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Abstract. Using a rigorous version of the renormalization group we construct
the effective action for the Y2 model. The construction starts with integrating
out the bosonic field which eliminates the large fields problem. Studying the so-
obtained purely fermionic theory proceeds by a series of convergent perturb-
ation expansions. We show that the continuum limit of the effective action
exists and its perturbation expansion is Borel summable.

I. Introduction

The Yukawa2 quantum field theory has a long history. Its existence was first
proved by Glimm and Jaffe [1,2] and Schrader [3] within the Hamiltonian, or
Minkowski space framework. By constructing the Euclidean Fock space and
proving the Feynman-Kac formula, Osterwalder and Schrader [4] established the
equivalence between the Hamiltonian and the Euclidean formalisms. The crucial
step towards Euclidean construction of the model was done by Seiler [5]. He
integrated out the Fermi field and proved that the resulting determinant was
integrable with respect to the free bosonic measure. This paper was followed by
[6,7] where the stability bounds were proved and by [8,9] where the thermody-
namic limit was constructed and the Wightman axioms were verified. Renouard
[10] showed subsequently that the theory was Borel summable, and Balaban and
Gawedzki [11] proved the existence of two phases in the chiral Yukawa2 theory.

In the present work we propose a new approach to the Yukawa2 model which
consists, in a sense, in reversing Seller's approach. We start the analysis with
integrating out the bosonic field, and study the resulting purely fermionic theory
with a non-local quartic interaction. The inspiration for doing this comes from the
remarkable papers [12,13] where the effective action for the Gross-Neveu model
has been constructed. The analysis of [12,13] is in the spirit of the renormalization
group (RG) program (for review, see [14-16]) combined with the old observation
by Caianello [17] that regularized fermionic perturbation theory converges. This
convergence is because the Feynman graphs of a given order appear with either
sign, owing to Fermi-Dirac statistics. The resulting cancellations between the
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graphs compensate for the large combinatorial factors. A similar analysis of the
Yukawa2 model is possible after integrating out the bosonic field. The fermionic
action is of the form

x-y):ψ(x)ψ(x)::ψ(y)ψ(y):,

where N is the ultraviolet cutoff, and the form-factor gN(x — y) is equal to

;2 0ίp(χ-y)
-~ϊ\dp 2 + m2 + δm2(λγ

λ is the coupling constant. The mass counterterm, δm^(λ) is given by second order
perturbation theory. This form of the effective action is preserved, up to
controllable corrections, under the RG transformations. The effective action on
the scale n,n<Nis expressed by a perturbation expansion which converges for all
complex λ's within a circle \λ2\^0(1/N). In our approach λ plays a passive role,
that of an expansion parameter. Crucial for the analysis is the behavior of the form
factor gn jv corresponding to the scale n. gn^N plays the role of a running coupling
constant in our model and satisfies \\gntN\\L^ = 0(ί/n) because of the logarithmic
divergence of the mass counterterm. The radii of convergence of our expansions
shrink to zero, when JV-»oo. This suggests that the renormalized perturbation
expansion of the theory with JV = oo divergences. We show that it is Borel
summable. On the technical level our analysis follows the ideas of Gawedzki and
Kupiainen [12].

Our approach has certain advantages. It is natural, simple, and at least as
powerful as Seller's approach. In particular, the proof of Borel summability is
obtained very easily. Furthermore, we hope to extend the method to other models
with cubic Fermi-Bose interactions like Y3 and QEDd.

The paper is organized as follows. Sections II and III introduce the formalism.
In Sect. IV we discuss the first RG step. In Sect. V we establish the form of the
effective action and make a general RG iteration. Section VI contains the proof of
ultraviolet finiteness and Borel summability of the effective action. Appendices A
and B contain certain technical results.

II. The Yukawa Action

LetΛcIR 2betheboxΛί = {:xeJR
2: - L j ^ X j ^ L j J = 1,2}, where L1? L2 are positive

integers. By TΛ we denote the torus obtained from A by identifying the opposite
sides. The cutoff Euclidean Bose field φ with periodic boundary conditions is
defined by the Gaussian measure dμGΛ e(φ). GΛ ρ, the covariance operator, is given
by GΛ Q = (— A + m2)^,*, where m2 > 0, and ρ is an ultraviolet cutoff. Explicitly, the
kernel of GΛ ρ is given by

GΛtQ(χ-y)= Σz2Gρ(χ-y+2nL), (1)

where

(1 (γ__ v)_ * Γ W -(p/ρ)2 ip(χ-y)

W y j~(2π)2V + m2

and nL=(n1Ll,n2L2).
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Let ψ = (ψι9ψ2)
 and Ψ = (ψι>ψ2) be a cutoff two-dimensional free Euclidean

Fermi field [4] with periodic boundary conditions. We shall find it convenient to
work with the "fermionic Gaussian measure9' dμSΛ κ(ψ, ψ) which is defined as
follows. We choose the Dirac matrices to be

A 1 /O -i
v = I

Oj' 7 \i 0

They satisfy the anti-commutation relations

{γ*,γ°}=2&»>.

The free fermionic action is given by

where $ = yμdμ, M ̂  0, and K is an ultraviolet cutoff. In a sense to be specified below,
this defines the fermionic Gaussian measure dμSΛ κ whose co variance SΛtK is given
by the periodic [cf. (1) and (2)] version of

1 . , -ii + M ( . ip(x_y} ^
Xκ(p)ep( y} (3)— " (2π)

Throughout this paper we will be using two kinds of cutoff functions:

χκ(p) = exp { - (p2 + M2)/κ2}, (4)

which suppresses high momenta, and

χκ(p) = exp {- (p2 + M2)/κ2} - exp { - I2(p2 + M2)//c2} (5)

(/>!), which selects a slice in momentum space. The co variance whose cutoff is
given by (5) will be denoted by Γκ(x—y\ and the corresponding fields will be
denoted by (ξ(x), ζ(x)) We include the fields ψΛ(x) and ψa(x) into one multiplet
denoted by ψΛ(x). Consider the set of functions of ψ of the form

F(w)= y — y ί dmxFm(x;α)tp(x;α),\ T 7 L-ί \ ί—t J \ 5 / T \ ? / ?

where Uj=l, ...,4, ψ(x;u) = ψΛl(x1)ψχ2(x2)...ψ(Xrn(xm) (for convenience we place the
ψ fields to the left of the ψ fields). The kernels Fm(x;α) are assumed to have all the
symmetries of the product φ(x α). Furthermore, we assume that there are
constants C, D ̂  0 such that

We define (to simplify the notation we suppress the subscript A):

(Ύ v \\ (1}ϊ iβΛ ^ϊ yv] 9 \')

and extend this definition by linearity to an arbitrary F. We will also be using the
notation $dμSκ(ψ)F(ψ) = (FySκ. Observe that in particular

ί dμSκ(ψ)ψΛ(x)ψβ(y) = SKί(xβ(x - y) .
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Our definition is meaningful, since by means of Gramm's inequality [13] (see also
Appendix A) we have

with a cutoff dependent constant K, and it follows from (6) and (7) that

In the following we will need functions of a special form. Let A(ψ) be given by

)= Σ Σ ί Λ^w(x;α)tp(x;α), (8)

where there are m/2ιp fields and m/2ψ fields in the product φ(x α). The kernels
^4m(x;α) have all the symmetries of tp(x α) and satisfy the bound

J dmx\
Λ™

for some D>0. Let B(ψ) be given by

B(ψ)= I
ΛP

with } d*y|B*(y;β)|<oo. Set

It is easy to see that F satisfies (6), and is therefore integrable with respect to
dμSκ(ψ). This fact justifies the perturbation calculations we will be doing later.

The (two-dimensional) Yukawa model describes a system of Rose and Fermi
fields interacting via the action λ$:ψψ: φ. One easily finds that the perturbative
divergence index of the Yukawa2 theory is given by ω = 2 — v — f/2, where v is the
number of vertices, and / is the number of external fermionic legs of the graph.
Hence, there are only two superficially divergent graphs:

and

The corresponding counterterms are

Eκ, β = \ λ2 J dxdy Ga(x - y) Tr {Sκ(x - y)SK(y - x)} (9)
Z Λ2

(vacuum energy renormalization), and

£ A

(bosonic mass renormalization), where

£=- ldxΊτ{Sκ(x)Sκ(-x)}. (10)
Λ
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Sκ(x) is given by (3) with the cutoff function (4). Notice that α2 > 0, if K is large
enough. Both Eκ>ρ and α2 are logarithmically divergent when κ-»oo. Notice,
however, that EKtβ stays bounded when ρ-»oo. The fact that α2 = 0(logκ;) will be
crucial for our analysis.

The renormalized action is given by

Aκ,ρ(ψ, φ) = λ J dx:ψ(x)φ(x): φ(x)
Λ

and the full interacting (unnormalized) measure is equal to

exp {AKtQ(ψ, φ)}dμSκ(ψ)dμGβ(φ).

The coupling constant λ is taken to be a complex number with |argA2 |<π. Our
estimates, however, are not uniform when λ2 approaches the negative axis, or \λ\
becomes large. Therefore we will assume that |argA2 |^α0, and \λ\2^R0, where
π/2 < α0 < π and R0 > 0 are arbitrary but fixed numbers.

The chiral version of the Yukawa interaction is given by λ$:ψγ5ψ: φ, where
y 5 = — i/V. Our methods apply to this model as well. We will not perform the
calculations explicitly, since they are essentially the same as in the case of the non-
chiral Yukawa model.

By integrating out the Bose field and working only with the Fermi field we
circumvent the problem of large fields which is difficult and obscures the way the
renormalization group works. The moderate price we have to pay for this is non-
locality of the effective fermionic action.

The effective fermionic action AKtβ(ψ) is given by

ι(ψ)= ί dμG (φ) QXpAKtQ(φ9 φ).

This integral can be easily evaluated to obtain

1
Aκ,e(ψ)= 2 12 dxdygKίβ(x-y'9w):ψ(x)ψ(x): :ψ(y)ψ(y):

1 T ι /, 2^ , 1 2 r- - Tr log(l + wα2Gρ)+ - wα2 J
2 z î

where w = A2, and wgκj = Gρ

 1 + wα2. The ρ^oo limit of AK^Q can be taken easily.

As we have already observed, Eκ= lim EKtQ exists. gκ(x)= lim gKtβ(x) exists as
ρ-»oo ρ-*oo

well and is in LP(A). Also,

Tr{log(l +wα2G)-wα2G} (11)

exists, since G is a Hubert-Schmidt operator. We show now that (11) is the ρ->oo
limit of

Tr{log(l+wακ

2Gρ)-wακ

2Gρ}. (12)
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Notice that the spectra of Tρ = wα2Gρ and T=wα2G lie on the ray argz = α with
|α|^π. The spectrum of T(s) = sT+(ί-s)TQ9 O^s^l, lies on the same ray, and
therefore

uniformly in s (C(α)->oo, if α-» ±π). Now, we can write

Tr{[log(l + T)- T] - [log(l + Tρ)- Tρ]}

6 ds
i

0

This is bounded by

C(α)(||Tρ | |2+||T||2)||T-Tρ | |2,

where the operator norm || ||p is defined as usual by || T\\p = (Ίr(T*T)p/2)1/p. Since

we have that

This proves our assertion.
As a result we can remove the bosonic cutoff in the effective fermionic action to

obtain Aκ(φ}= lim AKίQ(\p\ whereίQ
ρ->oo

) = ~ j dxdygκ(x - y w) : ψ(x)ιp(x) : : ψ( y)ψ(y) :

(13)

A simple calculation in momentum space shows that gκ(x — y) is equal to the
periodic version of

ip(*-y)
(14)v ;(2π)2

It is easy to see that there exist ^-independent constants σί9 σ2>0 such that
^ Iog/c^α2^σ2logκ;. Let Ω be the following subset of C

Ω = {w : |argw| ̂ α0, |w| ̂ ,R0} ,
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where α0 and jR0 have been introduced earlier. We set

where m2 is the bosonic mass. It is clear that for each test function f ( x ) the function

is holomorphic for w e Ωκ (= the interior of Ωκ) and continuous for w e Ωκ. By
H(ΩK) we denote the set of functions having these properties. Notice that Ωκ tends
to Ω when the cutoff K is removed.

Let us reintroduce the subscript Λ into gAtK(x — y w) (to drop it in a while
again).

Lemma. The following bound holds

\\gΛ,κ( ;w)\\LP^c(iogκΓί/p, (15)
where \\ \\LP is the Lp-norm, and C is independent ofκ, A, and w.

Proof. gΛ,κ(
χ — y>w) is equal to

gΛ fκ(x-3>;w)= £ gκ(x-y + 2mL;w), (16)
meZ2

where gκ(x— y; w) is given by (14). We prove that gκ satisfies the following bounds
(we set τ = logκ;):

1/2|x^ if

with 0(1) and β positive and independent of A and w. These bounds and (16) imply
(15). The argument leading to (17) follows the standard pattern. The Fourier
transform of gκ has poles at p0= ±/|pι+m2 + wα2|1/2exp(/α/2), where α is the
argument of p2 + m2 + wα2. Performing contour integration in the p0 variable and
using the fact that |p2 + w2 + wα2|^C(p2 + |w|τ), for weί2κ, we obtain
(17). Q.E.D.
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We will be ignoring the Λ-dependence of gΛ κ and treat it as if A = R2. Arguing
as in the proof above it is easy to see that our estimates are uniform in A.

III. The Renormalization Group Transformation

The renormalization group transformation reduces the ultraviolet cutoff K in the
propagator (113) by a certain factor. This is accomplished by integrating out the
high momentum part of the field ψ. We choose a sequence of cutoffs κn = Γ,n = \,
2, ...,JV (K = KN is the initial cutoff), where l>\ is an integer taken to be large
enough. We write Sn = SΓn and represent Sn as

where Γn(x — y) is given by (II. 3) with the cutoff function (II.5). Notice that Γn(x — y)
decays exponentially on the scale /"":

\Γn^(X-y)\^Cκne-κ^^, (1)

where \x—y\ is the distance on TΛ, and C is independent of n and A. The measure
dμSn factorizes into dμSn_1 x dμΓn. This induces the following representation of the
field ψ:

where ξ(x), the fluctuation field on the scale Γn, has co variance Γn. We do not
rescale the field \p'(x\ since there is no field strength renormalization in our model.
In the following we will be omitting the prime in ψ'(x), keeping in mind that the new
ψ has co variance Sπ_ x. Let AnιN(ψ) be the effective action on the scale n. An-.ltN(ψ)9

the effective action on the scale n — 1, is defined to be

Λ, - 1 , N(Ψ) = log J dμΓn(ξ) QxpAn9 N(ψ + 1) . (2)

The logarithm is well defined, as it will be clear from our analysis.
Iterating the above formula down to a certain scale n0 (n0 has to be taken

sufficiently large) we obtain a sequence {AntN}^=no of effective actions. Each AΛtN

of the sequence depends on the initial cutoff KN. The main aim of our analysis
is to control the n and N dependence of the effective action and to show that
the limit lim An N(ψ) = An(ψ) exists.

N-^ ao

Let AΛfN(ψ) be given by [cf. (II.8)]

An,N(ψ)= Σ ί ΛΛ%(χ;α)vKχ;«). (3)
Λm

Let us now compute, following Gawedzki and Kupiainen [12], how the effective
action transforms under (2). (2) can be written as

4,-ι.»(v)= Σ π<^^+ )..AN(V+ ')>?»' (4)k=ί K\

where the superscript T means partial truncation (see Appendix A). It is clear from
(3) that
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where δψ(xιa)==δψ0ίnι(xm)...δψ0[1(xί). Inserting (4) into the above formula we
obtain that

where the summation runs over all partitions {//}*= i of {1,..., m} into disjoint sets
Ij (some of them may be empty). (— l)π is a sign which plays no role in the following.
We have also used the notation m~ |/7 |, Xy = {Xi}ielj, and α7 = {aJJ6// It is easy to
see that

= Σ Σ (-\r- -^Λd'-
p^m {βι,...,βp-m} (p — m)i

and we obtain finally

1 00 1 k -n \

— V V V / ' I V * π '̂'

m! k\
Pj ̂  mj

x j d'- y π 3*uw>*ph) ( Π ?(y, ;P, )) Γ , (5)
;=1 v=ι / rn

where m=ΣmpP=Σ Pj

IV. The First RG Step

In this section we start the analysis of the infinite set of Eqs. (III. 5). Let us first fix
some notation. To measure the magnitude of each term of (III.5) we introduce the
norm

M~m ( F§}\\ — <2im f
n,N\ 9&)\\— SUP J

{Λ} Xί =

Let us also define

and

We set gN,N(x-y) = gKN(x-y)9 4,^ = ̂ , VNtN=VKN, and ΩN = ΩKN. Undoing the
Wick ordering and antisymmetrizing the kernels we write the action (11.13) in the
form 4

AN.N(Ψ)= Σ Σ ί Λ^x α^x α).
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It is clear that

(i)
(2)

uniformly in N and w. Performing the RG transformation we obtain the effective
action AN_ίtN(ψ) which we write in the form

4v-ι.*(v)= Σ Σ ί Λ^-!^(x;α)φ(x;α). (3)
m = 0 α A™

Proposition. The effective action (3) can be written as

AN-ι, N(ψ) = i ί dxdygN - 1 , jv(* - y) : ψ(x)ψ(x) : :

- J dxdudvdyψ(x)ψ(x)ιp(u)HN_ ί>N(x, u, v, y)ψ(v)ψ(y)ψ(y)

+ VN-I.N+ Σ

ί/ze Wick ordering is performed with respect to SN_ 1? αnίί the kernels have the
following properties:

(i) For m^8 we have A™_ίίN = Ά™_lίN, and

M
m II <N-I,N| | =

(ii) Seί β ,̂ N(x -y) = Tr{ΓN(x -y)ΓN(j; -x)}, απJ ̂  N = - QN, N(0), α J _ 1 1 N = α^t N

— δχtN. Define gN-ι,ff(x — y'9w) by (11.14) with oc^>N replaced by α^_1>jv. Then

with

| |^_1 > J V |iL l^D(l/N)2. (4)

Furthermore, we have the bound

||4UιiV||^C4(l/JV)3. (5)

(iii) HN _ j t N(x, u,v,y)=gN_lt N(x - u)ΓN(u - υ)gN -ltN(v-y).

For the remainder m = 6 contributions we have

(iv) K_ l ! ]V | |^

(v) VN_1<Nisequalto

where

Furthermore,

|. (6)
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The constants C, Cj (j = 0, 2, 4, 6) and D are independent of N and w. All the kernels
are in H(ΩN).

The rest of this section is devoted to the proof of the above proposition. We
start with the easiest case of m^8.

Estimating \\A™_ίtN\\9 m^8. Using (A.2) to bound the truncated correlation
functions we obtain from (III. 5)

Σκ\ ι

x Σ Π , W

J ί dxdγ Π |̂ (x;,y;)|
Te^ j=ι(pj-mj)\ Xί = o j = ι

xexpl-K^J^Xi, ...,Xfc)}. (7)

Let us consider a single anchored tree T. Using translation invariance oΐ A™tN(x)
and performing the integrations over the branches of Tin the order indicated by its
tree structure we bound the corresponding integral by

C*-lI C-2(k-l)

7=1

This and the fact that there are 0(\}p~mk\ anchored trees on {x1? . . ., xj lead to the
following bound on (7)

Mm I ) < _ Y Y Y fip-m (p-m)/2 - 2(/c- 1)
• Λ r - ι , Λ r l l = ^ L L L ° KN

{Pj}
Pj > m

A 5^bτ
Now, we have

min{m,fc)

Σ = Σ

where w^ φ0,7 = 1,...,/. This allows us to bound (8) by

( min{m,k} /b\
rjm J Y Y I 1 /Y K-Pj/2~2rPj\\APj l l \ f c ~ 1

Z j L L \ ι j l L K N U \\ΛN,N\\ I

/
v V ΓΊ / V τ/ Pj/ 2~ 2/^ Pj~Λ L Π ί L KN ^

Using (1) and (2) we find that

P j

and thus
min{m,/c) /A

Σ Σ

^4"f£(2C/JV)k j/^'
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Since the summation over k starts with m/2 — 1, the last inequality leads to

Mm II < RmM /ΛΠ m / 2 ~ 1 τ/ ~m/2 + 2

N-1,N\\ =& W ^ V KN

This completes the proof of (i).
Now, the same brute force argument applied to m = 2, 4 would yield

These bounds are hopelessly non-iterative and a better analysis, including
renormalization cancellations is required. It is a remarkable fact that only few low
order terms have to be analysed carefully. The remaining terms play a less
important role and all we need is to estimate them rather crudely.
Extracting the new form-factor. From the first and second orders of the
perturbation expansion we pick the following graphs:

where /\/\/\/\> represents the form-factor gNtN(x — y), an<3 - stands for
ΓN(x — y). In analytical terms, the above expression is equal to

SΛΓ, *(* - y} ~ SN, N * QN, N * g v, N(* ~ y) (9)

Observe that QN N(p) is holomorphic for |Imp J < (1 — η)κN, 0 < η < 1/2, and satisfies
there

(10)

Applying Cauchy's bound we obtain

\QN,N(p)-QN,Nm^Cκ^\P\, (ii)

for |Impμ|^(l — 2η)κN. Repeating the argument leading to (11.15) we find that

II QN, N * &v, N + <5£, jv&v, jv I I LI^ CKN V

This allows us to rewrite (9) as

(12)

where \\hf

N.lίN\\=0(κ^).

Lemma 1. The following equality holds:

OO

gN-l,N(x-y) = gN,N* Σ (δN,N)J8N,N* *gN,
j = 0

Proo/. We generate (13) by means of the obvious identity

— A + m2 + wo45 N = ( — A + m2
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and the fact that gw> N(x — y) = vv( - A + m2 + wα£ N) ~ 1(x — y). (1 3) converges, for by
means of (11.15) and (10) we have

Σ (δ2N.
J = 0

oo oo

^ .Σ Cj\\gN,N\\j

Lι ^ _X (C/JVy < oo . Q.E.D.

Comparing (12) with (13) and collecting the remainder terms we see that the new
form-factor has the required form and (4) holds.
Estimating \\A^-itN\\. Let us break up (III. 5) into two parts: /c^2, and /c^3.
Mimicking the proof of (i) we bound the second sum by C(1/ΛΓ)3. After extracting
gN-ι,N(x — y) the first sum involves the following diagrams only:

I I

Ύ

where the dotted line stands for SN_ 1. The norm of the first of them can be bounded
as follows:

$dx2dx3dx4\ΓN(-x2)\ \gNtN(x2-x3\ \ΓN(x3-x4)\ Igjv.Λrfo)!

Similarly, we bound the second graph by

Sdx2dx3dx4\gNtN(x2)\ \ΓN(x2-x3)\ \gN>N(x3-x4)\ \ΓN(x4-x2)\

The third graph can be bounded by

Tr^.^llg^^HMl^l

This completes the proof of (5).
Estimating | |^4jJ_ l j N | | . The only k = 2 contribution to Ά f j - l t N is the following
graph:

Expanding gNtN in terms of gN-ίtN and shifting the remainder terms [which are
O^l/Λ/)3^1)] into AN-^N we obtain the explicit form of the sixth order term in
AN- I,N(Ψ} Aff- itN is a sum of the above mentioned remainder terms and the k^ 3
part of (III.5). The latter can be easily bounded by 0((ί/N)3κΰJ).
Estimating | |^4j_ l f J V | | . After having exhibited the cancellation SN(0) — ΓN(0)
= £#_!(()) we extract from (III.5) the following terms
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They can written as — g N _ ι ί N (ΰ)δ(xι—x 2 )TrS^.^O) and absorbed in the Wick
ordering of the quartic term. Let us list the other graphs occurring in the first two
orders of perturbation theory. They include:

r

Simple estimates show that all of these graphs are 0(κN

 n\ for some η > 0. It remains
to prove also that the fe^ 3 contribution to Mίv- ι , j v l l *s 0((ί/N)2). Here some care
is needed. As we have already observed, brute force estimation leads to a positive
power of KN in the bound for A^_ l j N. A closer look at the Feynman graphs shows,
however, that no such power should actually be present. Expanding in terms of
Feynman graphs has the drawback that it destroys the combinatorial structure of
the estimates and the convergence of (III.5) gets lost. Fortunately this is not
necessary.

Let us collect all the terms in (III. 5) which have the following structure

(14)

The sum of all such terms can be superficially bounded by C(l/N)2κN, and we have
to reduce the power of K:̂  by one. We write

where

ΓN(x -y) = I$>\x -y) + Itf\x - y),

-it

M

Using the fact that the determinant is a multilinear function of its columns we
produce this way only 2P~1 terms in each order of k. Those terms which have at
least one column of the /^1} can already be bounded properly. The final remark of
Appendix A shows that the power of KN in (A.2) drops by one. Repeating once more
the estimates leading to (i) we bound the corresponding sum by 0((1/ΛΓ)2).
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Potentially the most dangerous terms are those involving the 7^0) propagators
only. In the product

Π
7=1 =l

in (III. 5) we have Pj = 2 or Pj = 4. The sum of terms where at least one factor with
Pj = 2 occurs can be bounded by 0((1/ΛΓ)2) owing to (1). The sum of terms with all
Pj = 4, which is superficially 0((l/N)3)κN, vanishes, as the following simple
argument shows. We expand the correlation functions in terms of Feynman
graphs. Since the number of vertices in &N-ίtN is odd, each Feynman graph
contains an odd fermionic loop, say

This is proportional to Tr (product of m y-matrices)} = 0, for m is odd.
To bound the other terms in ̂ _1JV we use the following formula

(15)

which follows easily from (A.I). The number of terms on the RHS of (15) is bounded
by Ck which guarantees that (III.5) still converges. Let Kyiuyi βiUβi) be the
cluster attached to ιpα(xι). Then it is either ζΛ(yι)ζβ(yΊ)ζβ(yΊ) or ζΛ(yι)9 and (15)
generates the following types of terms:

(α)

(β)

(16)

Now it is an easy task to obtain the required bounds. To bound the terms of type (α)
we notice that

and hence

f dx2dx3dx4\ΓN(-x2)\ \gN,N(x4)\ 1^-1,^2-^3^3-
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To bound the second type of terms in (15) we use the superficial bound on £f\

and the following bound on 2Γ [cf. the discussion of (14)]:

where a + b^2. It follows that the terms of type (β) can be bounded by C(1/ΛΓ)2

since the Z^-norm of the propagator between £f and y is 0(κ^ *). The proof of (iv)
is complete.
Vacuum energy. Proceeding as before we extract from (III. 15) the following term

and absorb it in the Wick ordering of the quartic term. To renormalize the
logarithm occurring in VNtN we pick the following graphs:

We reintroduce now the bosonic cutoff as in Sect. II (to remove it in a moment
again). We write

QN, N= ~ ON, N + \QN, N + °N, N) = ~~ &N, N ~1~ RN, N •>

and observe that

1). (17)

Similarly, we have

NβiV,JV)2-(gJVιJV^,JV)2}. (18)

Lemma 2.

(i) (i)\Ίr{RN,N(gN,N-wG)}\^Cκ^\Λ\, 0<η<l, (19)

(ϋ) ITr {(g^.vβ.v^)2 -(gNtNδ2

N,N)2}\ ^ Cκ^\Λ\ , (20)

uniformly in N, w, and A.

Lemma 3.

1), (21)

with C independent of N, w, and A.
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It follows from (17H21) that VN_^N is equal to

453

Removing the cutoff ρ as in Sect. II and shifting the remainder terms to
see that F N _ l f J V has the required form.

Proof of Lemma 2. (i) We have

|Tr{^(gN,N-wG)}|^C|^

Using (11) we can bound the above expression by

we

(ϋ) |Tr{(g^β*,N)Mg*>ίU2}l

£ C\A\ f dp\§N,N(p)2 - &.ΛO)2I (p2 + 1Γ 2 -

Using (10) and (11) we bound this expression by Cκ^l\Λ\. Q.E.D.

Proof of Lemma 3. It is easy to see that

Using the inequality

valid for TeS3, we find that

LHSof(21) ^CIIg^^Hi + Oίρ-^^Cίl/^MI + Ote-1). Q.E.D.

To complete the low order analysis of the vacuum energy we have to consider
the graphs which we were ignoring so far. They include

and, as simple estimates show, are both 0(κχn)\Λ\.
Finally, let us consider the k ̂  3 part of (III.5). From each term of (III.5) we pick

a bosonic line and apply (15) to the <f s attached to the line. Two kinds of terms are
generated:

Both of them can clearly be bounded by 0((ί/N)2)\A\. This proves (6).
The analyticity statement follows from the fact that our expansions converge

uniformly in w. The proof of the proposition is complete.
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V. The General RG Iteration

The aim of this section is to prove the following theorem:

Theorem. Let n0 and I be sufficiently large. For each n^n0 the effective action
AΠ,N(Ψ) can be written in the form

An, N(Ψ) = i ί dxdygn> N(x - y) : ψ(x)ψ(x) : : ψ(y)ψ(y) :

-$dxdudvdyψ(x)ψ(x)ψ(u)HnίN(x, u, v, y)ψ(v)ψ(y)ψ(y)

+ vH,N+ Σ f<rχ^χ;βOv(χ;«), (i)
m^0,α

where the Wick ordering is performed with respect to Sn. There exist constants B, Cj
(Orgjrgό) and D, independent of N and w such that the following statements hold:

(in) \\A%N\\^Bm(l/n)3+e(m-S)K-m/2 + 2

9 m^8, where 0<ε<l/12 is a fixed
number.

(iin) Set

Qn,N(x)=Ύr\Γn(x)Γn(-x) + 2 Σ Γn(x)Γ{-x). (2)
I J = π + l J

Let δ2

>N=- Qn, N(Q), and(*lN = aϊ+^N- δ2

n + 1 1 N. Define gπ> N(x - y) to be (11.14) with
%N,N replaced by cx,2^. Then

n,N* hn, N(χ - y) ,
with

\\hn.N\\L^D(ί/n). (3)

For the remainder terms we have the bound
2. (4)

(iiij HntN(x,u9v9y) = gntN(x-u) Σ Γj
j = n+ί

The remainder terms can be bounded as follows:

(ivn)

(vn) Vn,N
 is e(lual to

where En>N = En+1>N-^w$dxdyG(x-y)Qn + lfN(x-y). Furthermore,

\AlN\^C0(l/n)\A\. (5)

All the above listed kernels are in H(ΩN).

Remark. Notice that the bound (in) is slightly worse than the corresponding bound
of Sect. IV where we had e = 1/2.
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Proof. The proof consists in showing that (inH
vn) imply (in-ιHvn-ι) We write

An,N(ψ) i*1 the form

An,N(ψ) = Σ Jdmx^(x;α)t£(x;α), (6)

with the obvious notation.

Lemma 1. There are constants σ1? σ2>0 such that

uniformly in N.

Proof. It is clear that

<N = <n~2 Σ Σ Tr{Γ/x)Γ,(-x)}(0).
7=1 k=n+l

Since 0(\)n ̂  α£ „ ̂  0(1K it suffices to show that the second term is 0(1). Indeed, it
can be bounded by

n oo

c Σ Σ
j=l k = n + l

= 0(1) Σ /j-"-] Σ /~A^<?(1). Q.E.D.
j = l f e = 0

The lemma implies, by means of the same argument as in Sect. II, that

, (7)

uniformly in N. It follows that the kernels Ά™N9 m = 2,4, 6, of (6) obey the bounds

^ (8)

(9)

(10)

uniformly in N. We can now pass to the estimates.

m^8. We separate the term with k = 1, p = m (which is equal to A™N) and write

ι^(x). (11)

Estimating ||4Γί_1JV|| proceeds in the same way as estimating ||^_1>]V||. We find
easily that

Γ min{m,fc} / fc\ / ^ \ f c - l

J _ χ ]
V V ΓT / V κ Pj/2~2Γ1Pj~mj\\ ΛPj \\\ K.-m/2 + 2( (ΛΊ\A L, 11 { L NJ ^ l l ^ n . J V l l κ« f V I Z J

= ι 7=1 V^> mJ / J

Let us first consider the k = 1 contribution to (12). Using the induction hypothesis
we find that

Σ κϊjl2~2Cp'-mJ\\Ά%N\\ ^Bm'(l/n)3+ε(mJ-8\ nij^β, (13)
Pj > mj
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We can thus bound the k = 1 term by

2mβm(/[ Λ|)3 + &(m ~ 8)β; ~ m/2 + 2

To bound the higher order contributions to (12) we use (13) and the following
estimates [which easily follow from (8)-{10) and the induction hypothesis]:

LHS of (1 3) ^ 2C6(l/n)2 , mj = 4, 5 ,

LHS of (13) ^2C4(l/n), m^O.

Simple calculations using the assumption 0 < ε < 1/12 show that the k = 2, 3 terms
can be bounded by

4mBmC(ί/n)3 + ε(m ~ 8)κ~ ,

where C involves C4 and C6. A term with fe^4 can be bounded by

Summing over k we obtain the following estimate on (12):

\\An

m_ίίN^4m

It follows from (11) and (in) that

provided that / has been taken large enough. This completes the proof of (in-ι).

m = 4. As in Sect. IV we extract from the first and second orders of the
perturbation expansion for ^_ l j Λ r the following terms:

gn,N(x-y)-gn,N*Qn,N*gn,N(x-y) (14)

(with the factor 1/2 in front). Observe that the cross-terms in Qn N(x — y) come from
the sixth order term in (1).

Lemma 2. Qn>N(p) is holomorphic for |Impμ| < (1 — η)κn, 0<η< 1/2, and satisfies the
inequalities:

(15)

l&.NW-^O^COi'l, \lmPft\<(ί-2η)κn, (16)

uniformly in n and N.

Proof. Observe that

This implies the analyticity statement and (15). Equation (16) follows from
Cauchy's bound. Q.E.D.

Proceeding as in Sect. IV we write (14) as
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with ||h^_1>N||Lιg;i)'(l/tt)2. Expanding gπ?]V in terms of g π _ l f j v and collecting the
remainder terms we obtain

Then \\hn- l f N \ \ L ι ^D(n— 1)~ 1, provided that D has been taken large enough. This
proves (3).

To prove (4) we write again

^ί_ l tJV(x;α) = <N(x;α) + <_ l iJV(x;α). (17)

Let us first consider the k = 1 contribution to A'^L ιtN(x). After extracting the graphs

which has been used to renormalize gn^N [and which is the only 0((i/n)2)
contribution to p = 8], we bound the k = 1 term by 0((l/n)3). From the k = 2 term
the following 0((\/n)2) graph has been removed

Considering the same graphs as in Sect. IV we convince ourselves that there are no
other O((l/ri)2) contributions to k = 2. We can thus bound the k = 2 term by
0((l/π)3). The sum over fc^3 can be clearly estimated by 0((l/n)3). As a result we
obtain that

provided that C4 has been taken large enough. This and (17) give (4) with n
replaced by n — 1.

m = 6. The only 0((l/ri)2)κ~ 1 contribution to A'f_ 1>]v comes from k = 2,pl=p2 = 4.l

and is given by the graph

(18)

Weexpandgn N intermsofg n _ 1 N, absorb (18) into Hn_ί N and shift the remainder
[which is 0((ί/n)V ') to A*. ί<N\. Then,

This completes the proof of (iiin-J.
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m = 2. We extract the same terms as above to absorb them in the Wick ordering of
the quartic term. As in Sect. IV we verify that the low order contributions to
k = l, 2 are 0(κ~η). It remains to show that the remainder can be bounded by
0((\/ri)2\ or in other words, we have to exhibit a mechanism allowing to reduce the
power of κn by one.

Let us first consider the contributions to A'2_ίtN which have the structure of
(I V.I 4). In order not to complicate the notation we keep denoting them by A'2- ltN.
We claim that Ar2_ltN can be written as

N-n+ί

Σ ^ι,»M (19)
7=1

with

i. (20)

Notice that (19) and (20) imply that M;2-lfJV|| ^C(l/n)2. To prove the claim we
proceed as follows. As in Sect. IV we write

r _Ln

and represent A2_lίN as

where A^\tN is the contribution containing no /^(1) propagators. Each term of
B(n-ι,N contains at least one column of the /^(1) propagators and can thus be
bounded by 0((l/n)2). Suppose we have represented A f 2 _ l t N ( x ) as

m

^mU*)+ Σ ^ι,»M,
7 = 0

where A^l^x) contains no Γ}(1) propagators for j = n, ..., n + m — 1. We write

Γ = Γ<°) 4- Γ^1)*n + m *n + m ' z n + m ?

and correspondingly

m-l,]v(X)

(21)

where ά'n^m-i.N consists of terms containing at least one column of the Γ
propagators. Equation (21) induces the following decomposition

+l)/Λ2(m) /Ύ\_ / |2(m+l
Λn-l,N\X) — Λn-l,N

where B(™_+^}

N(x) consists of terms containing at least one column of the Γ^m

propagators. Since we gain one power of κ~+m in the bound for ^^ (̂x), we
obtain that

We set B^U^^A^^v. By the same argument as in Sect. IV we have

l!^_-1^
1Ml^

This completes the proof of the claim.
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For the terms which do not have the structure of (I V.I 4) we apply the following
procedure. We choose an external leg of A'n

2_lfN(x) and write

. ,
7 = 0

where C^lljv(x) is the sum of contributions where the external leg touches a
propagator Γn+j for the first time. Applying (I V.I 5) and proceeding as in Sect. IV
we obtain that

7=0 j=0

where the first contribution comes from the graphs of type (α), and the second
comes from the graphs of type (β).

Collecting all the contributions to A2_ltN we find finally that

provided C2 has been taken large enough. This completes the proof of (iVn-i).

m = 0. The low order analysis is an almost word by word repetition of the analysis
of Sect. IV. To bound the remainder terms we use the method explained above for
the case of m = 2. Q.E.D.

As a simple corollary to the above theorem we obtain the stability bound. Set

ZΛ,N = <e*

Corollary. There exists C > 0 such that

uniformly in N.

Proof. We have

logZ^=Fn^ + ̂  + log<exp4,,*>sn. (22)

The first two summands can be bounded by C\Λ\. Indeed, for A^NWQ have (5), and
Vn>N can be bounded as follows

\Vn>N\ ^|Tr{log(l + walNG)~ v< NG}\ + |£n,w|

To bound the third term on the RHS of (22) we use (A.2) with Γn replaced by Sn. The
corresponding estimate is

fc
.Π vKχ,/;<

where C depends on n, 0 < η < 1 is a certain number, and M is the fermionic mass.
Using (inHiVn) we find that

. Q.E.D.
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VI. The Continuum Limit and Borel Summability
of the Effective Action

In the previous section we have shown that ArttN stays bounded, when we go with n
down to a scale n0. We are now going to prove that the ultraviolet cutoff N can
actually be removed, i.e. that the limit An(φ)= lim An ίN(ψ) exists for all n^n0.

N^ oo

Furthermore, we show that the perturbation expansion of An(φ) around w = 0 is
Borel summable.

Observe that the N-»oo limit of α^ is equal to

F )̂} (0),

where S(x) is given by (II. 3) with χ(p) = 1 . This implies the existence of gn(x — y). It is
also easy to see that Hn(x, u, υ, y) and Vn exist. To prove that the other kernels in
(V.I) have continuum limits we will investigate their behavior under a change of
cutoff. Set

The variations δAn N obey a recursion relation. We have

)>Γn .

Subtracting An _ 1 1 N(ψ) = log <exp AHf N(ψ + )> Γn from this equation and expanding
in powers of An>N and δAn N we obtain that

δAm-lιN(ψ) = Σ Σ τ^<(An,N(ψ+ ))k(δAn,N(ψ +•))'>?„,
fc = o 1 = 1 k i l l

or in terms of kernels

k+l .\

Pj ^ mj

χjd'-»y π ^SM^y β/ Pj)
J = l

k + l

x π δAfa (χj,yj ,*j,h)
j = k+l

/ * + ' - \ Γ

χ ( Π ίίyj β/)) (i)
\ J = 1 / rn

Proposition. Wfe seί μn,N= \\δgnιN\\Lι. Suppose that / ami n0 are large enough. Then
there exist constants B, Cj (/=0,2,4,6), D and β such that

(ii
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(ivn) II δA2

Πy N || ί C2μn, N(N/nf(ί/n) .

(vn) |,3<^C0μn,^V/nΛl/n)|Λ|.

All the kernels are in H(ΩN + ί).

Proof. The proof does not differ from the argument presented in Sect. V. We have
to extract the same low order terms and make (essentially) the same estimates. Let
us only comment on how to iterate the factor μntN(N/n)β which is crucial for the
existence of the N-+CO limit. Observe the \δa£tN\^C(κJκN). This implies that

(2)

The expansion

oo

&ι,Jv(*) = g n - l f t f * Σ (~ ̂ UV&i- l . J V * •* fti- l.tfC*) >
7 = 0

and (2) lead to the inequality

μniN^(ί + C/n)μn.ίίN. (3)

It is now easy to understand how the iteration goes for the terms with m ̂  6. For
example, for m ̂  8 we have

where

We prove (in_ j) by applying (3) and taking / large enough. Observe that the factor
μnίN(N/n)β is present in the bound for \\δA'™- ί tN\\ because the summation over / in
(1) starts with / = 1. For the terms with m^4 the iteration is slightly subtler. For
example, for m = 4 we have

and hence

provided that β^C. This explains the reason why the logarithmic correction
(N/nf has to be included in (in)-(vn) Q.E.D.

It is now easy to show that An(ψ) exists. We set

(4)

and write analoguous formulae for hn(x) and A®. The series converges, since by
means of the proposition and (2) we have that
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To prove that ^4™(x;α) has a Borel summable perturbation expansion in w we
observe that for each test function /

with C(m, ή) and μ independent of j and w. The Borel summability of (4) follows
now from the lemma of Appendix B.

Let us summarize the results of this section in the following theorem (below we
change slightly the meaning of A™, 0 ̂  m ̂  6).

Theorem. The continuum limit action An(ψ) exists and can be written in the
following form:

AiWO = i ί dxdygn(x - j;) : ψ(x)ψ(x) : : ψ(y)ψ(y) : + Vn

where the Wick ordering is performed with respect to Sn. All the kernels are in H(Ω)
and they have Borel summable perturbation expansions around w = 0. Furthermore,
they satisfy the following bounds:

(i) \\A

(ii) \\A?\\ £CJl/n)2κ-m/2 + 2, m = 4,6

(iii) \\A2

n\\^C2(l/n).

(iv) \

Appendix A. Tree Decay of the Partially Truncated Correlation Functions

Let us recall the definition of partially truncated correlation functions. Suppose
that the product <f(x7 ; α,-) contains PJ fields of the ξ type and q 3 fields of the ξ type.

k

Σ Pj + #j is assumed to be even. Set
7=1

k \T

and define f] f(x7 ; α) ) inductively by
1 /Γ

fe \ m / \Γ

Π f(χ7;«;)) - Σm (-i)π Π ( Π filial)) - (i)
=l /Γ {JKjbΓi 7=1 \ϊe^ /Γ

l ^ m ^ f c

The summation in (1) extends over all partitions of {!,... ,fc} into non-empty
disjoint sets, and ( — l)π is the parity of a permutation which brings the fields ξ^Xj)
on the RHS of (1) to the original order.

Let T be a graph on the points xί9...9xp+q which is a tree with respect to the
clusters x1? ...,xk. We call such a Γ an anchored tree on {x1?...,xfe}. By
J5fτ(xl5 . . ., xfe) we denote the length of T and by <y the set of all anchored trees on
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The following proposition gives a precise characterization of the decay

/ k ~ V
properties of ( f] ς(x7 ; α/π .

\ 7 = ι /r

Proposition. There is a constant C such that

k \T

Π
7=1

Σ expί-K.jSfΛxi,-.**)}, (2)

where p =

Remarks. 1. Estimate (2) has been communicated to me by Gawedzki. Below I
present a simple proof of (2) based on an expansion different from the one used by
Gawedzki and Kupiainen [12].

2. Notice the good combinatorial properties of (2). The number of terms on the
RHSof(2)isatmostC p + ^!

This is because of the fermionic character of the correlation functions. An
analogous bound for bosonic correlation functions would involve the com-
binatorial factor of pi (where 2p is the number of fields).

We turn to the proof of (2). The untruncated correlation function
k \

Π <f(x, ; α7 )) can be explicitly written (up to a sign which will not bother us) as
J = ι IT

the determinant det^, where the entries of M are given by

jj' = 1, . . ., k, i = 1, . . ., pp i' = 1, . . ., qr. Introducing Grassmann variables ηjt b ήJ9 1 we
can write det^ (up to a sign) as the Berezin integral

I Π Π dηjti ft ΛfΛίexp(ή,ΛΠ|). (3)
j = l t = l ί=l .

We present F = (ή,«/^η) as a "two-body potential":

V= (

where η^fy/ §1, ...,ηj t p j ) , ^ = ( ,̂1, - >ήj,q) For each pair (ij) we introduce an
interpolating parameter O^s^l, Sij = sji9 and set

r«= Σ ^+ Σ sy^ (4)
i = 1 i =f= 7

We call (4) a BF ( = Battle-Federbush) decoupling of V if there is a bijective
mapping g: {1, ..., &}->{!, ...,/c} withg(l) = l such that

where 0 ̂  s 7 ̂  1 , j = 1 , . . . , k — 1 . The following lemma is an immediate consequence
of (3) and [18, 19].
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Lemma 1. The partially truncated part of &Q\Jt is given by

Σ fdηdή Π (^+^)JrfpΓ(s)expl/(s)? (6)

where ̂  is the set of trees on k vertices and dpτ(s) is a probability measure
concentrated on such s that F(s) is a BF decoupling of V.

Let us now consider a single term on the RHS of (6). Expanding the product
Π (Vi /+ Vj ί) we represent it as a sum of terms of the form

<i,j)eT '

(a product of k — 1 propagators, each of which joins two different
a Je-1

X/S)X Π ίiMnUwi Π Um,ίi,,», (7)
ί=l ί = α + l

Observe that if ^>n and ^ j f l l are factors in (7) then all the terms in F(s) involving
these variables are actually absent. The Berezin integral may be this factored and
evaluated to obtain a product of k — ί propagators multiplied by a
((p + q ) / 2 - k + ί ) x ( ( p + q)/2-k + l) determinant. Using (III.l) we can bound the
first factor by

C'-^-'expί-MMx!,. ..,**)}, (8)

where Tis an anchored tree on {xl5 . . ., xfc}. The entries of the determinant have the
structure SyΓ^ n/? J ) m(Xi,n-*/,m) We wish to show that the determinant can be
written as a Gramm determinant det {(fa9 gb)}9 provided that s is in the support of
dpτ(s).

Lemma 2. There exist unit vectors e1? . . ., ek e lRfc such that (et, e^} = stp with ( , ) the
usual scalar product in Rfc.

Lemma 3. There exist AΛ(x- •), Bβ(y- )eL2(R2)0L2(IR2) such that Γα β(x-y)
= μβ(x- ), Bβ(y- - )). Moreover, \\AΛ(x- - )||, ||ββ(x- - )ll ^ C/4/2, uniformly in x.

These two lemmata imply that

Mi,nfc,m(XI>-:Vj\J = (̂

for s in the support of dpτ(s). Using Gramm's inequality

we can bound our determinant by Cp + qκ(

n

p + ϊ)/2 ~ k + 1 . This and (8) lead immediately
to (2).

Proof of Lemma 2. Let sy have the form (5). By v{ we denote the i-th unit vector
(v{)j=δij. We set e1 = vί and define eβϋ) inductively by

Then
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and

= sij9 for i<j. Q.E.D.

Proof of Lemma 3. The following argument is due to Feldman et al. [13]. We set

2

with A(p) = (-ij + W(p2 + M2Γ3l*χ(p)l/2, B(p) = (p2 + M2Γ1/4xχ(p)ί/2^ where
χ(p) is given by (II.6). This gives the required representation. The bounds
\\AΛ(x- )||, \\BJix- )ll ̂  C/cn

1/2 follow by a simple calculation. Q.E.D.

Remark. If in b columns of det^ the propagators Γ(x—y) are replaced by the
propagators

p2_L Λ /f2

then the power of κn in (2) is reduced by b. This follows from the fact that

Appendix B. A Lemma on Borel Summability

A well known criterion of Borel summability of a divergent power series is the
following theorem [20, p. 192]:

Theorem (Watson). Let f(z) be holomorphic in

£ε = {z:|z|<r,|argz|<π/2 + ε},

where r > 0, and 0 < ε < π/2 are certain numbers, and continuous in Dε. Suppose that

k

7 = 0

and that there exist C, σ > 0 such that

(1)

r1, (2)
uniformly in k and z e Dε. Define

oo fi

The function (Bf)(t) is holomorphic in {t: |argί|<ε} and

f(z)= ] dte-'(Bf)(tz),
0

for |z|<r, |argz|<ε.
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In the lemma which we prove below we deal with a special situation which we
encounter in our analysis of the Yukawa model. The sets Ωj have the same meaning
as in Sect. IV.

Lemma. Let fj(z\j = n, n + 1, ... be a sequence of functions such that

(i) /)6ff(0j),

(ii) \fj(z)\£Ce-«, μ>0, (3)

with C independent of z and j. Then the function

f(z)= Σ f& (4)
j = n

satisfies the assumptions of Watson's theorem with Dε = Ω.

Proof. It follows from (3) that (4) converges uniformly in Ω. This implies the
analyticity statement. For each j we write

//z) = Σ αSpz-H-Klftz), zeΩj, (5)
m = 0

where

It follows from Cauchy's bound and (3) that

\a$\ ^Ce~ μjr]~ m = CC^e ~ μj , (6)

where Cj"1 =jr7 . Let us bound the remainder term in (5). If \z\ ̂ rj9 then

and we have

\R^(z)\^2CC\+1jk + 1e-μj\z\k+1. (7)

For zeΩ with |z|^^Γ we make a direct estimate

Now, we write

m = 0

fc+1
1

i/*+1e"^|z|* + 1. (8)

f(z)= Σ α
m = 0

where

oo oo

-̂1 .r|(j) D (rr\ X"1
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It follows from (6) that

oo oo

\ak\^CC\ X /e-*>gCCξ J dttk

e-"t = (C/μ)(C1/μ)kk\.
j = n 0

Similarly, (7) and (8) imply that

\k + ί

y zεΩ.

The last two inequalities imply (1) and (2), respectively, if we replace 4C/μ by C and
CJμ by σ. Q.E.D.
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