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Abstract. We analyze the high-temperature phase of long-range Ising- and N-
vector spin glasses with exchange couplings {J,;}, i, j € Z¢, which are independ-
ent random variables with J;;=0 and |J%|<yPp!li—j| "7, p=2,3,..,y is a
finite constant and o> 4. We show that, for sufficiently high temperatures, the
equilibrium state in the thermodynamic limit is (weakly) unique, and the
quenched average of the square of connected correlations o 4; o), decays like
dist(A4, B)2*, despite of Griffiths singularities and the non-summable range of
J;; (for 3 <a<1).

1. Introduction: Problems, Notation, Main Results

1.1. Description of the Problems

Real spin glasses are alloys of magnetic and non-magnetic, conducting materials,
like iron and gold, manganese and copper. The magnetic atoms or ions (iron) are
impurities in a non-magnetic material (gold). The magnetic properties of such a
substance are approximately described by a classical spin system with long-range
Ruderman-Kittel exchange interactions. We propose to analyze the behaviour of
spin correlations in such systems at high temperatures.

Our methods are based on a sequence of high-temperature expansion steps
followed by suitable upper bounds on the result of an individual expansion step.
These upper bounds simplify the result of an expansion step and reduce the
number of terms generated at the next expansion step. They are valid only on the
real temperature axis, i.e. our methods only yield convergent bounds for
sufficiently high, real temperatures, but divergent ones off the real axis. This feature
permits us to avoid problems with Griffiths singularities which make full-fledged
high-temperature expansions diverge for all or, at least, for very high temperatures,
long before a transition temperature is approached.
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As may be clear from these remarks, the analytical methods which we use to
study the high-temperature behaviour of classical spin glasses are really quite
robust. It is, for example, not particularly challenging to extend our methods to
quantum mechanical spin glass models and to models with many-body interac-
tions, but the notational complexity arising in such situations makes it appear
unworthy to present details. A more interesting extension of our methods would be
to study the regime where a large external magnetic field is applied to the system,
but the temperature may be low. In this regime one also expects uniqueness of the
equilibrium state and clustering of connected correlations. While we prove such
results for systems in a magnetic field at high temperature, it is technically
complicated to analyze what happens in a strong magnetic field at low
temperatures, although there are no fundamental obstacles against doing just that.

The Hamiltonian of the spin glasses we wish to study in detail is thus given by

H=H(o)=— Y J,0, 0}, (1.1)
iJ

where g, is an Ising spin or a unit vector in R (an “N-vector”), with N =2,3, ... . In
the Ruderman-Kittel ansatz [1], the positions of the magnetic atoms with spins g,
are the sites of some lattice, I', which we may choose for simplicity to be Z9, but
most sites remain empty (i.e. are occupied by a non-magnetic atom or ion). For
d=3, the RKKY exchange couplings have the form

Jij~nngcos(2kgli—j)li—j "2, (1.2)

where {n;}, i€ Z“,is a family of independent random variables with values 0 or 1. (If
n;=1siteiis occupied by a magnetic atom, if n, =0t is “empty.”) The characteristic
features of the system described by (1.1) and (1.2) are

(i) randomness (the dilution of magnetic atoms described by the variables n;,
ieZ%;

(ii) competition between ferromagnetic (J;;>0) and non-ferromagnetic
(J;;<0) exchange couplings which produces frustration [2];

(iii) exchange couplings of very long, nonsummable range. <If J;;is chosen asin

(1.2) then

Y Jiy=0* Y coskgli—jhli—jl > <o, for kp=+0,
i Jj

where ¢ =1;, but ¥ |J;j| diverges almost surely.

J

While we think that our methods may be applicable to spin glasses with RKKY
exchange couplings we further simplify the problem, following Edwards and
Anderson [3], by replacing the RKK'Y couplings by random exchange couplings
J;; with the following properties:

(a) {Jy;} is a family of independent random variables, with

(b) J;;=0, and

(© IZ<y7plli—jlI= " p=2,3,...,0<y<o0, a>3.

These properties retain the basic features (i)(iii) described above, but simplify
the probability theory. A typical example of a spin glass model of the kind we are
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able to analyze has exchange couplings, J;;, given by
Jy=Ali—j™,  <ast)! (1.3)

where the variables #;; are independent, identically distributed random variables
with mean 0 and the property that

I[EZE=y"p!,  p=23, .., (1.4)

and we now denote expectations with respect to { #;;} by the symbol E. All our
results hold for the general class of exchange couplings, J;;, described in (a){c),
above, but we find it convenient to present our analysis for the examples specified
in (1.3), (1.4).

The study of spin glasses, especially long-range spin glasses, is an important
task, not only in order to understand the magnetic alloys they were invented for,
but also because of applications to models of neural networks and associative
memory [4] or to problems in stochastic optimization [5]. Unfortunately, there
are only few rigorous results on spin glasses. They are among the most subtle
systems encountered in equilibrium statistical mechanics. There are no rigorous
results about the low-temperature behaviour of spin glasses, although a good
theory for the low-temperature behaviour of the Sherrington-Kirkpatrick model
[6] is available which may be exact but is certainly non-rigorous [7], and a decent
heuristic picture of the low-temperature behaviour of the nearest-neighbor
Edwards-Anderson Ising spin glasses has been developed [8, 9] which is partly
based on numerical experiments, partly on heuristic, analytical arguments.

Surprisingly, not even the high-temperature disordered or large-magnetic field
phase of spin glasses has been studied mathematically, until recently. In [10] this
problem was tackled for short-range spin glasses, while in [11] we have started to
investigate long-range spin glasses. Results on the absence of transitions and/or
ordering may be found in [12] for one-dimensional, long-range Ising spin glasses
and in [13] for two-dimensional long-range spin glasses with continuous internal
symmetry groups. In this paper we elaborate on the methods and results in [11]
and extend them to a wider range of problems. The difficulties which we encounter
in our analysis are connected with the following properties of spin glasses.

(A) Griffiths Singularities [14]. There exist, with probability one, arbitrarily large,
connected regions, 4, in the lattice with the property that J;; is anomalously large
and positive, foriand jin 4, but |J;;| is small forie 4, j ¢ A. The contributions of the
spins in A to the free energy of the system are believed to yield singularities of the
free energy in the complex f-plane off the real axis, but arbitrarily close to the real
axis. (Here § denotes the inverse temperature.) If the range of values of J;; is
unbounded such singularities may be arbitrarily close to the origin.

(B) Long-Range Interactions. There exist, with probability one, arbitrarily far
distant, arbitrarily large, finite connected sets, 4; and A4,, in the lattice with the
property that J;;>const|i—j|~*,forie A, and je A,, but |J; | issmallifie 4, U4,

'If o> 1 and | #;| is bounded then standard high-temperature expansions converge, for | T| large
enough. See also [10]
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and j¢ 4,0 A,. The contributions of spins in 4, U4, to the free energy are believed
to have singularities in § which, though off the real axis, may be arbitrarily close to
p=0.

Griffiths’ original result [ 14] does not quite prove the correctness of (A) and (B)
but strongly suggests that these statements are indeed valid. As a consequence we
strongly expect that full-fledged high-temperature expansions diverge for arbit-
rary |f], or at least long before the transition point is reached. The purpose of this
article is to describe methods which overcome this difficulty and permit us to
analyze the properties of long-range spin glasses at high temperatures in detail.
Our methods are based on an iteration of high-temperature expansion steps
followed by upper bounds, only valid on the real f-axis, which reduce the number of
terms generated by the expansion step.

Next, we introduce our notation and then summarize the main results of this

paper.

1.2. A List of Notations

1) T denotes a periodic d-dimensional lattice, typically Z¢; d arbitrary. The symbol
A ~ T indicates that A increases to the entire lattice I' through a family, {4, };%,,
of subsets with the following properties: Every 4, is bounded; 4,C 4, ,, for all
n=0,1,2,...;every bounded subset A CI"is contained in a set A,, for some finite n.

2) A configuration of spins on I' is given by a family {o;};., of spins, o,
belonging to

Sy= {GE(G’I,...,GN)Z [i (G"‘)2=1}, (1.5)

with Sl_{l —1} for Ising spins. It is natural to also include the point ¢ =0,
defining Sy=S vy {0}. This will permit us to impose 0- boundary conditions (b.c.)
on subsets of I'. The set of all spin configurations (Sy) * 7, is denoted by Q. For 6 € Q
and A€er, o, denotes the restriction of ¢ to 4, ie.

o,={0;i€d,0eQ}, and (0,,0,)={0;icdud,,0eQ}. (1.6)

Let 4 denote the graph of a function from I' x {1, ..., N} to {0,1,2, ... },and let A be

the projection of A onto I'. We define
N

o= 1[I II (e)"™?, (1.7)
iedA m=1
with {(i, m,n(m,n)): ie A, m=1,...,N}=A. For Ising spins, N=1 and (¢;)*=1, so
we may identify A with A. In this case, Qis a group, with ¢ - & defined by (66),= 7,6,
for ¢ and 6 in Q.

We let X, denote the g-algebra generated by {o7: m=1,...,N, i€ A}, for any
subset ACI, and 2=V, .2 ,. The “local observables” of the system are the X-
measurable functions on Q.

3) States of the system are probability measures, du, on the measure space
(R, 2). States of finite subsystems are probability measures on (2, Z ), where 4 is a
finite subset of I'. Let do be a probability measure on Sy, and let dg(s,) be
some probability measure on (S,)*4!. An example of a state for a finite subsystem
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in A" is given by
dHOQ(UA’) =do(0 4\ 4) I_L do(ay). (1.8)

Let H be given by (1.1). We set
H(o)=H*(0,):=— ZAJijaioj, (1.9

i,je

with J;;= #,]i—jl~*, a>%, where the couplings #;; are random variables as in
(1.3), (1.4). An equilibrium state for a spin glass at inverse temperature f§ in a finite
region ACI" with b.c. given by dg(s 4. 4) is given by

U (e_ﬂHf(GA') . )
dﬂAQ()Edﬂﬁ_Z()z—ZiTwm (110)

Here u(F)=uF = [ F(o)du(c). Connected expectations are defined by
Q

uF; G)=u(FG)— uF)u(G). (1.11)

If do(o 41 0)= T[] 0o(0)d"o;, we use the shorthand notation
ieA\4

dpag( - )=duy(-). (1.12)
Let C denote some condition imposed on a subset of the couplings {J;;}; ;cr- By
tagl e = Liagl e (1.13)

we mean the state defined in (1.10), but with the couplings {J;;} satisfying condition
C. The operation( - )|c=[( - )] is extended to sums and products of expectations in
the equilibrium states p1,,( - ) by applying them to each factor in each summand.
For example

HF; G)le=uFG)lc— uF)lcil(G)lc -
Let

K;j=BJi;, Siy=syBJy,  si;€[0,1]. (1.14)
If the condition C corresponds to
{K;j=0,i€4, jeB, pJ;;—S,, ieD, jeE},
we also use the notation

/JAQF|KA)B:OE[#AQF]KAﬁ:O,SD,E' (1.15)

Sp,E

Here A, B, D, and E are subsets of I'.
A derivative with respect to the variable S;; or Sj; (=s;;8J;;) is denoted by J;;.
4) The joint expectation with respect to the random couplings {_#;;}; jcr 1s
denoted by E. Asin (1.3), (1.4) we assume E to be given by a product measure, with
E(#;;)=0, for all i and j, and

[E(ZHI=y’p!,  p=23, ...,
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for some finite constant 7. It will always be assumed that b.c. g are independent
of the random couplings. This assumption as well as our assumptions on the
nature of the couplings J;; could be weakened somewhat, but that would
complicate our notations and expansion steps in a rather awkward manner.

Constants in inequalities are denoted by K, K', D, 17,,, ... . Their values may
change from one estimate to another one. Restrictions on f are indicated by
0= p<pB,, where f3, is a positive constant whose value may vary from one estimate
to another one.

5) Prominent special quantities are:

— the Edwards-Anderson order parameter

qpa(B)=sup lim E(u4,00)*; (1.16)
g AT

— the spin-spin correlation p,,(0,; 0;), the quenched correlations

Ep(oo; Uj)2= JiﬁanﬂAg(aw aj)29 (1.17)
and the “susceptibility”
212(B)= 'Zr Ep(oo; O-j)z‘ (1.18)
je

It will be shown that, in the limit 4 ~ I', these quantities are independent of the b.c.
o, for =0 small enough.

In [11] we have shown that, for Ising spin glasses at sufficiently high
temperatures, with o> 4 and dg(¢) symmetric in o,

(1) gpa(B)=0,

(2) ¥(B)< oo, and

(3) Euloo; 0;)* ~1j17%*, as |jl—c0.

The purpose of this paper is to analyze the existence and uniqueness of the
thermodynamic limit of the states x4, and their cluster properties for general Ising-
and N-vector spin glasses at high temperatures and in an arbitrary magnetic field.

1.3. Main Results and Contents of Further Sections

In Sect. 2, we analyze Ising spin glasses, as these models are somewhat simpler than
general N-vector spin glasses and yet illustrate all basic features of our method. We
always assume that the exchange couplings { #;;} are as in (1.3), (1.4), with o> 3.
The single spin distribution dg(o) is arbitrary, but fixed, and the boundary
conditions, dg, are independent of { #,;}.

In Sect. 2.1 we prove

Theorem 1 (Existence and Uniqueness). If 0< < f,, for some sufficiently small
Bo>0, then . ,
jlgnr E(i4g04—Hago4)” =0,

for any bounded ACT. For fixed A, the convergence is uniform in the choice of
A', A'D A, and in the choice of the b.c. dg and dg'.
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For a suitably chosen sequence of finite regions {A,}s>- increasing to T,
nan;: luAng =u
exists and is independent of the b.c. dg, E-almost surely.

In Sect. 2.2, we establish cluster properties. We prove
E(pq(0 4; 03)2) = 52 Cﬂd(Aa B)~ 2od

where Cy; is a finite constant independent of 4 (but depending on |A| and |B|, with
|4] =cardinality of A), and d(A4, B) is the Euclidean distance between A and B.
For A={i}, B={j}, we can also prove that

E(uy(o; Gj)z)ZﬁZQﬂd(i,j)_z“d, (1.19)

where C; is a finite constant independent of 4, provided f is small enough. Hence

E(u(o;; 0))°)~ Bd(i, j)~ >, (1.20)

as d(i, j)— oo. Lower bounds of the form (1.19) are expected to hold true for general,
bounded sets A and B, but the complexity of the expansions necessary to establish
them makes it a rather unappetizing task to provide details.

In Sect. 3, we extend our results for Ising spin glasses to N-vector spin glasses.
To accomplish that purpose we develop a more general, abstract inductive
construction, organizing terms in trees. In certain respects our generalized
(inductive) tree expansion is simpler to grasp than the more explicit constructions
used in the Ising model. It is, however, less explicit and makes higher demands on
abstract reasoning. This is why we felt it worthwhile to first treat the Ising spin
glass in detail.

In Sect. 4, we sketch some extensions of our methods, e.g. to proving
asymptoticity of the high-temperature expansion, propose some open problems
and draw our conclusions. It may be appropriate to emphasize that our
expansions incorporate some general principles which are applicable in a much
wider context than the one considered in this paper. We feel that they can be used
quite generally to convert asymptotic, but possibly divergent expansions in
statistical mechanics and quantum field theory into convergent estimates. It might
be interesting to try this out on perturbation theory for the vertex functions of
lattice A§ theory in d >4 dimensions.

Some important technical estimates are collected in two appendices.

2. The High-Temperature Phase of Ising Spin Glasses

In this section we present a detailed analysis of the high-temperature phase of long-
range Ising spin glasses. We prove existence and uniqueness of the thermodynamic
limit and cluster properties of the equilibrium state at high temperatures. Our
results can be used to show that the standard high-temperature expansion for the
free energy or for correlations is asymptotic.
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2.1. Existence and Uniqueness of the Thermodynamic Limit
Let A, A’ be finite subsets I', with A’> A. We define a state

dau’OQ(GA') = d_Q(O'A'\A) jUA dQ(Uj) > (2.1)

where dg is an arbitrary probability measure on {—1,1} which is kept fixed
throughout Sect.2, and dg(o4.,) is an arbitrary probability measure on
{—=1,0,1}" 1441 whose role will be, for example, to specify boundary conditions in
A\A. We shall always assume that the measure dg is independent of { #,;}ic 4. jea'-
The point of adding 0 to the state space of each a;, i € A"\ 4, is that this permits us to
impose 0 b.c. in A"\ 4.

We define finite-volume equilibrium states u ,, with b.c. in 4"\ 4 specified by

d_Q(GA’\A) by

I (e—ﬂH(UA') )
Hag( - )Eﬂ%( )= TmL(e_“W’ (2.2)
where 0¢
H(o,)=H”(0,):= — i ng' ]i{}i“d 0,0;, (2.3)

for some > 3. By choosing
d_Q(O'A'\A): ) [1 50(‘71')1101’,
jed\A4

we can impose 0 — b.c. on A°
We set o,:= [ 0. (2.4)
icA
Our first result is the following

Proposition 2.1. If 0B <p,, for some sufficiently small B, then

. 2
JII}"HF E(/"AQGA - :uAQ’O-A) =0 5
A'>A

for any bounded ACT . For fixed A and fixed do(c;), i € A, the convergence is uniform
in the choice of A', A'D> A, and in the choice of the probability measures do(c 4, 4),

do'(0 4\4)- . .
From this proposition we get

Corollary 2.2. Under the hypotheses of Proposition 2.1,
g
exists and is independent of the b.c. imposed by dg(c 4, 4), E-almost surely.
Proof of Corollary 2.2. We choose sets 4 and A'D A and set
do(0 4 4) = iEQ\A dg(a;)

and (2.5)
do'(0 4,4)= ] [T dolo))do;.
ieA\A
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By Proposition 2.1, for any bounded A4 and arbitrary ¢ >0,

E(ugg04 _,“AQUA)2 <é (2.6)

if 4 is sufficiently large, uniformly in 4'D A. Since, by (2.2) and (2.5), yt4,= i1, and
[tag =4, se€ (1.2), we conclude from (2.6) that

/{i/r,nr Hag0a= jiglr HA0 4= O 4 2.7)
exists E-almost surely, for a suitably chosen sequence of sets A increasing to I'.
Using Proposition 2.1 again, we see that, for any £¢>0,

E(ug0 4~ tag04)* <t

for an arbitrary choice of dg(a 4, 4), uniformly in A, provided 4 is large enough.
This proves uniqueness and independence of b.c. of the limiting state u, E-almost
surely. We remark that convergence holds, a priori, in L*({ #,;}, dE), but by passing
to diagonal subsequences of sets A increasing to I’ we obtain E-almost-sure
convergence, for arbitrary bounded subsets ACI. []

We now turn to the proof of Proposition 2.1.

We choose a bounded subset A of I'. Given A, we introduce some ordering, <,
of the sitesin I and in I'“ such that the sites in A are smaller (with respect to <) than
the sites in A\ A. Further properties of < will be specified where needed. Let k be
the smallest site in 4. We now perform a sequence of expansion steps in the
couplings J ;, je 4.

E(luAQO-A ",“AQ'O'A)Z .
= E(#AQUA - ﬂAg"U)Z | Kigae=0T Y Bko—jl 2 [ dsyej
jed\4 0

xE <fk20j[a£oj(:uAgo-A - ,“AQ/JA)nggcor =0,i< J'>2 )

¥os

Sko,

I lds;,; (28)

where ie A\ 4, i< j, in the last factor on the r.h.s. of (2.8). In the derivation of (2.8)
we have used the symmetry of E which guarantees that

Blko—l ~E (fkoj[akoj(/‘AQO'A - #AQ'UA)zjff{cOJ =0) =0. (2.9)
0 .
We also recall that 0;;= S Since the factor
ij

[al%gj(luAgo-A - #AQ'O'A)ZJ -

is bounded uniformly in 4, A4', A, g, ¢’ and in the conditions, [( - )], imposed on
coupling constants, we obtain from (2.8)

Iy= E(,UAQJA - luAQ’O-A)Z
S E( 04— :uAg'O-A)lekoAc _otap’ ) ;\A lko—jl~2*, (2.10)
je

for some finite constant a >0, independent of f and “everything else.”
Next, we note that (2.8)~2.10) do not depend on special choices of the

couplings, J;;, i.e. we can apply expansion steps, like (2.8)2.10), to the first term on
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the r.h.s. of (2.10), ie. to

I(Kyope=0)= E(.“AQJA - NAQ'JA)2|KkOAc= 0"
Hence
L(Kpone=0)=1,(Ky,r=0)+ Y Pp?lko—k;|~>*
ki€ A\ko

1 Skeoky
x (f)dskokl g ds;cok1E(fk2gk1[al%ok1(ﬂAgUA_#AQ’GA)sz,‘O,\‘)a

2.11)

where C,,, is the condition that K, ,.=0, K, ;=0, for all i<k, and J,,, is
replaced by S; ., = Skor, B koks -
If do(o) is symmetric then

#AQO'A|Kk0,— = :uAg’O-AIKkor =0,

ie. I ,(K,,r=0) vanishes. This would somewhat simplify our analysis. Otherwise,
I 4(K,r=0) needs to be reexpanded by repeating the same steps as above, for all
sites ke A. Then we may use that

(HagTa— HagOa)k o =0 (2.12)

and the expansion will terminate. Hence we shall apply an identity analogous to
(2.11) to all terms I ,(K 4, - =0), for a sequence {4,} of subsets of 4 increasing, with
respect to the order <, to 4. The index n ranges from 1 to |A4|, with 4;=k,,
A, ={kg, k' }, where k| is the least site >k, etc. All these terms will generate terms
like the second term on the r.h.s. of (2.11), but with slightly different conditions,
C4x,> replacing C, ,,, imposed on the exchange couplings.

In order to make progress, we must find an appropriate upper bound on

”:aizj(.uAQJB - .UAQ'UB)Z]C| 5

for arbitrary finite subsets B of I', arbitrary 4, g, ¢/, and C. In Appendix A.1 we
prove

I[aizj(uAgaB—:uAg’aB)ZJC!
SK[(U4g08— tiag0s)” + (H4g050:0;— #AQ'UBO'iO'j)Z +(Upg0:0 ;= ag0:07) s

for some finite constant K > 0. (2.13)

Remark. If |A|is odd and dg is symmetric in g, the last term on the r.h.s. of (2.13) can
be omitted, and there will occur further simplifications.

We now insert (2.13) on the r.h.s. of (2.11) and then perform a Taylor expansion
in S}, to second order, apply (2.13) again to the resulting terms, and so on. This
yields the following upper bound:

1 Skoky
> Bziko—klrzad(f)dskokl (I) ds;coklE(jkzgh[alfokl(luAgo-A_#AQ’O-A)Z]C

k1€ A\ko

< Z BzDﬂlko —ky| _ZadE[(.uAQO-A —,UAQ’:O'A)Z

ki€ A\ko

+ (40 ATk, — Htg0 akoTky)” + (HagOkoTk; — HagOuoTx,) Jer s (2.14)
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where C’ differs from C by the additional condition that K, , =0. Since there are
three terms on the r.h.s. of (2.13), the constant D, is given by

o 2yn—1
D,;=K1n§1 @—%E 2, (2.15)
for some constant K, >0. The factor [(2n)!]1™! comes from the integrals
1 Skoky  SGEne 1
(j) dsyor, (j) °(j) dsiZp) = on)l” (2.16)
Since we have assumed that
Egi"<y*(2n)!, 2.17)

for some finite y >0, the constant Dy is finite, for 0 < <, if B, is small enough.
Moreover, D, is obviously increasing in f8, so the bound on Dy is uniform on
[0, By — 6], for any 6> 0.

Now, we observe that the terms under the expectation E on the r.h.s. of (2.14)

have the structure of

IB(C,)EE(HAQO-B_luAQ’JB)ZIC’ ) (2.18)
where C' is the condition that K, =0, K, ;=0, for all i<k, and B=A4,
(A\ko)Uky, {ko,ky}. For the term I ,(C’) we can derive an identity analogous to
(2.11) and bound the second term on the r.h.s. as in (2.14). (The circumstance that

the condition K, 4 =0 has been replaced by C’' does not impede this procedure!)
Thus, by iteration of (2.11) and (2.14) for I ,(C’), we find

IA(KkgACZO)é(l +B25/})IA(KI¢0F=O)

+ ﬁzD—B . 2/21\,4 lko—kyl™ ZadE(ﬂAgaA\kon, _IUAQ'O-A\koO-kl)ZIC’
1€

+ 325/3 . ZA\k lko—k;|™ ZadE(.UAgUA\{kO,kl} - ﬂAQ'UA\(kO,k,))2|C'
1€ 0

+ 525;; . Y ko—kq|” ZadE(HAQUkOO'kl - #Ag'0k00k1)2|c' .

1ed
kutko (2.19)
Here, the constant D, is bounded by

n

™8

1 (BZD/; I k=il 2“")”. (2.20)

Hence Dy is finite, for o >4 and f small enough. It is increasing in f on R*. In
conclusion, Dy is uniformly bounded on [0, f,— 4], for some f, >0, for any 6> 0.
From (2.10) and (2.19) we conclude that

14 =E(upg04—4g04) < af? , Z\A lko—j17 2%+ (1 + B>Dp)I 4(K o =0)

jeda
+p°D, klg\A ko= kil ™Y (arkgyon, (C)
+ ﬁzﬁﬁ kle%\ko Iko - kll—zadIA\{kkal}(C/)
+BDp 3 ko=l 1€, @21

ki *ko
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where, we recall, C' is the condition {K,_,.=0, K,,i =0, for all i<k, }. We remark
that if do(o) is symmetric in ¢ then I (K, =0, C)=0, for arbitrary C.

Next, we notice that the term I 4., x,(C'), ky € 4\ 4, has a form similar to the
one of 14, so that it can be bounded by an inequality analogous to (2.21). More
precisely, we start our expansion of I 4., at the point k; and obtain, after
repeating the steps (2.8)2.21),

I avkoyor (C S ap? o , lky —jl =2 +(1+ ﬁzﬁﬁ)I(A\ko)uki(C,’ Ky, r=0)

jeA\

+ﬁ2D_ﬁ Z Ikl _kZI_ZadI(A\ko)ukz(C”)
kaeA\A
k2 ¥k

+B°Dy Y ks kol TP gy, 1(C)
kae A\ko
ka*k1

+B2D_B kZ |k1—kzl"“"lm,kz;(c”), (2.22)

*ki. k
where ka ¥k ko

C" ={Ky,, 4e=0, K;,;=0, i=ky; K; 4=0, K ; =0, ' =Zk,}. (2.23)

The order < may be chosen to depend on k, in such a way that the elements
k, e A\k, are smaller, with respect to <, than the elements k, € A4\ 4.

Next, we may feed the bound (2.22) back into inequality (2.21), and iterate this
step indefinitely. At the n-th step of our iteration we start from a term
koyon, (C™™Y), where

Cr V= {Kipae=0, K, i =0, ViZky s 1 }n=0, (2.24)

and we choose < such that all sites ie A\k,, with i=k,,,,, m=0,...,n—2, are
smaller, with respect to <, than the remaining sites. At the n-th step we start our
expansion steps at the site k,_,. Let us summarize the main features of our
iteration encountered at the n-th step:

a) k,*k,_,,since K, _,  hasbeen set to zero at the (n —1)-st step. Hence k,,
* kn— 1> kn— 2

b) If k,_; =k,,, m=0,...,n—4, then the term af*> Y |k,_,—j ** in the

je A\A

expansion of I ok, (C" ") is absent, since K, 4 has l\)een set to zero at the
(m+1)-st step.

¢ If k,=k,, m=0,...,n—3, and the interaction term K, , was the last
coupling between o, and o , then

I vy oien(C™) =01 4 (C™), (2.25)
where
a=0(0y,)*=([do(a)o)?,

as follows directly from (2.2), (2.3). If dg is even in o then I 4,0 (C™)=0.
Similarly,

1Koy =0)= 8Ly Ko =0), } (226)

Iakoyoi(C" ™V, K r = 0)= 01 41 (C" ™V, K, r=0).
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d) Ifk,=k,,m=0,...,n—3, then the bond (k, _ ,, k,) = (k,_, k;), forall ISn—3,
because otherwise K, _, would already have been set to zero at the I-th step.
¢) At the n-th step we generate the following terms:
i) If k,_, was not met before a term

ap® ¥k, —j 7
jeA\A

ii) A term
(14 D)ol 44 (C" Y, K, r=0),

and we note that |[4A\k,|=|4]—1<|A4].

iii) Terms of the form

B*Dy Y tkaor =k TPIHC™),
kn¢kn~1’kn—2

where one term has B=(A\ky)uUk,, i.c. |B|=|A|, for which the iteration will
continue, but the other terms have |B| <|A4].

Using (2.21) and (2.22) and iterating in the manner just described above, we
finally get the bound

o0 n
20 \n - s —2ad
I,=ap? ¥ (B°Dy) 2 <H k= 1 — Kl 2"“’) k=]l
jedA\4 n=0 m€A\A m=1
ko + 1 F Ky ko — 1
knFkm, m<n

+1+BDpE 3 (D,

n—1
X > K=y — ki 2% IA\kO(C(n)a Ky r=0)
kmeA\A m=1
km+1Fkmkm-1

w B n B
+ Y (B*Dy" ) TT k1= Konl =2 Ly (C™)
n=1 kne A\ko m=1
km¢ A\ko, kme A
km+1Fkmkm—1

+ ngl (ﬂZD_B)n k Z ml;ll |km -1 kml - Zadl{kn 1, kn}(C(n)) B (227)

km+1 ;ksnnkm— 1
with C"={K, ,=0,K, ;=0,Vi=<k, }mn_0. Thefirst term on the r.h.s. of (2.27)
can be estimated by

af? {i (ﬁzD_ﬁb)"} 5 ko™, (228)

jea

which is finite if f is sufficiently small. Here b is a finite constant with the property
that
Y |k—K'| 725k —j| " 2 < blk—j| = (2.29)

k'eAd
k' *k
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forke A, je A\ 4,and it is assumed that o> 1. The series occurring in the last three
terms on the r.h.s. of (2.27) may also be estimated using (2.29). For example,

> (62D, [T Voo — iyl 2
n=1 kme A\ A m=1
_ km+tFhkmkm-1
<pD,(1—p*Dyb) ! (2.30)

which is finite for § small enough.

Next, we note that the factors I(...), B=A\ky, A\{kokn} {kn—1,Ku}s
appearing in the last three terms on the r.h.s. of (2.27) have the pleasant feature that,
for |A|>2,

|B|=|4]—1. (2.31)

This offers the opportunity to induct in the cardinality of |4|. In order to complete
a proof of Proposition 2.1 by induction in |A] it remains to be shown that

lim E(,uAeai—,uAgra,-)z=0 (2.32)
ArT
and

lim E(u,,0:0;—p400:0)°=0. (2.33)
AT

This is the content of the following lemma.

Lemma 2.3. If 0<B<p,, for some sufficiently small ,>0, then

(1) E(100:— g0’ lc <K' ZA li—jl~ 2,
jedac
and
(ii) E(.uAgO-iO-l_HAg’aio'l)zlcéK,/ . 2 . 2/:1 lko—jl =2,
o=1,1 jedc

where K' and K" are finite constants which depend on f§ but are independent of A, g,
¢ and the condition C imposed on the Lh.s. of (i) and (ii).

Proof. By Taylor’s theorem with remainder

E(.“Ago'i - l-‘Ag'Ui)2 = E(,uAgai - ,“AQ'O';')2|K,-AC =0t ZA B2 =~ 2ed
jeac

1 Sij
X gdsij ff) ds:'jE(féaizj(#Ago'i—HAQ'Gi)2|c), (2.34)
where C is the condition {K; =0, VI<j, S;;}. The integrand on the r.h.s. of (2.34) is

obviously bounded, so we obtain
Ii=E(ug0;— .UAQ'O'i)Z SI(Kiye=0)+af? ¥ i—jl72*, (2.35)

jedAc

for some finite constant a independent of § and 4.
Next, we expand I(K;,.=0) in J, ke 4, to second order and obtain

I(K;4e=0)=I(K; 4o s =0)+ i —k| >

1 Sik
X tf) dsy g dsiyE(Z; i%caizj(.u'Agoi_:uAg’o-i)le)’ (2.36)
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where C is the condition {K ,.=0, S}, }. We now use (2.13) to bound the integrand
on the r.h.s. of (2.36). This yields
I{Ki4e=0) S I{K; ge =0+ Bli— k|~ 2*%K[I(C)+ L(C) +1;; 5(C)] . (2.37)

The term I; ,(C) = E(14,0,0,— 14 e,oiak)zlc will be estimated in the proof of part (ii)
of Lemma 2.3. All three terms, I,(C), I,(C), and I; ;,(C), are now expanded to second
order in S}, again, whereupon we apply (2.13) another time. After repeating this
procedure indefinitely we obtain

I{Ki4e=0) SI{K; geoe=0) + B2Dyli— k| " >[I(C) + I(C") + I, 1(C)], (2.38)
where D; is given in (2.15); see (2.14).
Applying an inequality analogous to (2.38) to I (K, 4., =0), for some k' >k, etc.
we finally get
Ii(KiAc = 0) = Ii(KiF = 0) + ﬁzDﬂ hZA |i - k| - 2md[Ii(Ck) + Ik(Ck) + I{i,k}(ck)] s
ki (2.39)
where C, corresponds to {K;,.=0, K;.=0, Vk'<k}.
Now we note that
Ii(KiF=O)=E(MAgai_HAQ’Ui)Z'Kir=O =0. (2.40)
Next, we apply an analogue of (2.39) to the term I,(C,) on the r.h.s. of (2.39), use
(2.40) again and iterate. As in (2.19) and (2.20) we find
I{K4=0)< Dy kZA li— k|72 [L(Cp) + 11, y(Ci)] (2.41)
k*i

Combining (2.35) and (2.41) we obtain the bound
L;=ap® 3 |i—jl7**+ B>D, kZA li—kl 72 [L(CY+1; (C].  (242)

jedaAc
k*i

The last term on the r.h.s. of (2.42) is bounded in part (ii) of Lemma 2.3. For the
term proportional to I(C,) an inequality analogous to (2.42), with i replaced by k,
provides an upper bound, and this can be iterated indefinitely. We find

L= ;O(ﬁzﬁﬂ)n Y ik Tk =k 2

n Kiseuns kne A\i
ki+v2Fki+iki
X{ 2 aﬁzlkn—jl_z“d+1{k,,_1,kn}(C("))}, (2.43)
jedae

where C" is a condition depending on {i,ky, ... k,}, Iy, 1oy =0,and Iy o =1,
The proof of part (i) is completed by using (2.29) and part (ii).
We now turn to the proof of part (ii). As in (2.10) we find by removing J;;and J,;,
je A,
E(#Ago'ial - /‘Ago'ial)zlc = I(i, l}(C’ K{i, BAe = 0)
+ap? ¥ (=72 1= j 7). (2.44)
jedAe
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Next, we perform an expansion step in J ., k€ A\i, using (2.11), and iterate this step
using (2.13), indefinitely, until we obtain a bound analogous to (2.19). Note that on
the r.h.s. of (2.19) the term proportional to E(1 4,0 4,0k, — Hag0 ako0i,) |- is absent,
since o 4,,0%, = 1, for k; € A\ky, ko=1i. Hence

I{i,z}(K(i,Z}Ac =O)§(1 +.BZEB)I{L‘,I}(KH‘=0)+ﬁ2D_ﬂli_ ll _zadl(i,l}(cl)
+8°D; Y |i_k1|_2ad'{I{l,kl}(cz)‘i‘I{i,kl}(cz)}a (2.45)

kieA\{i, [}

where C; corresponds to {K; =0, K;=0} and C, to {K; ,,=0, K;,,=0,
Vm=k,}. Now we note that

i y(Kip=0)=0l(K;r=0), (2.46)

where, we recall, g=({0,dg(c,))>. We may and do assume that the order < is
chosen such that if k, € A\{i, 1} then k,>I, and hence K;=0. The second term
on the r.hs. of (2.45) has the same structure as I; ,(K;; y4-=0), hence (2.45)
can be iterated.

This yields the bound

I y(Kypae=0)= ﬁzFﬁU + ﬁzﬁﬁ)éll(KiF =0)+ ﬂZGB
D) ] li_k1|—2ad{1(i,k1)(c)+I(1,k1)(c)} ) (2.47)
kieA\{i, [}

where Fy and G are constants which are uniformly bounded in g€ [0, §,— 0], for
any 0>0, if B, is chosen small enough. Moreover, C corresponds to {K; .. =0,
K;=0, K;,=0,Ym=k,}. The point is now that we may plug inequality (2.43) into
(2.47) by replacing the first term on the r.h.s. of (2.47) by the r.h.s. of (2.43). Then we
arrive at an inequality for the two-spin correlation I;; ,(C) which can be iterated
indefinitely. More precisely,

L y(O)Zap? jeZA‘-‘ (i1 2% 1= j) 2

+BG, Y }Ii—kllﬂzad{l{i,kx}(é>C)"'I{l,kl}(éac)}

kieA\{i,!

+B2Fy(1+ D)Ly Y i—jl =
jedAc

+/32Fﬂ(1+/325ﬂ){;([325ﬁ)"k Y ikl
" KTk

by =k "2 (G K =0, c<"))} , (2.48)

where L; is a finite constant, for 0<f<f,, f, small enough; moreover,
Lo =111,y The condition C™ has been described after (2.27). Using (2.29), we
see that iteration of (2.48) yields an upper bound for I; ;,(C) which is finite and
tendsto0,as 4 ~ I',provided 0 < f < f8,, with §, small enough. This completes the
proof of Lemma 2.3, and hence Proposition 2.1 is now proven, too.
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2.2. Cluster Properties of the State p,
The main result of the present subsection is the following

Proposition 2.4. For o> 3 and E as in (1.3), (1.4), there is a constant B, >0 such that,
for 0< <, and arbitrary bounded subsets A and B of the lattice I,

E(uy(04; 05)) < BChCl|Bld(A, B)~ >, (2.49)

for |A|<|B|, where &g and Cy are finite constants independent of A, B, and A, and
d(A, B) is the Euclidean distance between the sets A and B.

Remarks. (1) After passing to the thermodynamic limit A4 .~ I', whose existence has
been established in Sect. 2.1, we can extend Proposition 2.4 to the situation, where
A is a bounded set, but B is unbounded (e.g. a cone). Since, for a> 3, |i—j|~2* is
summable in j, we get clustering with d(4, B)~2***“ which still tends to 0, as
d(A, B)— 0. (2) We also remark that when A= {i}, B={j} we can prove a lower
bound on E(u(o;; 0;)*) which has the same decay as the upper bound [see
Theorem 2, (1.19)].

Proof of Proposition 2.4. We assume that |4] <|B| and choose a site ke A. We
then expand in the couplings J,;, j€ B, to second order. This yields

IA,BZIA,B(KkoB=O)+ﬁ2 ZB lko—Jl T2
JE

1 Sikos
X (];dskgj (f) ds;cojE <jk20j[8130j.u/1(0-,4; O'B)Z]Sfof(’, i< j> s (2.50)

where ,

14 5(C)= 140 45 08)°lc, (2.51)
where C is an arbitrary condition imposed on the couplings J;;, i,je 4, and
1, 5=1, 5(0). The second term on the r.h.s. of (2.50) is clearly bounded by

ap® ¥ |ko—jl=** (2.52)
JjeB
for some finite constant a independent of 4, B, A, and f. Next, we expand
I 4 p(Kyo,p=0) to second order in J, , , for k, € A\B. This yields

IA,B(KkoB:O)ZQ_IA\ko,B(KkOF=0)+ﬁz B} ZA\B Iko —k1| 2
ki ko

1 Skoky
x| Aok, | ASioe E(F i, |0iope, a0 43 05)*1c) s (2.53)

where C is the condition {K; 3=0, K, ;=0, Vi<ky, S;,}- The second term on the
r.h.s. of (2.53) is bounded with the help of the following inequality proven in
Appendix A.1:

IL0% ok 1a(05,5 05,)* 1cl SK'{Ip, 5,+ I, Gk k1), B(C) + Lyo k. 5,0}, (2.54)

for some constant K’ >0 which is independent of B, B,, and C. We now insert the
r.h.s. of (2.54) on the r.h.s. of (2.53). Subsequently, we expand the resulting terms
once again to second order in S, ,, and use (2.54) to bound the remainder term.
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Iterating this procedure indefinitely, we find

14, 5(Kyop=0)= 01 1o s(Kyor =0) +ﬂ2D;3 . ZA\B ko —ky| =2
ki ko

X {14 5(C)+ I gkoyony, 8(C) + Lok, 50} 5 (2.55)

where C corresponds to {K, =0, K,,;=0, Vi<k,}, and

© 3 2yn—1
Dy;=K" n;] (—IZ[;T))‘— Ej%", (2.56)

which is finite for 0 < < B, if B, is small enough. [Recall that E_#2" <y*"(2n)!, for
all n, for some finite y.] The factor I, 4(C) on the r.h.s. of (2.55) has the same form as
the Lh.s. of (2.55). This permits us to iterate (2.55), and we get:

IA, B(KkgB = 0) =< (1 + .325/3)@1,4\1(0, B(Kkgf = 0)
+ ﬁzD_ﬁ . Z " |ko - k1| B Zad{I(A\ko)ukl,B(C) + I{ko,kl},B(C)} >

1€A
where ko (2.57)
Ijﬂle, ;0 (BZD[,,C)", (2.58)
with
c= ¥ Ji—jl .
jel’
j*i

The constant D is bounded uniformly on compact subsets of [0, f,), for S, small
enough. Hence, collecting (2.50), (2.52), and (2.57), we arrive at the inequality

Iy 5= ap? ZB ko —j1 72+ (1 + ﬂzﬁﬂ)Q_IA\ko.B(KkOI': 0)
je

+ﬁ2D_B Z [ko—k1| _zadI(A\kg)ukl,B(C)

kieA\B, k1¢ A

+BDy % lko—kil T3 Ly gk, 8(0)

kieA\ko

+5°Dy, EZA\BIko—kll”z““l{ko,k,,,B(C), (2.59)
ki ¥ko

with C given by {K, z=0; K, ;=0, Vi=k,}. We may require that < has the
property that if k, € A\(AUB) then k, >i, for all ie A\k,. We note that the factor
I s\koyor,, 8(C) in the third term on the r.h.s. of (2.59) has the same structure as I, g,
in particular |[(A\ky)uUk,|=|A|, and hence it obeys an upper bound analogous to
(2.59). The remaining terms proportional to I ,. 5(C) on the r.h.s. of (2.59) have the
feature that [4’|<|A], if |A|>2. Therefore, we may iterate (2.59) in I 4 x0)ox,. 5(C),
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starting at the site k,. After infinitely many iterations we obtain the bound
jeBn=0 kme A\(A\ko) U B) <"‘=

km+ 1 F Ky k- 1
knF¥km, m<n

+U+BDE ¥ (8D

LaSaf’ ¥ Y (D) [T e =kl i

n

[l |km-1—km|_2""> Lk, s(C™)

< ¥ (
kme A\((A\ko)UB) \m=1

+ Y (B*Dy" ) <H Ikm-l—kml'z“d> T 4\t . 5(C™)
n=1 kme A\((A\ko)uB) \m=1
ke A\ko
+ Y (B°Dy)" ) (ﬂ |km—1_km|_2ad\’ Lo, 1, 5(C™),
n=1 kme A\ m=1 /

km+1Fhmbhm-1

(2.60)

where C® corresponds to {K, p=0; K, ;=0, i<k, %%, and C" to
{C™, K, r=0}. The first term on the r.h.s. of (2.60) is bounded by

A 3 (DD 3 ko), 2.61)

provided 0= < f,, for some sllfﬁciently small f,. The remaining terms on the
r.h.s. are proportional to I 4. 4(C), with |A'|=|A|—1, |A'|=|A| -2, or |A"|=2. The
prefactors can be bounded by using

© n—1
Y. B*Dy 2 <ﬂ lkm—km-ll‘z“"> Ky~ — k|72
n=1 kme A\((A\ko)uB) \m=1

km+1Fkmykm -1

SBPFglko—k| =2, (2.62)

for some constant F; which is uniformly bounded on compact subsets of [0, ) if
B, is small enough. Hence the proof of Proposition 2.4 can be completed by
induction in |A4|, provided we can prove it for |4|=1 and |4|=2. This is
accomplished in the remainder of this section.

Lemma 2.5. For a>%, 0< < B,, with B, small enough, there exist finite constants
Cjy and Cj such that

(@) EMA(GU 7p)’lc=Cp Z li—jl= 2",
(ii) Epqloi0,; 0p)° |c<C”kZl ZB|k J2
=i,l je
The constants C; and Cy are independent of A and B.

Proof. We start the proof of (i) with an expansion step, as in (2.50). Hence

11 B_Il B(KIB_O)+ﬂ2 Z Il ]I 2o

JjeB

x f ds;; f dsi;E <fu[5 Gtaloi; 05) Jku=0. l<1‘>~ (2.63)
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The second term on the r.h.s. of (2.63) is bonded as in (2.52). Through steps, as in
(2.53)+2.58), we obtain

lB_aﬁz Z [i—jlI~ b (1+ﬂ25ﬁ)éIQ,B(KiI‘=O)
+/32Dp Y li—k|7** 5(C)
ke A\B

k*i
+BDp 3 Ik—il" 0, 5(C), (2.64)
ke A\B
k*i
where C is given by {K,;;=0, K;;=0, VI=<k}; see (2.59). From the definition of I ; »
that
v T, sKir =0)=0. 269

Since I, 4(C) has the same structure as I; 5, we can iterate (2.64). This yields, using
(2.29),

Ii,3§aﬂ2(ngo(BZEﬂb)">jEZB|i_j|—Zad+ngl(BZEﬁ)n Z \ Iko_kli—zwm

e’
ey =kl 2% g, 1, 5(C™), (2.66)
where k,=i and C™ corresponds to
{KkmB=0> Kkml=0’ W§km+1}nm_=lo~ (2.67)

Thus, in order to complete the proof of Lemma 2.5(1)) we now must turn to the
proof of (ii). We start as in (2.50), (2.63), i.e. we use the bound

Ly =Ty (K, B-OH‘Q,BZ Z Z lk—j| =2, (2.68)

To bound the first term on the r.h.s. of (2.68), we proceed as in (2.53)2.58),
expanding couplings between i and 4\B and choosing the order < such that [ is
the smallest site above i. This yields

Iy (K, 5=0)<(1+B>Dy)al, o(K;=0)
+5°D, . %\B li—ky| 72 L ey, 5(O) + L iy, 5(C)}
P
+B2Dgli—117 0y, 5(C); (2.69)

see (2.57). Since the last term on the r.h.s. of (2.69) has the same structure as the Lh.s.
of (2.69) we obtain by iterating (2.69) and inserting the result into (2.68),

I{i,l},Béaﬁsz l ZB|k_ﬂ_2ad+(1 +Bzﬁﬁ)é11,B(Kir=0)
=i,l je
+B2G, Y li—ky TP, f(C) A+ Ty ay, 5(C} (2.70)

kieA\B
ki*i,l

with C’ standing for {K , 5=0; K;,,=0, Ym=k,}.

Next, we substitute the factor I; 4(K;=0) on the r.h.s. of (2.70) by the r.h.s. of
(2.66), with C™ replaced by C"U{K;,=0}. This yields an upper bound for I;; ; p
which is a sum of terms proportional to Iy 5(C), with coefficients which are

O(B?li — K~k — k| ~2%).
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By now the reader knows perfectly well how to extract a bound from such an
inequality by iterating it indefinitely. The bound is convergent for 0 < f < f,, with
Bo sufficiently small. Feeding this convergent bound for Iy ;. 5(C) back into
inequality (2.66) finally yields a convergent bound for I; 5. Both bounds have the
form announced in Lemma 2.5(i), (i), hence Lemma 2.5 is proven.

The analysis above clearly completes the proof of Proposition 2.4.

We now turn to the proof of a lower bound on E(u(c;; ¢,)?). In a special case this
has already been done in [11] by a somewhat elegant trick. Here we wish to show
that a lower bound also emerges from our inductive construction. For simplicity,
we only consider the special case, where there is no external magnetic field, so that
u4(0,)=0, for any k. We start from (2.50) which, in the present situation, takes the
form

1 Sij
Ii,j=Ii,j(Kij=0)+ﬁ2|i_j|_2ad 'gdsij g dS/ijE(jii‘[a?jﬂA(aiJj)z:]S{J)' (2.71)

The point is now that

Opalo,0)? =2+ O(pA(0,0,). (2.72)
By the upper bound

E(#2u010)ls;) S const . 2.73)
Hence, for f small enough,

I ;21 (K;j=0)+p?li—jl - **{E(£3)—O0(p*)}
>1; (K;=0)+a'p?|i—jl~*, (2.74)

for some a'>0.
Next, we use the upper bound on|I; (K;;=0)| provenin (2.53)+2.57),... . Since
K;;=0, the leading contribution to |I; (K;;=0)| is of the form

const-f* Y |i—k|72k—j| "< BYi—j| 72, (2.75)
kiiFk*j
and it is not hard to check that this is really an upper bound on |I; (K;;=0)| if
d=0g(0,)*=0. Hence
I jzd Brli—jl =2 = b BHi—jIm 2 =z a" B?li—j1 7, (2.76)
for some constant ¢” which is strictly positive if § is small enough.

The strategy for proving lower bounds on I, p sketched here is quite general:
One first extracts all leading terms contributing to I, p explicitly. They have a
decay like d(A4, B)"?*, for A and B bounded. Then one uses the upper bounds
established in the proof of Proposition 2.4 to estimate the remainder terms and to
show they are of higher order in f than the leading terms, but still decay like
d(A, B)~?*. This will provide the desired lower bounds, provided f is sufficiently
small.

Well the strategy sounds simple. But it is actually quite cumbersome to
implement it, except in the simple case treated above. The reader may wish to try
out his skills on the next more complicated case.
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3. High-Temperature Behaviour of N-Vector Spin Glasses
In this section we study N-vector spin glasses with Hamiltonian
H(O'A)EH;(O'A):=— ZAJijO-i'O-j, (3.1)

i, je

where o, is an N-component unit vector (i.e. ;€ Sy_{),
y d
0 0;= 21 oo}, Jy=Luli—ilm, (3.2)
=

with o> 4 and ¢; i.i.d. random variables. The distribution, E, of the variables ¢;;
has the properties
EfZ;=0, [|EFH<y’p!., p=23 ..., (3.3)

for some finite y (as in Sect. 2). For details concerning our notations, see Sect. 1.2.
By u,, we mean the finite-volume equilibrium state with boundary conditions
do(0 4 4), defined in (1.10). We also recall that

N
04= HA [T (afyrem (3.4)
ted ym=1

with A={(i,m,n(m,i): ic ACI', m=1,...,N}; see (1.7).
Our main result in this section is

Proposition 3.1. Let E be as in(3.3) and o.> 5. Then there exists a positive constant B,
such that, for 0= <pf,,

. 2
jlinr E(ppg04—Uag04)" =0, 3.5)
454

and, for arbitrary, fixed A, the convergence is uniform in A'> A and in the choice of
boundary conditions.
Let p= lim p,, be the limiting Gibbs state. Then
A T

E(u(o 43 05)*) S B2Cpef! - |B| - d(A, B) ">,

for some finite constants Cy and &;.

Remarks. Asin the proof of Corollary 2.2, one shows that it follows from (3.5) that
there exists a sequence of finite subsets, { 4, } ;% o, increasing to I" such that the limit

lim pi, ,=p

n—oo

exists and defines an extremal state which is independent of the b.c. g. The second
part of Proposition 3.1 states that u is clustering.

Proof of Proposition 3.1. We start with the proof of (3.5). As in Sect. 2, we use the
shorthand

I,(O)= E(.UAQO'A - ,“AQ'UA)2|C ) (3.6)

where C is some condition imposed on the couplings J;;. We set I ,0)=1,.
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Our starting point is an identity analogous to (2.8):

I, =IA(Kk0Ac=O)+ Z .leko —jl_zad
jed\A
1

X (f) dSi; (]; dsl/cng(jkzoj[alfgj(ﬂAgaA —ﬂAg'O'A)zjcw))z ; (3.7

where k, is the “least” site in A, in the order <, and C'? is the condition {K; =0,
Ky,i=0,Vi<j, S; ;}- See(1.14),(1.15), Sect. 1.2. (This is the analogue of Egs. (8) and
(9) in [11].) As in Sect. 2, (2.10), we conclude from (3.7) that

IS 14(Kyoue=0)+af? ZA lko—j172*, (3.8)
jedAe

for some constant aindependent of I', g, ¢', o, §, and A. The first term on the r.h.s. of
(3.8) is expanded in a Taylor series in J,;, to second order, yielding

1 Skoky
1 (Ko pe = 0)= ﬂz ) ZA lko—kq|™ 2o (f) Ay ok, g ds;(gkl

ki*ko
X E(jlfoklalfokl(.uAgoA _ﬂAQ'UA)2|c<1>)
+14(Kyor=0), (3.9

where C™V) is given by {Kj 4=0, K;;=0, Vi<k;, S, }. It is useful to choose the
order < such that all sites in A are smaller than the sites in A\ 4.
We define

N 2
olko, n)= (J do(o) [ (a'”)"‘"‘”“”) : (3.10)
Then
IA(KkOF =0)=a(ko, n)IA\ko(KkOI' =0)=< [A\ko(Kkol“ =0). (3.11)

If A={ky} then I ,(K, r=0)=0, and thus we set I§(K, r=0)=0. We conclude that
we can get an upper bound on I 4(K,, .=0) by induction in | 4], the cardinality of 4,
provided we can bound the first term on the r.h.s. of (3.9).

In Appendix A.1 we show that

|ai2k(ﬂAgUB_NAg'JB)2|cl§KU1(B’ i,k; C), (3.12)

where

Uy(B,i,k; C)= ([HAQO'B(Ui o)’ — #AQ’O.B(O-i 0)*10)?
+ ([.UAQUB(Gi “0y)— #AQ'UB(Ui : Uk)]c)z
+ ({408 — #AQ'UB]C)z
+ ([:uAQ(Ji “0)* — HAQ'(O'i : ‘Tk)z]c)2
+([HAQ‘7i "0k~ Hag0i” Gk]C)2> (3.13)
and K is some purely combinatorial constant. We use (3.12) and (3.13) to get an

upper bound on the first term on the r.h.s. of (3.9). Subsequently, we iterate
(3.9)+3.13) for all terms appearing in U,(4, ko, k;; C'V), but starting from the site
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k,. The result is the inequality

I,<ap® 3 lko—jl7 2+ Y KB* ¥ lko—ky| **
Jjeac jeAc kied
ki ¥ko

1 Skok 1
X Tdsig, | dsion KB, =12

h Sy 2 2 2.92
X ff)dsklj (f) dS;clj‘E(fkoklfk,j)N(UD -2

1 Skeoky ~
+Kp? kZA |k0~k1|_2“"(f)dskokx (f) 'E(/kzoklU1(A, ko, ky; C)
k1 *ko

+ Liieo(Kior =0), (3.14)

where CVis CV v {K,, =0}, and we have used (3.11) in the last term on the r.hs.
of (3.14). In the second term on the r.h.s. N(U,)=5 is the number of terms
appearing in U,. The bound N(U,)?-2* comes from bounding |7 ;U,| with the
help of (3.12) and (3.13): Each term in 07 ;U is estimated by five new terms, each of
which is bounded by 22.

We now continue our expansion by applying (3.9) to the terms in the factor
U,(A, ko, ky; C), appearing in the third term on the r.h.s. of (3.14). This produces
a term proportional to U (4, ko, k,; C?), where C® is CV v {K, =0}. We now
note that

Uy(A4, ko, ky; C(Z)) = [(lwA\kl - .“’O'A\kl)2 (No 1] (J;cnl)n(m’kl)>2
+ {zzz (/'LGA\klo-;ch.;(’o - /’L/O-A\klo-ioo-;c,o) (Ho ];[ (Ukm,)n(m’kl) : Giﬁi;)}z
+ {; (#O'A\klo';co - MIO-A\kIO-;cO) (No [T(ogyemko- Ullq)}z

(3 Gkl kol ook o)+ (5 ok, = ok

c
Here u=pu,, W'=pu,, and (3.15)
dpo(o)= l:[ dg(a;).

If dg is the uniform measure on Sy_; then
100 =0, (3.16a)
oo = 8y (3.16b)

N
In this case we conclude, using

2
ak=zalr‘:no-lrcn=1’
m

that the last two terms on the r.h.s. of (3.15) vanish. Moreover, if k, ¢ 4,
Ui(4, ko ky; C)= KN(,UAQUA - .u'Ag’o-A)ZIC(Z) >
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which also follows from (3.16). Here ky =1+ N ~ 2. These observations simplify our
expansion for the models where dp is the uniform measure, but these simplific-
ations are by no means essential. Returning to (3.14) and applying (3.9) to the third
term on the r.h.s. of (3.14), we obtain the inequality

1,<(ap? +(5Kﬁ2Eji§)2b) Y lko—jl =2
jedAc
+(KB?* Y lko—ky| TPk —ky| 2

ki, kaed
ky*ko, k2 ¥ky

1 Skoky Skoky 1
X (‘)dskgkx b( dSicor, (f) d5k1k25k2k0+(§)dsklkz(1—5k2k0)

Sk, k

% ds;‘lkzE{jkzohszxkzalflszl(A’ kO: kl; 6(2))}

Ot

B 1 Sk Ky

+KB* Y |ko—ki| zadfdskokl | dSicor,

kied 0 0
k1 *ko

X E{ #2:,U (A, ko, ky; CH)} + I 4\ko(Kior=0), (3.17)

where C? is {K; 4. =0, K;;=0, i<k, Ky, 4e=0, K} =0, i’ <Kz, Sioe1s St} We
have used that

1 Skok | 1 Skeqy 2

’ A
jdskok1 j dskolq I dskxj I dsklj_ 2 >
0 0 0 0

and that
Y lko—kyl ™2k, —jl 2% < blko—jI7 2.
ky$%o, j

Moreover, we have made the simplifying assumption that E_#2"*!=0. Without
this assumption a term oc E(#;,,) would appear in the second term on the r.h.s. of
(3.17) in case k,=k,. This is a minor complication which we do not propose to
consider for a single reason: It would further complicate formulas which are
already heavy.

If, in the second term on the r.h.s. of (3.17), k, coincides with k,, we use that

Sn —

1 1
g ds ... g ds,E(fa) =y", (3.18)

for n=4,1in order to convince ourselves that the factor 4! in E ¢}, is offset by the s-
integrations.
Applying (3.12) and (3.13) to each term in d7,,,U,, we obtain the bound

|aI%1kZU1(Aa ko, ks OIS KUy(4, ko, ky, k55 C), (3.19)

where U, is a sum of N(U,)=5N(U,)=25 terms, each of which has the form
(,uAeF—,uAQ,F)Zlc for a function, F, of the spins, o;, satisfying ||F|| , <1, so that
(agF — 14 FPIcS4. (3.20)

After inserting (3.19) in the second term on the r.h.s. of (3.17), it becomes clear that
our expansion can be iterated indefinitely by applying expansion steps, followed
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by an estimate of the form
100, - knUn—1(A, Koy s k13 OV S KU (A Koy oo k1 ka3 €, (3.21)

with N(U,)=5N(U, _)=number of terms of the form (u 4, F — p 4, F )?|c appearing
in U,, with |F||,=1.

Thus, iterating (3.17), as described in (3.9), (3.14), and (3.19)3.21), we obtain
the expansion

IAé.BZCﬂ z{; L '—jl_zad"'IA\ko(KkoF:O)
jeAe

+ ¥ (KB { ) ﬁ; [ki— ki o] 72

n

18

1 ky,..., kned i=

ki+1¥k, i=0,1,...
n—1
x {d,sE {( ,1_]0 Fie > U, (A ko, ... k,; c<">)} } , (3.22)

where the symbol [d,s( - ) stands for the integral

) '
Sk k Skoki Skoky (Skokl

1 1
[dSkor, | dSigie, | | Ay ,0kk0 T [ Sy (1 “5k2k0)>
0 0 0 0

0
s”‘n*an—l 1
- g St Okt (J; s, i1 = O, )

x (J) dsi,_ el ) (3.23)

the U,’s are defined inductively in (3.21), and the conditions C™ are given by
{Kipae=0; Kp i =0, Vi<kyi}m=oV {Kyr=0}. (3.24)
Finally, the constant Cj is given by

Cy=aff? +(5K,82y2)2b< io (5Kﬁ2y2b)”>. (3.25)
It is easy to prove absolute convergence of the expansion in (3.22): Every
U4, ko, ....k,; C™)
is given by 5" terms, each of the form (uAQF—,uAQ,F)2|C(,.,, with | F|, <1. Hence

U A, kg, ... ky; C) S5 4. (3.26)

Hence
n—1 n—1
E{( I1 szikk,ﬂ> U (A, kgs--s ky; C"")} §5”-4E< 1 /If.k,+1>~ (3.27)
i=0 i=0
This bound is s-independent. The integral {d,s1 has the value

jds1= (H) [@n)!]7 ", (3.28)
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where n;; is the number of times we have expanded in the couplings J;; (to second
order). Furthermore,

n—1
E <.l_[0 P 1) = ?2”(11 (2n;))!. (3.29)
i= ij

See also (3.18). Finally, we use that
ki y =kl =2k =k | 2Bk g — Ky | +1) 72 (3.30)

ki¥ki—1,ki+1
From (3.26)-(3.30) we conclude that the infinite series on the r.h.s. of (3.22) is
dominated by the geometric series

Y, T (KBS 4b (ko —k +1)72, (3:31)
n=1 kyeAd
which is absolutely convergent for 0 < f < f8,,, with f, small enough. It is, therefore,
a safe starting point for further expansions which we describe next:
The n-th term on the r.h.s. of (3.22) is expanded in the couplings J, ,_;,i€e A.[By
(3.24), the couplings J, _,;, j € 4°, have already been turned off.] The term of order
0in J, _;is proportional to

UlA ko, ....ky— 1, ky; CP Vv {K, r=0}). (3.32)
The second order term in J, 1, ki € 4, is proportional to
Or U A kg, sk 1,k CP v L) (3.33)
which is bounded, as in (3.21), by a term
KU, (A ko, ... ky— 1,k k1, C™ v L), (3.34)

It bears an additional small factor oc f?|k,_, —ki|~?*. Now we expand in the
couplings #,1;, je A°. The two expansion steps yield the new convergence factor

SN aAKB kg — ik 2,
jeAc 1k=élfA
ki n-—1

which tends to 0, as 4 /~ I
The next step is to expand the term

KU, (A, ko, ..., ky, ki, C™ v {K;1,.=0})

to second order in J, 1,1, k € 4, and so on. This process can be continued in a way
very similar to how we continued (3.14) to obtain (3.22). After having completed
our expansion in J, 1, J;41,... we continue our construction by expanding in
i sty pJkls kls - always to second order and using (3.21) to estimate the
second order remainder in the Taylor expansion. Eventually, we shall continue our
expansion at some site k,,, expandingin Jy: ,2, ki € A to second order. By induction
we can easily establish the structure of the general term emerging from the
construction described above: Every such term is labelled by a general, abstract
tree, T, rooted in a vertex, O, with branches ordered in generations. Given a tree, T,
let 7°(T) denote the set of all vertices in T and #(T) the set of all lines in T.
Moreover, by t we denote an arbitrary map from ¥"(T) into I' such that 7(0)=k,,



148 J. Frohlich and B. Zegarlinski

and (k)% t(l) if (kl) e £L(T). There are two types of such maps: Maps, 7, which map
one vertex e ¥"(T) to asite j=1(l) e A, called maps of type 1, and maps which map
all of ¥ (T) into A, called of type 2.

A term in the expansion labelled by a map of type 1 has the form

(KpH#ml ¥ ) IT 1) —() =2
jedAc keA: (il)e L(T)
= Y(j)e¥(T) k=1(i), ie¥(T)
x [drsE {( I fr(z)r(l)) UA, T,t; (T, T))} (3.37)
(e L(T

where (j'j)=(z(m)zr(n)), (mn)e L(T), with t(m)e A, t(n)e A°, and T’ is the tree
obtained from T by deleting the line (mn).
A term labelled by a map of type 2 has the form
(KpHemty [T J@)—() >
keA:

(e L(T)
k=1(i), ie¥(T)

X fdrsE {( Nl fi%i)r(l)) UA, T, v; (T, T))} , (3:38)
(i)e Z(T)
where C(T, t) contains the conditions

(K =0, Vk=1(i), ie¥(T)}. (3.39)

The integrations [ d;s( - ) extend over domains which can be read off from (3.23): If
the pair of sites (kl) is covered by the map 7 by n different lines in #(T) the
integration is given by san-s

gdsk, (j) dsy ... f dsgr( ). (3.40)

These integrations will yield a convergence factor [(2n)!]~! which offsets the

divergence factor in Eg2"<y(2n)!. (3.41)

Our expansion has achieved the following goals:

(1) It contains terms displaying interactions between the site k, € 4 and sites
je A (type 1). The sum of these terms will turn out to tend to Olike Y |k, —j] =2
as A 7 T. jeds

(2) It contains remainder terms (type 2) with the properties that (¥"(T))< 4
and that all interactions between any site k in ©(7"(T)) and all other sites ie I are
turned off. Thus, these remainder terms do not contain any interaction, J,,
anymore, with ket(#°(T)) and l¢1(¥"(T)). Put differently, only interactions J;
with (k) ¢ 7(Z(T)) have not been removed from the expectations, yet. Hence the
remainder terms can be written as sums of terms which factorize into a product of

N
two factors one of which is proportional to y0< ]'I (or: )"‘"”) for some non-
m=
negative integers n(m), and the second factor is an expectation of

N
< [T (a7)"™? ) in a state not containing any interactions between A4, and its
\Ao

m=1 N
complement anymore, and 4,2 {k,}. We then estimate |,u0< I1 (ak'”o)”"")>l from
1

m=

above by 1. In the second factor we shall pick a site ky € A\ A4, (ky + k,), and repeat
the entire expansion described above. This will actually permit us to induct in the
cardinality of |A4|, just as in the Ising spin glass.
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All that remains to be done is to prove convergence of our scheme and an upper
bound on terms of type 1 which tends to 0, as 4 ~ I.

As already mentioned, the branches of all trees labelling terms in our expansion
come in generations: The first generation is a walk (kok,)(k,k,) ... (k,_k,). The
second generation consists of branches growing out of k, _1,k,_,,...,k;,ko. The
third generation consists of branches growing out of sites which belong to
branches of the second generation, but are not endpoints; and so on. In order to
prove convergence, we shall successively “roll up the branches” of the trees
labelling the terms in our expansion, starting always with the branches of the
largest generation not rolled up, yet, and going back to branches of lower
generations, one by one. “Rolling up a branch of generation i+ 1” means that we
first sum over its endpoint ki, without respecting any constraints, like ki,
=kj™™ 1<m<i, then we sum over k} _, without respecting constraints, finally
over ki ,,, with n, <n,. The site k;, is the root of this branch and is a site of a
branch in the i generation. It is not yet summed over. In rolling up branches we
make use of the following inequalities:

li—jl =2 < o(i—jl+ 1), (3.42)
for some finite o, provided i=].
S (i—kl+1)"2<p, (3.43)
keA
for some finite constant &', and, in rolling up branches in terms of type 1 with an
endpoint je A, we also use
S (=K 4+ 1) 724k —i| + 1) 22 < b" (|l —i] + 1)~ 2, (3.44)
k
We recall that o> 4 which is used in (3.43) and (3.44). We set b=5 - max(b’, b").

These estimates, combined with (3.21), (3.28) [or (3.40)], and (3.29) [or (3.41)],
show that the weight of a line (il)e #(T) can be estimated by

5Kp%y%b (3.45)

with K some finite combinatorial constant (depending on N). Rolling up one
generation of branches growing out of the site i yields an additional factor of

(=), (3.46)

where ¢(f) is given by (3.45), so the effective weight of line (il), after rolling up a
branch emanating from i in the next higher generation, is given by

c(B)(1—c(B) 1. (3.47)

Now (il) belongs to some branch which may be rolled up next, and so on. We
conclude that, in order to calculate the effective weight of lines (il) in the lowest
(first) generation, we must solve the recursion relation

Cr=cB—c)™t, n=0,12,... (3.48)

where ¢, = c(f) = SK*y?b. Here c, is the effective weight of a line after rolling up n
higher generations. Clearly, (3.48) has a solution ¢* = const % < oo, provided c(B) is
small enough, i.e. for 0= < f, with , small enough.
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These considerations establish the convergence of our scheme. It is now easy to
complete the proof of the first part of Proposition 3.1, i.e., by induction in |A4], we

conclude that . 2
Jli‘nl" E(luAgaA - .uAg’UA) =0 >

A'>2A

for arbitrary A. This is what is claimed in (3.5). We finally turn to a sketch of our

Proof of Clustering. Our proof of clustering for N-vector spin glasses is very
similar to that for Ising spin glasses. We just substitute the Ising expansion by the
general expansion developed above. Let 4 be a finite subset of I', and let B be a
subset of I" with |{B|=|A|. We choose a site k,e A and write

E(ppg(0 45 o)) = E(ppp(043 O-B)Z)IKkoB= 0
1 Skoj
+ﬂ2 Z lkO _jl_zad[dskoj f ds;foj
jeB 0 0

xE szujafoj[ﬂ@(o}n; UB)ZJK,koFO’ i<jt- (3.49)
S

oJ

The second term on the r.h.s. of (3.49) is bounded by af* ¥ |ko—j|~** which has

JjeB
the desired decay. So, it suffices to consider the first term. We perform the

expansion step

E(#AQ(O'A; UB)Z)|KkOB:0 = E(:“AQ(O-A; 68)2)|Kk0r=0

— 1 k1

+ﬁ2 Y lko—kil 2adjdskok1 | dS;cgkl
ki Be 0 0
ki +ko

xE {szoklalfgkl[ﬂAg(UAQ O'B)Z]c} ) (3.50)

where C is the condition {K, =0, K,;=0, for i<k, S ,, }. Terms corresponding
to sites k, € A° are treated as in (3.7), (3.8). If k; € 4 we use inequality (A.6) in
Appendix A.2, ie.

|al%ok1#Ag(UA§ 05)*lc| SKU (4, B, ko, ky; C), (3.51)
where K is a finite, combinatorial constant and U, is defined in (A.7). It is a sum of

five terms of the form p, (F; G)*, where F and G are polynomials in {¢]"} (with
coefficients=1). Using that

E(#AQ(O'A ; 03)2)|Kk0r =0= E(ﬂAg(UA\ko; 0'3)2)|Kk0r =0>

we obtain
E(u0 4; 05)%)=ap? ZB Ik —jl =2
je
+d'p? 2;1 lko—jl~ 2%+ E#Ag(“A\kOQ O-B)ZiKkOF: 0
jedae

B 1 Skoky
+Kﬁ2 Z lko_kII Zad.[dsk()kl j ds;(okl
kieA\B 0 0

ki F+ko

x E e, U (A4, B, ko, k5 0), (3.52)
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where C is the condition defined after (3.50). By removing the couplings between k,
and A4° we obtain an inequality very similar to (3.14). We may continue our
expansion steps as in (3.17)«3.22), using an analogue of (3.21). This permits us to
use induction in the volume | 4| of 4. The details of our scheme to prove clustering
are almost identical to our constructions in (3.17)+3.41), and it is not worth to
describe them once more. This completes the proof of Proposition 3.1. []

In the special case of E(u,(o;;0;%) (as well as other special, truncated
correlations), our expansion also provides a lower bound of the form

E(uq(o; o)) Zap?li—jl—2*. (3.53)

This can be shown by arguments very similar to those in (2.71)+2.76).

We wish to note that, by carefully tracing constants in the expansions of this
section, we can show that, in zero magnetic field and with do(s) given by the
uniform measure on Sy _,, our expansions converge for

0<f=constN, (3.54)
as expected.

4. Extensions of Results, Open Problems

Our methods can be extended in several directions.
(1) Asymptoticity of the high-temperature expansion: The results proven in
this paper clearly show that expectations

EﬂAg(UA)Z (4.1)

are continuously differentiable in f, for fe(— o, Bo). The first derivative vanishes
at f=0. It is not hard to check that, if J;; satisfies (1.3), (1.4), with o> 7, then all
termsin a Taylor expansion of Ep 4 (o )?in powers of f are finite. In order to prove
that the high-temperature expansion, though presumably divergent, is asymptotic,
it would suffice to prove an upper bound ~ O(8"*¢), ¢ >0, on the remainder term in
the n-th order Taylor expansion of Ep 4 (0 )? in powers of . Although we have not
checked the details, we expect that this can be done with the help of our expansion
methods. For this purpose we have to extend our expansion methods to
expressions of the form

Eps04,5 5 04 lal 0,15 5 04,)

We do not see any obstacles against doing just that, although a detailed study of
such expressions would admittedly be rather complicated.

In a proof of asymptoticity of the high temperature expansion, and other
applications of our methods, it may be technically convenient to approximate a
spin glass with long-range exchange couplings by one with short-range couplings,

e.g. by multiplying J;; by o o
gl ) =gleli—Jl), (4.2)

where g is a C® function of compact support, and ¢ >0 will be chosen to be small.
That the correlations of the approximate model converge to the correlations of the
original model is the content of the next remark.
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(2) Approximation by short-range interactions: Let g, be as defined in (4.2), and
let J;; be as in (1.3), (1.4). Consider an N-vector spin glass, N=1. Let u= ,uﬁ{ be
given by (1.10), and p°=pf%. Then i

li\n}) E(uo ,— s ,)*=0. 4.3)

To prove (4.3), we use an expansion similar to that in Sect. 3. Its purpose is to
successively turn off interactions between a site ko € A and the sites in 4\ {k,}. This
will permit us to use induction in |4|. On the basis of the techniques developed in
Sect. 3, it is not hard to show that the leading term is bounded by

0(32, )} li—jl_z“”(I—gg(i,j))>, (4.4)

i+jerl

and that the remaining terms sum up to a quantity which is even smaller than (4.4).
Hence (4.3) follows. [In a proof of asymptoticity of the high-temperature
expansion to O(B"), one would work with an ¢ so small that (4.4) is O(8"*1).]

(3) Variants of cluster- and phase-space-cell expansions: Of course, the
expansion methods developed in this paper can be applied to nonrandom systems,
as well, e.g. to Euclidean field theory. In a deterministic system, our expansion
steps will consist of first-order Taylor expansions in the couplings between distant
parts of the system. If we expand normalized quantities (correlations) we use
superstability estimates [15] to bound and simplify the result of an expansion step.
But we may also use our methods to systematically expand unnormalized
quantities (correlations multiplied by a partition function) and then use estimates
on ratios of partition functions, like those in [16], or exponentiate expansions of
unnormalized quantities, using the algebraic formalism [17]. In this form, our
expansion methods are compatible with complex coupling constants, and we can
extend convergence proofs into the complex plane of some coupling parameters.
These ideas would permit us to analyze, for example, the Euclidean Green function
in a class of superrenormalizable field theory models and prove clustering. But
such results are not new. More attractive extensions would be to combine our
methods with an approach to cluster expansions, due, originally, to Glimm and
Spencer, described by Brydges in [18], or with a form of phase-space-cell
expansions proposed by Battle and Federbush [19]. The virtue of our methods is
to avoid “over-expanding,” i.e. to replace expansions producing lots of terms by
expansions generating fewer terms, all of which can be labelled by abstract trees
and can be estimated quite easily by “rolling up branches” (see Sect. 3).

(4) Renormalization group transformations: A single renormalization group
transformation in a lattice or Euclidean field theory poses problems somewhat
reminiscent of those met in the analysis of disordered spin systems (the block field
variables play the role of random couplings). This was already observed in [10].
We think that the methods developed in Sect. 3, in a form like that sketched in
remark (3) above, combined with the ideas in [10], form a very general machine to
perform renormalization group transformations. Since we do not illustrate the
workings of this machine in some examples, we must, of course, leave to the reader
the benefit of the doubt.
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Appendix A.1. Proof of Inequalities (2.13) and (3.12)

Let BCI'x {1,...,N} xN. The projection of B onto I' is denoted by B and is
assumed to be a bounded set. Let o be as in (1.7). Let p=p,, and @'=p,,.. By
direct calculation we can see that

0f(poy— 1 ap)lc=0ul2uos—pay) - {W(op; 0,0 — 1(op; 0,0} ]c
=2[u(0y; 0,00 — (05 0,0)1¢
+2uop—pop)lcOylioy; 0:0)— 1 (op; 0,0)]c- (A1)
The first term on the r.h.s. of (A.1) has the following upper bound:

2[u(op; 0,0:)— 1(op; 0,021
=2[(u050,0,— W 0p0,0}) — (UT5— W OO0, — (10,0, — W 0,0, )W T 5]
<2-3[(uop—p'cp)* + (00,0, — W 050,0,)* — (U004 — Wa,0)* e, (A2)
where we have used the trivial inequality (a+ b+ ¢)* £3(a* + b* + ¢?) and the fact
that
ILuoioilcl=1 and |[Woglcl=1.

Remark. If |B| is odd and dg(o) is even in g, then 05 =0 (for 0-b.c.), and the last
term on the r.h.s. of (A.2) is absent.
To bound the last term on the r.h.s. of (A.1), we note that
Oulilog; 0:0,) — 1(o; 0,00)]c
=[uo4(0,0,)* — 10 30,04 110,0,
— Wo; 0,0, U0, — popi(0,0y; 0:05) — (= 1)]c
=[(uo4(0,0,)* — W o 5(0,01)%) — (40300, — 1 06,0,)26,0,
—(uog— W o) (u(0,04; 0:0,) — (10:0,)%)
—(w(0,04)* — (0,0 )uop— (0,0, — 1,0}
X (Wopo0,— Woppo0+ ' (0p; 0,0) + Wopuoo,+poo)lc. (A3)
Using that +2ab=<a’+b? and |64/ <1, hence |[u5,]c| <1, for arbitrary 4, we
can, therefore, estimate the second term on the r.h.s. of (A.1) by
[2[(uop— o p)0ulplop; 0,00) — (05 0:60))]c
<[(uog(0,0)* — W p(0,0)°) + Huo o0, — (' 550,0,)°
+19(uoy— p'op)* +(u(0:0)* — W (0:00%) + 18(uo 0, — o,6)*1c.  (A4)
Combining (A.2) and (A.4), we find
|05 [(uop— ' ap)*1c|
< K[uog(0,0)* — 1ap(0,04)?) + (00,0, — W 050,0,)
+(uog—wop)’ +(uo0,)* — 1(0,6,)°) +(uo0,— wo0) e, (AS)
for some finite constant K.
For the Ising model, we may use that (¢,0,)> =1, and hence (A.5) yields (2.13).

[Further simplifications arise for even, e.g. 0-, b.c., |B] odd, and dg(s) evenin g.] The
important features of (A.5) are:
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(1) K is a purely combinatorial constant independent of the specific model.
(2) All terms on the r.h.s. of (A.5) have the structure [(uF — p'F)*]., for some
function F of the spins ¢ (and, for Ising- or N-vector models, [F|<1).

Appendix A.2. Proof of Inequalities (2.54) and (3.51)

By long, but elementary calculations, one finds, setting p, (- )=u( ), that

0l (0 45 05)*1c=2[1(0 40:0,; 05) — (0 5 OO0, — (0,04; T )G 4
+ 110 4; 0 5) {10 4(0:00)7; 05) — (0,04; TR0 40,0,
—[... 14010 — w0 4; op)i(0,04; 0,01) — 1(0,0,)%; T p)ua 4
+ 10,01 05) (1o 4 — 110 45 0,0))} I - (A.6)

Using inequalities like +2ab<a’?+b? (a+b+c)*<3(a*+b*+c?), |op£1, for
arbitrary D, we get

07L1(0 45 08)*]cl
SK'[(o 45 0p) + (040,045 05)* + (0 4(0,0,)%; 5)*
+ ul(o,0; 0)* + 1l(0,04)%; 05)*1c, (A7)

for a purely combinatorial constant K'. For the Ising model we may use (5,6,)> =1,
hence (A.7) yields (2.54).

We note that, on the r.h.s. of (A.7), all terms have the structure [u(F; G)*], and
in our models |F| =1 and |G| £1. This is nice, because if one wants to differentiate
[u(F; G)*]. with respect to some variables S,,,, (A.7) can be used again to bound the
result.
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