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Abstract. We consider constructions of manifolds with SU(3) holonomy as
embedded in products of complex projective spaces by imposing certain
homogeneous holomorphic constraints. We prove that every such construc-
tion leads to one deformation class of manifolds with SU(3) holonomy. For a
subset of these manifolds we prove simple connectedness, address the problem
of calculating the second Betti number and explicitly calculate it for a class of
constructions. This establishes a very wide class of manifolds with SU(3)
holonomy, that can give rise to yet many more constructions via dividing out
the action of suitably chosen discrete groups. Some of the examples studied
may yield phenomenologically acceptable models.

1. Introduction

The existence of Ricci-flat Kahler manifolds was conjectured almost thirty years
ago [1], but was proven only twenty years after that [2]. Manifolds of this type
(generally called Calabi-Yau) of complex dimension n have SU(ή) holonomy and
one covariantly constant everywhere non-vanishing and non-zero holomorphic
n-form.

Owing to these features, Calabi-Yau manifolds of complex dimension 3 seem to
have an immense impact on the analysis [3] of the phenomenology of superstring
theories [4], hopefully leading to a phenomenologically acceptable model of
unification of the known basic interactions and matter. Since the invariants of the
complex structure of Calabi-Yau manifolds link tightly to the parameters of the
physical models [3, 5], explicit constructions and computations of the correspond-
ing invariants are necessary in this approach in order to make contact between the
superstring theories and the real world of experiments.

In the usual analysis of the phenomenology [3], one requires a manifold of
Euler character + 6, multiply connected, with a preferrably big discrete structure
group. The requirements on the set of discrete symmetries of the manifold as well
as its structure group are rather model dependent though. The second Betti
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number b2 is also very important since the (1, l)-Hodge number turns out to be the
number of Higgs fields, and on Calabi-Yau manifolds there are no harmonic (2,0)-,
or (0,2)-forms and so b2 = bltl.

Another approach is also found in the literature [6] where one only required
the Euler character to be ±4 and the manifold to be multiply connected. Other
details of the topology and geometry do not seem to be relevant and a few explicitly
constructed examples already exist [7].

It has been also proposed that some Calabi-Yau manifolds may admit stable
holomorphic vector bundles with the SU(4) or SC7(5) structure groups [8].
Whether such manifolds can be constructed is still not clear, but a better
understanding of the constructions of Calabi-Yau manifolds and related compu-
tations should certainly help.

A few Calabi-Yau manifolds were constructed as algebraic varieties in CPn,
products CPn x CPm, as branched coverings and some "exotic" cases [3, 7, 9]. A
wide class of constructions was presented [10] in a more systematic attempt,
exhausting the possibilities of constructing Calabi-Yau manifolds as algebraic
varieties in m-fold products of CP"'s. Still, no classification of Calabi-Yau
manifolds exists and moreover, the finiteness of their number is also an open
question. In most of these constructions, simply-connected algebraic varieties
embedded in (products of) CP"'s, and further Calabi-Yau manifolds were obtained
by dividing the free action of a discrete group (or blowing up the singular points if
any).

Following this spirit, we shall focus here only on Calabi-Yau manifolds
embedded in products of CP"'s. Let zμr denote the μth homogeneous coordinate of
the rth CP? in M = CP^ x ... x CP^. Then we shall impose the vanishing of a set
of homogeneous holomorphic polynomials (hereafter constraints):

Ia= Σ αίT(v)βΓβ = 0> ί1)
r= 1

where summation over μ is understood for the homogeneous coordinates if each
CP separately and the index a enumerates the constraints, taking values from 1

through η =\ Σ nr I — 3, to yield a complex three-dimensional submanifold Jf of
\r=l /

Jί. v% are complex coefficients and cfa is the degree of homogeneity of the αth

constraint in the homogeneous coordinates of CPn

r

r. These constraints must also
provide a nowhere vanishing volume-form for the normal bundle:

< / / 1 Λ . . . Λ d / * Φ θ (2)

in Jf . To ensure that the Jf is indeed a Calabi-Yau manifold, one has to restrict the
matrix q so as to yield a vanishing first Chern class [1,2]. Note that the total Chern
class can be evaluated as:

m
1, (3)

(4)
β = l \ r = l



Calabi-Yau Manifolds as Complete Intersections 101

The requirement of vanishing first Chern class now reduces to:

Σ £ = 0, Vr. (5)

Also, the Euler character is now found as the integral of the third Chern class
over JΛ

= J ^ c3[^] = K.C3[^]]top, (6)

where xr denotes the Kahler form of CP"r, its products are wedge products and
[X]top denotes the coefficient of the top [i.e. (xj"1 . . . (xm)"m] term in the expansion
of JSC.

Equation (1) yields a class of algebraic varieties embedded in Jί, which we call a
configuration and note that it may be represented by its matrix q. By definition, we
exclude matrices which can be brought into a block-diagonal form such that the
off-diagonal blocks vanish, since these would yield varieties having the form of a
Cartesian product and not Calabi-Yau manifolds.

The purpose of this paper is threefold and consequently, the organization is as
follows: First, in Sect. 2, we give a conclusive proof that all configurations indeed
contain non-singular Calabi-Yau manifolds. Next, in Sect. 3 we prove that finitely
many configurations contain all the distinct Calabi-Yau manifolds that can be
constructed in this way. In Sect. 4 we prove simple connectedness for a subset of
configurations and address the problem of the computation of b2 of the manifolds
considered so far. Even though calculable in principle, it seems to be a difficult
problem in general but quite straightforward for some cases, where we list them.
Our conclusions are summarized in Sect. 5.

2. Every Configuration Contains Non-Singular Varieties

It is fairly obvious that the method of constructing Calabi-Yau manifolds outlined
in the Introduction, is capable of yielding a very wide classs of manifolds. Further
examples can be found by dividing out the action of a discrete group of symmetries
of the constraints and blowing up the singular points if any. Here we shall prove
that every possible configuration indeed contains Calabi-Yau manifolds. To do so,
we first state and prove two propositions and then apply them to the
configurations.

Let Jί be a complex manifold and 3! a line bundle over Ji. Let χ be a
holomorphic section of JS? and m a point of Jί. Let SΓm be the tangent space to Ji at
m. If χ(m) = 0, then Dχ e 2Γ* is well defined independent of any connection.

The line bundle <£ is called ample if for every m&Jί, there is a global
holomorphic section of & which does not vanish at m and for every meJί and
μe^f, there is a global holomorphic section χ with χ(m) = Q and Dχ(m) = μ.

If χ(m) = 0 = Dχ(m), I is said to have a vanishing one-jet at m. It is standard that
if χ does not have a vanishing one-jet at any point of Jί, then χ"1^) is a non-
singular complex submanifold of Jί.

Proposition 1. // if is an ample line bundle over Jί, then a dense open subset of the
space of global holomorphic sections of Jί has nowhere-vanishing one-jets.
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Proof. Let Jί have complex dimension m. Let the space of holomorphic sections
of 5£ have complex dimension k. For each pεJΐ, the space of sections with
vanishing one-jet at p has dimension k — m — 1. Let CPk

p~
 m ~ 2 be the corresponding

projective space. Then there is a holomorphic bundle jf over Jί whose fiber at p is
CPk

p~
m~2 and whose total dimension as a compact complex manifold is k — 2.

Clearly there is a mapping from Jf to ff*'1, the projective space of the space of
sections of <<£, whose image consists of all points of ̂ fe~ 1 corresponding to sections
whose one-jet vanishes at that one point of Jί. Since the image of jf is compact
and has codimension at least 1, the proposition follows. Π

Consider now /: Jf-*Jf be a holomorphic map. Let 3? be a holomorphic line
bundle over ΛΛ Then there is an induced holomorphic line bundle, JSf ̂  over ̂
whose fibre over meJt may be identified with the fibre of J5f over /(m). Moreover,
if χ is a holomorphic section of JS?, then there is a section χj of JS? f, linear in χ where
χf(m) is identified with

Proposition 2. For ̂  αrcd Jf compact complex manifolds, if <£ is an ample line
bundle over Λ" andf: Jί-^Jf is holomorphic, then χf has nowhere-vanishing one-jet
over Jί for χ in a dense open connected subset of the projective space of holomorphic
sections of «£?.

Proof. It is evident that it / is an immersion (Rank df = dim Jί} then j£?J is again
ample, and that if / is a submersion (Rank df= dim Jf} then χf has nowhere
vanishing one-jet whenever χ does.

To prove the general result, we note first that the projective set of sections of
JSf f with one-jet vanishing somewhere on Jί is compact, and therefore closed as a
subspace of the projective space of sections of <ff. (This is less obvious than in the
case when <£f is ample, but may be verified by a routine sequential compactness
argument.) Hence the projective space of sections χ of <£ such that χf has a
vanishing one jet is also compact.

Next we remark that it is standard from stratification theory that Jί is the
union of countably many submanifolds Jίγ such that for each r, f\Mr is a
submersion followed by an immersion. Thus the projective set of sections of Jδf
such that χ has a vanishing one-jet is compact and also the union of countably
many sets of positive complex codimension in the space of all sections of 5£. Hence
the complement of this set is open, dense and connected. D

Theorem 1. Every configuration contains non-singular varieties.

Proof. We note that the homogeneous polynomials may be identified with
holomorphic sections of suitably chosen line bundles (see below). Thus we start
with

M — Γ'P"1 v v ΓPn™ι/vC ^ = \^JΓ j A ... A \^JL m

and impose the constraints iteratively.
3F&Ϊ tA# aih constraint, we choose χa to be a section of the holomorphic line

bundle 3?a = Π (hr)
q\ where hr is the hyperplane bundle over CPn

r

r and the product
r

is the tensor product. The manifold we want to construct is Π la 1(0). We prove
a

iteratively that the χa can be chosen so that Π χ~ 1(0) is non-singular.
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Let us define:

Λ;= Π CP?9 Jίa^(\ χ^(Q).
qZ>0 b<a

We note that <£a is ample over Jfa, and apply Proposition 2 to <£a and fa : Jta-*Jfa

where fa is the inclusion of Ma in Π CPn

r

r followed by the projection on Jfa, The
r

induction starts with Jίv = Π CPn

r

r and proceeds via the observation that Jίa+ x

may be identified with (χfa)~ l(0). D

Remark. Since the set of choices of constraints leading to non-singular Calabi-
Yau manifolds is an open connected subset of the projective space of all possible
choices of constraints for a given configuration, it follows that all Calabi-Yau
manifolds belonging to a given configuration are equivalent by deformation.

3. Sufficiency of Finitely Many Configurations

Let us first concentrate on the infinite sequence of configurations where the Calabi-
Yau manifold is embedded in an ra-fold product of CP1?s [10]. The matrix q must
satisfy Eq. (5) that ensures the vanishing of the first Chern class, so :

Σ <fβ = n + l, Vr. (7)
a=l

Next we note that a bilinear constraint reduces CP1 x CP1 to the "diagonal" CP1.
On the other hand, a quadratic constraint involving only one CP1 would
"saturate" Eq. (7) and lead to a product structure of the submanifold. Thus in order
to obtain a configuration that cannot be reduced to a previous one, we conclude:

Va. (8)
ι =l

Performing now the "other" summations on the last two relations and comparing
results, one obtains that for m > 9, the configuration can always be reduced to one
with m^ 9. Thus the infinite sequence of configurations indeed yields only a finite
number of non-reducible configurations, and thus by the proof in Sect. 2, to a finite
number of deformation classes of Calabi-Yau manifolds.

This argument can actually be generalized so as to include all configurations.
To do so, we first define a configuration to be minimal if it contains Calabi-Yau
manifolds which do not belong to any configuration of lower total dimension.

To show that there are finitely many minimal configurations, let us consider:

CP1 x ... x CP1 x CP"1 x ... x CP"*

with s the number of CPl5s and p the number of CP"r's where nr Φ 1 (in this section
only). For future convenience, we also define:

(9)

where the inequality follows since nr^2, Vr.
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The number of constraints necessary to obtain a variety of complex dimension
three is then: p

s+ Σ nr-3 = s + p + α-3, (10)
r=l

and the total degree of all constraints is:

25+ Σ (nr+l) = 2s + 2p + a, (11)
r =1

in order to satisfy Eq. (7). Since the constraints are at least of degree two (linear
constraints are trivial since they replace CPn by CP""1), it follows that:

(12)

and hence an upper limit on the number of CP"r's:

(13)

By the same argument that led to Eq. (8), we note that if a constraint is bilinear
and involves a CP1, it must involve a CPn

r

r as well. Let the number of such
constraints be α (which is also the total degree of these constraints in coordinates of
the CP1?s and also for the CP"r's). For constraints of degree >2, let b denote the
total degree (summed over the constraints) in the coordinates of CP1?s only. Then,
obviously, a + b = 2s to ensure Eq. (7) for the CP1?s. However, since the bilinear
constraints must involve a CPn

r

r as well:

. (14)
Furthermore, note that:

allconstr.

is the number of constraints with degree > 2, if they are of degree precisely three.
On the other hand, for biggest fc, these constraints should involve only CP1?s and
so:

α). (15)

Since a + b = 2s it follows that the number of CP1?s is limited as well:

(16)

where the last inequality follows from relation 13.
Since both the number of CP1?s and the number of CP"r's is bounded from

above by relations 13 and 16 respectively, the number of possible minimal
configurations is finite. Note that the number of possibilities for minimal
configurations are further reduced by the observation that a quadratic complex
curve in CP2 is a CP1, and a quadratic surface in CP3 is CP1 x CP1.

4. Computation of the Betti Numbers

As mentioned in the Introduction, the knowledge of b2 is very important for the
physical application of the Calabi-Yau manifolds and now we address this
problem.
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We rely on the following generalization of the Lefschetz Hyperplane Theorem
(LHT):

Let ^ be a positive holomorphic line bundle over the n-dimensional complex
manifold Jί, and χ be a holomorphic section of <£. Then:

πί(^T,χ~1(0)) = 0, for i^n.

The proof of LHT for the case when χ~ 1(0) is non-singular can be found in [1 1]
but it is easily modified to accommodate the singular case as well.

As a consequence of LHT the inclusion of χ~ ̂ 0) in Jί induces isomorphisms in
homotopy in dimensions <n— 1 and an epimorphism in dimension n. We note
that, in the notation of Sect. 2, <gk is positive over Jfk. However, <£{* is in general
not positive over J(k. Note also that b2 equals the (1, l)-Hodge number, since a two
form decomposes into a (2,0), a (1, 1) and a (0,2)-form under Hodge decompo-
sition, but there are no harmonic (2, 0) or (0, 2)-forms on a Calabi-Yau manifold.
We shall demonstrate our method on a number of examples and also indicate its
limitations.

Let us define:

Dk:={r\<fa>0}.

We will call a configuration favourable if the constraints can be ordered so that:

for kf<k\ either Dk,nDk = ψ, or Dk,cDk. (17)

Theorem!, (i) A Calabi-Yau manifold belonging to a favourable configuration is
simply connected.

(ii) A Calabi-Yau manifold belonging to a minimal favourable configuration has
the second Betti number at least equal to the number of CP's.

Proof. We proceed by induction using the notation of the proof of Theorem 1.
Clearly, Jt± satisfies both (i) and (ii). By the hypothesis that the configuration is
favourable, we may write

and note that fa is the projection on $a followed by the inclusion. Then

where φ^^O) is a section of ££a. We consider now three cases:

a = l. This case cannot occur because the total degree of all the constraints
involving Jfa alone is at most 2 dimyΓα. Since each constraint is at least quadratic,
the αth constraint would exhaust the constraints on Jf^ bringing q to a block-
diagonal form that contradicts the definition of a configuration.

2. Now &aπφ~l(ϋ) is a curve. The only possibilities consistent with
Eq. (5) in the definition of a configuration are a Torus or a CP1. If 3%ar\φ~ *(()) were
a Torus, it would be possible to bring q to a block-diagonal form that is excluded
by its definition. In the case of a CP1, ̂ α + 1 would be simply connected, but the
original configuration would not be minimal since it could be reduced by replacing
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α ̂  3. We invoke the LHT to conclude that <
and has b2 greater than or equal to b2(&a).

This completes the induction. D

*(0) is simply connected

Remark. The statement (ii) cannot be made stronger since, as we shortly
demonstrate, there are examples with b2 greater than the number of CP's.

Now we turn to the configurations presented in [10] adopting the notation
where the first column in the matrix denotes the dimensions of the CP's and the
rest of the matrix are the degrees of homogeneities of the constraints with respect to
each of the CP's. We label the Euler character by the subscript and b2 by the
superscript of the configuration matrix. We start with those embedded in
CPn x CP". Note that in:

2 1 IV

2 1 V-128 5

2 1 IV

1 2 l j_ 1 0 6 '

1 1 1 1 I
1 1 1 1 l -100

all the constraints involve both CP"'s so LHT applies immediately and the
sequence of Betti numbers (which we denote by b) agrees with that of CPn x CPn up
through b2 (since the varieties are of complex dimension three). Since for every CPn

the odd Betti numbers vanish and the even ones are 1, and:

(18)

we obtain that b2 = 2 for the above configurations, as indicated by the exponents.
Next we observe that the first constraint in:

2 0 1 1 l
λ2

0 2 1 1

defines an algebraic variety of complex dimension three, embedded in CP4, and
similarly the second one. Thus b of these varieties agrees with CP4 up to b2, and
since the other three constraints involve both the CP4's, LHT applies directly
yielding b2 for the Calabi-Yau manifold in the above configuration.

It is straightforward to verify that e.g. a quadric in CP3 leads to a surface with
b2 = 2 (and χE = 4) yielding b2 = 3 for the configuration:

3 1 0

1 1 21 -120
120

The identity follows from (3 || 2) = CP1 x CP1 as mentioned in Sect. 3.
Note that owing to identities mentioned above we have:

2 0 2
X4

0 2

2 1 0 0 0

0 1 2 0 0

0 1 0 2 0

0 1 0 0 2 -128

2
 4

-128
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Using this technique, we obtain b2 for twelve more configurations and indicate
it by the exponent:

12 1 1

2 1 1
2 1 1

ί 2

Γ\ 2

1 \ 3 12

1 , 2

1/-90 \ 2

/ 3 2 2\ 3

1 1 1
\ 1 1 l / _

3 0 0
1 1 1

5

>
1 1 t _1 0 8

/ i
12

\2

2 0

2 0

1 1

1 1

2
1

1

,

104

l\1
\ 1

0 6

0
1

1 _

1 0\ 3 1 2

1 1 , 2

1 1/-96 U

/ 2
2

l l

2 1\ 3

2 1

2
1

2

,

2 0/_ 1 3 2

3 1\9

Λ ^ /
0 2 , (

0 2/_ 4 8

5

96

2 1 1

2 1 1

2 1 0

2 1 0

'4

.4\

1

1

0

0

1 :

2

0

/2

h
\ 1

' 7 2 2

, 2 2

-96 \1 0

3 \ 3

2 '
2/-1 44

2 2 0 0 1\12

0 0 2 2 l / _ 3

0 0 \ 8

0 0

i i
1 l/- 7 2

' -96

Note that b2 is much larger then the number of CP's for the last five cases,
illustrating the remark following Theorem 2.

5. Conclusions

We have proven that every configuration indeed contains one deformation class of
Calabi-Yau manifolds. This clearly gives rise to an immense number of possible
constructions and being a systematic approach may eventually shed some light on
the classification of these manifolds. We have also proven the simple connected-
ness of a subset of manifolds obtained this way and computed b2 for some of them.

There is, however, a still larger class of non-favourable configurations to which
our Theorem 2 does not apply. Some progress can be made in computing the Betti
numbers of the intersections of hypersurfaces where constraints "overlap" by
applying the LHT to the singular hypersurface corresponding to the tensor
product of two constraints whose null set is the union of the hypersurfaces, and
computing with Mayer-Vietoris sequences.

Let us finally remark that a number of configurations contain manifolds the
Euler character of which is properly divisible by 6 (favoured in the usual approach
to construct phenomenologically acceptable models) and thus may lead to
constructions applicable in supergrandunified model building. The second Betti
number of these examples also seems to fall in the phenomenologically favourable
category.

Acknowledgements. It is a pleasure to thank Henry King for several helpful discussions. This work
has been supported in part by the National Science Foundation.



108 P. Green and T. Hύbsch

References

1. Calabi, E.: In: Algebraic geometry and topology: A symposium in honour of S. Lefschetz.
Princeton, NJ: Princeton University Press 1957, p. 78

2. Yau, S.-T.: Proc. Natl. Acad. Sci. 74, 1798 (1977)
3. Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for

superstrings. Nucl. Phys. B258, 46 (1985)
4. Schwarz, J.H.: Superstrings. Singapore: World Scientific 1985
5. Witten, E.: Symmetry breaking patterns in superstring models. Nucl. Phys. B258, 75 (1985)
6. Hϋbsch, T., Nishino, H., Pati, J.C.: Do superstrings lead to quarks or preons? Phys. Lett.

163B, 111 (1985)
7. Strominger, A., Witten, E.: New manifolds for superstring compactification. Commun. Math.

Phys. 101, 341 (1985)
8. Donaldson, S.: An application of gauge theory to four dimensional topology. J. Differ. Geom.

18, 269 (1983)
Freed, D.S.,Uhlenbeck, K.K.: Instantons and four-manifolds. Berlin, Heidelberg, New York:
Springer 1984
Strominger, A.: Superstrings with torsion. University of California Report NSF-ITP-86-16
Witten, E.: New issues in manifolds with SU(3) holonomy. Nucl. Phys. B268, 79 (1986)

9. Yau, S.-T.: In: Proc. of symposium on anomalies, geometry, topology, Bardeen, W.A., White,
A.R. (eds.), Singapore: World Scientific 1985

10. Hϋbsch, T.: Calabi-Yau manifolds - motivations and constructions. Commun. Math. Phys.
(to appear)

11. Bott, R.: On a theorem of Lefschetz. Mich. Math. J. 6, 211 (1959)

Communicated by L. Alvarez-Gaume

Received June 6, 1986




