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Abstract. A simple high temperature expansion is developed for lattice gauge
theories with scalar matter fields. The expansion is used to prove the absence of
global symmetry breaking for sufficiently high temperature.

I. Introduction

In both statistical mechanics and quantum field theory there are many examples of
theories with global symmetries which are spontaneously broken at zero
temperature. Typically, one expects such symmetries to be restored at sufficiently
high temperature. The purpose of this paper is to prove the absence of spontaneous
symmetry breaking at high temperature in a wide class of theories which includes
gauge theories with bosonic matter fields (commonly called Higgs theories).

In the case of abelian Higgs theories, previous work by Kennedy and King [7]
proves the existence of a low temperature phase with spontaneously broken global
gauge invariance. Combined with our result, this implies that a phase transition
must separate the unbroken symmetry high temperature phase from the broken
symmetry low temperature phase. To our knowledge, this provides the first
rigorous demonstration that the Higgs phenomenon in abelian gauge theories is
associated with a genuine finite temperature phase transition.

Our proof of the absence of high temperature symmetry breaking is also
applicable to non-abelian Higgs theories, however in such theories there is no
corresponding demonstration of the breaking of global gauge symmetry at low
temperature. (The abelian proof cannot be generalized to non-abelian theories for
several reasons. These include the fact that the order parameter used in abelian
theories - essentially equal to the Higgs field in Landau gauge - is not well defined
in non-abelian theories. In addition, in some non-abelian theories there are strong
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arguments suggesting that the low and high temperature phases are continuously
connected [4,1].)

We will use a regularized Euclidean functional integral with periodic boundary
conditions in the (imaginary) time direction to represent a finite temperature field
theory. This framework has been previously used to prove, for example, the
absence of confinement in high temperature pure gauge theories [2,10]. Our
approach will be similar to that used in the proof that chiral symmetry cannot be
spontaneously broken in SU (2) gauge theories with dynamical massless fermions
at high temperature [10]. Specifically, we will introduce a cluster expansion for the
scalar fields and show that this expansion is convergent for sufficiently large
temperature. This expansion will imply that the correlations of the scalar field are
exponentially damped at large distance. Consequently, no order parameter built
out of the scalar field can show non-zero magnetization.

Our cluster expansion embodies the simple physical idea that at large
temperature thermal fluctuations will create sufficient disorder to overcome any
ordering present at zero temperature. In order to prove the convergence of our
expansion, we will exploit the positivity of the euclidean functional integral. We
will not require the presence of either reflection positivity [5] or correlation
inequalities [6].

In Sect. II, we begin by discussing the simple case of pure scalar field theories
(or equivalent classical spin models). Then in Sect. Ill we present the generaliz-
ation to gauge theories with matter fields. Finally in Sect. IV we apply our results
to the case of non-compact abelian Higgs theories.

II. Symmetry Restoration for Scalar Fields at High Temperature

Our finite temperature field theory may be represented by a Euclidean functional
integral with periodic boundary conditions in the imaginary time direction. We
will use a lattice regularization to define the functional integral.

Let A be the (d+l)-dimensional lattice on which the scalar field theory is
defined. The lattice A will be anisotropic, with spacing a in the time direction and
unit spacing in the d spatial directions. This choice is made because all our
estimates will be uniform in α, and so we will take the time continuum limit at the
end. Unfortunately there is no easy way to let the remaining spatial lattice spacings
approach zero, so these spacings are fixed to be one (any other non-zero spacing
can be reached by rescaling the parameters of the theory). We will choose our
boundary conditions so that the lattice is periodic in the time direction. Our results
are independent of the boundary conditions in the spatial directions, and of the
lattice length in any spatial direction. The lattice length in the time direction is β,
the inverse temperature T~l. Hence, the number of sites in the time direction, Nt,
equals β/a. Note that the physical temperature T=(Nta)~ί may be varied
continuously by changing the timelike lattice spacing a (for fixed Nt), or discretely
by changing Nt. We will generally express our answers in terms of the inverse
temperature β and the lattice spacing a; however it should be remembered that the
ratio β/a = Nt must be a positive integer. In the time continuum limit the timelike
lattice spacing a is sent to zero, and the number of sites Nt to infinity, in such a way
that the physical temperature T remains fixed. Our results concerning symmetry
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restoration will be valid for sufficiently small inverse temperature β independent of
the lattice spacing a (or equivalently Nt).

Let φ be a real (or complex) N-component scalar field on the lattice A. The
theory will be 0(N) [or U(N}] invariant, and we will assume a double-well
potential for φ. This means that at zero temperature we can expect symmetry
breaking. Specifically the lattice action is1

=^ Σ a\dφ(b)\2-σ £ a\φ(x)\2 + λ £ a(\φ(x)\2)2 , (2.1)
Λ*beΛ* xeΛ xeΛ

where \φ\2 = £ \φt\
2 and λ, σ are positive constants. We have denoted by Λ* the

i = l

set of bonds b on the lattice. For each spacelike bond b = <x, y> the derivative is

dφ(b) = φ(y)-φ(x), (2.2)

while for a timelike bond b' = <x', />,

dφ(b') = a-\φ(y'}-φ(x')). (2.3)

The expectation of any observable F(φ) is defined as

Z~1ί Π dφ(x) exp[-S(0)]F(0, (2.4)

where Z is chosen to normalize the measure. This expectation depends on the
inverse temperature β through our choice of boundary conditions in (2.1). Of
course it also depends on the parameters λ, σ and the lattice spacing a.

When σ and β are both large, the theory given by (2.4) is expected to have
symmetry breaking. In particular, let z and w be any two spacelike separated sites

on A. Then the two point function <(/>(z) (/>(w)> = £ <<^(z)(^(w)> can be used to

test for symmetry breaking. In the limit where the spatial lattice size becomes
infinite, we define _

M2 = lim lim <0(z) - φ(w)> . (2.5)
\z — w| ->oo /?-> oo

For σ sufficiently large, it has been proven that M2 > 0 for d ̂  1 in the case of a real
field φ(x) with one component [6]. When φ(x) has more than one real component,
or is complex, infrared bounds show that M2 > 0 for d^ 2, again for σ sufficiently
large [5]. (These statements hold for T=0 and α<oo, including the time
continuum limit where <z->0. If Nt = β/a is held fixed then d must be replaced by
d— 1 in the previous statements.)

These results show that the global 0(N) [or U(NJ] symmetry of the theory
given by (2.1) is broken at zero temperature. In this paper we prove that in the
theory given by the same action (2.1) at sufficiently high temperature, the full 0(N)
[or U(N}] symmetry is present. This implies that the theory has a symmetry-
breaking phase transition at some intermediate temperature. This result holds for
all values of N, and more remarkably it is uniform in the temporal lattice spacing a.

1 Generalizing our results to theories with arbitrary 0(N) [or U(N)~] invariant polynomial
interactions is straightforward
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Therefore it implies the same result for the time continuum limit of the theory. Our
result is stated below as Theorem 2.1 and is proved in the remainder of this section.

Theorem 2.1. For any choice of parameters λ, σ, α, N and any dimensional d ̂  1, there
is a temperature 0 < T* < oo and a function M(T\ both depending only on λ, σ, N, d,
such that for all T>T*, Γ-

-exp[-M(T)|z-w|], (2.6)
Aι

where z, w are any spacelike separated lattice sites and where M(T)-> oo as T-> oo (c
is a numerical constant).

Remarks. (1) This result agrees with perturbative calculations of the effect of finite
temperature on symmetry breaking in scalar field theories [3,11].

(2) Since our result is independent of the temporal lattice spacing α, this parameter
may be taken to zero. Theorem 2.1 is then a statement about the finite-temperature
behavior of a quantum mechanical system of coupled anharmonic oscillators.

(3) We will see that for Theorem 2.1 to hold, β = ί/T must satisfy the bounds

βrgmin <—3, λ~ί/3>, and — sufficiently small.
(σ J Λ

It should be pointed out that these bounds do not predict the correct dependence
of β on λ when λ is large. Since we are not interested in the limit λ = oo, we do not
pursue this point.

(4) When φ(x) is a fixed length spin, all our results are considerably easier to prove.

Proof of Theorem 2.1. The idea of the proof is to consider the model as a
perturbation of decoupled anharmonic oscillators located at the sites of the spatial
lattice. At high temperature those oscillators are almost independent and so the
long range order is destroyed.

At this point it is convenient to define a decoupled measure for each oscillator
on the spatial lattice. We will denote by Ω some fixed spatial sublattice of A, that is
the set of all sites in A with a given time coordinate. So Ω is a ^-dimensional lattice.
Of course each site x e Ω is strongly coupled (with periodic boundary conditions)
to every other site in A with the same spatial coordinates. We will write Ax to
denote all those sites obtained by translating x in the time direction.

Then for each x e Ω we define the measure

dμx(φ) = z~ί γ\ dφ(u)
ueΛx

Γ — Σ a
[_ ^beΛx

2\2x e x p | -- £ a\dφ(b)\2 + (σ-2d) £ a\Φ(u)\2-λ £ a(\φ(u)\2)
ueΛx ueΛx

(2.7)

where once again A* denotes the bonds in Ax. Also z"1 is the obvious
normalization for the measure.

The only remaining terms in the action (2.1) are interactions between sites with
different spatial coordinates. For each bond b = <x, y> in Ω*, we denote by A$ all
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those bonds obtained from b by translations in the time direction. Combining all
such terms for a given b e Ω* gives the interaction

V(b)= Σ a\φ(u) + φ(v)\2. (2.8)

Notice that we have chosen the single site measure (2.7) in such a way that (2.8) is
positive for all values of φ. This will be very useful when we have to estimate ratios
of partition functions.

With these definitions the partition function of the theory can be written as

V(b)\ (2.9)
xeΩ beΩ*

V(b}\, (2.10)
_beΩ*

and the two-point function is

(2.11)Γ £ V(b)\
|_beΩ* J

In this form the model may be analysed using a standard high-temperature
expansion [9]. We first define for each beΩ*,

(2.12)

Then (2.10) becomes

(2.13)
beΩ*

= Σ k(Y), (2.14)

where the sum is over all subsets of Ω* and

k(Y)=$dμ(φ)γ\ρ(b). (2.15)
beY

Inserting the same expansion into (2.11) gives

< (̂F) (/»(w)> = Z-1 Σ k'(Y) (2.16
YcΩ*

with the obvious definition of k'(Y). Each such subset Y may be written as the
disconnected union of two sets X and W, where the set W is connected and we
choose weW(W may be empty):

Because dμ(φ) factorises over sites in Ω, any term in (2.16) for which zφ PFwill
vanish [remember the measure (2.7) is even]. So (2.16) becomes

Σ k(W) Σ_k(X), (2.17)
WcΩ* XcΩ*\W

connected
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where Wis the "closure" of W9 i.e., all those bonds in ί2* which share an endpoint
with some bond in W. It is clear from (2.14) that we can write

_ (2.18)
XCΩ*\W

where Z(Ω*\W) is the partition function of the full model with interactions on
bonds in ΐFset to zero. Therefore (2.17) becomes

(2.19)
WCΩ* £

z,\veW
connected

Our proof now reduces to the following two propositions.

Proposition 2.2. For any choice of parameters λ, σ, a, N and dimension d ̂  1, there is a
temperature 0 < Tf < oo and a function M'(Γ), both depending only on λ, σ, N9 d, such
that for all T>T%

(2.20)

where WcΩ* is connected and \ W\ is the number of bonds in W. Furthermore M'(T)
— KX) as T-»oo.

Proposition 2.3. For any values of the parameters of the theory, and for any subset
WCΩ*,

Before proving these propositions we will use them to complete Theorem 2.1.
Let R = \z-w\. Then from (2.19), (2.20), and (2.21),

Γ Σ Σ exp[-M'(7>].
n = RW:\W\=n

connected connected

By a well-known argument [8] (useful for escaping from mazes), a connected
set W containing n bonds can be traversed by a walk of length 2n which crosses
every bond exactly twice. So the sum over connected sets W is bounded by a sum
over random walks of length 2n which begin at z, and the number of those is at
most (2d)2n. Therefore provided Tis sufficiently large so that M'(T)>21n(2d), we
have

where M(T)>0 and M(T)-κx) as M'(T)-κχ). This completes Theorem 2.1.

Proof of Proposition 2.2. Recall that

K(W) = \dμ(φ) Π Q(b)W) ΦM (2.22)
beW

From (2.12) we have

(2.23)



Global Symmetry Restoration 429

If b = <x, yy we get by Schwarz's inequality for (2.8)

a\φ(u)\2 + Σ a\φ(v)\2. (2.24)
ueΛx

Expanding out the product over bonds in W gives

Π V(b)£ Σ Π Σ a\Φ(u)\2. (2.25)
beW [q(x)}xeΩ (ueAx }

The sum in (2.25) is over choices of integer q(x) for each x e Ω, with the constraints
that q(x) = 0 outside W, 0 ̂  q(x) rg 2d for each x, and most importantly

Σ Ί(x) = \W\. (2.26)
xeΩ

Also for each x e Ω we let p(x) be the number of bonds in W with endpoints at x.
Then substituting (2.24), (2.25) into (2.22), and using the bound

we obtain the expansion

x e x p x ) Σ a\φ(u)\2 Σ α l Ψ M f . (2-27)

The expansion (2.27) bounds k'(W) by a product of one-dimensional integrals.
We will approximate these by gaussian integrals with mass m and choose m
appropriately to give the best bounds. Define

dv^Hz'-1 Π dφ(u)
ueΛx

xexpΓ-i Σ a\δφ(b)\2-~m2 Σ «l^>(")l2] , (2-28)
\_ ^ beΛ* <L ueΛx J

where as usual z' normalizes the measure. Then the contribution to (2.27) from a
site x (assumed to be neither z nor w) is

a\φ(u)\2-λ Σ α(|φ(M)|2)2 , (2.29)
ueΛx

a\φ(u)\2-λ Σ α(|(/>(W)|2)2. (2.30)
ueAx J

At this point we can make simple estimates. The exponent in (2.29) is bounded
by

+ p(x)-2d

where the denominator is

d\ ,
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where we used £ a = β, and we will assume that m2>4d. Furthermore the
ueΛx

diagonal part of the covariance of (2.28) for real φ is given by

\ (2.31)

2a

When φ is complex, the factor TV is replaced by 2N. This is easily shown to satisfy
the bound

(2.32)

where cί is a numerical constant. Higher moments may be bounded similarly, in
particular

ίdvx(φ)\φ(u1)\2...\φ(up)\2^(2p-l)\\ Cl 2+ - (2.33)

Therefore the numerator in (2.29) is bounded by

V B ( 1 \21 /
exP έ σ + 9 m Ί llWΦn Σ a\φ(u)\2

[_4/ί \ 2 / J \Me^

Γ β ί l VΊ Γ / 1 /?M«(Λ)

^[ϊH'+HJKi+Sj (134)

Using Jenson's inequality (2.30) is bounded from below by

2

Of course (2.31) g -^-j, and so we finally obtain the estimate

\«<χ)

x exp

(2.35)

Until now the value of m2 has been arbitrary. We will now choose m2 in order
to get the best bound.

Lemma 2.4 Let the parameters λ, σ, β, m2 satisfy the following conditions;

(ϋ) βσ2^λ,

(iii) β3/l^l .
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Furthermore, given any ε > 0, let β, λ satisfy the bound

β/λ^ε2.

Then

(2.29) ̂  c3(Nε)q(x) exp [c4Nε2 + c5 TV2] , (2.36)

where c3, c4, αrcd c5 are numerical constants.
Lemma 2.4 follows by substituting the given constraints in (2.35).
Returning now to (2.27), we can complete the proof of Proposition 2.2. If x is

either z or w, the bound (2.36) is multiplied by an additional factor (ΛΓ/J//U) coming
from the terms | φ(z) \ 2, | φ(w) \ 2. The only sites x e Ω for which p(x) and q(x) are non-
zero are the endpoints of bonds in W, and these are less than 2\W\ of these.
Therefore inserting (2.36) into (2.27) gives

=
yβλ {«(*>}

where we used (2.26). The number of terms in the sum over {q(x)} is bounded by
|, and therefore by taking ε sufficiently small we obtain (2.20) with

Proof of Proposition 2.3. Since V(b) is non-negative for all field values, we have
expF(fc)^!. Combined with the positivity of the measure in the functional
integral, this immediately implies the result (2.21).

III. Absence of High Temperature Symmetry Breaking - The General Case

The results obtained in the previous section extend in a very general way to an
arbitrary model containing gauge fields and scalar matter fields. As before, we
define the model on the lattice Λ introduced in Sect. II, with periodic boundary
conditions in the time direction, and any choice of boundary conditions in the
spatial directions. The gauge group G is arbitrary. The scalar field φ(x) may belong
to an arbitrary N dimensional real or complex unitary representation of G. If g is
an element of G, we will write U(g) for the matrix representation of g which acts on
the field φ.

An element gbeG is introduced on each bond b e A*. The covariant derivative
of the scalar field on b = <x, y> is then

) = φ(y)-U(gb)φ(x) (3.1)

for a spacelike bond. For a timelike bond there is a factor a~ l in the right-hand side
of (3.1). We will write SG for the part of the action containing only the gauge field.
Our proof works for any real choice of the action SG, including of course the
Wilson action. The presence of gauge-fixing terms involving only the gauge field is
also irrelevant.

The full action for our lattice theory is now given by

S(g,Φ) = SG+
1- Σ a\Dφ(b)\2-σ Σ a\φ(x)\2 + λ Σ a(\φ(x)\2)2 . (3.2)
£ beΛ* xeΛ xeΛ
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The corresponding measure which defines the expectation of observables is

Z'-1 Π dgb Π dφ(x) exp [-S(g, φ)~] , (3.3)
beΛ* X E Λ

In order to explore symmetry breaking we again consider two spacelike
separated sites z and w. Let P(z, w) be any functional of the gauge field g, and
consider the following observable:

0(x) P(z,vv)0(w). (3.4)

For example, P(z, w) can be the path ordered exponential of gauge fields along a
path connecting z and w. Then we have the following result concerning the high
temperature behavior of this observable.

Theorem 3.1. For any choice of gauge group G, of parameters λ, σ, a, N and of
dimension d^l, there is a temperature 0<Γ*<oo and a function M(T\ both
depending only on A, σ, N, d, such that for all T> T*

FT
|<φ(z) - P(z, w)φ(w)>|^cJV I/- exp|-M(T)|z-w|] ||P(z, w)|| , (3.5)

y A

where M(T)-»oo as T— >oo, and c is a numerical constant.

Proof of Theorem 3.1. The basic strategy will be to prove convergence of the high
temperature expansion for the matter fields in the presence of an arbitrary fixed
gauge field. If < > denotes an expectation in the matter field measure

Z;1 Π dφM exp [-S(g,φ)] (3.6)
xeΛ

(with Zg defined to normalize the measure), then the expectation in the complete
Higgs theory is given by an average over the background field expectations

< > = Z-
1
J Π <fe

6
Z
β
< >,. (3.7)

beΛ*

Consequently, any bound which holds for a background field expectation,
uniformly in the gauge field, immediately extends to the complete expectation.
Therefore, we will prove:

Lemma 3.2. Under the conditions of Theorem 3.1, and for all gauge fields g,

T
y exp[-M(T)|z-w|] ||P(z, w)|| . (3.8)
λ

This immediately implies Theorem 3.1.

Proof of Lemma 3.2. The argument precisely parallels the treatment in Sect. II.
Introducing our cluster expansion yields

<φ(z) φ(w)yg= Σ k'g(W) ° , (3.9)
WCΩ* £az,\veW

connected

where the quantities k'g(W) and Zg(X) are the obvious analogues of (2.15) and
(2.18). Therefore the proof reduces to the demonstration of the following
propositions.
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Proposition 3.3. Let WcΩ* be a connected set containing z and w. Then for any
choice of parameters λ, σ, α, NJor any dimension d^ί and for any background gauge
field g, there is a temperature 0 < Tx < oo and a function M'(T\ both depending only
on λ, σ, N, d such that for all T> Tf

exp[-M'(7WI] , (3.10)
V

where M'(T)->oo as T->oo.

Proposition 3.4. For any subset WcΩ*,

Proof of Proposition 3.3. The proof is almost identical to that given for
Proposition 2.2. The only change is in the evaluation of the diagonal part of the
one-dimensional co variance of the scalar field. This is formally given by the inverse
of the operator D^D + m2, where D is the one dimensional covariant derivative
with periodic boundary conditions. This depends only on the time component of
the gauge field along a timelike loop. By gauge covariance, this gauge field may be
replaced by a constant field g0 on each bond. In a complex representation C/(g0)
can be diagonalised, and the diagonal elements can be written as eίψί

9..., e
iψN. Then

the extension of (2.31) is

" 2 £ ~ " -" " *" ' +m2} . (3.12)

Since (3.12) is bounded above by its value when φi = 0 for all /, the bounds (2.32)
2N

and (2.33) still hold. Also (3.12)^ -r—2 is still true, so the proof proceeds exactly as
for Proposition 2.2. ^m

In a real representation, C7(g0) can be brought to a block diagonal form, where
each block is either 1 or a 2 x 2 rotation matrix. If these rotation angles are

N
Θ19...9ΘM, M^—, then the extension of (2.31) is

- f'\S t ^
a~'saί'\Ύ + i)+m'

+ ^ Σ Σ J4α-2sin2(^)+m4"1, (3.13)
p j = 2 m + l feeZ ( \ P / J

l f cl^^~
and the proof proceeds as before.

Proof of Proposition 3.4. As in Proposition 2.3, our choice of interaction V(b)
makes this result trivial. The inclusion of gauge fields changes (2.8) to

Vg(b)= \ ^ Σ^ a\φ(u)+U(gb)φ(v)\2 . (3.14)

Once again, Vg(b) is non-negative and this immediately implies the result.



434 C. King and L. G. Yaffe

IV. Symmetry Restoration in the Abelian Higgs Model

As discussed before, the only lattice gauge theory for which spontaneous symmetry
breaking is known to occur is the non-compact abelian Higgs model. In two or
more spatial dimensions the global t/(l) symmetry of this model is broken at zero
temperature, if there is a double-well potential for the scalar field [7]. In this
section we will prove that at sufficiently high temperature the global L/(l)
symmetry is restored.

Because the U(l) gauge field is represented by a non-compact vector field in our
theory, some care must be taken in the definition of the finite-temperature
functional integral. In addition to the usual gauge-fixing problem, there is a zero-
mode for the vector field which must be removed.

We will choose boundary conditions so that the lattice A is periodic in the time
direction, with length β. In the spatial directions however, we will use free
boundary conditions, defined by setting the gauge field to zero on all bonds outside
the lattice. This removes the zero modes in the spatial directions.

The vector field is represented by a real-valued variable A(b) on each bond b in
A. The action for the vector field is a sum of three terms. The first is the usual gauge

( \2

invariant term £ A(b) for each plaquette p in A, where the sum is over the

oriented bonds in p. The second is a gauge-fixing term, which we take as

£ A(b) 1 for each x e A, where the sum is over oriented bonds in A connected to

x. Finally to remove the zero mode corresponding to constant timelike vector

ί Vfields, we introduce the gauge invariant term ε\Y A(bt) J , where the sum is over all
\bt /

timelike bonds bt. All our results will be uniform in ε, and we take the limit ε->0 at
the end. So the finite-temperature, finite-volume measure for the vector field is

(DA) = Π ̂ W e x p - l l - Σ - Σ . (4.1)
beΛ* \_ 2* p \bep J ^ x \bsx / ^ \bt / J

The scalar field φ(x) is a one component complex field, which is introduced at
each site x in A as in Sect. II. The only modification to the action (2.1) is the
replacement of dφ by the covariant derivative given below. For a spacelike bond
b = <x> ̂ ' Dφ(b) = φ(y) - exp \ieA(b}\ φ(x) ,

where e is the electric charge. For a timelike bond b' = (x', />,

')-exp [ieaA(b')~]φ(x')) .

We will denote by SA(φ) the action (2.1) with dφ(b) replaced everywhere by
Dφ(b\ and with the stated boundary conditions. Then the expectation of an
observable F(φ, A) is defined as

<F> = lim Z' ~ 1 J (DA) Π dφ(x) exp [ - SA(φ)] F(φ, A) , (4.2)
ε-»Ό xeA

where again Zf normalizes the functional integral. The expectation of any
observable which is orthogonal to the zero mode in the time direction will be well-
behaved in the limit β-»0.
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In order to investigate symmetry breaking in this model, a "smeared string"
observable was introduced in [7], This observable was locally gauge invariant but
was sensitive to breaking of the global 17(1) symmetry. We recall the definition
below.

Let z, w be spacelike separated sites in Λ, and denote by g the lattice function
which is +1 at z and — 1 at w, and zero elsewhere. The lattice Laplacian on A is
invertible on functions orthogonal to constants, and we denote its inverse on this
space by C. Then we define the vector field h on each bond b in A by

h(b) = (dCg)(b), (4.3)

where the finite difference derivative is defined in (2.2), (2.3). The observable we use
is

K(z, w) = 0 (z) exp ie Σ A(b)h(b) φ(w). (4.4)

Then in the limit where the spatial lattice is infinite, we define again

M2= lim lim <K(z, w)> .
|z — w| ->oo β-* oo

In [7] it was proved that for σ sufficiently large and for e (the electric charge)
sufficiently small, and for temporal lattice spacing α = l,

M2>0 for d^2. (4.5)

The proof in [7] may be easily extended to non-zero temperatures in d ̂  3 by
taking a=l and JV t any positive integer [12].

This result implies that the global £7(1) symmetry is broken at low temperature
for the range of parameters indicated. By decreasing the temporal lattice spacing a
and holding Nt fixed, we can raise the temperature continuously. The following
theorem implies that during this process we will inevitably encounter a finite
temperature phase transition where the global symmetry is restored.

Theorem 4.1. For any choice of parameters A, σ, a, e and any dimension d^l, there is
a temperature T* < oo and a function M(T\ both depending only on A, σ, d, such that
forallT>T*

w)>£cl/yexp[-M(r)|z-w|], (4.6)

where M(T)-»oo as T->oo, and c is a numerical constant.

Proof. As in Sect. 3, we define

φ(v>)yA = Z^I Π dφ(x)πpl-SA(φ) ]φ(z)φ(w) , (4.7)
xeΛ

where ZA normalizes the expectation. By Lemma 3.2 we know that (4.7) satisfies
the required bound (4.6). Since this is uniform in the background field A and in ε,
we get the same bound for the full expectation, which is given by

β-*0
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