.3), (1.4), there is a constant βo>0 such that,
for 0<β<βo and arbitrary bounded subsets A and B of the lattice Γ,

E(μΛ(σA; σB)
2)ϊβ2Cpξf\B\d(A,By2*<>, (2.49)

for \A\ ^ \B\, where ξβ and Cβ are finite constants independent of A, B, and A, and
d(A, B) is the Euclidean distance between the sets A and B.

Remarks. (1) After passing to the thermodynamic limit A / Γ, whose existence has
been established in Sect. 2.1, we can extend Proposition 2.4 to the situation, where
A is a bounded set, but B is unbounded (e.g. a cone). Since, for α > ^ , \i— j \ ~ 2 a d is
summable in j9 we get clustering with d(A,B)~2ad+d which still tends to 0, as
d(A, £)-> oo. (2) We also remark that when A = {/}, B = {j} we can prove a lower
bound on E(μ(σi\ σ3)

2) which has the same decay as the upper bound [see
Theorem 2, (1.19)].

Proof of Proposition 2.4. We assume that \A\ ^ |J3| and choose a site koeA. We
then expand in the couplings Jkoj, j e B, to second order. This yields

iA,B=iA,B(κkoB=0)+β2 Σ 1*0-J'I
jeB

-lad

o ω o o j \ o j ' s'koj y

where
VAPA^BYICI (2.51)

where C is an arbitrary condition imposed on the couplings Jip i,jeΛ9 and
IA,B = IA,B(Φ)- The second term on the r.h.s. of (2.50) is clearly bounded by

aβ2 Σ 1*0 - j Γ 2 α d (2.52)
jeB

for some finite constant a independent of A9 B, A, and β. Next, we expand
lA,B(KkoB = ty to second order in Jfeo.ci, for kίeA\B. This yields

x J dskokι T ds'koklE(A2

okl\S2

kokM^Al ^ ) 2 ] c ) , (2-53)

where C is the condition {KkoB = 0, Kkoί = 0, V/^<fel5 Skokί}. The second term on the
r.h.s. of (2.53) is bounded with the help of the following inequality proven in
Appendix A.I:

for some constant K' > 0 which is independent of Bl9 B2, and C. We now insert the
r.h.s. of (2.54) on the r.h.s. of (2.53). Subsequently, we expand the resulting terms
once again to second order in Skokί and use (2.54) to bound the remainder term.
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Iterating this procedure indefinitely, we find

kιeΛ\B

, fc l },β(C)}, (2.55)

where C corresponds to {KkoB = 0, Kkoi = 0, Vz^/q}, and

D - K" Y F #2n (2 56)
p

 n = i (2n)l J

which is finite for 0 ̂  β < β0 if β0 is small enough. [Recall that E/2/ ^ y2n(2^)!, for
all n, for some finite y.] The factor /^^(C) on the r.h.s. of (2.55) has the same form as
the l.h.s. of (2.55). This permits us to iterate (2.55), and we get:

I A, B(KkoB = 0) g (1 + β2Όβ)ρIA^ B(KkoΓ = 0)

kιeA\B

where (2.57)

Dβ = Dβ ΣQ(β2Dβc)n, (2.58)

with

The constant D^ is bounded uniformly on compact subsets of [0, β0), for β0 small
enough. Hence, collecting (2.50), (2.52), and (2.57), we arrive at the inequality

Σ
JeB

+ β2Dβ Σ
kιeΛ\B,

+β2Dβ Σ l
kιeA\ko

+ β2Dβ Σ I
kχeΛ\B

with C given by {KkoB = 0; Kkoi=^0, Vi^/cJ. We may require that -< has the
property that iϊk1 eA\(ΛuB) then kx>-i, for all ieA\k0. We note that the factor
I(A\ko)ukuB(Q i n Λe third term on the r.h.s. of (2.59) has the same structure as IA B,
in particular \(A\ko)uk1\ = \A\9 and hence it obeys an upper bound analogous to
(2.59). The remaining terms proportional to IA>,B(C) on the r.h.s. of (2.59) have the
feature that | ^ Ί < M | , if \A\>2. Therefore, we may iterate (2.59) in I(A\ko)ukuB(C),
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starting at the site kγ. After infinitely many iterations we obtain the bound

: Σ Σ (β2δβ)n Σ ( Π
jeB n = 0 kmeA\((A\ko)vB)\m=l

km+l*km,km-l
knΦkm, m<n

00

+ (ί+β2Dβ)ρΣo(β2Dβr

Σ f π |fcm-i-U"2αd

+ Σ (/*2v Σ f π i^-i-
/J=l fcmeyl\((^\fco)uβ) \ m = l

kneA\k0

Σ
kmeyl\β \ m = l /

+i*A:m,Λm-i

(2.60)

where C(B) corresponds to {KkmB = 0; Ktm,, = 0, i^fem + i}ϊ,=o, and C(n) to
{C("),K tnΓ = 0}. The first term on the r.h.s. of (2.60) is bounded by

aβ2 Σ (β2Dβbγ Σ |/co-7Γ2αd, (2.61)
n = 0 j eβ

provided O^β<β0,ϊoΐ some sufficiently small j80. The remaining terms on the
r.h.s. are proportional to IA,B(C), with \Af\ = \A\-l, \A'\ = \A\-2, or \Af\ = 2. The
prefactors can be bounded by using

(2.62)

_
Σ β2D, Σ π ι*--

n = l kmeA\((A\ko)vB)\m=l

for some constant i ^ which is uniformly bounded on compact subsets of [0, β0) if
β0 is small enough. Hence the proof of Proposition 2.4 can be completed by
induction in \A\, provided we can prove it for |̂ 4| = 1 and |̂ 4| = 2. This is
accomplished in the remainder of this section.

Lemma 2.5. For α > \, O^β<βo, with β0 small enough, there exist finite constants

C'β and C"β such that

(i) £ » , . ; σB)
2\c^C'β Σ\i~J\~2a"> and

(ii) EμA{σiσι;ϋB)
2\c^ £ Σ Ik-JΓ2*"-

k = ί,l jeB

The constants C'β and C'β are independent of Λ and B.

Proof. We start the proof of (i) with an expansion step, as in (2.50). Hence
2 Σ \i-iΓ2ad

x J t/s;• j ds-,£{^lKβhμΛ{σi\ σjj)2]*:,, = o, ί-< Λ. (2.63)
o o I s''->
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The second term on the r.h.s. of (2.63) is bonded as in (2.52). Through steps, as in
(2.53H2.58), we obtain

JeB

+ β2Dβ Σ \i-kΓ2*%JC)
keΛ\B

+ β2Dβ Σ \k-ir2xdIli,k},B(Q, (2.64)
keΛ\B

feΦi

where C is given by {KiB = 0, Ku = 0, V/ f̂e}; see (2.59). From the definition oϊIA B

W 6 S e e t h a t / • . ^ ( r = 0) = 0. (2.65)

Since Ik B(C) has the same structure as /; B, we can iterate (2.64). This yields, using
(2.29),

/ \ _
n) Σ \i-j\-2xd+ Σ (β2Dβ)n Σ |

J jeB n=l ki,...,kneΛ\B

where k0 = i and C(π) corresponds to

{KkmB = 0, Kkml = 0, Vl^km+1}
n

m-J0. (2.67)

Thus, in order to complete the proof of Lemma 2.5(i) we now must turn to the
proof of (ii). We start as in (2.50), (2.63), i.e. we use the bound

Ili,l],BSIluaκίU},B = ̂  + aβ2 Σ Σ \k-JΓ2*d. (2.68)
k = i,l jeB

To bound the first term on the r.h.s. of (2.68), we proceed as in (2.53)-(2.58),
expanding couplings between i and Λ\B and choosing the order «< such that / is
the smallest site above i. This yields

+ β2Dβ\i-lΓ2*dI{UhB(C); (2.69)

see (2.57). Since the last term on the r.h.s. of (2.69) has the same structure as the l.h.s.
of (2.69) we obtain by iterating (2.69) and inserting the result into (2.68),

hui), Σ Σ β
k = i,l jeB

+ β2Gβ Σ li-hΓ^ih^Un + hukUC')}, (2.70)
kιeΛ\B
fciΦU

with C standing for {K{iJhB = 0; Kim = 0, Vm^feJ.
Next, we substitute the factor IlB(KiΓ = 0) on the r.h.s. of (2.70) by the r.h.s. of

(2.66), with C(n) replaced by Cin)u{KiΓ = 0}. This yields an upper bound for I{itl)ιB

which is a sum of terms proportional to I{kΛΊίB(C\ with coefficients which are

O(β2\i-k\-2«d\k-k'\-2ad).
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By now the reader knows perfectly well how to extract a bound from such an
inequality by iterating it indefinitely. The bound is convergent for 0 ̂  β < β0, with
β0 sufficiently small. Feeding this convergent bound for I{kfk>hB(C) back into
inequality (2.66) finally yields a convergent bound for IUB. Both bounds have the
form announced in Lemma 2.5(i), (ii), hence Lemma 2.5 is proven.

The analysis above clearly completes the proof of Proposition 2.4.
We now turn to the proof of a lower bound on E(μ(σi\ σ,-)2). In a special case this

has already been done in [11] by a somewhat elegant trick. Here we wish to show
that a lower bound also emerges from our inductive construction. For simplicity,
we only consider the special case, where there is no external magnetic field, so that
μΛ(

σk) = Q> f° r a nY fe We start from (2.50) which, in the present situation, takes the
form

j^^dfjμ^σj)2^). (2.71)

The point is now that

σj)2 = 2 + O ( μ > ; σ / ) . (2.72)

By the upper bound

£ ( / ^ > i ^ ) 2 | s ί j ) ^
 c o n s t ' β2 (2 7 3 )

Hence, for β small enough,

$ - O(β2)}

(2.74)

for some a' > 0.
Next, we use the upper bound on \IU y(iCι7 = 0)| proven in (2.53H2.57),.... Since

Ktj = 0, the leading contribution to 1/̂ ^X^ = 0)1 is of the form

const -β4 Σ \i-k\-2*d\k-j\-2*dSb'β4\ί-j\~2'd, (2.75)
k: i Φ k Φ j

and it is not hard to check that this is really an upper bound on |/it /X^ = 0)| if
ρΞΞρ(σfe)

2 = 0. Hence

Iuj^a'β2\i-j\-^d-b'β4\i-j\-2Λd^a" β2\i-j\-2"d, (2.76)

for some constant a" which is strictly positive if β is small enough.
The strategy for proving lower bounds on IA B sketched here is quite general:

One first extracts all leading terms contributing to IA B explicitly. They have a
decay like d(A,B)~2ad, for A and B bounded. Then one uses the upper bounds
established in the proof of Proposition 2.4 to estimate the remainder terms and to
show they are of higher order in β than the leading terms, but still decay like
d(A,B)~2ad. This will provide the desired lower bounds, provided β is sufficiently
small.

Well the strategy sounds simple. But it is actually quite cumbersome to
implement it, except in the simple case treated above. The reader may wish to try
out his skills on the next more complicated case.
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3. High-Temperature Behaviour of TV-Vector Spin Glasses

In this section we study JV-vector spin glasses with Hamiltonian

Gj9 (3.1)

where σf is an iV-component unit vector (i.e. ^ e S ^ ^ ) ,

σ..σ.= £ ofo", Ji~/ijii-j\-ad

9 (3.2)
1m = 1

with α > \ and fi} i.i.d. random variables. The distribution, E, of the variables β^
has the properties

E(fij = 0, \Ee/β^ypp\, p = 2,3,..., (3.3)

for some finite y (as in Sect. 2). For details concerning our notations, see Sect. 1.2.
By μ ^ we mean the finite-volume equilibrium state with boundary conditions
dg(σΛ,[Λ), defined in (1.10). We also recall that

σA= Π Π (σΓ)"(m'° (3.4)
ίeA m = = 1

with A = {(i,m,n(m,i)): ielcΓ, m=\,...,N); see (1.7).
Our main result in this section is

Proposition 3.1. Let E be as in (3.3) and a>\. Then there exists a positive constant β0

such that, for0^β<β0,

Jim E(μΛQσA - μΛQ,σA)
2 = 0, (3.5)

A'DA

and, for arbitrary, fixed A, the convergence is uniform in A'jA and in the choice of
boundary conditions.

Let μ= lim μΛq be the limiting Gibbs state. Then

E(μ(σA; σB)
2)^β2Cβξ^ \B\

for some finite constants Cβ and ξβ.

Remarks. As in the proof of Corollary 2.2, one shows that it follows from (3.5) that
there exists a sequence of finite subsets, {An}%L0, increasing to Γ such that the limit

l im/^ =μ

exists and defines an extremal state which is independent of the b.c. ρ. The second
part of Proposition 3.1 states that μ is clustering.

Proof of Proposition 3.1. We start with the proof of (3.5). As in Sect. 2, we use the
shorthand

IA(C)^E(μΛρσA-μΛρ,σA)
2\c, (3.6)

where C is some condition imposed on the couplings J l 7 . We set IA(0) = IA.
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Our starting point is an identity analogous to (2.8):

β2κ-jr2*d

jeΛ'\Λ

x J dskoj T ds'kojE(/2

ojίd
2

kJμΛeσA -μAq,σA)
2lcm)2, (3.7)

0 0

where k0 is the "least" site in A9 in the order -<, and C ( 0 ) is the condition {KkoΛC = 0,
Kkoi = 0, Vί< j , Skoj}. See (1.14), (1.15), Sect. 1.2. (This is the analogue of Eqs. (8) and
(9) in [11].) As in Sect. 2, (2.10), we conclude from (3.7) that

for some constant a independent of Γ, ρ, ρ\ α, β, and A. The first term on the r.h.s. of
(3.8) is expanded in a Taylor series in Jkokl to second order, yielding

+ IA(KkoΓ = 0), (3.9)

where C ( 1 ) is given by {KkoΛe = 0, Kkoi = 0, Vί<ku S'kokl}. It is useful to choose the
order -< such that all sites in A are smaller than the sites in A\A.

We define

Q(k09n)=(ldρ(σ) f\ (σ™)"(^o)Y ( 3 # 1 0 )

Then

IA(KkoΓ = 0) = ρ(fc0, /ι)/^ k o (K f c o Γ = 0) ̂  IΛko(KkoΓ = 0). (3.11)

If>4 = {k0} then /^(Kk o Γ = 0) = 0, and thus we set Iφ{KkoΓ = 0) = 0. We conclude that
we can get an upper bound on IA(KkoΛC = 0) by induction in \A\, the cardinality of A,
provided we can bound the first term on the r.h.s. of (3.9).

In Appendix A.I we show that

^ ^ U k ; C), (3.12)

where

U^B, i, k;C) = {ίμ^σ^σ, σk)
2 - μ^σ^σ, - σfc)

2]c)
2

q^i - ̂ k-}^ΛQ^i - σ j c ) 2

? ( 3 1 3 )

and K is some purely combinatorial constant. We use (3.12) and (3.13) to get an
upper bound on the first term on the r.h.s. of (3.9). Subsequently, we iterate
(3.9)-(3 13) for all terms appearing in U^A,kQ9kx; C(1)), but starting from the site



144 J. Frδhlich and B. Zegarlinski

kγ. The result is the inequality

Σ \ko-JΓ2ad+ Σ κβ2 Σ \h-KΓ2*d

jeΛc jeΛc k\eΛ

MιfMί
0

x j dsjY ds'kιJ • E(S£*JΪJ*(Vi)2 • 22

0 0

+κβ2 Σ iko-kr^ds^T
lueΛ 0 0

(3.14)

where C ( 1 ) is C ( 1 ) v {KkιΛC = 0}, and we have used (3.11) in the last term on the r.h.s.
of (3.14). In the second term on the r.h.s. N(Uι) = 5 is the number of terms
appearing in U1. The bound NiU^2 22 comes from bounding \dltjUγ\ with the
help of (3.12) and (3.13): Each term in dlt jU1 is estimated by five new terms, each of
which is bounded by 22.

We now continue our expansion by applying (3.9) to the terms in the factor
U^A, /c0, /CJL C(1)), appearing in the third term on the r.h.s. of (3.14). This produces
a term proportional to Uγ(A,k0,kt; C(2)), where C ( 2 ) is C ( 1 ) v {KkιΓ = 0}. We now
note that

o< -μ'°A\kΛoO (μ0 Π KJim'kl) σι

kίc
ι

ki

Σ
w j I J J

Here μ = μΛt, μ' = μΛe: and

j

If dρ is the uniform measure onS^,. , then

μoσ
ι

k = 0, (3.16a)

μo°ϊ<t=^διr (3.16b)

In this case we conclude, using

that the last two terms on the r.h.s. of (3.15) vanish. Moreover, if k^^φA,
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which also follows from (3.16). Here kN=l+N~2. These observations simplify our
expansion for the models where dρ is the uniform measure, but these simplific-
ations are by no means essential. Returning to (3.14) and applying (3.9) to the third
term on the r.h.s. of (3.14), we obtain the inequality

+ (Kβ2)2

1 s , , (s/ i

o o t o o
S k . k

x f fls "F11 Φ Φ π TJ \A K K ' i \f
0

' ^ P Lu I'M) ^ l l J aSkokι J askokί
ki_eΛ 0 0

ko(KkoΓ = 0), (3.17)

where C(2> is {XfcoΛe = 0, Kkoi = 0, i<k,, KkiΛC = 0, Kkii. = 0, i'<k2, S'kokι, S'kιk2}. We
have used that

ί^fcofcl f ds'kokl$dsklj J ds'klj = 2-2,

and that

Moreover, we have made the simplifying assumption that Eβlΐ +1 = 0. Without
this assumption a term ocE(/k

3

okι) would appear in the second term on the r.h.s. of
(3.17) in case k2 = k0. This is a minor complication which we do not propose to
consider for a single reason: It would further complicate formulas which are
already heavy.

If, in the second term on the r.h.s. of (3.17), k2 coincides with k0, we use that

\ f n i (3.18)
0 0

for n = 4, in order to convince ourselves that the factor 4! in E(f£okι is offset by the s-
integrations.

Applying (3.12) and (3.13) to each term in d%ίk2Uί9 we obtain the bound

idi^UMΛoΛύ Q\^KU2(A,k09kl9k2; C), (3.19)

where U2 is a sum of N(U2) = 5N(Uί) = 25 terms, each of which has the form
(μΛQF — μΛQ'F)2\c for a function, F, of the spins, σi9 satisfying HFH^^l, so that

(μΛgF-μΛί.F)2\cί4. (3.20)

After inserting (3.19) in the second term on the r.h.s. of (3.17), it becomes clear that
our expansion can be iterated indefinitely by applying expansion steps, followed
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by an estimate of the form

\dl_lkun_MΛo, . X-iiC)\^κuMΛo,. ,k-iΛn ,Q, (3.21)

with N(Un) = 5N(Un _ J = number of terms of the form {μΛqF — μΛq'F)2\c appearing
i t / i h l l F I L ^ l

Thus, iterating (3.17), as described in (3.9), (3.14), and (3.19H3.21), we obtain
the expansion

Σ
jeΛc

Σ
kι,...,kneΛ

x JdnsE j ( V flui + }j Un{A, k09..., kH; C<">)11 , (3.22)

where the symbol J dns( ) stands for the integral

Skokί skokl /skQkl

J } Io ol QlJ ds'kokι J } I dsklk2δk2ko+$dsklk2(ί-δk2ko)
0 0 0 \ 0 0

xknfnds'kn_lkn('), (3.23)
0

the l/π's are defined inductively in (3.21), and the conditions C{n) are given by

{KkmΛC = 0; Kkmi = 0, Vί<km + 1}
n

mJov{KknΓ = 0}. (3.24)

Finally, the constant Cβ is given by

Cβ = aβ2 + (5Kβ2y2)2b ( £ (SKβYbA. (3.25)

It is easy to prove absolute convergence of the expansion in (3.22): Every

un(AΛ0,.. X;C^)

is given by 5" terms, each of the form (μΛQF — μΛq>F)2\cin), with ||JP|| ̂  ̂  1. Hence

|£/ π μΛ,.»Λ;C ( ϊ l ) ) | = ?5" 4. (3.26)

Hence

{ ( ) } ("π A 2 A + , ) (3 2 7 )

This bound is 5-independent. The integral Jdπ5l has the value

(3-28)Π
(ϋ)
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where n^ is the number of times we have expanded in the couplings Jtj (to second
order). Furthermore,

£(" f f/ά ( + 1 W " Π ( 2 n y ) ! . (3-29)

See also (3.18). Finally, we use that

Σ \ki_1-kiΓ
2ad\ki-kί + 1\-2xdSb(\ki-1-kί+1\ + lΓ2«d. (3.30)

From (3.26)-(3.30) we conclude that the infinite series on the r.h.s. of (3.22) is
dominated by the geometric series

Σ Σ {Kβ2γy2n5n-4bn-\\k0-kn\ + \)-2«\ (3.31)
n=l kneΛ

which is absolutely convergent for 0 ̂  β < β0, with β0 small enough. It is, therefore,
a safe starting point for further expansions which we describe next:

The n-th term on the r.h.s. of (3.22) is expanded in the couplings Jfen_ l ί 5 i e Λ. [By
(3.24), the couplings Jkn _ u , j e Λc, have already been turned off.] The term of order
0 in Jkn_ίi is proportional to

UJtA9ko,...X-l9kH;CMv{Kkn_ιΓ = 0}). (3.32)

The second order term in Jkn_ίk\, k\ εA, is proportional to

dl_ίk{UH(A9ko,...9kn-l9kn,Ctov...) (3.33)

which is bounded, as in (3.21), by a term

KUH,M,ko,-,K-i,KklC(n) v ...). (3.34)

It bears an additional small factor ocβ2\kn_ι — k\\~2ad. Now we expand in the
couplings fk\p j e Λc. The two expansion steps yield the new convergence factor

Σ Σ α/W2)|/cn_1-/clΓ2i/c1

1-jΓ2α'i,
jeΛc k\eΛ

l
which tends to 0, as A / Γ.

The next step is to expand the term

to second order in Jk\ki, k\eΛ, and so on. This process can be continued in a way
very similar to how we continued (3.14) to obtain (3.22). After having completed
our expansion in Jkn_ιk\,Jk\k\,... we continue our construction by expanding in
Λn-2fcM i'Λί+ifcί+2' *••' a ' w a y s t 0 second order and using (3.21) to estimate the
second order remainder in the Taylor expansion. Eventually, we shall continue our
expansion at some site k^, expanding in Λ U P k2eΛto second order. By induction
we can easily establish the structure of the general term emerging from the
construction described above: Every such term is labelled by a general, abstract
tree, T, rooted in a vertex, 0, with branches ordered in generations. Given a tree, T,
let τΓ(T) denote the set of all vertices in T and jSf(T) the set of all lines in T.
Moreover, by τ we denote an arbitrary map from i^(T) into Γ such that τ(0) = fc0,
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and τ(k) φ τ(l) if (kΐ) e if (T). There are two types of such maps: Maps, τ, which map
one vertex / e i^(T) to a site j = τ(/) e A\ called maps of type 1, and maps which map
all of τT(T) into Λ, called of type 2.

A term in the expansion labelled by a map of type 1 has the form

Σ Σ Π W0-τ(/)
jeΛc keΛ: (ίl)e^(T)

Γ 2 α d

(3.37)

where (//) = (τ(m)τ(rc)), (mn)e&(T), with τ(m)eΛ, τ(n)eA\ and T is the tree
obtained from T by deleting the line (mri).

A term labelled by a map of type 2 has the form

Σ π w o ί Q Γ
fceΛ: (il)e^(T)

k = τ(i), ieψ (T)

x$dτsE\( Π /Ul/μ,Γ,τ;C(Γ,τ))j, (3.38)

where C(T, τ) contains the conditions

(3.39)

The integrations J dT5( ) extend over domains which can be read off from (3.23): If
the pair of sites (kϊ) is covered by the map τ by n different lines in JS?(T) the
integration is given by 1 s $2n_1

HTώii..-Swί W O - (3.40)

These integrations will yield a convergence factor [(2n)!] 1 which offsets the
divergence factor in π ^2n^^2n^Λ}

Our expansion has achieved the following goals:
(1) It contains terms displaying interactions between the site koeΆ and sites

j e Ac (type 1). The sum of these terms will turn out to tend to 0 like Σ l̂ o ~j\ ~ 2ad

asAsΓ. jeΛC

(2) It contains remainder terms (type 2) with the properties that τ(iΓ(T))gΛ
and that all interactions between any site k in τ(i^(T)) and all other sites i e Γ are
turned off. Thus, these remainder terms do not contain any interaction, Jkh

anymore, with /ceτ(fχτ)) and lφτ(y(T)). Put differently, only interactions Jkl

with (kl)φτ(J?(T)) have not been removed from the expectations, yet. Hence the
remainder terms can be written as sums of terms which factorize into a product of

/ N \

two factors one of which is proportional to μ0 Π (σJJΎ(m) , for some non-
\m=l J

negative integers n(m), and the second factor is an expectation of

/ N Λ

Π ( Π (O" ( m > ί } ) in a state not containing any interactions between Ao and its

complement, anymore, and Ά02{k0}. We then estimate

N

μo[ Π
\n(m)

m = l

from

above by 1. In the second factor we shall pick a site k'o e A\A0 (k'o φ fc0), and repeat
the entire expansion described above. This will actually permit us to induct in the
cardinality of \A\, just as in the Ising spin glass.
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All that remains to be done is to prove convergence of our scheme and an upper
bound on terms of type 1 which tends to 0, as A / Γ.

As already mentioned, the branches of all trees labelling terms in our expansion
come in generations: The first generation is a walk (k0k1)(k1k2) ...(kn_1kn). The
second generation consists of branches growing out of fcw_1,fc/2_2, ...,/c1?fc0. The
third generation consists of branches growing out of sites which belong to
branches of the second generation, but are not endpoints; and so on. In order to
prove convergence, we shall successively "roll up the branches" of the trees
labelling the terms in our expansion, starting always with the branches of the
largest generation not rolled up, yet, and going back to branches of lower
generations, one by one. "Rolling up a branch of generation / + 1 " means that we
first sum over its endpoint fcj,2, without respecting any constraints, like k}n2

= k\~m, 1 5Ξm^i, then we sum over kι

tl2_ί without respecting constraints, finally
over fcj,1 + 1, with nγ<n2. The site fcj^ is the root of this branch and is a site of a
branch in the ith generation. It is not yet summed over. In rolling up branches we
make use of the following inequalities:

2«\ (3.42)

for some finite δ, provided i+j.

Σ (|i-fc| + l )- 2 «^&\ (3.43)
k<=Λ

for some finite constant b\ and, in rolling up branches in terms of type 1 with an
endpoint j e A\ we also use

X(|/-/c| + l)"2ad(|/c-f| + l)" 2 a i i ^b"( |/-/ |-hl)~ 2 a i i . (3.44)
k

We recall that α > ^ which is used in (3.43) and (3.44). We set fe = (5 max(fc',ί)").
These estimates, combined with (3.21), (3.28) [or (3.40)], and (3.29) [or (3.41)],

show that the weight of a line (i/)e JS?(T) can be estimated by

5Kβ2γ2b (3.45)

with K some finite combinatorial constant (depending on N). Rolling up one
generation of branches growing out of the site i yields an additional factor of

(l-c(β)Γ\ (3.46)

where c(β) is given by (3.45), so the effective weight of line (il), after rolling up a
branch emanating from i in the next higher generation, is given by

c(β)(\-c(β))-'. (3.47)

Now (il) belongs to some branch which may be rolled up next, and so on. We
conclude that, in order to calculate the effective weight of lines (il) in the lowest
(first) generation, we must solve the recursion relation

cny\ » = 0,l,2,.. , (3.48)

where c0 = c(β) = 5Kβ2γ2b. Here cn is the effective weight of a line after rolling up n
higher generations. Clearly, (3.48) has a solution c* = const/?2 < oo, provided c(β) is
small enough, i.e. for 0 ̂  β < β0 with β0 small enough.
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These considerations establish the convergence of our scheme. It is now easy to
complete the proof of the first part of Proposition 3.1, i.e., by induction in \A\, we
conclude that

hm E(μΛQσA-μΛQ/σA)
2 = 0,

A SΓ
Λ'DΛ

for arbitrary A. This is what is claimed in (3.5). We finally turn to a sketch of our

Proof of Clustering. Our proof of clustering for JV-vector spin glasses is very
similar to that for Ising spin glasses. We just substitute the Ising expansion by the
general expansion developed above. Let A be a finite subset of Γ, and let B be a
subset of Γ with | 5 | ̂  \A\. We choose a site koeA and write

E{μΛq(σA; σB)
2) = E{μΛq(σA; σB)

2)\KkoB = 0

jeB 0

\ ( 3 . 4 9 )

The second term on the r.h.s. of (3.49) is bounded by aβ2 Σ |/c0 —j\ 2ad which has

the desired decay. So. it suffices to consider the first term. We perform the
expansion step

Σ \K-k
kιeBc

x E {fk

2

0AlμΛq{σA; σβ)2]c}, (3.50)

where C is the condition {KkoB = 0, Kkoi = 0, for i^kl9 Skokl}. Terms corresponding
to sites kxeAc are treated as in (3.7), (3.8). \ikγeA we use inequality (A.6) in
Appendix A.2, i.e.

KklμΛQ(σA; σJW^KUMtBΛoΛi; Q, (3.51)

where K is a finite, combinatorial constant and Uγ is defined in (A.7). It is a sum of
five terms of the form μΛq(F; G)2, where F and G are polynomials in {σ™} (with
coefficients =1). Using that

we obtain

E(μQ(σA;σB)
2) = aβ2Σ \ko-jΓ2ad

j

+κβ2 Σ \
kieΛ\B

(3.52)
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where C is the condition defined after (3.50). By removing the couplings between kγ

and Λc we obtain an inequality very similar to (3.14). We may continue our
expansion steps as in (3.17)—(3.22), using an analogue of (3.21). This permits us to
use induction in the volume \A\ of A The details of our scheme to prove clustering
are almost identical to our constructions in (3.17)—(3.41), and it is not worth to
describe them once more. This completes the proof of Proposition 3.1. •

In the special case of E{μΛ(σi\ σ,-)2) (as well as other special, truncated
correlations), our expansion also provides a lower bound of the form

E{μA(σi\σ^aβ2\i-j\-2ad. (3.53)

This can be shown by arguments very similar to those in (2.71)-(2.76).
We wish to note that, by carefully tracing constants in the expansions of this

section, we can show that, in zero magnetic field and with dρ(σ) given by the
uniform measure on S N _ l 5 our expansions converge for

O^βS const N, (3.54)
as expected.

4. Extensions of Results, Open Problems

Our methods can be extended in several directions.
(1) Λsymptoticίty of the high-temperature expansion: The results proven in

this paper clearly show that expectations

EμΛt(σA)
2 (4.1)

are continuously differentiate in /?, for β e (— β0, β0). The first derivative vanishes
at j8 = 0. It is not hard to check that, if Jtj satisfies (1.3), (1.4), with α > i , then all
terms in a Taylor expansion oΐEμΛq(σA)

2 in powers of β are finite. In order to prove
that the high-temperature expansion, though presumably divergent, is asymptotic,
it would suffice to prove an upper bound ~ O(βn+ε\s> 0, on the remainder term in
the n-th order Taylor expansion of EμΛq(σA)

2 in powers of/?. Although we have not
checked the details, we expect that this can be done with the help of our expansion
methods. For this purpose we have to extend our expansion methods to
expressions of the form

EμΛqi^A, ^Ak)μΛQ(^Ak+1 <rΛn)

We do not see any obstacles against doing just that, although a detailed study of
such expressions would admittedly be rather complicated.

In a proof of asymptoticity of the high temperature expansion, and other
applications of our methods, it may be technically convenient to approximate a
spin glass with long-range exchange couplings by one with short-range couplings,
e.g. by multiplying Ju by

gJίi,J) = Φ\i-J\), (4-2)

where g is a C00 function of compact support, and ε > 0 will be chosen to be small.
That the correlations of the approximate model converge to the correlations of the
original model is the content of the next remark.



152 J. Frόhlich and B. Zegarlinski

(2) Approximation by short-range interactions: Let gε be as defined in (4.2), and
let Jy be as in (1.3), (1.4). Consider an N-vector spin glass, JV^ 1. Let μ = μβ/§ be
given by (1.10), and με = μA

9f\ Then

\imE(μσA-μεσA)
2 = 0. (4.3)

ε\. 0

To prove (4.3), we use an expansion similar to that in Sect. 3. Its purpose is to
successively turn off interactions between a site koeΆ and the sites in Λ\{k0}. This
will permit us to use induction in \Λ\. On the basis of the techniques developed in
Sect. 3, it is not hard to show that the leading term is bounded by

Oίβ2 Σ \i-JΓ2*d(l-gs(iJ))\ (4.4)

and that the remaining terms sum up to a quantity which is even smaller than (4.4).
Hence (4.3) follows. [In a proof of asymptoticity of the high-temperature
expansion to O(βn\ one would work with an ε so small that (4.4) is O(β" + 1).]

(3) Variants of cluster- and phase-space-cell expansions: Of course, the
expansion methods developed in this paper can be applied to nonrandom systems,
as well, e.g. to Euclidean field theory. In a deterministic system, our expansion
steps will consist of first-order Taylor expansions in the couplings between distant
parts of the system. If we expand normalized quantities (correlations) we use
superstability estimates [15] to bound and simplify the result of an expansion step.
But we may also use our methods to systematically expand unnormalized
quantities (correlations multiplied by a partition function) and then use estimates
on ratios of partition functions, like those in [16], or exponentiate expansions of
unnormalized quantities, using the algebraic formalism [17]. In this form, our
expansion methods are compatible with complex coupling constants, and we can
extend convergence proofs into the complex plane of some coupling parameters.
These ideas would permit us to analyze, for example, the Euclidean Green function
in a class of superrenormalizable field theory models and prove clustering. But
such results are not new. More attractive extensions would be to combine our
methods with an approach to cluster expansions, due, originally, to Glimm and
Spencer, described by Brydges in [18], or with a form of phase-space-cell
expansions proposed by Battle and Federbush [19]. The virtue of our methods is
to avoid "over-expanding," i.e. to replace expansions producing lots of terms by
expansions generating fewer terms, all of which can be labelled by abstract trees
and can be estimated quite easily by "rolling up branches" (see Sect. 3).

(4) Renormalization group transformations: A single renormalization group
transformation in a lattice or Euclidean field theory poses problems somewhat
reminiscent of those met in the analysis of disordered spin systems (the block field
variables play the role of random couplings). This was already observed in [10].
We think that the methods developed in Sect. 3, in a form like that sketched in
remark (3) above, combined with the ideas in [10], form a very general machine to
perform renormalization group transformations. Since we do not illustrate the
workings of this machine in some examples, we must, of course, leave to the reader
the benefit of the doubt.
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Appendix A.I. Proof of Inequalities (2.13) and (3.12)

Let 5cΓx{ l , . . . , iV}xN. The projection of B onto Γ is denoted by B and is
assumed to be a bounded set. Let σB be as in (1.7). Let μ = μΛQ and μ' = μΛq>. By
direct calculation we can see that

= 2[μ(σB; σ fσ fc)-μ'(σB; σpjM

+ 2(μσB-μ'σB)\cdik[μ(σB; σ^-μ'iσ^ σ fσ k)] c . (A.I)

The first term on the r.h.s. of (A.I) has the following upper bound:

= 2[{μσBσiσk - / / c ^ ^ ) - (μσB - μ'σ^μσ^ - iμσtσk - μ'σ^^μ'σ^l

ύ 2 3[(μσβ-μ'σBf + (μσBσtσk -μ!σBσ{σk)
2 - {μσiσk -μ'σiσ^c, (A.2)

where we have used the trivial inequality (a + b + c)2 ^ 3(α2 + b2 + c2) and the fact

| [ μ σ Λ ] c | ^ l and

Remark. If |J5| is odd and dρ(σ) is even in σ, then μ ^ σ ^ O (for 0-b.c), and the last
term on the r.h.s. of (A.2) is absent.

To bound the last term on the r.h.s. of (A.I), we note that

- μ{σB σfσfc) μσtσk - μσβμ(σ fσk σ ^ ) - (μ -• μ')] c

[(WσΛ)2

-(μσB - μ'er

'iσ^ σiσk) + μ'σB{μσiσk + μ'σiσk))']c. (A3)

Using that ±2αfo^α 2 + fc2 and | σ A | ^ l , hence | [ μ ( ) σ ^ ] c | ^ l , for arbitrary A, we
can, therefore, estimate the second term on the r.h.s. of (A.I) by

\2t(μσB-μ'σB)dik(μ(σB; σ ^ - μ ' K ; σf

fe)
2 - μ ' ( σ Λ ) 2 ) 2 +18(μσfσfc - μ/σ/σ f e)

2]c. (A.4)

Combining (A.2) and (A.4), we find

(σiσk)
2 - μ!σB{σiσk)

2)2 + (μσBσiσk - μlσjppώ2

+ (μσB - μ'σB)
2 + (μ(σfσk)

2 - μ V ^ ) 2 ) 2 + {μσiσk - μ /σ ίσ k) 2] c, (A.5)

for some finite constant K.
For the Ising model, we may use that (σfσΛ)2 = 1, and hence (A.5) yields (2.13).

[Further simplifications arise for even, e.g. 0-, b.c, \B\ odd, and dρ(σ) even in σ.] The
important features of (A.5) are:
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(1) K is a purely combinatorial constant independent of the specific model.

(2) All terms on the r.h.s. of (A.5) have the structure [_{μF — μ T ) 2 ] c , for some

function F of the spins σ (and, for Ising- or N-vector models, |F| ̂  1).

Appendix A.2. Proof of Inequalities (2.54) and (3.51)

By long, but elementary calculations, one finds, setting μΛ( ) = μ( ), that

kl σ β )-μ(σ^; σB)μσiσk-μ(σiσJc; σB)μσA

+ μ{σA; ^ { μ ί σ ^ σ ^ ) 2 ; σB)-μ(σ fσ k; aB)μϋAaiok

+ μ(σiσk; σB)(μσA-μ(σA; σ fσk))}]c. (A.6)

Using inequalities like ± lab <,a2 + b2, (a + b + c)2 ̂  3(α2 + fc2 + c2), |σD| ^ 1, for

arbitrary D, we get

\dfkίμ(σA; σ B ) 2 ] c |

σfc)
2; σ β ) 2 ] c , (A.7)

for a purely combinatorial constant K'. For the Ising model we may use (σt σfc)
2 = 1,

hence (A.7) yields (2.54).

We note that, on the r.h.s. of (A.7), all terms have the structure [μ(F; G) 2 ] c , and

in our models |F | ̂  1 and \G\ ̂  1. This is nice, because if one wants to differentiate

[μ(F; G ) 2 ] c with respect to some variables Slm, (A.7) can be used again to bound the

result.
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