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Abstract. Details of the cohomological construction of Stora's solutions to the
Wess-Zumino consistency condition are given, where the Lie algebra consists
of infinitesimal diffeomorphisms and gauge transformations on a non-trivial
principal bundle over an arbitrary even-dimensional base space.

1. Introduction

Anomalies are said to occur when symmetries of a classical theory are broken by
quantum corrections. In the following we shall be concerned with the anomalies of
the infinitesimal symmetries of a gauge theory over an arbitrary even-dimensional
space-time manifold. For a detailed review and list of references we recommend the
article by Alvarez-Gaume and Ginsparg [1], Anomalies are defined in the context
of quantum theory. Quantization of a field theory over a space-time, which is not a
vector space, is still an open problem. However, starting from the Wess-Zumino
consistency condition [2], Stora has indicated a purely algebraic algorithm
classifying infinitesimal gauge anomalies in four-dimensional Minkowski space
[3]. Using cohomological methods he indicated the construction of a class of
solutions to the Wess-Zumino consistency condition. In particular this class
contains the Adler-Bardeen anomaly [4], Becchi et al [5] had shown that for any
renormalizable gauge theory all solutions are of Stora's type. Later Stora [6] and
Zumino [7] have produced algebraic formulas which apply to trivial bundles over
arbitrary even-dimensional base spaces. Finally Langouche et al. [8] have
generalized it to non-trivial bundles and also included infinitesimal diffeomorph-
isms. In the following we shall give the details of this proof. Our conventions are
those of [9].

2. The Base Space

Let M, the base space, be an arbitrary manifold of even dimension n = 2j — 2. N.B.
for our purpose we do not need a metric on M. We denote by Vect(M) the infinite
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dimensional Lie algebra of vector fields on M and by

AM= 0 ΛqM (2.1)
q = 0

the infinite dimensional Grassmann algebra of differential forms on M. Consider
linear maps

D:A*M-+A*+dM

satisfying the Leibniz rule

D(φ Λ ψ) = (Dφ) Λ ψ + (- l)d'deg> Λ Dip . (2.2)

They are called a (graded) derivation of AM of degree d. The set of all derivations of
AM is an infinite dimensional graded Lie algebra with bracket

[^.DJ^D^-i-iyW'D^, (2.3)

i.e. the bracket is bilinear, graded commutative:

and it satisfies the Jacobi identity:

l)'ί^[ί)2,[D1,D3]]. (2.5)

The inner derivatives iv, υe Vect(M) of degree minus one, the Lie derivatives Lv of
degree zero and the exterior derivative of degree one form an infinite dimensional
graded Lie subalgebra with brackets:

PwiJ = yw + ίΛ = 0, (2.6)

L.LV, z*wJ ~ Lυiw — iwLv = i[Vi w-j , (2.7)

liv,d-] = ivd + div = Lv, (2.8)

[Ly, LWJ = LVLW — L^LV = L[Όί wί , (2.9)

= 0, (2.10)

Q. (2.11)

The Lie derivatives alone are a Lie subalgebra isomorphic to Vect(M). Therefore
the vector fields represent the infinitesimal diffeomorphisms.

3. The Principal Bundle and Its Infinitesimal Automorphisms

Let P be a principal bundle over M with structure group G and a trivializing open
covering {Ur} of M. Let s& be a fixed connection on P. By means of s& all vector
fields v on M can be lifted to infinitesimal bundle automorphisms, and together
with the infinitesimal gauge transformations they form an infinite dimensional Lie
algebra δ. Let U be one of the trivializing open subset of M. After pull back with a
local section, sfr is represented locally by a 1-form A on U with values in the Lie
algebra g of G:
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The elements of S are represented on U by pairs (Ω, v),

t;eVect(l7),

with commutation relations:

[(Ω;0),(Ω,0)]=([Ω',Ω],0), (3.1)

[(0,ϋ'),(0,t?)] = (-vi/,[^^])J (3-2)

[(0, υ\ (Ω, 0)] = (LVΩ + [U, β], 0) , (3.3)

where

f: = dA + ̂ A9A]. (3.4)

The role of ̂  is to ensure that the commutators can be patched together on the
overlaps E7ΓnC7s. This is achieved by replacing the exterior derivative in the Lie
derivative by a covariant exterior derivative D with respect to A. Indeed:

[(0,t;),(β,0)]=(J'pβ,0) (3.5)

with

<?v: = ίvD + Div. (3.6)

Different connections a on P yield isomorphic Lie algebras $. Note that the gauge
transformations (Ω, 0) form an ideal of δ , while the vector fields (0, v) in general do
not form a subalgebra. However, if P is trivial, we can choose U = M and ^4 = 0.
Then $ is the semi-direct product of Λ°(M,g) and Vect(M).

The affine space of all connections on P carries an affine representation R of δ
given locally by

R(Ω9 v)A=-dΩ- IA9 Ω] + LVA - dίvA - [A, ivA~\

= ~DΩ + ίvF + Div(A - A) , (3.7)

where A e A^U, g) is the local expression on U of a connection j/ on P, D is the
covariant exterior derivative with respect to A and

F: = dA + iD44] (3.9)

By definition the fixed auxiliary connection sfr does not transform under <f,

R(Ω,v)A = 0. (3.9)

4. The Wess-Zumino Consistency Condition

Next we introduce PI the space of "local" polynomials. N.B. the word "local" here
refers to quantum theory and has nothing to do with the same word in the next
sentence. P/is the infinite dimensional vector space which we describe again locally
on a trivializing open subset U of M: Let Tl9T29...9Td,d = dim G, be a basis of the
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Lie algebra g with structure constants /;/, zj, fc=l,2, ...,d,

[Ti,TJ = :J i/y*Tt. (4.1)

We decompose the 1-form AeΛl(U, g) with respect to this basis

A = : Σ A'T,, (4.2)
i = l

where the A1 are now real-valued 1 -forms on U. An element fi E PI is represented on
t/ by an ^G-invariant polynomial p in the A1 and their exterior and inner
derivatives. The coefficients are from Λ U, the product is the wedge product and the
interior derivatives are with respect to some given (fixed) vector fields on M. UG
denotes the group of gauge transformations on U. An element y of UG is a map
from U to G. Under y both connections A and A transform:

*)*ζ, (4.3)
l)*ζ, (4.4)

where ζ is the Maurer-Cartan form on G. The local invariance of the polynomials p
under UG ensures that they can be patched together on the bundle. PI is a graded
vector space „

Pl= Θ Plq, (4-5)
q = 0

where q is the degree of the polynomial as differential form.
The affϊne representation R of δ on the connections induces a linear

representation W of δ on the vector spaces Plq locally given by the "Ward
operators":

W(E)p : = [p(A + α) -Pμ)]lin|α= _R(E]A (4.6)

with E = (Ω, v). The subscript lin means : Keep only terms linear in α, a different way
of denoting the functional derivative. The Ward operator has the following
properties:

W(E)A=-R(E)A, (4.7)

W(E) (p Λ p') = (W(E)p) Λ p' + p Λ W(E)p' , (4.8)

dW(E)p=W(E)dp, (4.9)

ivW(E)p = W(E)ivp , v e Vect(tT) . (4.10)

An anomaly 9I(£) is a linear map from $ to Pln defined only up to exact forms and
variations of "local" polynomials

1U, pePln. (4.11)

The anomalies satisfy the Wess-Zumino consistency condition

W(E') 9l(£) - W(E) 9l(£;) = 9I([£;, £]) modulo exact forms , (4. 1 2)

for allF, EeS.
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5. Stora's Solutions

Stora's solutions are the linear maps from S to Pln given locally on U by:

;(/•- 1) J dτI(A - A, (τ2 - τ) [Ω, A - A], F^2)
0

+j(i-ί)\dτI(A-A,(ί-τ)iuP,Fi

τ-
2), (5.1)

0

where; was defined by dimM = n = 2/ — 2, / is a symmetric invariants-linear form
on the Lie algebra 9, and

Fτ: = d(A + τ(A-A)) + $ίA + τ(A-A)9A + τ(A-Aϊ]. (5.2)

In principle one can of course show by brute force that (5.1) solves the consistency
condition. In the following we give details of the cohomological proof [8].

6. The Proof

Let

e=o
(6.1)

be the space of alternating /-forms on $ with values in Plq. It is a doubly graded
vector space with grading (£, q), t is often addressed as "ghost number." We make
Λ($,Pl) a simply graded associative algebra with grading £ + q by defining the
following product:

Λ : A\S, Plq) x Ae'(f, P\^Λe+e\<S, Plq+q.) ,

(β β^QΛβ',

..,^^')-—1 Σ

x Q(EπW, . . ., Eπ(()) Λ Q'(Eπ((+ 1); . . ., Eπ(/+0) . (6.2)

It is graded commutative:

βΛβ' = (-l)('+4)<''+ί')β'Λβ. (6.3)

We define five linear maps d, iξ, Lξ, i[ξ:ξ] and L[ί;ί]:

(dQ) (£lf ...,£,): = d(β(£lf ...,£,)), (6.4)

(6.5)
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where the argument with hat A is omitted.

(LξQ)(E0,...,Ef):=(-l)« + 1 (-l)»L.αβ(E0, ...,Ea, ...,£,), (6.6)

-ι,£o,...,^):=-2 Σ (Mr+%,...»
α,fc= - 1

«<6

(6.7)

and finally

_1,£0,...,^):=-2 f ( -l)" .̂ „*£(£- 1, -Λ, -Λ, ...,£,)•
(6.8)a,b= -1

a<b

They are all derivations of Λ($,PΪ) with respect to the wedge product (6.2). Their
degrees are one, zero, one, one and two, respectively, and they form a 5-dimen-
sional graded Lie subalgebra with brackets:

[iξ,d-\ = iξd-diξ = Lξ, (6.9)

[Lξ9 iξ] = Lξίξ - ίξLξ = i[ξt ξ] , (6. 1 0)

[Lξ, Lξ~] = LξLξ + LξLξ = L[ξt ξ], (6.11)

All other brackets vanish. Note the different signs with respect to Eqs. (2.6)-(2.11).
We now define a sixth linear map s, which leads to the Lie algebra cohomology.

In this context 5 is often called BRS operator,

^E^...,^,...,^,...,^). (6.13)
α,b = 0

α < b

Again it is a derivation oϊΛ(S>, Pΐ) with grading one. The operator 5 together with
the other five form a six-dimensional graded Lie subalgebra, the additional non-
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vanishing brackets are:

ls,iξ] = siξ-ίξs= -iΐκ,g, (6.14)

ls,Lξ-] = sLξ + Lξs=-±L[ξίξ}. (6.15)

With these definitions we have: The solutions of the Wess-Zumino consistency
condition are in one-to-one correspondence with the cohomology group of
Λ\δ,Pl^ with respect to the co-boundary operator d + s.

Next we define the "(algebraic) Faddeev-Popov ghost" z. It is the element of
Λ\£,P10) given by

z(jE)=-0. (6.16)

Its definition resembles the Maurer-Cartan form, and indeed it transforms as

sz=-i[z,z]-L^-iy/-[ιV4*]. (6.17)

Furthermore Eq. (3.7) is equivalent to

sA=-dz- \_A, z] - LξA - diςA - [A, ίξA]. (6.18)

The following lemma [10] is known as homotopy formula. Let A0 and A! be two
connections and d a co-boundary operator

d2 = 0. (6.19)

Define an interpolating connection

A^Ao + τίAi-Ao). (6.20)

Let F0, F1? and Fτ be the corresponding curvatures with respect to d, e.g.

F 0:=dAo+iΓAo,A 0]. (6.21)

Then

/(F{)-J(F'0) = dβ, (6.22)

where

ρ^ ίdτ/^-Ao.FΓ1) (6.23)
o

is a Chern-Simons form.
We use this lemma by putting

A 0: = Λ, (6.24)

^: = A + z-iξ(A-Ά], (6.25)

d:=d + s (6.26)

a straightforward calculation gives:

F. (6.27)
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The Chern-Simons form Q is of total degree S + q = 2j—l and can therefore be
decomposed:

-1 (6.28)

with

QfqεΛ<(*,Plq).

We are interested in the component / = 2, q = 2j — 2 of Eq. (6.22):

. (6.29)

But I(Fj) is a differential 2/-form on the 2j — 2 dimensional manifold 17", hence zero.
Therefore 91 = Q2j_2 represents an element of the cohomology group of
Λl(£,Pl2j_2). Its explicit form is

o

+j(j-l)}dτI(A-A,(τ2-τ)ίz,A-A],F>-2)
0

+70-1) } dτI(A-A,(\-τ)iξf,F{-2). (6.30)
0

Evaluating 2ί on a Lie algebra element £ = (Ώ, u) we obtain the desired solution
(5.1).

Finally we remark that in this general setting it is not known whether there are
other solutions [11].
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