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Abstract. The motion of a classical pointlike particle in a two-dimensional
periodic potential with negative coulombic singularities is examined. This
motion is shown to be Bernoullian for many potentials and high enough
energies. Then the motion on the plane is a diffusion process. All such motions
are topologically conjugate and the periodic orbits can be analysed with the
help of a group.

1. Introduction

As Markus and Meyer showed in [18], neither integrability nor ergodicity are
generic properties of Hamiltonian systems with two degrees of freedom. Neverthe-
less, these extreme cases are much better understood than the complicated mixture
inbetween. But, according to Berry "No smooth Hamiltonian of the type
H = kinetic + potential has been proven to be ergodic [7]." Though it is well-
known (see e.g. Anosov [2]) that the geodesic flow on a compact surface of strictly
negative curvature is ergodic, this example is considered unphysical, since Efimov
[11] showed that no such surface can be isometrically embedded in Euclidean
3-space.

One purpose of this paper is to show how such surfaces arise in the analysis of
two-dimensional periodic potentials with negative coulombic singularities. This is
the content of Sect. 2.

In Sect. 3 we give a new regularisation scheme for the collision orbits, which is
well adapted to our purposes.

The measure-theoretical properties of the Hamiltonian motion are explored in
Sect. 4. For a large class of Coulombic potentials the flow is shown to be
Bernoullian. An account of the impacts of this notion is given by Ornstein [21]. We
recall that another physical example of a Bernoulli system is given by the motion of
a billard in a periodic array of convex obstacles, as shown by Gallavotti and
Ornstein [13, 14].
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The diffusive behaviour of the particle moving in the plane is proven in Sect. 5.
In Sect. 6 we deal with topological properties of the flow, complementing the

measure-theoretical results. All systems with n singularities in a unit cell are shown
to be topologically conjugate. As a second result, a Morse-theoretic classification
of all periodic orbits is given.

In the last section we speculate about related classical and quantum
mechanical questions.

2. Coulombic Potentials and Closed Riemannian Surfaces

We start with the definition of the class of potentials we will consider. Let the lattice
vectors lu!2e(Cbe independent over IR and define the lattice ^ as the set

Select as the fundamental domain Q) the set

First fix the singularities by selecting n different points st e <&, i e {1,..., n] and form
the closed set

We will consider the following class of periodic potentials on the punctured plane

Definition. Let V:M\-+ΊR. be C 6 and periodic in ^ , i.e. for i=ί,2 and all

x e M\ V(x + lt) = V(x). If for all / e {1,..., n) the limits

Ci: = lim ft(x)
X-+Si

of the functions fi(x):= V(x)\x — st\ exist, c f <0, and all derivatives of ft(x) up to
sixth order are bounded in some neighbourhood of sb then V is called (negative)
coulombic.

As a first step we observe that by the very definition of a coulombic potential V
the maximal potential energy

h0: = sup V(x)
xeMi

is finite.
So instead of considering the dynamical system given by the Hamiltonian

H= 2{p\ + PΪ)+V{<l 1 + ^2)9 PuPi^uQi^^ with energies H = h>h0, we may
equivalently discuss the geodesic motion on {M'ug\) with Jacobi metric

which is conformally equivalent to the Euclidean metric g(x) on M\ (see, e.g.
Abraham and Marsden [1, Chap. 3.7]).

Now the length L(σ) of a curve σ:]a,b[->M\ is given by

L{σ):=]\\σ{t)\\dt
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with the gi-norm || ||. For a curve

approaching one singularity with c small, one sees that L(σ)<oo using L(σ)
1

<fcjί" 1 / 2dt for some k>0. So {M\,g\) is incomplete. Nevertheless, a direct
o

consequence of Theorem 1 will be some sort of a Hopf-Rinow theorem, i.e. any two
points p,qeM\ will be connected by a minimal geodesic in M\. However, M\
cannot be completed in a direct way, by adding some limit points.

To obtain a first insight into the singularity structure, we consider a family
yr:S

1^M\ of circular loops with winding number 1 around sh parametrized by
their Euclidean radius r>0. Integrating the geodesic curvature kg of the loops, we
find that

lim § k(t)dt = π.

In absence of a singularity this limit would take the value 2π. So an isometric
embedding of some circular neighbourhood U of a singularity st in R 3 roughly
looks like a cone with an aperture of π/6.

By the following construction we can regularize the singularity. We cut U
radially to obtain one half of a disc. Pasting this surface together along the banks of
the cut with a second copy of itself, we get a circular disk V. Now a loop in V
surrounding the former singularity once has the (limiting) geodesic curvature of
2 π which means that the covering surface U' has no singular point.

Now one can find complex coordinates z for U' and w for U such that the above
branched covering construction has the analytical form w = z2. This construction
is a geometrical reinterpretation of the so-called Levi-Civita Transformation (see
e.g. Stiefel and Scheifele [30]).

Consider next the torus M 2 : = <C/# and its subset M'2: = M\β with the
induced covering π12:M1-*M2. Since there is no danger of confusion, we will
denote the projected singularities π12(s ί ) by si9 too. The metric g\ on M\ is
projectable and thus g2 := π12*gΊ is unambiguously defined on M2.

M2 ^ T 2 has Euler characteristic 0. Using the expression above for the limit of
the geodesic curvature of a loop around a singularity, which clearly is valid for
(M'2,g'2\ too, and the Gauss-Bonnet theorem, the integral of the Gaussian
curvature K(x) is seen to equal

J K{x)dM2=-n-π.
M'J
M'2

So we have the chance to find coulombic potentials leading to Riemannian
manifolds whose Gaussian curvature is negative at all points. The geodesic motion
on such manifolds is known to be ergodic.

Now we shall transform the dynamical problem on M2 into one on a complete,
compact Riemannian surface M 4 which will be a branched covering of M2.

Theorem 1. There exists a compact Riemannian surface M 4 with a Riemannian
metric g 4 (six times continuously differentiable) having genus ^(M 4 ) = In + 1 , and a
%-sheeted branched covering π 4 2 : M 4 - > M 2 with branch points {π42

1(5/)}cM4 and
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branch numbers bπ42(x) = 1 for all branch points x, such that π 4 2 is a local isometry on

M 4 : = M4\{branch points}.

Proof. Clearly one has to perform the Levi-Civita transformation near every point
s ίeM 2 . But to globalize this transformation and to find M 4 we first define an
auxiliary torus M 3 covering the torus M2 four times.

So consider the lattice

<£2:= {ceC\c = 2 (zιlί+z2l2),zί9z2eZ}.

Set M3 : = (C/̂ 2 a n d l e t πi3 :M1^M3 be the induced covering. Define

^' = ̂ i3(st + l2) and s|v: = π ^ + ̂  + y

for ie{l, ...,n}. These points are pairwise different (see Fig. 1).
Recall that we visualized the Levi-Civita transformation by radially cutting a

circular neighbourhood of a singularity. To globalize the transformation we now
cut M 3 along the curves cf connecting s\ with sfι respectively cf connecting sf with

As in the local case we then paste two copies of the cut tori together along
banks of corresponding cuts yielding the manifold M4. (Observe, however, that the
left banks on one torus are connected to the right banks on the other one. So there
are selfintersections in this 3-dimensional immersion.)

To define M 4 more formally, we observe that there exists a doubly periodic
meromorphic (= elliptic) function / with order one zeroes at s"1 and s™ and order

one poles at s] and sf. Although we shall not need its explicit form ( its existence is
\ V

granted by Abels theorem using the 1-chain c:= £ (cf + cf) , it is given uniquely

iι J
(up to a constant factor) in terms of the Weiers trass σ-function (see, e.g. Behnke and
Sommer [6]),

/ z \ ίz I / z\2

we^2\{0}\ W/ \W 2\Wy

/ ITT\ / TV\ / TTI\ / IV
\Z — Sγ)O\Z — Sγ)...O\Z — Sn)O\Z — Sn

Fig. 1. The 1-chain c
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Since f(x + w) = f(x) for w e ̂ 2 , / projects to a meromorphic function on the torus
M 3 , which we denote by /, too.

Now consider the concrete Riemann surface M 4 given by the equation

u2=f(v), ueCuoo, veM3.

The branched covering π 4 3 : M4^M3 is given by projection on the t; variable of
the defining relation. Clearly π 4 3 is k = 2-sheeted with branch points $: = π ^ s ),
r e {I, II, III, IV} and branch numbers bπ43(sj) = 1 for all branch points. So the total
branching number B equals An.

From the Riemann-Hurwitz relation for the genus one obtains

Since π 3 2 : M3^M2 defined by π 3 2 : = π 1 2 ° π ^ 1 is a four sheeted (unbranched)
covering, π 4 2 : M 4 - > M 2 given by π 4 2 : = π 3 2 o π 4 3 is an eight sheeted branched
covering of M 2 with branch points s£.

Now we define a metric g4 on M 4 in two steps. First we lift the metric g2 defined
on M2 to M 4 : = M4\{^}, i.e. everywhere except at the branch points, by setting
g'4(x): = g2(π42(x)) for x e M 4 . Thus the projection π 4 2 becomes a local isometry
from M 4 to M 2 .

Secondly we define the metric g 4 at the branch points SJ. We only have to repeat
the Levi-Civita construction outlined above in a more formal manner.

For 5J G M 4 projecting to st e M2 we use a chart (U2, φ2), s( C U2 e M2 which is
an affine translation of the complex coordinates in the plane with origin at sf [i.e.
φ2(

si) = ® and ^(π[21(02~1(w)))= :^( si + w ) ] Since the elliptic function / has only
first order zeroes and poles, we can find a local chart (l/4, φ 4 ) , ίj C ί74 e M 4 with
04(sf) = 0 which has the property that the projection π 4 2 attains exactly the simple
form of the Levi-Civita transformation:

(see Farkas and Kra [12,1.1.6] for the simple construction of such a chart). Clearly
this special choice of charts has been made just to simplify the calculations.

Now we extend the metric g4 on M 4 to a metric g4 on M 4 in the following way.
To define g 4 at ίj, we perform the limit z->0 for its analytic expression g4

h(z) in the
local chart (U4,φ4).

The line elements in the two charts are

ds2 = gf h (w) dw dw = gf'iz) dz dz,

and we can substitute z2 = wή=0.
Thus we find

g4*-(z) = Azzgψiz2) = 4zz(h - V(st + z2)) = Aihzz-fis, + z2)),

with fix) defined in the above definition of coulombic potentials. Now

g ? (0)= limgSh (z)= -4-Usd= - 4 . C ί > 0
O

and by the assumptions on the coulombic potential V it is C6.
So the metric g 4 is C 6 on the whole of M 4 . Π
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Remarks. 1. M 2 is a so-called F-manifold (orbifold) in the sense of Satake [25, 26].
This can be seen using the above definition of M 4 : a group G = Έ2xΈ2xZ2 acts
on M 4 by isometric covering transformations Ψg: M4^>M4, geG which leave the
projection invariant: π 4 2 (^(x)) = π42(x). M 2 equals MJG. The singular points st

arise as isolated fixed points of isometries Ψg. Therefore MJG has a canonical
F-manifold structure [26].

2. In the context of complex function theory the use of the auxiliary fourfold
covering π 3 2 : M 3 - > M 2 cannot be avoided since there does not exist an elliptic
function with just one first order pole in its fundamental parallelogram (see e.g.
Behnke and Sommer [6, p. 137]).

3. Regularization

Owing to the possible collisions with the singularities st the geodesic flow in the
unit tangent bundle TγM'2 of the surface (M2,g2) is incomplete.

Our strategy will be to regularize the flow on the fundamental domain (and on
the whole plane) using the completeness of the geodesic flow in the unit tangent
bundle TγMA of (M4,g4). One necessary step is to compactify TXM'2 by adding n
circles, one for each singularity st in M 2 . As it will turn out, the compactified space
X will be different from TγM2, i.e. the circles will be added in a nontrivial way.

In celestial mechanics, various regularisation schemes have been invented to
complete the so-called collision orbits [10,28,30]. The reason why we give
another equivalent regularisation is simply that it seems to fit more directly in our
context. To be specific, we will see that T1M4 is an unbranched covering of X and
the flow on X is just the projection of the flow on TγM4. This will describe the
physical situation by which the mass point is reflected backwards at the
singularities.

Since π 4 2 : MA^M2 is a branched covering, the projection of the geodesic lines
is singular at each point s{ e M 2 . This is depicted in Fig. 2. By definition of g4 the
(incomplete) geodesic flow on (M2, g2) equals the projected flow in the unit tangent
bundle TXM\ using the push-forward π42^ from TγM\ to TXM'2.

In the last section we defined the F-manifold structure of M 2 using the action
Ψg of a group G of isometries on (M4, g4): M 2 = MJG. Now the push-forward Ψg^
acts on the unit tangent bundle: Ψgifί: ΊXM^ 7\M4. So it is natural to define X by

X\=TγMJG

using this action, and we denote by n42^: TγM4~*X the induced projection.
Clearly TγM'JG equals TXM'2, so that we have an inclusion of the noncompact

space TXM'2 in X.

Fig. 2. Geodesic lines in M 4 (left) project to hyperbolae in M2 (right)
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One should expect that X, due to the singularities shown in Fig. 2, is a
F-manifold without a differentiable structure.

Surprisingly, however, X is a manifold in the ordinary sense:

Theorem 2. X—ΎγMJG is a compact three dimensional differentiable manifold.
^42* •' T{M4^X is an eightfold (unbranched) covering. The regularized geodesic
flow Φ x : R x I - ^ I in X is uniquely defined by

Φχit> π 4 2 * ( x ) ) : = π 4 2 s | s (Φ 4 ( ί , x))

for xeTγMA.

Proof. Ψgχ acts freely on TXMA, i.e. for each x e TXM4 the map g i—• Ψg%(x) is one-
to-one. This is clear unless x is a unit tangent vector at a singular point ^ e M 4 . But
then for any group element g φ e with Ψg(§) = s still x is not a fixed point of Ψg^
since its direction is inverted.

Since G is a finite group (of order 8) and thus its action Ψg^ on ^M^ is proper,
by Proposition 4.1.23 of [1] X is a smooth manifold, and π 4 2 ; j ί is a submersion. By
construction Φx is a differentiable flow in X which coincides on T^M^ c X with the
incomplete geodesic flow of the metric g2. •

Remark. Since (M'^gΊ) is locally isometric to {Mf

2,g
r

2) via π 1 2 , one can define a
complete flow Φγ: IR x F-> 7 on the completion Y of TiM^, which describes the
motion of the particle on the whole plane, including collision orbits. Then by
extending the push forward projection

one obtains an unbranched covering πγx: Y-+X such that the flow Φγ projects to
ΦX.

4. Ergodic Properties

It is well known that the properties of the geodesic flow on a compact manifold
depend to a large degree on the sign of its sectional curvature. So our first step for
proving ergodic properties is to express the curvature of (M4, g4) in terms of the
potential V, the Gaussian curvature being equal to the sectional curvature in the
two dimensional case. Gauss' theorema egregium [16] says:

For conformal metrics gik(x) = F~2(x)δik, one has

JiJ dxJ dxJ dx'dx1

 r it, j \dxrj '

i+j with /(x): = logF(x),

see e.g. Spivak [29]. In our case /(x)= — |log(/j— V(x)), so

(h-V(x))AV(x) + (VV(x))2

with the gradient V and the two-dimensional Euclidean Laplacian A.
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Definition. Let V: M\->R be a coulombic potential and g\(x) = (h— V(x))g(x) the
metric on M\ defined by V. If the Gaussian curvature K(x) of (M'l5 g'J is ^ 0 and on
every maximally extended geodesic on M\ there exist points x with K(x) < 0, then
V is said to be of negative curvature at the energy h.

The condition on the curvature along geodesies resembles what was called a
"finite horizon" in the context of ergodic billard motion [9]. This is a slight
extension compared to the standard notion of strictly negative curvature. So we
have to prove the existence of some exponential bound for the separation of
trajectories in the (un)stable submanifolds of the tangent space T^M^ of the unit
tangent bundle TtM4 to obtain the Anosov property.

The following lemma is analogous to Lemma A 21.17 in Arnold and Avez [5].

Lemma 1. Let s be an even natural number, ί o e R + fixed and r: IR+->IR be a
C2-differentiable function. Let r(0) > 0, r(st0) = 0, and for 0 ̂  ί ̂  st0,

r(t).r(t)^k2(t)r2(t)

for a function k(t) with

j k2{t)dt^C2>0 for all u.
u

Then for t e [0, sί0] and k0 = ilog(l + C2t0\

k t

Proof First, observe that r(t) ̂  0 for t e [0, sί0] since otherwise there would exist a
negative value r(tr) < 0 with r\t') < 0. So r\t) ̂  0 for t e [0, sί0] such that f(ή increases.
Since f(sto)^0, the slope r(ί)^0 in the whole interval.

So the inequality r(t — u)^r(ή — ur(t) is valid for 0 ^ u ^ t^st0. For f(t) we get a
second inequality (we{1,2, ...,s}) as follows:

(s-n+ l ) ί 0

r((s-n)ίo)-φ-n+l)ίo)=- J Ht)dt
(s-n)fo

(s-n+l)ί0

g - j k2(t)r(t)dt
(s-n)fo

(s-«+ l)ί0
2

(s-«)ί0

Iterating these inequalities, one obtains:
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So we get

+ C2t0y
m, \f(2mto)\ ̂  \W)\ (1 + C2t0y

n

9

Now (1 + C2t0)~m = exp( — m log(l + C2ί0)), and using the monotonicity, we get the
stated inequalities. Π

Let μx denote the invariant natural volume on X.

Theorem 3. // the coulombic potential V is of negative curvature at energy h, then
the flow Φx on (X, μx) is an Λnosov and Bernoulli flow.

Proof. We must invoke Lemma 2 with the negative Gaussian curvature — K(y4(ή)
along a geodesic y4 in M 4 playing the role of k2(t). As in [5] we can use Lemma 2 to
show the existence of geodesies whose distance to any given geodesic contracts
exponentially in positive time.

We first show that the conditions of Lemma 2 are fulfilled, i.e. that there exists a
t0 > 0 and a C > 0 such that we have the estimate

for every geodesic y4(t) in M 4 . Assume the contrary. Then by compactness of TγM4

there must exist a geodesic y4(t) in M 4 such that

]κ(y4(t))dt = 0.
o

Hence y4(t) must be a projection of a geodesic in C under π4^ ° π 1 3 : (C->M4. But
we required that on every such geodesic there exist points x with K(x) < 0.

So the conditions of Lemma 2 are fulfilled.
Lemma 2 certainly does not give the best possible exponential bounds, but it

suffices to extend the Lobatchewski-Hadamard theorem (see, e.g. [5]) to our case.
As a consequence Φ4 on TXM4 and Φx on X are Anosov flows.

Not every Anosov flow is Bernoulli. But Theorem 3 of Ornstein and Weiss [22]
states that the geodesic flow on a compact C2-manifold of strictly negative
curvature with natural volume measure is isomorphic to a Bernoulli flow. Ornstein
(see Brown [8]) proved that every factor of a Bernoulli system is a Bernoulli
system. But τt42^: TίM4^X is a measure preserving map and the diagram

T1M4 > TίM4

7t42* 7Γ42*

x **<f' ) , x
commutes for all t by Theorem 2. So X is a factor of Γ 1 M 4 for all t and so Φx is
isomorphic to a Bernoulli flow, too. •

Remarks. 1. The main idea put forward in this section is quite old. See the
footnote on p. 743 of the article of A. N. Kolmogorov reprinted in [1].

2. Φx is also a K-system, mixing, and ergodic, as follows from the ergodic
hierarchy.
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3. Since the geodesic flow Φ4 on TXM4 is of Anosov type, standard results as for
example Theorem 5.4.3 of Klingenberg [17] are valid. See Remark 2 following
Theorem 6 below.

Now we will show that the conditions of Theorem 3 are met in the cases of
Yukawa potentials and certain coulombic potentials of finite range.

4.1. Example 1: Yukawa Potentials

Let the multiindex /: = (fl5Ϊ2,/3) vary in {l,...,n}xZxZ. We consider n
singularities of strengths ch at different points sh in the fundamental domain
@(ch<ϋ). The points xι<E&) in the complex plane are defined by x^s^
+ ί2li+ί3l2' The periodic Yukawa potential on M\ is given by

where rI is the abbreviation for |x — Xj\ and μ ^ O .

Proposition 1. There exists a hίelK such that the Yukawa potential V(x) is of
negative curvature at all energies h>hv

Proof. Clearly the series defining V and its derivatives are uniformly absolutely
convergent on every compact Acfc with Ac\£P = fy (no singularity points in A).

A V(x) = Σ((μh + rjι)2 -μhrjι)

with

ri

(VV{x)f =ΣΣK + rf')(μh + rjι)cos(φI-φj) F,(x) Vj(x)ΣΣ

with the multiindex J^tiiJiJϊ) a n d t r i e angle φj between x — Xj and, say, the
/i-direction.

Without loss of generality we may assume that the sh are interior points of the
fundamental domain 3). Now

N(x) : = (h- V(x)) A V(x) + (V V(x))2 < hή V(x)

+ Σ Σ ( K + rjl) (μh + rjι -μh - rj
I J

= hΔ V(x) + Σ AVf' ^/2W + Ax (x),

+ Σ Σ ( K + rjl) (μh + rjι -μh - rj') + μhr~ι l) x ^(x) Vj(x)
I J

with

Mx):= Σ
(iJ)

For h>0 the denominator in the expression for the curvature is bounded
away from zero and for the numerator N the inequality

N<A1+A2
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with

and

Mχ):= Σ VM
/ = (ί i ,o,o) rI

is valid.
But there exists some h2 such that for all h>h2>0, A1 + A2<0 everywhere.

Indeed the leading order of the singularity in both terms is rf2, with negative
coefficients in A2/h, and A2/h is strictly negative in the fundamental domain 3).

For h>h3: = maxί(\μici\) A3 is negative definite. So for all h>max(h2,h3) the
statement of Proposition 1 is true. •

The condition hί>0 could be expected and is necessary since the effective
potential

M2 exp( —μr)
2rτ+C r

of a single Yukawa potential can have minima greater than zero.

4.2. Example 2: Potentials of Finite Ranges

We use the same multiindex notation as above. Consider the function

with

and g f:R
+-»]R+ being C6, gf(0)>0, gf(r) = O for all r^rt.

If one assumes that the supports of the Vh(rI) are disjoint, one obtains:

(h-V(x))AV(x) + (VV(x))2=Σ((h-Viι(rI))AViι(rI) + (VVίί{rI))2).
I

So to show negative curvature of Fit is sufficient to show negative curvature of
the Vt. Consider the following concrete example:

Proposition 2. With the above notation, let g^r) be

π
r<2λι

0 r ^ — .

Then there exists a h1 such that V(x) is of negative curvature at all h>hx, provided
there exists no straight line in C\supp(F).
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Proof.

,2 r βr

<yvtr))2 = —

So the condition of negative curvature can be written as

2 -gl{r))h£glW for r<

By rescaling this reduces to

F(r) /z^7g^fcos7r(cosrsinr+l) for re[0,f[

and

F(r): = Ir 2(6 sin2 r — cos2 r) + 7r cos r sin r + cos2 r.

By using the inequalities s i n r ^ r < f sinr, valid in the interval [0,f[, one obtains:

F(r) = 35r2 sin2 r + cos2 r + 7r cosr(sinr — r cos2r)

n 4 r + l — sin2r + 7rcosrsinr (1 — f)

^35 sin4 r +1 + lγ (1 - f) -1 j sin2 r

= (/35sin2r-l)2+(2|/35+y(l-f)-ljsin2r

>c>0

for re[0,$[.
Therefore there exists a hx >0 such that for all h>hi the curvature of F(x) is

negative at h. Π

From simple geometric considerations it follows that one only needs to check
nonexistence of straight lines for finitely many directions d of the form
d = nίl1+n2l2, nun2eZ.

5. Diffusion on the Plane

In the last sections the motion of a particle on the fundamental domain was
considered. Now the motion on the universal covering space, i.e. the whole plane
will be studied. It is proven that the motion is a kind of diffusion process.

This fact does not follow directly from the ergodic properties of the flow Φx in
the compact manifold X. The compact surfaces of constant negative curvature,
whose covering surface is the Lobatchewski plane, may serve as a counterexample,
since the geodesic motion on the plane is not diffusive.

Clearly diffusion takes only place "in the large," since locally the flow may be
linearised.
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Let Y be the (noncompact) completion of T^M'^ locally regularized as X (see
the remark after Theorem 2 for its definition). Φ F :Rx Y-+ Y denotes the flow in Y,
and πγ: Y^C the projection onto the configuration space.

Let μγ denote the natural volume measure on Y, locally proportional to the
product of the measure on M\ defined by the metric g'l5 and Lebesgue measure on
S1 (measure theoretically the points over the singularity set ίf are unimportant).
The normalisation μγ(πγ 1{β)) = \ is chosen. μγ is invariant with respect to the
flow: Φ$t(μγ) = μγ.

We ask ourselves how a normalized (μA(Y) = l) distribution μA of initial
conditions is spread over the lattice after a long time. Since we are only interested
in typical initial conditions, we demand μA to be absolutely continuous relative to
μγ. By this we exclude e.g. the case of a μA concentrated on periodic orbits, where
clearly no diffusion would take place. For convenience of the argument we demand
the support of μA to be contained in πγ

γ{β\ i.e. the particle to start in the
fundamental domain, and we write μA for πγx^(μA), too. Observe that we can easily
deal with the more general case of a μA whose support is bounded in Y instead of
being contained in πγ

 γ{3)\ since then there exists a /ceN such that the support of
μA projects to a subset of the enlarged fundamental domain

The position of a point ye Yin the plane can be uniquely expressed with the help of
the lattice vectors Zl5/2 by

with lattice coordinates cuc2: Y->R.
For (n 1 } n 2 )eZ 2 \ { ( O ( o) } let / : Γ->IR be defined by

If a<b the set {ye Y\a^f(y)^b} lies over a strip in the configuration plane.

Theorem 4. There exists a σ = σ(nun2)>0 such that for all a^b

1 du.
ί->-oo

l i m μ J \yeY
σ]/2πi

Proof. We know from Theorem 2 that the flow Φx in the compact manifold X with
natural volume μx is Anosov and K. For flows of this type Ratner [24] has shown
that a large class of functions in L2(X,μx) satisfies the Central Limit Theorem. So
we shall transform the statement of the theorem concerning 7 to a statement about
X. To be specific, we shall consider the special representation Φs of Φx on an
isomorphic model of X, constructed in [23, 24].

Consider the above function / on Y. We write

f(Φγ(U y)) = f(y) + J g(Φx(s, πγx(y))) ds
o

with g:X->IR unambiguously defined by
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So it is sufficient to prove that for all a < b,

xeX

\g(Φx(t,x))dt
0

σ\/t

Let M(X) denote the space of Borel probability measures on X equipped with
the weak* topology. Then the flow Φx on X induces an associated flow

on M(X), given by

for all measurable sets B C X.
Since on X the probability measure μA is absolutely continuous with respect to

μx, and μx is a strongly mixing measure, by Theorem 6.12 (ii) of [31],

\\mΦx(t,μA) = μx.
ί-> oo

So it suffices to show that g on X satisfies the Central Limit Theorem (CLT)
relative to the measure μx.

In [23] Ratner showed for Anosov flows on a manifold X the existence of a
Markov partition v of X into parallelepipeds. Denoting the system of lower faces of
this partition (i.e. the faces through which the flow enters the parallelepipeds) by
0β(v) and the time interval needed to traverse the parallelepiped starting at x in its
lower face by l(x\ she showed that l(x) satisfies a Holder condition on every
continuity component of ̂ (v). A mapping Tx on the set-theoretic union Mx C X of
the lower faces is defined by the flow Φx\

Using the r x r transition matrix A defined by the Markov partition of X, one
defines the symbolic dynamical system (ΣA, σ) in the following way: Let
Σ:= {1,2, ...,r}z be the space of doubly infinite sequences with metric

d(x,y):= Σ 2 - | " (l-<5J(ίΛ).

Then ΣA C Σ is defined as the (compact) subspace of bi-infmite sequences x with
ΛXιXι + i = l for all ieΈ and σ:ΣA-^ΣA, (σ(x))n = xn + 1 the shift.

There exists a continuous surjection ρ: ΣA->MX such that ρ o σ(x) = Tχo ρ(χ).
So for every / : M ^ ^ R one has a / : 2^->]R given by f(x) : = f(ρ(x)).

The special representation is then given by the special flow Φ s :Rx W-*Won

by

' ^ (σ(x),y + t-ΐ(x)) T(x)-y^t<inf,ΐ(x)'
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and extension of this definition by using the group property Φs(t1,Φs(t2,z))
= Φs(tί +12, z) of the flow.

There exists a continuous map ψ: W-+X such that

Let μw be the Φs-invariant Gibbs measure on W which makes the flow Φs on
(W,μw) isomorphic to Φx on (X,μx) (μx was defined as the normalized natural
volume on X). Then μx induces a σ-invariant measure μlA on ΣA:

_dμΣA dt
aμw — = ,

with a normalization constant L
The expectation E(f) of a function /:2^-»IR is defined by

£(/):= l?(x)dμΣΛ.

So Γequals E(f).
Since (X,μx) and (W,μw) are isomorphic, it suffices to show the CLT for

g : W - R , g(x): = g(ψ(x)).

g is continuous since g is even differentiable.
Theorem 2.1 of [24] says that such a continuous function g: W- ÎR satisfies the

CLT if the homology equation

vd=g-ξ

has no solution ftsl}(W,μw). Here V is the generator of the flow in L2(W,μw)

adjoint to the flow Φw. ξ:= J g(w)dμ^ is the mean value of g and

J = J g ( x ) ^ = J i g(x)dsdM'2 = 0
X Mi S 1

by integration over the fibre S1 parametrizing the direction of the particle.
Assume that there exists such a ft. Using a similar argument as in Bunimovich

and Sinai [9] we will show that under this condition the flow of a manifold
covering X cannot be ergodic.

Since by [23] the set of points xeX where ψ ~x: X -• W is not well defined has
Lebesgue measure 0, there exists a hiX-tlSL with ψ(h) = h a.e. which solves the
corresponding homology equation for g:X-+R almost everywhere.

By integration one gets

\g(Φx(s,x))ds = h(Φx(t,x))-h(x)
0

almost everywhere.
So for all measurable sets A C supp(μ^) c Y with μA(Ά) > 0 and all ε > 0, one finds

a C>0 such that for all ίeIR,

μγ\xeX \g{Φx(s,x))ds
00

>cl<ε-μγ(A).
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Let the three dimensional compact manifold Xk be the completion of T1(M\/k #),
fceN, as in Theorem 2 and πYXk: Y-+Xk the induced covering. So Xk covers X
kxk times:

Let ΦX k:IRxX f e->X f c be the pullback of the flow Φ x and μXk the normalized
natural volume on Xk.

Consider the set S:= {yeY\dι< f(y) <d2} with

dx:= sup f(y) + C, d2:= inf f(y)~C.
yesupp(μA) yesupp(μΛ)

Since / was defined as an integer combination of the lattice coordinates c1 and c2,
there exists a / c e N such that μXk(Sk)<\ for Sk: = nYXk(S).

Using the sets Bk: = Xfe\S/c and Ak: = πyΛ:k,4 C Xk, for all ί0 e 1R one gets

I n - l

h m - Σ fek(
φx>ί

for small enough ε > 0, which means that Φ X k is not ergodic.
But by Theorem 3 the flow ΦXk is ergodic. So we have derived a contradiction

and thus we have shown that no solution of the homology equation exists. •

Remark. Observe that we have not shown that the 2 x 2 covariance matrix of the
diffusion process is nondegenerate. There could exist an eigenvector with
eigenvalue 0 pointing in a direction which is irrational relative to the lattice #.

In [9] Bunimovich and Sinai showed that the motion of a billard in a plane
with periodic convex obstacles is a diffusion process with nondegenerate cova-
riance. It is not clear to me whether their proof of nondegeneracy carries over to the
above situation, since they published only a short sketch of the argument.

6. Topological Properties of the Flow

By Theorem 3 and Ornstein and Weiss [22] all coulombic potentials of negative
curvature lead to measure theoretically isomorphic flows (neglecting a repara-
metrization of the time variable).

Now we want to show that all coulombic potentials with the same number n of
singularities and negative curvature at some energy h have topologically conjugate
flows.

To do so we will use the existence of a simple path in the space ^ of metrics of
negative curvature on a given surface #", which are conformally flat for a fixed atlas
s/.

Lemma 2. ^ is convex. The subspace of metrics having strictly negative curvature is
convex, too.

Proof. By assumption the two metrics g1, gΠ e # have the local form

gίkM = f\x) δik and g« (x) = fu(x) δik
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in some chart of si. Defining the convex combination

U(x) • = f\Φik • = (λf\x) + (1 - λ)f\x))δik

with curvature

Kλ(x)= —
(f\χ)Y

we have to show that for all λe [0,1] the nominator is ίΞO.

f\x) Δf\x) + (Vf\x))2 = λ\f\x) Δf\x) + (Vf\x))2)

λ(l - λ) (f\x) Af\x) + /π(x) Δf\x)
+ 2Vf\x) Vf\x))

Sλ(l-λ) (f\x) Af\x) + f\x) Af\x)
+ 2Vf\x)'Vf\x))

g -λ(l -λ)(γf\x)\Af\x)\- γf\x)\Af(x)\)2

SO.

The first inequality is strict in the case of strictly negative curvature. •

Theorem 5. Let VA and VB be coulombic potentials with the same number n of
singularities, which are of negative curvature at energies hA respectively hB. With XΛ

respectively XB denoting the space X of the two systems, the flows on XA and XB are
topologically conjugate, i.e. there exists a homeomorphism ffl\XA-^XB carrying
oriented orbits to oriented orbits.

Proof. Two arbitrary coulombic potentials with n singularities lead to dif-
feomorphic differentiable manifolds M 4 . So we consider different coulombic
potentials V{λ\x) as leading to different metrics g{£] on a fixed manifold M 4 .

Now we construct a path in the space &n of coulombic potentials with n
singularities between VA and VB:

= v A v{5)\— v B

This path will in turn lead to a continuous path in the space of metrics g{£] on
M 4 entirely contained in the subspace ^ of metrics of negative curvature, given an
energy function h: [1,5]->R.

Without loss of generality we choose the lattice vectors If (If) generating the
lattice %A(%B) of the potential VA(VB) such that the imaginary parts 3(Zf)
= 3(lB) = 0. Let sA(sB) denote the points of singularity of VA{VB).

To construct y it is convenient to work with potentials of finite range
R> |max(|/f |, \lA\, \lf\, \lB\). If we place such potentials on a sublattice generated by

2R 2R
mJA and m2l

A with mγ > -j-, m2> A , their supports do not overlap.

I ' l W ^ ) !
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Defining

we know from Proposition 2 that there exists a hv>0 such that the metric
gik(x) '' = {hv— U(\x\))δik leads to strictly negative curvature for |x| < R. By iterated
use of Lemma 2 one sees that

( ) Σ Σ d f . f ^ l )
ί = 1 n\,nieΊL

is of strictly negative curvature at energy h(2): = m1m2nhu, since the support
supp(F ( 2 )) equals M'f:=

V(λ)(x): = (2-λ) V(1\x) + (λ-1) Vi2\x)

interpolates between F ( 1 ) and F ( 2 ) and is of strictly negative curvature at energy

Similarly we define

F<4>(x):= Σ Σ Wlx-sf-nfl-n
i— 1 «i,«2eZ

Vw(x): = (5 - /I) K(4)(x) + (/I - 4) F ( 5 )(x),

and

4)/J ( B ) for

In the interval Ae [2,3] we rearrange the lattice. Given the unique decomposition
of sf = μflf + vfli we define

Vw(x):= Σ Σ U(\x-(3-λ)((nι+μt)ll
i 1 Z

for λ e [ 2 , 3 ] .

Now for some permutation χ: {1, ...5n}-»{l,...,n} choose n paths 5t : [3,4]-»C
such that

for all i ή=j and λ e [3,4] ,

Zf and (̂ (4) = 5^(ί).

Define

:= Σ Σ
i 1
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No singularities met during the whole deformation process. By (iterated)
application of Lemma 2 one sees that the curvature K(x) on M 4 is strictly negative
for 1 < λ < 5. So the geodesic flow on T1M4 is Anosov for all metrics g4

λ\ λ e [1,5].
Since Anosov flows are structurally stable, the flows ΦA and Φ 4 on TγM4

corresponding to the potentials VA and VB and energies hA and hB must be
topologically conjugate. By Theorem 2 there exists a family Φ^ } :IRxX-*X of
Anosov flows on X, Λ.e[l,5], and thus there exists the homeomorphism
2tf :XA-+XB carrying oriented orbits to oriented orbits. •

Remarks. 1. There exist not only «! — 1 but an infinity of nontrivial selfconjuga-
tions of the flow Φx on X for a coulombic potential with n singularities, which is of
negative curvature at energy h (n> 1). For besides permuting the singularities, one
can choose the paths δt in the proof of the last theorem in many different ways.
Even closed paths change the phase portrait. This is illustrated in Fig. 3. There δί9

δ2, and δ3 are constant (the position of the singularities sί9 s2, and s3 is not
changed), and s4 is moved around s3 along the path δ4. Accordingly the form of a
closed orbit enclosing su s2, and s3 changes drastically.

2. The restriction to the same number of singularities in the statement of
Theorem 5 was inessential. For let VA(VB) have nA(nB) singularities in their
respective fundamental domains. One just has to enlarge both fundamental
domains so that they contain nA x nB singularities. Then Theorem 5 applies.

Now we will use simple Morse theory (see, e.g. Milnor [20]) to obtain
information about the periodic solutions.

The manifold M 2 is topologically the torus M 2 with n points {sί9...,sn}
deleted. The first homotopy group nι(M'1) is the free group on n+\ generators
and it can be used to analyse the closed orbits.

Since (Mf

2,g'2) is incomplete, one cannot apply Morse theory to it. But using
Morse theory, one can analyse all closed geodesies on the complete Riemannian
manifold (M^g^) and project them down using the covering π 4 2 s ί s : Γ1M4->AΓ
established in Theorem 2.

Fig. 3. A closed path in the space of coulombic potentials deforming one periodic orbit into
another one
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Definition. A closed orbit y of a flow ΦM : R x M - > M i s a map

y : [ 0 , T ] ^ M y(t): = ΦM(ί, y(0))

with pOTod T > 0 and y(T) = y(0).
Two closed orbits yi,y2,yf. [0, TJ->M are called equivalent if TX = T2 and

7i([0 ?^i]) z =72([0 ?

72]) Clearly this defines an equivalence relation. The set of
closed orbits of ΦM modulo this equivalence relation is called the closed orbit set of

ΦM

Remark. So we identify all closed orbits which are related by the natural SO(2)
action, but we discern closed orbits whose periods are nt- Tmin with n 1 ) n 2 e N )

nι^n2. Insofar this definition is nonstandard (e.g. in Abraham and Marsden a
closed orbit is defined as the set y([0, T\)CM). We sometimes write ( x , T ) e M x R
for an element of the closed orbit set with representative y: [0, T] ->M and x = y(0).
So (x 1 ,Γ 1 )^(x 2 ,T 2 ) i frx 1 = Φ(ί,x2)for some ί e R a n d TX = T2.

We want to analyse the closed orbit set Vx of Φx using the homotopy group
π 1(M 2). Since (M'2, g'2) is incomplete, not in every homotopy class of π1(M /

2)\ { e }

there exists a closed orbit.
Let y e M 4 project to π42(y) =:jce M 2 and let y: [0,1] ->M2 be a x-based loop.

For the j-based cwπ e ε: [0,1] ->M4 projecting to y (π42(ε(ί)) = y(ί), ί e [0,1]), there
exists a group element g e G such that ε(l) = xpg(ε(0)) (see Sect. 2). Since
G = Z2 x Z 2 x Z 2 , g g = e for all geG.

If e(l) = ε(0), let l(y): = 1, otherwise /(y): = 2.
Now we define a y-based loop δ: [0,1] ->M4, covering y. If /(y) = 1, (5: = ε. If

/(y) = 2, we define (5 by

i.e. we concatenate ε with the translated curve ψg(ε).

Definition, δ is called a l-covering loop of γ. lϊδ is homotopic to the constant loop in
M 4 , then y is called π42-triυial.

Every loop y2: [0,1]->M2 homotopic to a π42-trivial loop •)>! is π42-trivial. So
π42-triviality is a property of homotopy classes.

Denote by E C π 1 (M 2 , x) the set of homotopy classes whose representatives are
π42-trivial. As noted above, there exists an isomorphism

ί:π1(M'2,x)->Fn + 1

with Fn + ι the free group o n n + 1 generators. For simplicity we write i(E) = :E.

Theorem 6. Assume that the coulombic potential V is of negative curvature at energy
h. Then there exists a surjection

with Fn + 1 the free group o n n + 1 generators and Px the closed orbit set of Φx.

Proof Let π 1 (M 4 , y) denote the first homotopy group of M 4 with base point y and

let y project to π42(y) = xGM2. (Then π1(M4,j;) is generated by y-based loops

gi>~->g4n + 2 w i t h t h e relation

of their homotopy classes [ g j , . . . , [g4 n + 2 ] , see, e.g. [19].)
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Let y:[0,1]-»M'2 be a x-based loop with [yJeπ^M^x)^ and δ:[0,1]->M4

its y-based /-covering loop. By definition of £ the homotopy class [£] e π1(M4, y) is
nontrivial.

So we can define the map

τiπ^M^χ^MM^y)^} x {1,2}, τ([y])^([<5],/(y)).

Morse theory tells us in case of smooth Riemannian manifolds (M, g) for every
nontrivial homotopy class KEU^M) there exists a closed geodesic ζ: [0, T^^T^M
in the unit tangent bundle π:TγM-^M with [π(ζ)] = κ;.

In our case (M4,g4) is of class C6 by Theorem 1. According to Theorems 8.46
and 8.47 of Schwartz [27, Chap. VIII], under this minimal differentiability
condition the above statement is still true.

So there exists a closed geodesic ζ(δ): [0, Tζ] -> Tλ M 4 in the unit tangent bundle
π 4 : T1M4->M4 with [π4(Q] = [5]. This geodesic is unique [up to selection of the
initial point C(0)], since the usual uniqueness proof for strictly negative curvature,
using a Gauss-Bonnet argument (see, e.g. [16]), carries over to our situation.

So we have a well-defined map

with

P 4 being the closed orbit set of the geodesic flow Φ4 in TXM4, and [π4(Q] e πx(M4)
the equivalence class of the geodesic ζ.

By Theorem 2 the flow in X is related to the geodesic flow in T^M^ by

Projecting the closed geodesic C: [0, Tζ]-^T1M4 to the orbit O:[0,Tζ]->X with
O(t): = π42*(((0X o n e β e t s t r i e result that every point O(t) e X is covered / times by
points in ζ([0, 7J]), since π42* T1M4-^X is an unbranched covering.

So on the image

7: = ρo τ(π i(M /

2,x)\£)cP4x{l,2},

the map

is well defined [i.e. Φχ(T/l,π42^(z)) = π42^(z)'], and we get a map

Every closed orbit in X, considered as a subset (^S1) of X, is a projection of a
closed geodesic in T^M^ On the other hand every closed orbit in P 4 is in the set

disregarding the second factor of ρ. So every closed orbit in X, considered as a
subset of X, is in σ(Fn+1\E). But also with respect to the period of the orbits σ is
surjective. •
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Remarks. 1. Clearly the interesting point is not the mere existence of the
surjection stated in the theorem but its explicit construction given in the proof. But
note that σ is not injective and that the relation between the homotopy classes of
M2 and the closed orbits in X is of a rather indirect nature, due to the
incompleteness of (M'2, g'2). For example, all 2-collision orbits, whose homotopy
classes in M'2 are undefined, are in Px.

2. The following assertions of Theorem 5.3.4 in [17] carry directly over to X:
• All closed orbits in X are hyperbolic and have index 0.
• The set Px of closed orbits, considered as a subset of X, is dense in X.
Φ The flow Φx on X is transitive in the following sense: There exists a subset
Trans (X) of full measure in X such that for x0 e Trans (X) the orbit Φx(t, x0), t ̂  0
or ^ 0 is dense in X.
• The number of closed orbits whose length is smaller than X G R + grows
asymptotically as exp(cx) with some positive constant c.

7. Concluding Remarks

All periodic potentials with negative singularities of type

can be analysed by analogous methods. One just uses branched coverings with
local branch numbers n — 1. Since

a I _ ! 1
j>" dr = n a",
o

the manifolds corresponding to (M'2, g2) in these cases are geodesically incomplete.
In the more physical case of — r~ ̂ singularities, representing for example a

nonrelativistic black hole, something new happens. In these cases (M2,g'2) is
geodesically complete.

As a consequence, one need not (and cannot) perform the branched covering
construction. Then to every g e π^M2), g=\=e corresponds a closed geodesic y with

For several reasons it is not so easy to obtain equivalent information on the
motion of a classical particle in a three dimensional potential with coulombic
singularities.

The inapplicability of complex function theory itself does not seem to be so
problematic, since one could replace Levi-Civita transformation by the
Kustaanheimo-Stiefel transformation [30].

But the sectional curvature cannot have a negative upper bound in the three
dimensional case, for one may easily construct examples of closed geodesies of
nontrivial index.

The second problem is that in three dimensions the first homotopy group does
not see the singularities but only the torus periodicity: πγ ^ Z 3 . One may use higher
homotopy groups, but it is clear that they cannot provide as many closed geodesies
as in the 2-dimensional case, since they are abelian.
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Concerning the related quantum problem, one may use the closed geodesies as
a starting point for semiclassical calculations, as has been done by Berry ([7] and
references therein), Gutzwiller [15] and others. In this case, too, the covering space

may be of some use. For example, the spectrum of A + - is related to the harmonic

oscillator in two dimensions by the Levi-Civita transformation.
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