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Abstract. We determine all the resonances in certain rectangular regions of the
complex plane of the Schrόdinger operator — h2A + V when ft->0, under the
assumption that the set of trapped points of energy 0 for the classical flow form
a closed trajectory and that the corresponding Poincare map is hyperbolic.

0. Introduction

In this paper we consider a semiclassical differential operator P on R" with
analytic coefficients, which satisfies all the general assumptions of [6, Sect. 8]. Let
p(x, ξ) be the principal symbol in the sense of /i-pseudodifferential operators. [The
most important special case is, of course, when P= — h2A + V(x). Then
p = ξ2 + V(x).~] We assume that

p(χ,ξ) = Q => rfpφO. (0.1)

In the appendix of this paper, we give some generalities concerning the flow of
HP = ΣtijdXj-p'XjBξj either in p-^-βo^o]) or in p-^O). For ρeT*R", let
]71(ρ), T+(ρ)[9ίι— >QxptHp(ρ) be the maximal classical trajectory. Here T+ and
— 71 are lower semicontinuous functions of ρ with values in ]0, -f oo]. We define
the outgoing tail and the incoming tail by

Γ^ = {ρep-i(0); expί#p(ρ)^α), as t^T+(ρ)}. (0.2)

In the appendix we show among other things, that K° = Γ+ nf ° is a compact set.
Our next assumption is then:

K° is (the image of) a simple closed trajectory

7°: [0, T0]-^-1^) [satisfying y°(0) = y0(T°)] . (0.3)

Let p° be the corresponding linearized Poincare map. It is a symplectic
automorphism of the normal space of 7° in p~ *(0) at the point y°(0), defined as the
differential of the smooth map H°-^H°, obtained by following the flow of Hp once
around γ°. Here H°Cp~1(0) is some smooth hypersurface intersecting 7°
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transversally at y°(0). If θ is an eigenvalue of p°, then 1/0, θ, 1/9" are also eigenvalues
of p° with the same multiplicity. We assume that our Poincare map is hyperbolic:

p° has no eigenvalues of modulus 1 . (0.4)

In particular, det (p° — I) Φ 0, so by the implicit function theorem, there is an ε0 > 0
and an analytic family of closed trajectories:

ys:L09T^p^(ε)9 βe[-ε0,ε0], (0.5)

so that the corresponding Poincare maps are all hyperbolic.
Going back to our general discussion, we define Γ+,Kε = Γ+ nfl in p~ ^ε), for

ε £ C — εo> εo] Just as in the case ε = 0. It is then easy to see, at least after reading the
appendix, that Kδ-+Kε as δ->ε, in the sense that Kδ is contained in any given
neighbourhood of Kε, when δ is sufficiently close to ε. [Here we do not use the
assumptions (0.3), (0.4).] If G is any escape function (defined in [6]), then we have
the same result concerning the families Γ+ n{±G:g T}, for every fixed T. On the
other hand, it is easy to see that when (0.3), (0.4) are satisfied, then there is a
neighbourhood U of y = (J γε in p-1([ — ε0,ε0]), such that if ρeU and

-εo^ε^εo

exptHp(ρ)εU for all ίeR, then ρey. Then after decreasing ε0 if necessary, we
conclude that

(0.6)

(Whenever it is convenient to do so, we shall identify yε with its image.)
It is easy to prove the following facts: (See [1] for (0.8), (0.9) in the C°°-case.The

proof of the appendix in [11] can be adapted to the present analytic case.)

y is an analytic 2-dimensional symplectic manifold . (0.7)

J± = (J Γ+ are analytic involutive manifolds of

dimension rc + 1, intersecting transversally along y. (0.8)

Λε

±=Γ±=J±np~ *(ε) are Lagrangian analytic manifolds ,

intersecting transversally in p~ ί(ε) along yε . (0.9)

At a point x(ε) of f, we can write ΊA\ =RyβeTΓ|, where Γ£ are the
bicharacteristic leaves of J+ (of dimension n — 1). TΓ+(&TΓ!L is then the spectral
decomposition of pε into spaces corresponding to eigenvalues of modulus > 1 and
<1, respectively. Let Dε = pε\TΓ*+ : TΓ+-+TΓ+.

Let Dl:0>"-l(TΓ\)-*0>N-\TΓ+) be defined by (Dε,u)(t) = u((DT1(ή). Here
0>N~ 1 denotes the space of complex polynomials of degree N — 1 . If we identify TΓ+
suitably with R""1, it is easy to see that Dε and D^ depend analytically on ε. The
eigenvalues of Dε are, of course, the eigenvalues ^(ε), ...̂ .̂ (ε) of p of modulus
> 1. The eigenvalues of D% are then the numbers θ(ε) l~α = θι(ε)~αι . . . θn_ ι(ε)~αn" l,
with |α| = αx + . . . + αM _ ί ^ N — 1 . Here the algebraic multiplicity of each eigenvalue
is the number of α's of length ^N — 1, which give rise to this value.

In the next section we shall define a certain analytic function ρ(ε) which satisfies
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Let us also introduce the action

C(ε)=$ξdx. (0.11)
yε

As we shall see in the next section, we have

C'(ε)=Γ(ε). (0.12)

For a complex value of E, we have

det(ρ(E)Dl-e-ίC(EVh) = Q (0.13)

if and only if, for some αeN""1 of length ^N — 1, and for some fceZ, we have

C(E) = 2πkh + ih logρ(E) - ih £ α,. logfl/E) .

From now on we restrict the attention to a rectangle [ — ε0,ε0] — i[05C0/ι]5

where ε0 > 0 is sufficiently small, but independent of /i, and C0 may be arbitrarily
large. Let Ω(h) be a subdomain such that

(i) sup IE-EJ-^0, ή->0,
Eeβ(fc)

for some function E^h) with real values. We assume moreover that

(ii) det (ρ(E1)E>l1 -e~ iC(E)/h) ^ const > 0 ,

for all E e dΩ(h). Then it is easy to see that there is a bijection K between the set of
solutions to (0.13) in Ω(h) counted with their multiplicity, and the set of solutions in
Ω(h) to

*1 -e~ iC(E)/h) = 0 , (0.14)

counted with their multiplicity, such that κ(E) — E = o(h\ uniformly with respect to
E. Now (0.14) is equivalent to

C(E) = 2πkh + ih logρίfii) - ih Σ α, logβ/E^ , (θΏ)

where the only implicit part is given by the inversion of the map C. This is no
problem however, in view of (0.12). A simple consequence of this small discussion is
that there exists a number Nθ9 such that no disc of radius h can contain more than
N0 solutions (counted with multiplicity) of (0.13).

Let Γ°(h) be the set of solutions of (0.1 3) in [ — ε0, ε0] — z[0, C0Λ], counted with
their multiplicity. Then we have:

Theorem 1. For every C0>0, if N in the definition of D^ is sufficiently large, we
have: If h is sufficiently small, there is an injective map b(h) from Γ°(h) into the set of
resonances of P (counted with their multiplicity), such that b(h)(μ) — μ = o(h\
uniformly ash^O, and such that all resonances in [ — ε0 + α/z, ε0 — ah] — f[0, C^K] are
in the image of b(h). Here α>0 and 0<Cί<C0 are fixed arbitrary constants.

There is also a more refined version of this result, which determines the
resonances of P (in the given rectangular region) not only modulo o(h\ but modulo

). It is a little longer to formulate:
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Theorem 2. Fix C0>0. Then there is a number T V e N and a matrix
F^+(E,z,h)\^N~l^^N'^ with the following properties:

F™ + is holomorphίc in (£, z) in an open h-independent set

in C2 which contains

([-2ε0,2ε0] + i[-2ε0 ?2ε0])x{z6C;r0g|z|^l}. (0.15)

Here r0 is so small that F™+(E,e~iC(E}lh,h) is well-defined for Ee[-ε0,ε0]

-i[0,C0Λ]

F™ + is a symbol; F™ + - £ Aj(E> z)hjl2 ,
o

(0.16)

Let Γ°°(Λ) be the set of E in the basic rectangle such that detF^ +(£, e~
ίC(E}/\ fc) = 0.

TΛeπ ίftere is an injectίve map b(h) from Γ°°(/z) into the set of resonances of P (where
the elements of both sets are counted with their natural multiplicity), such that
b(h)(μ) — μ = 0(hM) uniformly for each M, and such that for every M, the image of
b(h) contains all resonances in the slightly smaller rectangle [ — ε0 + /ZM, ε0 — /ZM]
— /[O, C0h — /ZM], when h is small enough. (See also Remark 5.2.)

We became interested in this problem through a paper of Ikawa [7], dealing
with resonances for the Dirichlet problem for the Laplacian in the exterior of two
strictly convex obstacles. Roughly, one could say that Ikawa obtained the first
string of resonances (closest to the real axis) corresponding to our Theorem 1,
given by (0.13) with α = 0. Later Ikawa [8] and C. Gerard improved this result.
Ikawa got the complete asymptotics of the first string of resonances, while Gerard
[4] got the complete asymptotics for all the strings, which is the complete analogue
of our Theorem 2. Guillope has also got analogous results in an explicitly
computable situation [5].

The method we use here has many similarities with the method of Gerard. In
particular, we make use of a certain associated Grushin problem. Technically,
there are also many differences, and we use here some techniques from the study of
operators with multiple characteristics as in Boutet de Monvel-Grigis-Helffer [2],
or Sjόstrand [12] (containing also references to the work of Grushin), combined
with more recent work on microlocal analytic singularities [11, 13].

This result can be compared with earlier results on quasimodes associated with
closed elliptic trajectories (Ralston [1 5], Voros [1 8]) or with invariant Lagrangian
manifolds (Colin de Verdiere [16], Candelpergher-Nosmas [17]), which provide
sequences of real eigenvalues for self adjoint operators. As was remarked long ago
by Duistermaat [19] the construction of quasimodes associated with the stable or
unstable manifolds of a closed hyperbolic trajectory does not work because there is
no smooth Hp invariant density on them. On the other hand, the construction of
quasimodes living just on the closed trajectory give complex eigenvalues. The
result we obtain shows that these problems disappear in the framework of
resonances and that the quasimodes give all the resonances in a box
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We give some examples. The basic mathematical example is P = — h2A + V(x)
on R" with

near an energy level E>0. The closed hyperbolic trajectory is:

The physical analogue of this example is P = — h2A + V(x) on R" with
V(x) = \r\ ~ 1 + axγ (repulsive Coulomb potential perturbed by Stark effect), near an

energy level E>2]/α.
Finally, let us mention that these kind of resonances have already been

observed by Pollak (see [20]).
The plan of the paper is the following: In Sect. 1 we study a certain Poincare

operator, acting on symbols, and we define the quantity ρ(E). In Sect. 2 we
introduce a certain transformation, which is well-defined on outgoing functions
(but not on general L2 -functions). We then get a simple form for the operator near
γ. In Sect. 3 we give estimates for a certain Grushin problem associated to a
pseudodifferential operator in 1 dimension. At the end of Sect. 4 we combine the
results of Sects. 3 and 4, in order to obtain a well-posed Grushin problem for the
original operator. In Sect. 5, we derive some additional asymptotic information
about the solution to this Grushin problem and we prove Theorem 2, which
implies Theorem I.1

1. Computation of a Principal Symbol

Some parts of this discussion could also be carried out in a more standard way, by
introducing the subprincipal symbol of the operator and interpreting certain
leading symbols as half-densities.

We may choose real symplectic coordinates (x, ξ) centered at y°(0) = (0,0) such
that p = ξl9 J+ : ξ" = Q, J_ :x" = 0. Here we use the notation x = (x1,x"), ξ = (ξl9 ξ").
The symplectic map K = expT0HP, restricted to y:x" = ξ" = 0, then maps (x1? |x) to

(xι +/(£ι)5 £ι) We also know that the bicharacteristic leaves of J+ are mapped
onto bicharacteristic leaves, so if D is the differential of K at (0,0), then D maps:

κ: \-+Aδx», δς \—*'A 1δξ». Here I t ί I is the

linearized Poincare map p°. If we write the coordinates in the order (xls ξlt x", ξ"),
it follows that D is given by the matrix

1 /'(O)J V 0 0
0 1

(1.1)
0 A 0 '

0 0 Άt Λ-l

1 We would like to thank the referee who has helped us to eliminate several misprints and make
several statements more precise
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Consider the strictly positive Lagrangian plane Aδ:η = ίδy, given by the phase
ίδy2/2. (See Melin-Sjόstrand [9] and Sjόstrand [13] for terminology.)

Let Άδ be the image under D. Then by (1.1) we get the equations for Aδ:

x1. (1.2)

We now introduce an FBI-transform

Tϊφc, h) = f eiφ(x>y}/ht(x, y, h)u(y)dy , (1.3)

as in [1 3, Sect. 7] (with λ = 1/Λ). We could for instance take φ(x, y) = ί(x - y)2/2. Let
κτ : (y> — Φ'y) ̂  (*> Φ'x) be the corresponding canonical transformation. Then we
know that κτ(R2n) = Aφ:ξ = (2/ί)dΦ/dx, where Φ is a strictly plurisubharmonic
function. [If φ = ί(x - y)2/2, then Φ = (Im.x)2/2.] We denote κτy° simply by y°. Then
nx(γQ) is a simple closed loop in C" . For short we also write A + instead of κτΛ + . We
then know that the complexifications: (Λ°+)c near y° are given by:

(1.4)

Here φ°± are holomorphic with — Imφ+^Φ, and more precisely, Φ + Imφ°+
~dist( ,L°±)2, where L°±=πx(A°±). This follows from the fact that κτ((A°±)c)
intersects Aφ along κτ(Λ°±), and from wellknown inequalities between harmonic
and strictly subharmonic functions. If p also denotes the transformed principal
symbol of P, then we have the eiconal equation:

p(x9(φ°±γ) = 0. (1.5)

We have to be a little careful, however. While lmφ°± are single valued (equal to
— Φ on L+), there is no reason why Re</>+ should be so. In the above discussion we
first notice that everything is uniformly valid if we replace the superscript "0" by
"ε", for ε in some complex neighborhood of 0. We then have to replace (1.5) by the
more general equation:

p(x,(φ*±)'x) = ε. (1.6)

If we lift ourselves to the universal covering space of a neighborhood of nx(γ°)9

then we can introduce the map ^~, which consists in "moving a point x one loop
around πx(y°) back to itself." For our multivalued function φε

+9 we then have:

(1.7)

where

C(ε)=Sξdx. (1.8)
yε

It is easy to see that the integral in (1.8) takes the same value for any globally
defined symplectic coordinates on R2", so going back to the standard symplectic
coordinates on R2n, we see that C(ε) is real for real ε.

Differentiating (1.6) with respect to ε, we get

l (19)
*' (L9)
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and if we restrict this to πx(γε)9 we get the ordinary differential equation:

•
Here t is the natural parametrization of yε. If T(ε) is the period of yε, we get, after
comparing the integrated version of (1.10) with the differentiated version of (1.7),

C'(ε)=T(ε). (1.11)

We let P also denote the pseudodifferential operator, obtained by conjugation
with T. The principal symbol of P is then the transformed principal symbol p. We
now consider multivalued WKB-solutions defined near πx(γ°) of the form

(P-ε)(aeίφε/h)~0. (1.12)

Here a is a classical symbol of order 0 with holomorphic coefficients;

α (x, ft) ~Σ */*)#• (1-13)
o

If H is a complex hypersurface intersecting y° transversally at the point x0, then we
get a unique solution to (1.12) (in the covering space) if we prescribe a\H. The
leading symbol a£

0 solves the transport equation

(1-14)
/

Restricting this to πx(yε), we get an ordinary differential equation, and it follows
that

α oGΓx) = ρ(ε)αε

0M > * e πx(f) , (1.15)

where ρ(ε) is an analytic non-vanishing function.
It is easy to see that ρ(ε) is independent of a0 and of the choice of FBI-transform.

We could even define ρ(ε) by the natural WKB-procedure before FBI-
transformation, but we would then need Maslov theory because of the appearance
of caustics.

Let ψδ = φ°+ + 0(δ\x — x0|
2) be the phase associated to κτ(Λδ) = Aδ. We can then

construct a WKB-solution to

(Dt + P) (fr(ί, x, hy*(δ> '• x»h) - 0 , (1.16)

with initial condition ψ\t = 0 = ψδ. Here ψ and b are determined by the usual eiconal
and transport equations. We have

ψ(δ,t,x) = φ°+(x) + 0(δ\x-πxγ(t)\2), (1.17)

so if we write down the transport equation for the leading part of b along the curve
ίι->(ί,πΛy(ί)), we get

0. (1.18)
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Here 0(δ) indicates a multiplicative term. We conclude that

&o(T0, x0) = (β(0) + 0(δ))i0(0, x0) (1-19)

Let u = αexp(i</>+//z), vt = bexp(iψ/h). From the self-adjoint character of P, it
follows that

°°), (1.20)

where (&~*u)(x) = u(&'x), and where the scalar product on the FBI-transform side
is the one naturally induced from the standard L2 scalar product on R", which
makes P self adjoint.

Now let us represent the relation (1.20) in the special real symplectic
coordinates considered in the beginning of this section. When ul9u2 are suitable
oscillatory functions, we can define the induced scalar product from L2(R")
[modulo 0(Λ°°)] by:

((uί\u2)) = (A(xyDx,h)u1\u2)L2y (1.21)

where A is an elliptic formally self-adjoint pseudodifferential operator of order 0.
In this representation we have u = a(x,h) and 2Γ*u
= eίC(Whρ(0)(a(x,h) + 0(h) + 0(\x-x0\)}. We may take u0 = «rto2'2h. Then
vTo = eiC(0Vhb(δ,x,h)exp(-fδ(x)/2h), where f£x) = (A-lx')2 + (l +0(5))x? + 0(|x|3),
and b0(δ, 0) = ρ(0) + 0(δ). Inserting all this into (1.20) [or rather its analogue for the
scalar product (1.21)] and identifying the leading terms in ft, we get

(1.22)

Letting δ tend to 0, we obtain,

|ρ(0)|2 = l/|deU| = 1/1^(0)-... -Θ^M (1-23)

This relation extends, of course, to the case when 0 is replaced by ε, and we get

Proposition 1.1. We have
n-1

Π '
-1/2

(1.24)

Introducing the subprincipal symbol of P, one could also get a formula for
argρ(ε).

2. An Additional Canonical Transformation

In this section we construct new global symplectic coordinates near 7°, where J+
and J*L will be given, respectively by ξ2 =... = ζn = 0 and x2 =... = xn = 0, and (y°)c

will be just S1 x /R.
We then quantify this transformation by a Fourier integral operator in the

complex domain (see [13]), which acts only on suitable outgoing functions. (The
discussion of the geometry is invariant under κτ and we can identify R" with Λφ.)

We start by choosing real global analytic coordinates (ί, τ) on γ so that 7° is
given by τ = 0, so that τ is single valued and so that t is multivalued with
^~t — t + 2π. This is easy, if we first choose t and then solve — Ht(τ)= 1, τ|y0 = 0. We
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introduce q1 = t + ί/(ί, τ), where / is single valued and vanishes for τ = 0. We want
ϊ'~1{^ij^ι}<0, where the Poisson bracket is defined from the symplectic form on y.
On y°:τ = 0, we get i~l{qι,qι} = 2dτf, so we can take /= — ατ, where α>0. Put

Pι=τ.
Having determined q1ony, we extend it to be constant on the bicharacteristic

leaves of J_. For ί0 real, we consider the complex Lagrangian manifold KtoC J_,
given by qί = t0. This manifold intersects the real domain cleanly along the
bicharacteristic leaf Γt~ of J_ , passing through the point of y°-corresponding to ί0.
If q2, ...,qn are in involution such that J_ is given by q2 = . . . = qn = 0, then locally
we can extend qί to the full space, so that q^q2,...,qn are in involution. Then since
q2,» ,qn

 are real? we als° have: {qι9qk} = {qι,qk}=0. Modulo the directions
Hq2, . . ., Hqn, the field Hqί in the sense of the full symplectic structure coincides with
Hqί in the sense of the symplectic structure of y. Hence i~^σ(Hq^Hq^
= i~1{qι>qϊ}<Q in tne full symplectic structure, and we conclude that Kto is a
strictly negative Lagrangian manifold. If we choose a in the definition of / small,
then Kto is close to the complex Lagrangian manifold (A°_)c.

Our discussion is invariant under the canonical transformation κτ introduced
in Sect. 1, and if we consider all our objects after this transformation (without
changing the notations), then since Kto is close to the Lagrangian manifold (A ° )c,
we see that the projection nx\Kto: Kto->C" is a local diffeomorphism near y0.

It is easy to see that there exist C°° sections v2, - - ., vn9 w29 . . ., wπ in Γ(y C") such
that at every point ρ e y: v 2, . . ., υn generate the vectorspace Tρ(Jc

+)σ (the symplectic
orthogonal space) and such that w2, ...,wπ generate TQ(Jc_)σ. Without changing
notation, we now replace v29...9vn9 vv 2 ? . . . ,w n by analytic sections which are
arbitrarily close in the C°° topology. Consider the analytic diffeomorphism

-^2n

defined in a neighborhood of γ x {(0,0)}. Then the inverse images of J^ and /+ are
of the form t — f ( s , ρ) = 0 and s — g(ί, ρ) = 0, respectively, where / and g are analytic
and well defined near s = 0 and ί = 0. Back in C2n, we define ̂  and PJ as the images
of tj—fj and Sj—gj, so that J+ is given by p2

 = -<=Pn = Q and •/- is given by
q2 =... = qn = 0. The matrix ({pj9 qk}) is easily seen to be non-degenerate (since J +

and J_ intersect transversally), so we can find a unique non-degenerate analytic
matrix (ajtk(ρ))9 ρ e y, such that if we replace ίfy by ̂  ajtkqk, then {pj9 qk} = δjik on γ.
We shall now improve the choice ofpj9 qj9 so that these relations will be valid in a
neighborhood of y. Put q2 = q2 and let IΊ D J + be the hypersurface p2 = 0, and let q3

be the solution of Hq2q3 = 0, with initial condition q$\Σί = q3. Then dq3 = dq3 on y,
^3 = 0 on J_ and Hq2,Hq3 commute and are tangent to J*L. Let Γ 2 DJ+ be the
submanifold; pa^Pa^O. Let ^4 be the solution of the well posed problem

Hq2q4 = Hq3q4 = 0, q4\Σ2 = q4.

Continuing this procedure, we get a new set of functions q2, ...9qn keeping all
the properties above and such that in addition {qj9qk}=0. Finally, improve
P29...,pn by solving

H~qjPk=-δj,k> M/_=0.

Since {pj9 pk} = 0 on J+, these relations hold everywhere, by the Jacobi identities.



400 C. Gerard and J. Sjδstrand

Summing up, we now have p2, . . ., Pn9 q29...,qn satisfying {pj9 pk} = 0, {qj9 qk} = 0,
{Ppclk} = δj,k In particular, the corresponding Hamilton fields form a Frobenius
system of commuting vector fields, transversal to y at every point. We finally
extend the functions p^q^ from y to a neighborhood, by solving

HpjP,=HqjP,=0, Hpjqi=Hqjq,=0, 2^j^n. (2.1)

(This gives back the extension of q1 to J_ , already discussed.) We have {pl9 q^} = 1
for the symplectic structure of y, and (2.1) shows that dpv ana dq1 restricted to the
symplectic orthogonal space of y vanish. Hence {Pι,4ι} = l on y for the full
symplectic structure and from (2.1) and the Jacobi identities, we conclude that
{Pι?<?ι} = l everywhere.

Summing up, we have constructed a system of symplectic coordinates pί9...9pn9

ql9 ...,#„, defined in a complex neighborhood of 7. All the coordinates are single-
valued except ql9 which satisfies ̂ 1 = q^ + 2π. Let us then consider the canonical
transformation,

\P(y,η))e(SixiR)xCn-ixCn. (2.2)

The image of y° is given by x" = ξ" = 0, where we write x = (x 1 , x"), ξ = (ξ i , <Γ) We
also know that κ(y) is an 7-Lagrangian and R-symplectic submanifold of κ(f-) such
that the fibers xx = const are strictly negative with respect to κ(y). Hence we know
from [13], that κ(y) is given by: ξi = 2Γ1dXlΦ1, where Φ1 = Φ1(x1) is strictly
subharmonic. Since 7° is mapped to ξ^ = 09 Imx1=0, we also know that Φι(xO
= 0(|Imx1|

2), and hence Φ1(x1)^(Imx1)
2.

From the results in the appendix and the hyperbolic structure of 7°, it is easy to
see that there is an escape function G such that in the region p"1^ — ε0,β0]):

HpG>0 in C7'. (2.3)

Near 7 we have : G = 0(dist ( - , y)2) ,

HPG ~ dist( . , y)2 , G| J± - ± dist( - , y)2 . (2.4)

We can take for example a local escape function G1 equivalent to dist(Γ_)2

— dist(Γ+)2, and glue Gl to an escape function at infinity G constructed in
Proposition A.6. From now on we consider the situation after applying κτ

(without change of notation). It is rather easy to see that since for example the
bicharacteristic leaves of J_ map into the fibres x = const, κ(Λφ) does not project
nicely on the x-space, but we shall see that things improve, if we replace Φ by
Φt = Φ + tG for some small ί>0. Here G is considered also as a function on C" in
view of the projection Λφ-*Cy.

Remark 2.1. In the original coordinates of C2/ί, we may introduce as in [6] the /-
Lagrangian manifold AtG : Im(x, ξ) = ίHG(Re(x, ξ)). Then κτ(AtG) = Λφt, where with
the same identification as above; Φt = Φ + tό, G = G + 0(fdist( ,7)2). The dis-
cussion below applies also to Φt.

Now let us consider the graph C of κ9 defined in a complex neighborhood of
{((xijOXO^^Xi)); Imx1=0}5 where for simplicity we use the variable "ί"
introduced above as a parametrization for 7°. If we fix x = (x1? 0) with xί real, then
the inverse image of {(x, ξ)9 ^eC"} under K is the manifold KXl discussed above,
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and we have arranged so that the projection KXl-+C" is a local diffeomorphism. It
follows from this, that the map C 9 (x, ξ, y, η) i— » (x, y) is a local diffeomorphism, so

C = {(x9φ'J(x9y)9y9-φχx9y))}9 (2.5)

where φ(x9y) is a holomorphic, possibly multivalued function defined near
V= {(x1? 0, πy7

0(xι))} C((SX x iR) x C"~ x) x Cn. To study the multivaluedness ofφ9 it
suffices to study φ(&~x9 3~y) — φ(x9 y), for (x, y) e V, where 5̂  denotes the rotation
either on S1 or in πy(y°). On this particular set we know that φ'x = Q,
-φf

y = (φQ

+γχ = (φQ_yχy so we conclude from (1.7) that:

Φ(rx9ry) = φ(x9y)-C(0)9 (2.6)

when (x, y) e V9 and hence also for all (x, y) in a neighborhood of V.
We now look for suitable contours, in order to realize a Fourier integral

operator F with phase φ(x9y). Fix x° = (x1?0) with x1 real. Then Λ _ φ ( x o t . ) = KXί9

and if we recall that the real part of KXί is the bicharacteristic leaf ΓXί in J_, we see
that

- Im( - (Kx°, y)) - Φ(y) = 0(dist (y, π^ΓJ)2) ,
and that

- Im ( - 0(χ°, y)) - Φ(y) ~ - dist (y, πy(ΓJ)2 ,

on π^/^). Now we recall that KXί is a negative Lagrangian manifold, so if we add a
suitable direction to π^I^), not in πy(ΓXί\ we get a totally real manifold LXl of
dimension n, containing πy(/]Cl), such that

- Im( - #x°, 3;)) - Φ(y) ~ dist(y, πy(ΓXl))2 on LXI ,

or rather,

- Im(φ(x°, y)) + Φ(y) ~ - dist (y, πy(ΓXί))2 on LXί .

If we replace Φ by Φί? we get

°, y) + Φr(y) - - dist (y, πy(y°(xι))2 on LXί .

This means that if /(x, y, h) is a classical analytic elliptic symbol, defined in a
neighborhood of V and if w e #φt

c is defined in a neighborhood of πyy°, then we can
define FueHl$° in a neighborhood of S1 x {0}, by

Fφ, Λ) = f eίφ("' y)/Λg(x, y, Λ)ϋ(x)dx . (2.7)

In this formula we integrate along the contour LXl.
Here Φf is strictly plurisubharmonic (pl.s.h.) and A&t = κ(ΛΦt), Φt\x,, = 0 = Φl9 and

more precisely Φί(x) = Φ1(x1) + 0((x")2). Here we use the terminology and the
results of [13]. From [13, Theorem 4.5], we also know that F has an inverse G
(which inverts modulo equivalence in the spaces H1^ and Hl£°), of the form

Gv(y9 h) = \e-iφ(x^lhg(x, y, h)υ(x)dx . (2.8)

We have to be aware of one fact: In view of (2.6), Fu will not be singlevalued in
general, but will satisfy a Floquet periodicity condition:

x, h) = e~ ίC(0)/hFu(x, h) . (2.9)



402 C. Gerard and J. Sjδstrand

We get a new pseudodifferential operator FPG, that by abuse of language, we
shall also denote by P. Let p also denote the new principal symbol. Both x" = 0 and
ξ" = 0 are invariant under the flow of Hp, which means that

p ( x 9 ξ i 9 0 ) = p(xi909ξl9Q) = p ( x ι 9 0 9 ξ ) . (2.10)

1 ) = p(xl909ξl90)9 we then get

It is easy to see that the stable outgoing Lagrangian manifold A\ is strictly
positive with respect to Λφt9 with real part f. Now K maps f into f C {x" = ξ" = 0},
given by lmxi = C^RexJ, ξί = (2/i)dXίΦ1(xί). The manifold Ά\ — κ(Λε

+) is strictly
positive with respect to Λφt9 and generated by ^+(Xi), where φ\ is a generally
multivalued phase function with

yj)2. (2.12)

We can specify the multivaluedness:

#β

+(^xO-#V(xJ = C(e)-C(0). (2.13)

Putting e = 0 in (2.12), we get

(2.14)

Since lmp\Aφ ~ — dist( , y)2 (in a neighborhood of 7), we get after
transformation

-Hx'Ί2. (2.15)

3. Estimates for a Grushin Problem in One Dimension

Let P(xl9ξι,h) be a classical analytic symbol of order 0 defined near the zero
section of T*(S* x /R) restricted to S1 x {0} with values in the N xN matrices. We
assume that P has an asymptotic expansion:

P- Σ pfaW,
jeN/2

with:

Po(xiJ ίi) i§ equal to ^ defined in (2.11), (3.1)

Pι/2 = 0. (3.2)

Recall that it follows from (2.12) and the definition of Φ^xJ that:

), (3.3)

where g(xl9 ε) is equivalent to dist(x l9 πxι(γε))2, and φε(Xi) is a holomorphic function
such that qι(xι,dxιφ

ε) = ε. Let x1(ε)eπxι(yε) be the point with Rex1(β) = 0. We can
assume that Re0£(x1(e)) = 0. If Ωv CCΩ2 CCί23 are small complex neighborhoods of
S1, then we have the following proposition:
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Proposition 3.1. We can find operators R_(s):CN^HΦί(Ω2), R+^'.Hφ^ΩJ-^C"
such that if (u,u^)eHφ^(Ω^) x CN satisfies:

_ M _ = ι ; n

for (v,v+)eHφί(Ω2)xCN.> and if u,v are z-Floquet periodic, then the following
estimates hold uniformly for z in a compact annulus of C\{0}:

+ b

Here ||w||β l is the norm in HΦl(Ω^\

\\u\\2

Ωl=^\u\2e-2^/hL(dx), L(ώc) = Lebesgue measure.
Ωt

Proof. In the following we will often omit "ε" in the notation. We start by reducing
(i/h)P to dxι. To do this, we construct an elliptic N x N symbol of order 0; a(x, ε, ft)
such that (P — ε)(aeίφ/h)~Q, by solving the usual transport equations. If &~ is the
rotation by 2π on S1 (or rather its covering space), we get from (2.13):

(3.4)

and we also have,

α(x1? ε, ft) = t/(ε, ft)φc1? ε, ft), (3.5)

where U is an elliptical symbol of order 0. Then we have the following equality
between operators:

e-Wa-\P - s)eίφfha = Q(xl9 DXί9 h)DXί, (3.6)

where Q is elliptic of order 0.
Assume now that (u,U-)EHΦί(Ω3) x CN satisfies

(3.1)

where u and υ are assumed to be z-Floquet periodic, for z in some compact annulus
in C\{0}. lϊu = eίφlhaύ v = eίφ/haύ, we get using (3.6):

(3.8)

(We here ignore certain exponentially small errors, that will not affect the estimates
of the proposition.) Using then (3.4), (3.5) it is easy to see that u and ύ are Z-Floquet
periodic with Z = ze~ί(C(e)~C(0))/Λl/~1(ε,Λ). [Moreover, we can easily check that Q
will have the right Floquet periodicity to match in (3.8).] We shall now consider Z
as a new parameter. Let j (ε) be a point on πx(yε) and let f(xl9ε) be the gaussian:
/(x1,ε) = exp( —C0(x! — j (ε))2), where C0 is a large positive constant. Then we set

F(xl9s9Z)= Σ°Z-*/(>
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which is close to /(x1? ε) on the "interval" [x^ε), x^ε) + 2π], if C0 is large enough,
but F is now z-Floquet periodic.

We consider now the following Grushin problem:

V '

where j R _ w _ =F(x1,ε,Z)w_, £+ώ = ώ(x1(ε)). Then the general solution of (3.9) is
given by:

ύ(Xl) = v++ 7 v(t)dt- 7 F(t,s,Z)u_dt.
xι(ε) xι(ε)

Since we are looking for Z-Floquet periodic solutions, we get

xι(ε) + 2π ^ι(ε) + 2π

(1-ZK+ J 0(ί)Λ- j F(t,ε,Z)u-dt = Q.
Xί(ε) *ι(ε)

Let G(xl5ε,Z) be the function:

7 ί*(ί,ε,Z)A.
*l(β)

It is clear that G(x1(ε) + 2π,e,Z) is invertible, so by composing / with some
constant non-vanishing matrix, we can arrange so that G(xx(ε) + 2π, ε, Z) = 1. Then
we get

*ι(ε) + 2π

u_=(l-Z)t;++ J v(t)dt.
xι(ε)

We need now some estimates on the solution of (3.9), and we start by getting
pointwise estimates. Let ̂ e^: Since g is strictly subharmonic, for every x0 we
can find g = Reb, b holomorphic, such that: g — g~d(x,x0)

2. If χeQ^C) is a
standard cutoff function, then using the Cauchy integral formula, we get:

-2b(xQ)/hf( \2_ * r ^(Z)

e V(Xo) ~Ί^^zso

\ύ(x0)\2e ~ 2d(x°»h = \v(x0)
2e ~

^ Ch~1J \v(z)\2e ~

= ~ f \v(z)\2e ~ WMe2™ -~9(zm\dzχ((xG - z)/h1/2)\L(dz).

Since g(z) — g(z) = 0(\z — x0\
2\ e(9~®lh is bounded by some constant independent of

h on the support of χ((x0 — z)/hί/2). Finally, we get:

\v(x0)
2e-29(x^h\^ £ J \v(z)\2e-2d(z»hL(dz). (3.10)

h ixQ-zi^h^2

Integrating this estimate along πx(yε), where g vanishes, we get:

;cι(ε) + 2π

J
Xl(ε)
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where \\ϋ\\Ωl denotes the norm in Hg(Ω^. Using the Cauchy-Schwarz inequality, we
then obtain:

jcι(ε) + 2π

xi (ε)

This implies that:

We now estimate

\\u-\\£C(\\v+\\+h-v4\\ϋ\\Ωl).

i)= I ύ(t)dtxe-0(Xl)/h.
*ι(β)

(3.11)

To do this, we choose first the integration path in the following way: Let
y(xι)eπxι(yε) be the point which is closest to x l β We integrate along πxι(γε) from
Xi(ε) to jφq), and then from y(xί) to x x.

Let I(xι) = Iι(Xι) + l2(xι) be the corresponding decomposition of/(xj). Using
the same estimate as before, we get:

C7Γ1/4|| βl

The first factor in the last member has the same behaviour as:

v l / 2

(forxeR),

which can easily be estimated by a constant times h1/4. So, finally: |/2(xι)| ^C\\v\\Ωl.
Integrating the point wise estimate of /ι(xι), we then get:

Xl

!

On the other hand, since G(x1?β,Z) is bounded; ||G||βlrgC7z1/4, so we get the
estimate for ύ:

Now we return to the original problem (3.8). Let Q ~1 be a parametrix for Q so that
Q~ίQ = l —R-m where R,^ has an operator norm = 0(/zco) (from the space of
^-functions on a domain to the same space on a slightly smaller domain). Note
that R+ύ = e'~iφ(Xl(emu(x1(ε))9 since we can choose a such that α(x1(ε),Λ) = l.
Applying β"1 to (3.8) gives:

if we use the estimates (3.11), (3.12) and the fact that R^ and R. „ are O(ft°°), we get
the proposition.
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4. Solution of a Grushin Problem on Rn

Composing the standard F.B.I.-transform mentioned in Sect. 1 with the integral
transform constructed in Sect. 2, we get an operator of norm 0(1):

T:H(ΛtG,l)->lfφ(β). (4.1)

Here t > 0 is small and fixed, G is the escape function introduced in Sect. 2 and Φ
denotes a function having all the properties of Φt in Sect. 2. (See Remark 2.1.) In
(4.1), Ω is a small open neighborhood of S1 x {0} in (S1 x zR) x C"'1, and HΦ(Ω)
denotes the space of holomorphic functions in Ω such that

|| u HI = f \u(x)\2e~ 2φ(x}/hL(dx) < oo . (4.2)

By convention the elements of HΦ(Ω) are not single valued but ω-Floquet
periodic as in (2.9), with ω = e~ic(0)/h. (Other choices of ω will also be made.) The
direct definition of F in Sect. 2, only gives that dTu is exponentially small, but we
can correct this by solving a ^-problem, using the fact that Φ is strictly
plurisubharmonic.

Thas microlocal inverse S of norm 0(1) : Hφ(Ω)^>H(ΛtG, m) with the properties:
(i) STis a pseudodifferential operator of order 0 adapted to AtG in the sense of

[6], which has compactly supported symbol and which realizes the identity
microlocally near y.

(ii) We have ||71Stι-M||JErφ(fi) = 0(Λα))||M||Hφ(0), where ΩCCΩ has the same
properties as Ω.

As we also discussed in Sect. 2, our original operator P transforms into a
pseudodifferential operator, that we shall also denote by P (and sometimes also by
P, when both operators are considered simultaneously). As we know from [13],
there are several ways of realizing P, and they are all essentially equivalent. In this
section, we make essential use of the techniques of [11] and [13], and we shall not
recall all details. Since the weightfunction Φ is fixed from now on, we shall suppress
it from our notation as much as possible, and we write H(Ω) or H°(Ω) instead
offίφ(β).

We introduce the following weighted spaces:

Hm(Ω) = {ueH(Ω);(l+h-1/2\xff\)mueL2(Ω,e-2φ/hL(dx))}, (4.3)

with their natural norms. All these spaces are equal to H°(Ω), and the importance is
entirely due to the weighted norm

Let A(x9 ζ,h) be an analytic symbol defined in a neighborhood of
{(x,(2/ΐ)dxΦ(x)); xeΩ}, such that

A(x, ξ, h) = 0(1)(1 + h- 1/2(\x" I + \ξ"\)Γ (4.4)

By "^4" we also denote any reasonable realization A(x9 5, h) : H(Ω2)-+H(Ωί), where
ΩίCCΩ2CCΩ. Then (cf. [11, (2.17)]), we have

Proposition 4.1. A is 0(1), Λ->0, as a bounded operator Hm(Ω2)-+Hm~m°(Ωί).

The proof is merely a repetition of the arguments in [11], so we shall omit it.
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Corollary 4.2. The operator (h-i/2x")"(hi/2Dx,,f is

From now on, we only consider domains Ω such that for some ε0>0:

Ωn{|x// |<ε0} = Ω / x{x / / ; |x'Ί<e<>}> ̂ ' = {χι; (xι,0)eΩ}. The main purpose of this
section is to perform a reduction of the study of P, to the study of a one-
dimensional pseudodifferential operator, acting on truncated Taylor expansions
in x" at x" = 0. For JVeN, we introduce the expansions:

τNu(x)= Σ (α!)-1(3^)(x1,0)(^)α

|α" |<ΛT

)β. (4.5)

We recall that our weight Φ(x) satisfies Φ(x) — Φ(xl9Q)~\x"\2

9 and we shall write

Φι = ΦL" = o

Proposition 4.3. // Ω1CCΩ2CCΩ, then for all mί9m2 the operator τN is

Proof. Let d = rc - 1 . Let χ e C£(Cd) be rotation invariant with f χL(dx") = 1 . If u is
holomorphic, then by the mean value property

φl5 0) = h~d j χ(/Γ x / V)(x)L(d;c") .

Hence, by Cauchy-Schwartz' inequality:

/2\\u\\L2(Ω}, (4.6)

where all L2-norms are evaluated either with respect to e~2φ/hL(dx) or with respect
to e~2φ^lhL(dxl), unless otherwise is explicitly stated. Since we integrate over
|x"|^C7z1/2, we may replace the norm to the right by | |M|| f fm2 ( Ω ), for any m2.
Conversely, if v(xl)EH(Ω'j), then

(4.7)

and we even have

(4.8)

Combining this with Corollary 4.2, we get the result.
To make our reduction to the study of an operator on Taylor expansions, we

shall first prove a "strong" a priori estimate for functions that vanish to some high
but fixed order at x" = 0. The first step will be to establish a half estimate, using a
method inspired from Cordoba-Fefferman [3].

Proposition 4.4. Let χe Q?(Ω), and choose a realization of P such that Pu is well-
defined in a neighborhood of suppχ, when ueH(Ω). Then there is a classical C°°
symbol q(x,h) of order 0 with support contained in suppχ, such that

f Pu(x,

= J q(x, Λ)κ(x, h)φjήe ~ 2φ(x)/hL(dx) + r(u, v) , (4.9)

where \r(u, v)\ ̂  CNhN \\ u \\x\\v \\ for all N, and the principal part of q (modulo O(h)) is
given by

(4.10)
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Proof. Using analytic stationary phase (see [13]), we first notice that in a
neighborhood W of suppχ:

Λfo*) = Σ ^(α) (*,τ M>) (βy - T 5,Φ(

where

We can then ignore the contribution from Ru. We have

B,-*dxΦ(x))'u(y)\y=x= ]

where fΛ>β = 0(l\ /α,α= 1 (and where ^-integer powers of h are actually absent).
Insert this with (4.11) in the left-hand side of (4.9) and integrate by parts. Then

(4.9) follows. [Notice that no derivative can fall on t (x) which is anti-holomorphic.]
The leading term q0(x) is produced from the leading term in (4.11) and (4.10)
follows.

Now take Ω±CCΩ2 CC ί23 CC Ω, and let χ e C^(ί22) take its values in [0, 1] and be
equal to 1 on Ωί. We also assume that the realization of P is chosen so that Pu is
well defined in Ω2, for ueH(Ω3). From (2.15) and Proposition 4.4, we get

w^ (4.12)

Let 0N denote the space of holomorphic functions u such that u = Oh(\x"\N). We
shall now see, that if N E N is sufficiently large, then we can eliminate the last term
in (4.12), when ueH(Ω^ON.

Lemma 4.5. Let 0<C0<C1. Then for ueH(Ωί)r\0N:

1 | |w | | { |χ ' ' |^C 1 ΛV2}nβ 1 > (4 13)

where C(Λ/)->oo, N-+CO.

Proof. It is enough to prove the corresponding inequality for the L2-norms with x1

fixed. The variation of x" ι-> Φ(x)/h is then 0(1), so after the change of variables
x" = hί/2x", we are then reduced to prove

for all holomorphic functions on the ball 5(0, CJcC""1 (of center 0 and radius
Cx), vanishing to the order N at the origin. Here, of course, we should also have
C(Λ/)->oo, ]V-κx), but the L2-norms are now taken with respect to the Lebesgue
measure.

After increasing C0 and decreasing CΊ it is enough to prove a corresponding
inequality for L^-norms, with the constant C(N) slightly changed.

Since u(x") vanishes to the order N at 0, we can use Taylor's formula:
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We may assume that |x"| = C0, and use Cauchy's inequalities directly on t^u(tx"}\

I I ι/f>v"ϊ <NUΓ 1C i\~N\\u\\I ~τ7 I U{IX ) =*lVi(\sι/^Q — I) \\U\\LCO(B(O,CI))
\atj

Then,

i
\M\L^(B(o,c0))^N^(l-t)N~1/(Cί/C0-t)Ndtx | |M||Lco ( B (o,C l))9

0

and the coefficient to the right can be estimated by N(Ci/C0~l)~1(C0/Ci)
N~1

which tends to 0, as TV tends to infinity.
If we fix N sufficiently large, then for u e H(Ω^)r\0Ή, the last term of (4.12) can be

eliminated. (We have to increase the constant C.) We use also that

and get (with a new constant C):

h\\u\\^(Ω^c(\\pu\\H-ί(Ω2}M
which implies

h\\u\\^(Ω^C(\\Pu\\m(^

Dividing by ||w||Hi(03), we get

Proposition 4.6. Let Ω1CCΩ2 CC Ώ3 CC Ω. If N e N is sufficiently large, then for all
nON:

Λ| |w|lHi(θ3)^ c(ll^llH-^2)+Λ l l«ll^(θ3\flι))^ (4 14)
By the same proof we also get (4.14) uniformly with P replaced by P — E, where

— εo>εo]~~*[0?CΌ^] Also, if we apply this inequality with u replaced by
h~ ί/2x"u, and notice that the commutator [P, h~ 1/2x"] behaves like hί/2x", we see
that we can raise the indices by 1 and get

-E)u\\Hθ(Ω^ (4.15)

UEH(Ω3)nO.
We shall next analyze various compositions between P, τN, 1 — τN. We let έ?~N

be the space of holomorphic functions of the form £ t?α(xι)(A~ 1/2x")α It is the
| α | < J V

image of τ^. We may decompose elements of ̂  into sums of homogeneous
N-ί

polynomials in x"\ ^N= @ &*om. The operator P(N) = τNPτN can then be

represented by a matrix
Let [cf. (2.11)]:

_!(*!, 0,15^,0), (4.16)PO = «(*I, AJ+ Σ Z^^^O^^OKD^ + ̂ .^x^O^^O), (4

where P~p + hp_! + .... Then P0 contributes with a diagonal part to P(N}:
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where Rj is a (matrix- valued) pseudodifferential operator of order 0. The problem
of analyzing P(N) is then reduced to that of analyzing τN(P — P0)τN.

Proposition 4.7. We can represent τN(P — PQ)I;N as a matrix of classical pseudodif-
ferential operators (Mjt k(x1,DXl, h}\ where My k is of order — (1 + \j — k\/2) for j^k

and of order ^ — 2 for j = k.

Proof. It is quite easy to see that Mjtk are classical pseudodifferential operators of
order ^0. For instance, with Q = P — P0, let us consider

= Σ Σ ^4fi(*i> °> β*s

For the study of τNQτN, we may restrict α, β, y to the region |α| < N, \β\ <N,\γ\<N.
We can then rewrite our expression as a finite sum of terms

CΛ.βd*x»dl»Q(xl909DXί909l

β^y. In our case, we may split Q into one term which is independent of h but
0(|x"||<ΓΊ(|xΊ + |£Ί) and one term which is of order — 1 and 0(|x"| + |<ΓI) and
finally, one term which is of order —2. We get a contribution to Mjtk, when

> — β\=j and \y\ = k. To get the order correctly, we should rewrite:

hM-

so the order is — ̂ (|α| + \β\) plus the order of β. Now j — k = |α| — \β\. In the first case
we also know that |α|^l, |j?|^l, |α| + |j8|^3, so we get the order -i(|α| + |/?|)
^ — j \ j — k\ — min(|α|, |j8|), which gives the desired estimate. In the other cases, the
order is ^ — ^[/ — k\ — min(|α|, |j?|) + the order of β, and in each case we get the
desired estimate.

We also need,

Proposition 4.8. // 0<M^ΛΓ, then τMP(l-τN) = τM(P-P0)(l-τN) and
(l-τN)PτM = (l-τN)(P-P0)τM are o(h1/2(3+N~M} as bounded operators
Hm2(Ω2)-+Hmι(Ω1). Here ΩίCCΩ2CCΩ and mί,m2 are arbitrary.

oo

Proof. Again we consider more generally τMQ(l—τN). If g(x, ξ, h) ~ ̂  qfc, ζ)hj

o
with qj = 0((\x"\ + \ξ"\)(m~2j)+)9 then from Propositions 4.1 and 4.3 it follows that
τMQ and QτM are 0(hm/2) from Hm2(Ω2) to H^ΩJ. This means that by a Taylor
expansion of the symbol of Q at x" = ξ" = 0, we can reduce our problem to the case
when Q is differential in the ^''-coordinates. For |α|<M and u€0N, we get

(h1'2Dx,,r(Qu)(x1,0)=

βu) (χl9 0) ,

where the sum is finite. If we consider for instance the case when Q = q is
independent of h and = 0(|x"| \ξ"\(\x"\ + \ξ"\))9 we can restrict the sum to [αj, |j8| ̂  1,

I^S, |j5| + |α2 |^ΛΓ, |α1| + |α2|^M-l. The general term in the sum repre-
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sents a term which is 0(hl/2(M + m) as a bounded operator βΓW2(ί22)->//mι(ί21).
It is easy to see that ^(\oί1\ + \β\)^^(N — M + 3). The lower order contributions
to Q are treated the same way, and we get the proposition for τMQ(l— τN),

Q = P-P0

To prove the same statement for (1 —τN)QτM, we choose |α|<M and consider

ρ(φ1)p-1/VT)= Σ c..ίβ<«(x,βJCl,θ,Λ)(ι>(χ1))Λ*i'>i(Λ-1/V)«-'t.
0g<*

Write,

β«"(x, £„ 0, A) = Σ («!)" 'βίSίxi, °. ίι» 0» Λ)(*T + Λffo ί 19 0, h) ,
l« l<*

where Λ^ vanishes to the order k at x" = 0. Then

= Σ
/?^α

= Σ

Here the factor [...] represents an operator on v(xί)(h~ll2x")Λ which is
0(ί):Hm2(Ω2) ^Hmι(Ω1)9 so the only problem is to find a lower bound for
\β\ + ̂ (N — |α|). Considering again the three different cases, we get the desired
boundedness. [In the first case, we have |

We identify a function

u= Σ Mα(*ι,
|α|<]V

in J7"^ with the CM-valued function ύ(xί9h) = (u^Λ^N. Here M=Φ{aεNn~1;
\ct\<N}. We shall say that Ω is of product type, if near x" = 0, Ω is given by
conditions on xί only. If Ω is of product type and if Ω' = Ωn {x" = 0}, then we have
uniform equivalence between ||w||Hm(Ω) and h(n~1)(2\\ύ\\H^ι(ΩΊ. The operator P(N)

satisfies all the assumptions of Sect. 3. Let S1 x {0}ccΩίCCΩ2CCΩ3CCΩ be of
product type:

Proposition 4.9. For ueH2(Ω3), VEH°(Ω2), u_.,v+ eCM, we consider the Grushin
problem:

where R^ , R*L are adapted to P(N} as in Sect. 3. Here we let u, v be z-Floquet periodic,
where z varies in a compact annulus in C\{0}. Then uniformly in u,u_,z,we have with
n = 2n-\

IIM (4.18)
Proof. Applying (1 — τN) to the first equation of (4.17), we get
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which implies

- £)(! - τN)u = (1 - τN)v + - (τN(P -£)(!- τN)u - (1 - τN)(P - E)τNu) .

Using (4.15) and Proposition 4.8, we get,

||(l-τ>||H2(βl)^C(^ (4.19)

Applying also τ^ to (4.17), we get

since τNR*L = RN_,RN

+ =RN+τN. Then,

»u, =τNv-(i/h)τN(P-E)(l -

so using the estimates of Propositions 3.1 and 4.8 and the remark prior to
Proposition 4.9, we get

(4.20)

Adding (4.19) and (4.20), we get,

(IMlH2(Ωo+^>-ll)^^ (4 21)
In the above estimates, we now replace Ω2 and Ω3 by Ω2,Ω3 with ΩίCCΩ2

CCΩ3CCΏ2. Since P — E is elliptic in a neighborhood of Ω3\Ωί9 we have

\\U\\H^\Ω^C(\\V\\Ho^

so using this in (4.21) (where Ω3 had been replaced by Ώ3), we get (4.18).
We now return to the original problem on R". Let χ(x, Dx, h) be a pseudodif-

ferential operator of order 0 adapted to AtG with compactly supported symbol,
equal to the identity microlocally near γ and with the property that χ(I -ST) and
(/ — ST)χ are negligible (in the sense of [6, Chap. 6]). Here T and S are the Fourier
integral operators introduced in the beginning of this section. We put R+ = R+ Tχ,
R__=SR-, where R+ =R*±, and where we take the natural Floquet periodicity;
z = exp( — iC(0)//ί). Then we have the following theorem:

Theorem 4.10. For h>Q small enough and E e [ — ε0, ε0] + i[0, — C0/ι], the Grushίn
problem.

- =
( ' '

has a unique solution (u,u^)eH(ΛtG,m)xCM for every (v,v+)eH(ΛtG,l)xCM.
Moreover, we have the a priori estimate

where C is independent of E and n = 2n — ί .

Proof. Since (p — E)\AtG is elliptic outside a small neighborhood of y£, it follows
from the general theory of [6], that

σ.m)^ (4.24)
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Here we also use that # _ w _ is 0(h°°) in H(ΛtG, 1) outside yE.
Applying χ(x, Dx, h) to the first equation in (4.22), we get

R+Tχu = v+,

where w = (z'//z)[P,χ]w satisfies:

IMI*(ΛtG,l)^αiM^

Here we use (4.24) with a cutoff closer to yE. lϊύ = Tχu, and if P is a realization of the
conjugated operator TPS, we get,

where || w||Ho(β3) — 0(Λ°°) ||w|| f f (y l tGίW). Here Ω l9 Ω2, ί23 are as in Proposition 4.9, and
we may assume that Ωl or rather K Ϋ i(Aφ\Ωί) is much larger than the region where χ
is not = 0 microlocally. Here

where ||w_||Ho(β3) = 0(A0 0)| |κ_||. If we write,

we can apply Proposition 4.9 and get after using the inverse transform:

(ll«ll f lM t o.. 1.)+ll«-ll)). (4-25)

Adding (4.24) and (4.25), we get (4.23). Thus we have also proved that

is injective. From the general results of [6], we know that (P — E) and hence also

I ) are Fredholm of index 0. Since I - ~ 1 is of finite rank, it

follows that ̂  is also Fredholm of index 0 arid hence bijective, since it is injective.

5. Proof of Theorem 2

F F
Let & = I + be the inverse of 9 constructed in Theorem 4.10. We shall

first compute an asymptotic expansion for F_ + . To do this, we need to determine
w _ as a function of v+ in the problem
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Then it suffices to get an approximate solution of the problem with errors
0(/i°°)||i;+||. This asymptotic problem is most easily treated after applying the
transformation T:

We shall look for u of the form b(x, E, fye

ιΦ+(χ>E)/h

9 where b is an analytic symbol.
Then by applying S to ύ, we will get a solution of (5.1) modulo 0(/z°°) in
H(ΛtG, 1) x CM. To describe properly the structure of F_ + , we shall first consider
(5.2) for Zέji(c<E)-c<o))/Λ Floquet periodic solutions and afterwards put z = e~ίC(E}/h.
We now denote P simply by P. We shall assume that E lies in the basic rectangle
D = [ — e0>

εo] x [0? ~~Co^] f°r a fixed constant C0, and that N is so large that

For |α |>JV; \ρ(E)θ(E)"Λ-e-'iC(^/h\^Cί>0. (5.3)

Let

L = (ί/h)e-ίφ/h(P-E)eίφ/h

y

and let Sm'k be the space of symbols a(x,h) having asymptotic expansions,

where αfe-/x) = Od^Y"7) is holomorphic and z-Floquet periodic in x ί f If /(x, ξ) is
the principal symbol of (h/i)L, we see that

X' Γ, (5.4)

where/! =
We note that sm'k/Sm'k+1 can be identified with the space of functions

k
£ h(m~j/2}ak,j(x), where α f e _ 7 is a (fe— j)-homogeneous polynomial in the x"-

j = o
variables. Using (5.4) it is easy to verify that Sm k is stable under the action of L
(defined by formal asymptotic expansions). The action of L on sm'k/Sm'k + ί is given
by

^= Σ(W,+/-ι,
7=1

or by

^o = d<Λ(*ι, 0)δxι + B(xl9 0, 0)x'r - 5χw + /_ Λ^, 0, 0) .

We shall then solve the Grushin problem

for fe, c e Sm>]V. Here α, β, F are defined in Sect. 3 for P = P(N\ We return for a while
to the constructions there. Let α0, g0 denote the principal symbols of 0 and Q. With
the notations of Sect. 4, it is clear, using Proposition 4.7, that to compute α0, we can
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replace P(]V) by

Then α0 satisfies the transport equation

\d2qd2

2 W 7S
Since conjugation by elφ+/h corresponds to the canonical transformation
(xl9ξι)^(xι9ξ1-dXίφ+)9 we see that I ( x l 9 ξ 1 ) = q(xΐ9dxιφ+ + ξ i ) 9 5(xl90,0)
= (ajtk(xl909dxιφ90))9 l-1(xl9Q9Q) = ip-1(xl9Q9dXίφ+) + %d%ίqdXίφ + 9 so one has
j£?0β0 = 0. We also note that 3ξ l/1(x l50) is equal to ^0(x1?0), if <?0 is the principal
symbol of the operator Q introduced in (3.6). Now we come back to (5.5) and we
start by studying this problem with b, c e sm'N/Sm'N+ *. We see that we can replace a
by 00> 2 by 4o(*ι>°)» since we βet then an error term in Sm~*'NcSw 'A Γ + 1.

With the interpretation of sm'N/Sm'N + 1 above, we can obtain an /z-independent
problem ("Λ = Γ) by putting x" = hi/2y";

Let M(ί,s) be the fundamental solution-matrix of q$ 1 £ f 0 , considered as an
ordinary differential operator in x l β The solution of (5.6) is then:

xι(E)

- J M(xl9y1)a0(yί)F{yl9Z)u.dy1.
xι(E)

Now using the remark made above and the fact that aQ(x1(E)) = l, we get that:
), so

J M(Xl(E) + 2π,
xι(E)

xι(E) + 2π

= J M(x,

with the notations of (3.5). Since fc^i) is z-Floquet periodic, we get:

.E) +

J

so : E°_ + 1? + = U0(E) ~ 1(U0(E) — z)v+. We remark here that the eigenvalues of l/0 are
of the form ρ(E)θ^Λί ... θ^-ΐ"1, where θj = θj{E) are the eigenvalues of modulus
greater than 1 of the linearized Poincare map associated to y£.
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We have then proved that for ceSN/2 N, v+e(S°)M, we can find beSN/2>N,
w_e(S°)M, such that

^= 0(\x"\N+1) is a holomorphic function, such that Lf=dmodSNI2~ί>N.
Equivalently, we have to solve <£f=d. Using (5.3), we see that we can find such a
function, if z stays in a fixed neighborhood of {e~lC(£)/Λ; EeD}. Finally, we have
proved that ttceSN/2 N

9 v+ e(S°)M, we can find beSN/2>N, u_ e(S°)M such that:

wiihdeS(N~1)/2'N. We can now iterate this procedure, to solve (5.5) for c = 0. We
get that u-=E_+v+9 with E_ + eS° (here denoting the space of classical symbols
with asymptotic expansions in powers of h1/2). The principal part of £_+ is
E°_ + = (U°(E) - z)U\EY^ We have then proved the following result:

Proposition 5.1. F. + is of the form £_+(£, e~ίC(E)/\ A) + O(Λ°°), where E_+eS°
has an asymptotic expansion

and where

We are now able to prove Theorem 2 (which implies Theorem 1). Let y = γ(h) be
simple loop such that F_+(E,Λ) is invertible for zey. We shall prove that the
number of resonances of P inside y counted with multiplicity is equal to the
number of roots inside y of detF_+(E,/ι) = 0. Without changing F_ + , we can
forget the factor i/h in Theorem 4.10. The first number is equal to

y
in view of the general results of [6]. Now

and since F(z) has no singularities inside y and since F+9 F_, F_ + are operators of
finite rank, we get

On the other hand, we know that the number of roots of detF_ + inside y is equal
to:
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where the dot denotes derivative with respect to z. Using that & '= —ΪF3P2F, we
easily get, F_ + =F_F+ - F_ +#+F+ -F_#_F_ + , so

since ¥ _R_ and ^+F+ have no singularities inside 7, and therefore do not
contribute to the integral.

Now F_+(E,Λ) is asymptotic to the matrix E_+(E,e~ίC(E)/h,h), defined in
Proposition 5.1, and it is easy to see that there is a bijection b(h) between the roots
of detF_ +CE,Λ) = 0 and the roots of detE_ +(E9e'ίC(Eίlh

9h) = 09 such that b(h)μ-μ
= 0(/ι°°). We have then proved the theorem.

Remark 5.2. Modulo 0(/z1/2), both E_+ and F?+ =E_ + U°(E) are of block
diagonal form. If N0<N and the last N — N0 entries have bounded inverses, it is
easy to see that the Grushin problem with the corresponding smaller number of
conditions and co-conditions is well posed and that Theorem 2 is still valid. Then,
if (5.3) holds with N replaced by N-l, Theorem 2 holds. To describe the
resonances close to the elements of Γ°(h)9 given by α = 0 in (0.13), it is enough to
take N=ί. Then Fί + is scalar valued, and one can show that only integer powers
of h appear in the asymptotic expansion (0.16).

Appendix

We discuss some general geometric facts, including the existence of suitable escape
functions. Some parts of our discussion is inspired from the geometric scattering
theory, as it is presented in Reed-Simon [10], but since our potentials may be quite
large near infinity, we are far from the situation of ordinary scattering theory, and
we therefore give a self-contained discussion.

Let p(x, ξ) e S(m) be the principal symbol of an operator P, which satisfies all the
general assumptions of [6, Sect. 8], in order to define resonances near 0. Here
1 ̂  m e S(m). In particular, we assume the existence of an escape function G e S1* 1,
such that

vm on p-\0)\K9 (A.I)

where K is a compact set. For our discussion, it will be convenient to have a vector
field, which can be integrated for all times, so we introduce v = m~ 1Hp. Then the x-
component vx of v is in the class S~ l f ° and hence = 0(r ~ l ) = 0(r~l). We recall here
that r(x\R(x] are the basic weight functions introduced in [6], and that f(x9ξ)
= (r(x)2 + ξ2)1/2. The time T9 needed for (x(t)9 ξ(t)) = exp ίφc(0), ξ(0)) to reach a point
(x(T),ξ(T)), with \x(T)-x(Q)\ = εR(x(Q)) satisfies the estimate, Tconst/R ^ εR9 so
T^(ε/const)rjR^ε/const. However, to reach infinity, we have to cross infinitely
many such time intervals, so it follows that v is integrable for all times.

Notice that (A.I) becomes
1 on p-^O^K. (A.2)

Here, we may replace p ~ *(0) by Σε

p = p ~ *([ — ε, e]), if ε > 0 is small enough. Indeed,
v(G) is of class S0> °, so if δ > 0 is small enough but independent of ρ e p ~ 1(Q)\K, we
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get u(G)(μ)^l/2C, for all μεB(ρ9δ) = {(x,ξ); \x~ρx\<δR(ρx\ \ξ-ρξ\<δf(ρ)}.
Outside the union of all such boxes with ρep ^O), we have |p|>ε, for some

ε>° ThuS v(G)^ί/C on Σ*p\K, (A.3)

where C > 0 and K is compact. From now on, the work on Σε

p9 but most of the
discussion will be valid also on Σp = p~1(0).

In view of (A. 3), and since the flow of v is complete, we have G(ρ(ί))-» ± oo,
ί-> ± oo, if ρ(f) is an integral curve for v in Σp\K. Choose T> 0 large enough, so that

Rc{QεΓp; -Γ+KG(ρ)<T-l} . (A.4)

Let us define the outgoing tail Γ+ = {ρ e Σp; expίι (ρ)-/* oo, ί-> — oo}. If ρeΣε

p and
expίι (ρ) reaches the region G^ — T+ 1 for some negative ί, then ρ is not in Γ+.
Hence Γ+ is a closed set contained in the region G> — T+ 1, invariant under the
i -flow (and hence also under the Hp-flow).

Proposition A.l. Γ+n{G^s} is compact for each s> — T+l.

Proof. This intersection is clearly closed, so we only have to prove that it is
bounded. Since our flow is complete, there is a compact set K C Σp9 such that ρ e K,
|ί|^(s-(-T+l))C => Q*ptv(ρ)eK. If then μeΣε

p\K, G(μ)<.s, we know that
exp(-ta)(μ) reaches the region G^-T+1 for some ίe[0,C(s-(-T+l))].
Hence μ φ Γ+ .

Similarly, we define the incoming tail Γ_, which is a closed i -invariant set
contained in the region G<T— 1, such that Γ_n{G^s} is compact for every
5 < T— 1 . Let K = Γ+nΓ_, which is then a compact i -in variant set, contained in the
region -T+1<G<T-1.

Proposition A.2. // Γ_ Φ0 (or if Γ+ Φ0j, then KΦ0.

Proof. Let ρ e Γ_ . Then {exp tv(ρ); t ̂  0} is contained in a compact set L, so we have
expίJ ι;(ρ)^ρ0eZ'p, for some ρ0eΣε

p and some sequence tj- >oo. Put ρ7 — expί^ρ).
For every T>0, we then have expί^ρ^^ expί^ρo), uniformly for t^T. But
exp tv(ρj) = exp (t j + φ(ρ) e L for j large enough, so exp tv(ρ0) e L, for t ̂  T. Here T
may be as large as we like, so ρ0eK.

We next define the true tails 3~±=Γ±\K. On Σε

p, we have the symplectic
volume, which is //^-invariant. For any s< T— 1, the set 2Γ-Γ\{G^s} is bounded
and hence of finite volume. On the other hand, expίfίp(^"_n{G^s}) \ 0, when
£-» 4- oo, so its volume tends to zero when ί-> + oo. On the other hand, this volume
is constant, so it has to be zero for all ί, and hence Vol(^_ n{G ̂  s}) — 0, for all s.
Hence Vol(^"_) = 0. The same argument works for «^"+, and we have proved

Proposition A.3. Vol(5r+) = 0.

We also have

Proposition A.4. The following statements are equivalent:
(a) <T+Φ0.
(b) <T_Φ0.
(c) // we put Ka = {ρeΣp; dist(ρ, K) ̂  α}, then K and K^K are non-empty for

every α > 0.
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Proof. We have already proved that if 2Γ+ or $~_ is non-empty, then K is non-
empty, and the proof also shows that KΛ\K is non-empty for every α > 0. It remains
to prove that (c) => (a), and that (c) => (b).

Assume (c). The volume of K^K is non-zero for every α > 0, so Ka\K must
contain points which are not in 2Γ_ , and hence not in Γ_ . Take a sequence of such
points; ρ7 e j£α\(KuΓ_) which converges to ρ0eK. The corresponding trajectories
jj : [0, + oo [ 9 f-^expίi;^), then go to infinity as £-* + oo, and we let ρj be the point
of intersection with the hypersurface G = T. Then ρj = y/(ί/), where ί,— KXD, 7^00.
After passing to a subsequence, we can assume that ρj-+ρl It *s easY to see that
£o e <^+ , and we have proved that (c) implies (a). The proof of the other implication
is, of course, the same.

Remark A.5. We could restrict the preceding discussion to Σp = p~1(0). Then
Γj?, X°, y± are defined as before, and Propositions A.I and A.2 remain valid as well
as the implications (a) => (c) and (b) => (c) in Proposition A.4. For the opposite
implication (c) => (a), we need to approach KQ by a sequence ρ7 which is not in &~®.
Everything goes through as before, if we assume that dp φ 0 every where on Σp. In
fact, we then have the /^-invariant positive smooth Liouville form ω/dp on Σp9

where ω denotes the symplectic volume form.
Hopefully, the above discussion could be a first step towards general refined

choices of escape functions. In this paper, we only need a rather rough and
intuitively obvious result about such choices.

Increasing K if necessary, we may assume that KcK. Let Hτ={ρEΣε

p;
G(ρ) = T}, and notice that we have the diffeomorphism, κ+ : R x Hτ^Σε

p\Γ_ , given
by τc+(ί,ρ) = expίι;(ρ). Similarly, we have a diffeomorphism /c_ :R x H_τ^Σε

p\Γ+.
Let 0</+ e C°°(2£\Γ_) be ^v(G) with equality in (G^ T} and outside a compact
set in {-T^GgT}. Let G+ GC°°(Γε

p\Γ_) be the solution of v(G+)=f+, with
G+ = T on Hτ. Then G+=G in {G^Γ}, and outside a compact set in
{ — Γ^ G^ T}. We also have G+ ̂  G, and by choosing /+ large enough, we may
arrange so that

Πm G+^-T. (A.5)
ρ->Γ-u£Γ-τ

Let /_,G_ have the completely analogous properties.
Let χ+,χ- E C°°(R; R) satisfy χ+ +χ_ = ί and have the properties given by the

picture:

Fig. 1
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Put G = χ+ o G+ +χ_ o G_. Here χ+ ° G+ can be smoothly extended by 0 in Γ_,

while χ _ o G _ can be similarly extended to Γ+. Thus GeC°°(Σp. By the

construction, we have G = G in {G^ T}u{G^ — T}, and outside a compact set in

We have

while FG = (χ'+ °G+)PG+ +(χ'_ ° G _ ) F G _ . We conclude:

Proposition A.6. Given G, T as above, we can find a new escape function G, equal to

G outside a compact set, such that on Σε

p we have G = 0 in a neighborhood of

K = Γ+nΓ_ and such that locally uniformly on Σε

p:

(A.6)
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