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Abstract. One-dimensional Ising spin systems interacting via a two-body
random potential are considered; a decay with the distance like l/r1 + ε is
assumed.

We consider only boundary conditions independent of the random
realization of the interactions and prove uniqueness and cluster properties of
Gibbs states with probability one.

1. Introduction

Spin glasses are at present one of the major areas of interest in Statistical
Mechanics. Only few problems have so far been solved in a rigorous way. In
particular the existence and the nature of phase transitions are still open problems
even in the Sherrington-Kirkpatrick mean field theory, for which however a very
precise heuristic theory exists (see [10]).

As far as rigorous results are concerned, we mention the proof of the existence
of thermodynamics for interactions decaying like r ~ad with α > 1/2 in d dimensions
[4,7,9]. Khanin [8] proved the uniqueness of Gibbs distribution in one dimension
for interactions decaying like r~a with α> 3/2. Cassandro et al. [2] proved under
the same conditions the infinite differentiability of thermodynamic functions.

The one-dimensional case with 1 < α ̂  3/2 appears qualitatively different from
the former case, since here it is not true that the supremum of the interaction
among two contiguous half-lines over all spin configurations is finite with
probability one. This case has been considered in [5], where the authors deal with
the problem of absence of symmetry breaking. They show essentially that the
interaction among two contiguous half-lines is bounded if one excludes a subset of
"bad" spin configurations of zero Gibbs measure. The situation is reminiscent of
superstable unbounded spins (see [1]), but here the set of bad configurations
depends on the random realization of the interaction.
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We remark that the proof of the main result of [5] is not correct even though we
think that it is possible to get a weaker result (see Corollary 3.6 of the present
paper) by using the ideas of [5] and some further considerations. For a family of
Gibbs states μ(J), obtained by J-independent boundary conditions, the authors can
show that μ(J) and the corresponding spin flipped state are mutually absolutely
continuous. As they want to prove absence of symmetry breaking they are forced
to consider extremal Gibbs states, which are a priori obtained by J dependent
boundary conditions. However their proof which uses Fubini's theorem, can only
be applied to J-independent boundary conditions. Similar considerations hold for
[3]. It is thus not excluded that for a relevant set of interactions some "exotic"
states, not necessarily symmetry preserving, could be obtained by imposing
boundary conditions dependent on the realization of the interaction. We do not
comment any further on this question that seems to us difficult to settle but not
very relevant from the physical point of view.

In this paper we consider only interaction-independent boundary conditions
and we prove that

i) the Gibbs expectation in a volume A of an observable localized far away
from the boundary has a weak dependence on boundary conditions with large
probability;

ii) for any given boundary condition the limiting Gibbs state exists, is a pure
state and satisfies a suitable mixing property;

iii) any two boundary conditions give rise, with probability one, to the same
Gibbs state.

The strategy of the proof is to consider the system as a nearest neighbour block
model (which has exponential decay of correlations in the block distance) plus a
small long-range perturbation. This can be shown to work with sufficiently high
probability.

In Sect. 2 we give definitions and notation. In Sect. 3 we state our results and
prove them by using two main Lemmas 3.1 and 3.2. In Sect. 4 we prove
Lemmas 3.1 and 3.2. In the appendix we prove a proposition about factorization of
products of transfer matrices.

2. Definitions and Notation

Given AcΈ the configuration space in A is the set <?Λ = { — l,l} |y1'. Given
AιCA2CΈ and se£fΛl, we denote by s\Al the restriction of s to Λv Given Al9

A2cZ, with Λ1nΛ2 = φ and s{1)eSfΛl, S{2)E^Λ2, we denote by s ( 1 )vs ( 2 ) the
configuration seSfΛίuSfΛ2 such that s\Λl = s{1\ s\Λ2 = s{2).

Given AQΈ we denote by C(A) the space of all real valued functions on £fA

continuous with respect to the usual product topology on Sf^ and we put for
feC(A): | | / | | = sup f(s). An element / of C(A) will be identified with that

element./ of C(Λ') with Λ'DΛ such that f(s)=f(s\Λ).
We introduce a random variable Jtj for each unordered pair ij, i+j, iJeZ.

The variables Jtj are assumed to be independent and identically distributed with
common distribution dF(x). We require

ί xdF{x) = 0, Vί e R: J exp(ίx) • dF(x) < oo . (2.1)
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In particular for small t: Jexρ(ίx)dF(x) = exp(j8ί2) + O(ί3). We shall always
assume that the realization of the variables Jtj is such that for every ieΈ:

sup-—}J i 3[ <oo. (2.2)

This can be done as the set of such realizations has probability 1 due to the second
hypothesis on the distribution dF(x).

Given a real number α > 1 (the interesting case will be 1 < α ̂  3/2), we define the
energy HΛ(s) [or H(s) when no confusion can arise] of a configuration s e £fA with
A finite cΈ by j

HA(s)=Σ Trf^sj. (2.3)
iJeΛ \l—J\

Given Al9 A2C%, A1nA2 = Φ, with Ax or Λ2 finite, s(1)e^Λί, s ( 2 )e5^ 2, the
interaction WAί Λ2(s(ί\ s{2)) [or simply W(s(ί\ s(2))] between s(1) and s(2) is defined

WΛuΛ2(s^s^)= Σ TP^VΨ (2.4)
ieΛi \l—J\
jeΛ2

Inequality (2.2) implies that the series on the right-hand side (2.4) is absolutely
convergent also when Aί or A2 (but not both) is infinite.

Let now AcZ be finite. Let h e C(E) and v be a finite, positive measure on SfAc.
We define the probability measure μh

Λv on £fΈ by

(2.5)

for / G C(Z), where
Zi.v= Σ f^->dv(σ). (2.6)

Let a realization of the Jt/s be given, let A be a finite subset of Z, and let σ be a
fixed configuration in SfΈ, We define the Gibbs distribution μAσ in the volume A
with boundary condition σ by

where hA(s) = HA(s\A)+WA>Ac(s\A,s\Ac) for s e ^ and δσUc is the probability
measure concentrated on the configuration σ\Ac.

3. Main Results

Our results follow from the following Lemmas 3.1 and 3.2 that will be proven in the
next section.

Given an integer L>0 we define AL = {jeΈ: —L^j^L}.

3.1. Lemma. Let kbea positive integer. There exists L0(k) such that for A = AL with
L^L0, every function fe C(Ak), \\f\\ ̂ 1 , and every two positive finite measures
v l9v2 on £f

( j ) (3.1)
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where F denotes the probability w.r.t. the Jt/s, hΛ is the function on ̂ % defined after
(2.7) and ε is a positive constant that does not depend on k.

3.2. Lemma. Let kbea positive integer. There exists L0(fc) such that for Λ = AL with
L^L0, fe C(Λ.k), ψ e C(ΛC) with \\f\\ ^ 1, ||φ[| ̂  1 and v finite positive measure on

). (3.2)

3.3. Remark. Note that the events appearing on the left-hand side of (3.1) and (3.2)
depend only on the Ji3 s contained in the definition of hΛ. Therefore we are allowed
to take for v, v1? and v2 measures that depend on the remainder of the J^ 's.

The following Theorems 3.4-3.6 follow easily from Lemmas 3.1 and 3.2.

3.4. Theorem. Let σeίfπ. The limit

\imβΛLiσ (3.3)
L-+00

exists in the weak* sense with probability 1.

Proof. Let fe C(Λk) for some positive k and let k^L1^L2 Then we have

βΛL2,σ = μhΛ%λσ, (3.4)

where λσ is the measure on £fΛι defined by

λa(φ)= Σ φ(σ\Λίvs)exp(HALMJs)+WΛLMLuΛφ,σ\Λί)). (3.5)

Let ρ be a positive integer to be chosen later. By applying Lemma 3.1, we obtain
from the representation (3.4) and the Borel-Cantelli Lemma that the sequence

βAn<M) (3-6)

converges with probability 1 for ρ sufficiently large. Using again Lemma 3.1 and
the representation (3.4), we get that for n sufficiently large

^ for some m with n<£m£

^ (n + l ) ρ e x p ( - ( l o g ^ ) 4 / 3 ) , (3.7)

so that we can apply again the Borel-Cantelli Lemma for ρ sufficiently large and
obtain that the whole sequence βΛm>σ(f) converges with probability 1. The result is
then obtained by considering a countable dense set of observables. •

3.5. Theorem. Let σ,τe <Ŝ , then there exists a set of interactions of probability one
on which

μσ=μχ-

Proof Let fe C(Λk) for some positive k. By applying Lemma 3.1 with vx and v2

probability measures concentrated on σ\Λι and τ|y4£, we get that for L sufficiently
large

*\\βAlΛJtJ)-βΛI..JJ)\>Ίή ^expMlogL)4'3). (3.8)
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By Theorem 3.4 we can find a set of interactions of full probability on which both
μΛL,<τ(f) a n d fiΛL, t(/) converge as L goes to infinity. Inequality (3.8) implies that on
this set the limits are equal. The result is then obtained by considering a countable
dense set of observables. D

From Theorem 3.5 we get in particular the absence of symmetry breaking. Let
θ: yΈ-^^Έ be the spin flip transformation (Qs){ = — st and 0* be the induced map on
the measures on £fΈ. By the spin flip in variance of the interaction we get

Therefore Theorem 3.5 implies the following:

3.6. Corollary. For every σe£fz there is a set of interactions of full probability on
which

3.7. Theorem. There exists a set of interactions of probability one on which the limit
(3.3) exists and is a pure Gibbs state.

Proof Let M > 0 be an integer. Given a finite volume A containing ΛM, we define

the Gibbs measure μ^l on £fA\ΛM by

fi!,.(f) = Z%ϊ1 Σ f(s)™P(HΛχΛJs)+WΛχΛMtΛs,σ\ΛC), (3.9)

where Z ( M ) is the normalizing constant

Z%1 = Σ exp(HAXAM(s) + WAχΛM,As, σ\Λc)). (3.10)
seS?Λ\ΛM

For fe C(Λ\ΛM) the following relation holds:

7.M
μ

Λ'σ μΛ,σ(
e W Λ M ' Λ " Λ M ) '

It is easy to check that on the set of interactions where the limit (3.3) exists, also the
limit

μσ — iim μΛ i ^ ^^j
L->-oo

exists and μσ and μ^M) are connected by the relation

This follows from the fact that due to our hypotheses [see (2.2)] the functions
e χ p ( - WΛM,ΛI\ΛM) converge uniformly to exp(— WΛM^ΛM) as L tends to infinity.
By a similar argument we get the relation

fi* = rtfc,β<?<>. (3.14)

On the other hand the measure /^M) does not depend on the J f/s in hΛM, since it is
the limit of the measures μ^2 which do not depend on these J f/s. Therefore we can
apply to μσ in the representation (3.14) the result of Lemma 3.2 and, in force of the
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characterization of pure Gibbs states given by Theorem 1.11 of [11], we obtain the
result. D

4. Proofs of the Main Lemmas

Lemma 3.1 will follow from Propositions 4.1, 4.2, 4.3 below and from
Proposition A.I. We give first some preliminary definitions.

Given a positive integer n and an odd integer N, consider the volume A,
centered at the origin, with \A\ = (2N + l)n. N and n will be suitable increasing
functions of \A\ and they will be chosen later. As it will be clear from the proofs, we
shall be able to treat the case of a general sufficiently large A; the particular case
that we actually consider here is chosen only to simplify the notation.

We divide A into 2N 4-1 intervals A _N,..., AN, each containing n sites. We shall
write s0) for s\Aj.

Let us now give an outline of the proof. In order to evaluate the quantities:

we introduce a sequence of approximations. At each step we make an error that we
prove to be small with high probability.

The first step (see Proposition 4.1) consists in subtracting the interactions
among non-contiguous blocks. In the second step (see Proposition 4.2) we cut off
all the spin configurations that give rise to interactions among contiguous blocks
that are bigger than a certain constant M. In the third step (see Proposition 4.3) we
introduce another restriction on the spin configurations; this new restriction is
local in the sense that it is not defined, like the previous one, in terms of pairs of
blocks, but it involves configurations in single even blocks. If such a restriction is
satisfied, then the effective interaction among even blocks is not too big. At this
point we are able to apply the result of Proposition A.I on the factorization
properties of products of transfer matrices to the system relativized to even blocks
with the restriction on the set of configurations in each block.

In Proposition A.I we prove exponential loss of memory for such a system, so
that for a suitable choice of the constants involved in the approximation we get the
final result.

Before stating Proposition 4.1, let us establish some further definitions. For
any given seS^, with the notation sΛ = s\Λ, σ = s\Ae9 we set

HΛ(sΛ) + WAtAc(sA9 σ) = ff(sA9 σ) + υ(sA9 σ), (4.1)

where, if σ_ and σ+ are respectively the restrictions of σ to the left and the right
part of A\

H(sΛ,σ)=W(σ.,s{-N))+ Σ [#(s ω ) + W(sϋ\sij + ^
j=-N

+ H(sN))+W(siN\σ+),
(4.2)

v(sA,σ)= Σ W(σ-,s<»)+NΣ
j=-N+l j=~N

N-2 N

+ Σ Σ w(s®,!&).
i= -N j = i + 2
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H describes a system with interaction of finite range n in A and boundary condition
σ, whereas v contains all the interactions that jump at least one block of size n.

4.1. Proposition. 3λ > 0, s.t., given any function fe C(A) with A C Λo, for any finite
measure v on ίfAc, if A is large enough, we have:

< \ Λ n . (4.3)
Proof It is immediate to check that

tf.ϊ w(f)=μfM)+<Λ w(f) (i - /4UO)+μ?M(? - υ) (4.4)
For any positive δ consider now the convex function gδ defined by

where χ̂  is the characteristic function of the interval — ~>~ βy Jensen's
inequality we have L λ ιλ

^(|^-11) > S) = Pίflf^^d^-11)) > 5) ̂  P ^ ^ ί k 1 7 -11)) > $) (4-6)
The above probability can be evaluated by applying the Markov-Chebyshev
inequality with the expectation taken with respect to the J^ 's appearing in v. Since
these J /s do not appear in H, we can apply Fubini's theorem and obtain

Έμ»Λ(9s(\eυ -11)) = fiJEώle" -11)) (4-7)

We shall get a bound for Έgδ(\ev — 11) which is uniform in the spin configuration.
This bound allows us to estimate the expectation with respect to the remainder of
the JtjS and to get the desired probability estimate by applying the Markov-
Chebyshev inequality. By applying Schwarz inequality to Eq. (4.7), we get

x

If δ < 1, it will certainly be true that

(4.8)

We can exploit now the hypotheses (2.1) made on the distribution of the J /s. If we
apply the Chebyshev exponential inequality to the right-hand side of Eq. (4.8) we
get / c

ψ[\v(sΛ,σ)\>-)^

for some positive constant cγ. Therefore

σ) + 2eΌ{SΛσ) + 1 ) ] 1 / 2 4 (4-9)
o
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From Eq. (4.3) it is easy to get that for some constant c2,

N

V(α-1)
We choose

v l / 2

(4.10)

(4.12)

with γ such that
2 ( l ) ( l ) l ( U (4.13)

δ = \Λ\3λ. (4.14)

Therefore we finally get that for \Λ\ sufficiently large,

μin. (4.15)

Equations (4.4) and (4.15) with the choices (4.12), (4.13), and (4.14) imply the
result. D

4.2. Proposition. In the same hypotheses of Proposition 4.1, let the characteristic
functions Xi-lit be defined by (for i= —AT,...,

{ if m^-'w^M, ( 6 )

where we have set
A_N_1 = rE~nAc, AN+1=Z+nΛc,

s<-tf-i> = σ _ 9 s ^ + 1 ) = σ + . ( 4 1 7 )

Then there exist positive constants c, d such that

M\ (4.18)

Proof We have

N + l

£.AU)-£M
 Π Zι-i.1

N + l

Σ μ?,AQ-1U-i,d
i=-N

N+l 1

Σ ^f'ii((l—Zi-i i)^'"1'*)-^ jp J (4.19)

where

a Π d W _ w ( ( i - l ) i\ - _ / V /V-1

Now we evaluate separately the two factors appearing in each term of the right-
hand side of Eq. (4.19).
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By Jensen's inequality we have

μ?:Λ(ew^^ap(ι4^(Wt.ltd). (4.20)

Moreover

P(expJu*U(Wί-i.ι)<β~JI)^PΛ(|W{-i.<l)>ΛO. (4-21)

The method that we used to obtain Eq. (4.15) can be applied to estimate the right-
hand side of Eq. (4.21). We get in this way

P(μ*U(W-d)>M)gexp(-c 3 M 2 ) (4.22)

for some positive constant c3.
In order to evaluate the first factor, we first compute the expectation w.r.t. the

J's appearing in Wi-lti. Since these J's do not appear in H\ we can use Fubini's
theorem to interchange the integrations. We get, for any positive γ,

i , i ^ (4.23)

The right-hand side of Eq. (4.23) can be bounded by the Schwarz inequality by

y~ VίU[E(l -*i-1,.)]1/2[IE(e2W'<-< i)]1/2). (4.24)

It is immediate to check that E(exρ(2P1^_1 ti) is bounded by a constant and that

-<"2 (4.25)

for a suitable positive constant c4.
If we choose properly the constant γ in Eq. (4.23), we conclude the proof. D

We can write

( J V + l
f π y
J 11 λi-ί,i

i=-N

( N \ / N \ N

Π ftWexpί Σ Wί-i.i) Π Zi-i,i
= > = " 7 N χ t = " % + i ="\ ' (4 2 6 )

ί̂ v(σ) ( ^Σ ί Π ft(Λxpί Σ ]

where we have used the notation introduced in Eqs. (4.16) and (4.17) and we have
denoted by μf the normalized Gibbs measure on the isolated block At: μf(s(i))
= (Z"f')~x exp(HA.(s

{i))) for ί = — N,..., N.
For any pair of consecutive even blocks consider the "effective interaction"

W2i,2(i+i) defined by

= Σ

, , . (4.27)

W can take also the value — oo.
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4.3. Proposition. In the same hypotheses of Proposition 4.1 there exist constants c,
c\ and cff such that there exists a set of interactions J of probability bigger than
1 —Ne~cM2 on which the following is true:

1) for j=-(N-ί)/2,...,(N-ί)/2 there exists Ω2je^A2j: Vs2JeU2j9

2J+2 2J+2- ^ - c ' M ^

<JVe"

2) / N N/2

μ?Jf Π Xi-i,i Π
A I ^ Λ 1 „ \ •" v * = - " - " J — w / 2μ?,Λ\f Π

i=-N 'I - / N

Π Xi-i,i Π
i= -N j= -JV/2

Proof. Given the measures μ,v on the spaces A,B we shall denote by μ®v the
product measure on the product space A®B.

The following estimates can be obtained by the same methods that we used in
the above situations:

for i= —N9 ...,N — 1 a n d

_ i V ( l - χ _ i V _ 1 ) > ^ " C 5 M 2 ) < ^ C 6 M 2 ,
(4.28)

) - C 5 M 2 ) - c « M 2

We call μ^.N^1,μN+1 the natural projections of v to ^A_N_1,<9?

AN+1 respectively.
Inequality (4.28) implies that on a set of interactions of probability larger than

exp(-c 6M 2), we have

μj®μj+ί(χjJ+1)>l-e-C5M2 (4.29)
forj=-JV-l,...,ΛΓ.

We assume that (4.29) are satisfied. Then it is easy to see that for
ΐ = (-ΛΓ-l)/2, ...,(JV-l)/2, there exist sets Ω2ieSfΛ2i such that

ii)

and
i + υ ) = 1 VS<

2ί» 6 Ω2i, s<2ί+» e Ωίi

for a suitable positive constant c7.
In the same way we get that for i = ( — N + ί)/2, ...,(JV + l)/2 there exist sets

Ω2i ε «$ 2̂i such that

ϋ)
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and

If in definition (4.27) we bound the sum from below by restricting it to the
configurations in the set Ω2i+ι(s{2i))r\Ω2i + ι(s{2i+2)\ we get that

(4.30)

On the other side we have of course W<2M.

Ω2i = Ω2inΩ2i. (4.31)

On the set of realizations on which (4.29) are satisfied we have, using expression
(4.26),

Π χt-ui
i=-N

so that we conclude

P
i V + l Nfl

' Π xt-ut Π :
i=-N j=-N/l

N+ί

i = - i V
Xi-l.i

From Eqs. (4.18), (4.32) with / = 1 we immediately get

P

N+l Nil

Π v TΊΓ

Xi-i,ί 11
i=-N J=-N/2N f Π Xi-ut

Nil

(4.32)

(4.33)

Equations (4.32) and (4.33) imply the result. •

Proof of Lemma 3.1.

From Propositions 4.1, 4.2, 4.3, we get

N+ί N/2

" Π Xi-i.i Π
ί=-JV J=-Nj2

N N/2

Π Xi-ut Π
= -N j=-N/2

( 4 3 4 )
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We remark that the sets Ω( for i=—N, N depend on the choice of the
measure v:U~S\v\ Now, given two measures v,v' we define Ω^Ω^nΩ^ for
i=-N,N.

For any positive δ such that

N + l JV/2

' Π Xi-i.t Π
ί=-JV J=~N/2

JV+1 JV/2

Π Xi-i,i Π
i=-N j=~N/2

N

Π i,i Π
j=~N/2

Π Π

we have

Now we want to consider the quantity

<δ,

(4.35)

(4.36)

/ JV+1

/ JV+1

ΛΓ/2

Zί-i.ί Π

ΛΓ/2

•i-i,i Π 1
; = - Λ Γ / 2

fv(dσ)

u.)

exp

exp

JV/2

Z , K K2i,2i

NI2

Σ H^ • •
= -JV/2

^Σ /(s

/c(2ί) c(2

+ 2 ( s ( 2 i ) , s < 2

.(Oh.

i =

JV/2

Π μ2i(s(2°)
= -JV/2

JV/2

Π /^(*(2°)
i= -JV/2

?

i + 2 ) )
(4-37)

and the analogous quantity for V.
We can study the above quantities with the help of Proposition A.I stated and

N +1 ~
proved in the Appendix. We must put there q= S = Ω T = eW2

vi = μ2i, B = eM. If we take

, Si = Ω2i, Tu+i =

and choose

M = (logiV)3/4

the result of Lemma 3.1 follows. •

The proof of Lemma 3.2 is completely analogous to the previous one and we
leave to the reader the task of making the obvious changes.
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Appendix

For i= —q — l,...,q + ί let S, be a measurable space. Let v, be a probability
measure for — q ̂  i ̂  q and let Tu + ί (s, t) be a positive real function on St ® Sf + x for
— q — ί^ί^q such that for every s e Sί? ί e S i + 1 5

J B - ^ T J ^ ^ O ^ B (Al)

for some positive constant B.
Let the functions Tk ,(s, ί), seSk,te SΛ be defined for—g — l5Ξfc<*fίg<2 + lby

the rule
Γkt,(s, ί) = ί Γfc^-iί^z)^-!,^, ήdv^^z). (A2)

We have the following:

A.I. Proposition. For every k with —q — l^k^q — 1 there exist two positive
functions M(S), v(t) defined respectively on Sk and Sq+ί such that for every seSk,
teSq+l9

u(s)v(t)
- 1 (A3)

Similarly for —q + ί^ki^q + ί there exist positive functions u(s), v(t) <
such that for every seSk, teS^^^

- 1
v(t)ΰ(s)

(A30

Proof We shall prove (A3). (A3') can be obtained in the same way with obvious
changes.

We define the functions PkJ{s, t) for — q — 1 ̂  k < f ^ q9 s e Sk, t e S^ by

(Sz)rfv(z) ' ( A 4 )

where we agree that the integral in the numerator of the right-hand side of (A 4) is
absent for f = q. The functions Pk^(s,t) are the densities of the transition
probabilities for a (inhomogeneous) Markov chain, i.e.

fP k >,ί)dvXί) = l ,
(A 5)

PKm(s, t) = J Pκ,(s, z)P,m(z, t)dv,(z).

We first find upper and lower bounds for the values of Pkj(s, t). We have for

STktk+1(s9y)Tk+u,(y9z)dvk+1(y)> 2

/yz)dv(y)= l ° jTk./t,z) ίTktk + 1(

and, similarly,

for every choice of s, ί, z in the appropriate spaces.
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It follows that

( A 8 )

We can obtain from (A8) the following estimate for — q — \^Lk<{^q and for
every 5, s' e Sk

f | P t > , t)-PkJ(s', t)\dve(t)^2{\ -B-y-"-1. (A9)

Indeed for -q-l^k^,

= J lί (Pk,*-i(s, z) -JY,- i(s', z))P,-i.Az> Wv^Mldv/t)

= ί lί B~\Pk,t- i(s, z) -PkJ. 1(s/, z))Pe- ijz, Odv^^dvAt)

+1 \ί(Pk.,-i(s, z) -PKί- Λs', z)) (Pt-Uz> t)-B-4)dv^ MdvAt) •
(A 10)

The first term on the right-hand side of (A 10) vanishes, whereas the second term
can be bounded by

1(z), (All)

so that (A 9) follows by induction.
Let now, for —q-ί^k^q-ί, u(s) be the function on Sk defined by

u(s) = iTkfq(s9z)dvq(z)9 (A12)

and, given an arbitrary point s* in Sk, let v(t) be the function on Sq + 1 given by

v{t)^ίPktq(s*9z)Tqtq + 1(z9t)dvq(z). (A 13)

By using (Al) and the fact that Pktq(s*,z)dvq(z) is a probability measure, we get

viή^B'1 (A 14)

for every teSq+1.
We have

Ά.q+I(s,t)
u(s)

-υ(t) = |ί (Pktq(s, z)-Pk,q(s*, z))Tβ,β+ ,(z, t)dvq(z)\

^2(1 -B~y-k~ιB (A 15)

by (A9). Inequalities (A 14) and (A 15) imply (A3).
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