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Abstract. The large system limit of the Random Energy Model (REM) and
generalized Random Energy Model (GREM) of Derrida is investigated, and
found to be universal. This permits systematic calculations of relevance in
particular to Parisi’s solution of the Sherrington-Kirkpatrick spin-glass model.

Introduction

B. Derrida has recently introduced two statistical models called respectively
Random Energy Model (REM) [2,3] and Generalized Random Energy Model
(GREM) [4, 5]. These models are particularly interesting because they describe the
thermodynamic behavior of the Sherrington—Kirkpatrick (SK) model [14,8] ex-
pected on the basis of Parisi’s Ansatz. For a discussion of the SK model in the light of
Parisi’s Ansatz [12, 13], we refer to Mézard et al. [9, 11], and references quoted there.
For the connection with the REM and GREM, see Mézard, Parisi and Virasoro
[10], Derrida and Toulouse [6] and, most clearly, de Dominicis and Hilhorst [7].

In Derrida’s formulation of the REM and GREM, certain limits are implicit
(N> 00, and for the GREM, number of levels of the hierarchy — co0). The purpose of
the present paper is to give a mathematical reformulation where the appropriate
limits have already been taken. Our approach has the advantage of showing that no
hidden difficulties lurk behind these limits. It also permits an easier discussion of
certain problems, as we shall see below.

We shall proceed dogmatically by defining certain spaces and probability
measures. The connection with Derrida’s definitions should then be rather clear, and
is discussed only briefly.

1. Poisson Distributions

The usual Poisson distribution describes (infinite) configurations of points on the
line R, with given density ¢, and such that any two disjoint intervals of R behave
independently. This setup can be variously generalized, we shall use an extension
where R is replaced by a nonempty open set ¢ = R*, and the density by a continuous
function ¢ >0 on @. A configuration X of points in ¢ will be represented by an
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occupancy function X: 0 — N (the natural integers 0, 1,2,...) such that ) X(¢) <
ZeK

+ oo whenever K< (@, and K is compact.! This means that points of the
configuration can accumulate only on the boundary of @ or at co; multiple
occupancy is allowed but will turn out to have zero probability.

The space Z(0) of allowed configurations in @ has a natural topology
corresponding to convergence away from the boundary of @ and oo (see Appendix 1
for a precise definition). To the topology of Z(0) is attached a Borel structure, which
can be used to define Borel probability measures on Z(0).

Let now B be a relatively compact Borel subset of ¢ (i.e. B is a bounded Borel
subset of R”, and closure B = ). We denote by Z(B) (respectively ™(B)) the space of
functions Y: B— N such that Z Y(&) < + oo (respectively Z Y(&) = m). Clearly

Z(B) is the disjoint union of the %” "™(B):

Z(B)= ), Z™(B)
meN
There is a natural Borel structure on each Z™(B), and therefore also on Z(B). The
map 7y Z(0) - Z(B) which sends X eZ(0) to its restriction nzX = X|B is Borel?.
We shall also need the Borel map Y: B™ —» %™(B) such that

(Y(&4,...,¢,))(#n) = (number of indices i such that &, =#).

Finally, if B,, B, are relatively compact Borel subsets of ¢, and B; " B, = ¢, we can
make the identification

Z(B,UB,)=Z%Z(By) x Z(B,), (1.1)

where Y: B; UB, >N corresponds to (Y|B;) x (Y|B,).

We are now equipped to define Poisson distributions. First we consider a
relatively compact Borel set B = (), and a Lebesgue integrable function ¢ = 0 on B.
The Poisson distribution corresponding to B and ¢ is the probability measure m}
defined on Z(B) by

mE(4) = [mE(dX)AX)=(E2)~ ‘mwo pol

Jo(&)dé, - j(ﬂ(fm)démA(Y(él, ceesCm)
1.2)

when A is a bounded Borel function on Z(B), and we have written

Ee= eXPiﬁD(é){M

1 The reader may choose to go rather lightly over the details given below, and ignore completely the
Appendix. Physically, the Poisson distribution m,, corresponds to the distribution of positions of particles
in a free gas at temperature 1, contained in the (usually infinite) region 0, the particles of the gas being
subjected to an external potential —log ¢

2 Note that for compact K = @, Z(K) has a natural locally compact topology, and that ng: 2(0) - Z'(K),
which is Borel, is not continuous
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It is readily checked that, corresponding to (1.1), the following formula holds:
(1.3

By s mbB2

ByuB, _
my " =Myp, 0iB,*

Let now ¢ =0 be a locally integrable function on 0O (i.e. such that j @(&dé < + o
K

for every compact set K < (). We define the Poisson distribution corresponding to ¢
as the probability measure m, on Z(0) such that mgm, = m? , for every relatively
compact Borel set B < 0. If ¢ is written as a countable union of disjoint relatively
compact Borel subsets B,, one can make the identification

my, = Hamzi‘Ba.
Using (1.3) one can see that this definition is unique.

Consider now another open set O* = R”, and let f: O — 0* be a diffeomorphism
(i.e. f has a unique inverse f~':0* - @), and both f, f ! are differentiable). It is
not hard to see that the image by f of the Poisson distribution m, on Z(0) is a

Poisson distribution m,. on Z(0*):
fmy=mg, @*m)=|J(f )" olf " n), (1.4)
where J denotes the Jacobian determinant:

J(¢) =det(0f/0¢)

2. The Random Energy Model (REM)

In the REM one is interested in the distribution of “Boltzmann factors” e~ #E,
where the E have a Poisson distribution, and its density ¢ on R is exponential®:
(&) = pe*. We are in the situation of the preceding section, with 0 =R, 0* =
R. ={neR:n>0} and f({)=e P, with 0<p<p. Therefore the “Boltzmann
factors” have a distribution with density ¢* on R, such that

@*(n)=|—pexp —ﬁ(—;—ilogn> ) PCXP[P< —%lognﬂ =B~y oy~

(see Eq. (1.4)). Defining x = p/Be(0,1), we have thus @*()=x&~*~1. Since ¢*
depends on p, f§ only through x, we shall write ¢* = ¢, m,«=m,.

Note that m, is a measure on objects X which are unordered sequences X = {&,}
of points of R, such that £, —0 with probability 1. Write | X| = X¢,. It is easy to
see that | X| < oo for m, — almost all X, but

f1 X m(dX)= £Xf_"_1~fd§ = 00
(this is readily obtained from (1.2) by a limit of the type used in the proof of the
next proposition). The map X — X/| X| sends m, to a measure #i, on (unordered)

3 In Derrida’s original formulation [2, 3], ¢ is taken to be Gaussian, so that f @(&)d¢ is finite; a limit N
— o0 is subsequently performed. In the equivalent treatment of Mézard, Parisi and Virasoro [10], ¢ is
exponential, but with a cut off so that f @(&)d¢ is again finite; here a limit M, f,— oo has to be performed.
The use of Poisson distributions avoids these limits
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sequences X = {&,} with X,&, = 1. Note that i, is not a Poisson distribution. The
study of the probability measure 1, constitutes a good part of the literature on
the REM and of the treatment of the SK model based on Parisi’s Ansatz. The
proof of the proposition below shows that it is particularly easy to discuss #i,
using the fact that m, is a Poisson distribution.

2.1. Proposition. Define a density p, associated with i, such that

px(p) = jmx(d}?)z 5(p - Ea)‘
Then
(1 _ p)x— Ip—x-l

PP =" Fo i =

It is easily verified that
pp) = [m(dX)} . d(p — éJIXI)=1ijr;§mi(dX)Z5(p —&JX)),

where m¢, is the Poisson distribution associated with the density ¢% such that

0 ifé<e
xETXTLfE>e

o0
With the obvious definition of = we have
X To0 | X1 =5 % {5 e, el
3 oo+ + )
=57 5 e, ] - M- [0

Op— EfE ot G+ )
® 1

=5F"1 Z —'j(pi(tfl)d61_’.(p§(€n)dén
n=0Mh

1
'Mi(é)dé(él+-~~+én+é)1—_l;6<(él+~-+é.,)l—f—p—é>
— [ mE(dX)ot P p 1
—fmx(dX)¢x<|X|T:‘;><|X|+|X|T_’jp‘>r_—;
— [ X1 . 4
_jmx(dX)(l—p)z(prXl—lTp)'
Letting ¢ » 0, we obtain

_ |X| p \_ 1 p \77! s
px(p)—fmx(dX)waOXll_p)—(l_p)2<l_p> x [m(dX)|X|

=C'(1—pf ip L (2.1)
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) 1
Since [ p(p)pdp = 1, we have
0

C=[p™ (1 —py ldp=T(x)I(1—x), 2.2)

Oty

and the proposition follows.
2.2. Corollary. (a) We have

1 I'(k—mn)
(f) pp)p*dp = m

In particular,
1
(I) pp)p?dp=1—x.
(b) From (2.1) and (2.2) we obtain also

1 .
xfmx(dX)|X|-x _ =Y _ smnnx

(c) With a proof similar to that of the Proposition, we have, for Res < x,

s71-1 s é“ — IXI_—S) —x—1/1 _ ,)¥x—s—1
[ m @91 X 1] fm,de)iXt§5<p—lX|)—r(l_x)r(x_s)p (1-p)

and

I'l—x)I'(x—s)

mdx)| X[ ===

X [m(dX)| X |F~*.
(d) As a consequence of (b) and (c) we have also

- I'(k)
X)X,
x (X)) X | T(kx)(T'(1—x))"
2.3. Proposition. Let X = R, be distributed according to m.(dX)(Poisson distribution
with density @.). If a > 0, then aX has a Poisson distribution with density a*¢,.
As discussed at the end of Sect.1, aX has Poisson distribution with density ¢*
given by (1.4):

—1+x+1 -x

e*m=a "o a" ) =a"'x(a 'n)* 1 =a xn " 7 =a%g ().

3. The Generalized Random Energy Model (GREM)

In this section, we shall describe the GREM as a probability measure i, (dX™)
on finite probability cascades X™. This corresponds to the situation originally
discussed by Derrida; in the next section we shall replace finite by continuous
cascades.

We choose an integer n > 1 and consider unordered families (&,, ., ) with the
following properties

(@) &uy..an >0,
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(b) each index a,...,q, runs over a countable infinite set, for which we may
for instance take the set N of natural integers,

(©) &40 =0 When «, — o0,

(d) the family (&,,. ,,)is unordered in the sense that we allow all permutations
(g, ,0,) = (,...,0p) such that if oy =pf,...,0;_,=B;_; a;#p;, then
oy =By,...,05-1 = Bj—y, «;# B; [in other words, we allow permutations which
preserve the tree structure of the index set corresponding to the ultrametric distance
d((alv",an)’ (ﬁla"':ﬂn)) = exp(—min {j:aj 9'éﬂ]})

Note that for n=1, the unordered families just described reduce to the
unordered sequences of Sect. 2.

If 7 (ay,...,00) = (2], ..,0,) is an allowed permutation then, in view of (d), for
each j (from 1 to n) there is a uniquely defined permutation (a;,...,0;) = (¢, ... &),
which we shall again denote by 7.

We may now consider cascades,

X(”) = (521’ 2“12’ A 35:1...01,.)7

where the (5{,,"'%,) satisfy (a), (b), (c) as above; we allow permutations 7 of the
indices as in (d), provided the same permutation is used for (o), (001 03), - - - 5 (015 - - - ,&p)-
Notice that, in view of (c) for each & > 0 there are only finitely many values of the
multiindex («,,...,q,) such that

min ¢

1<j<n
In view of this a cascade—considered as an unordered sequence of points in
R% —can be identified with an element of Z(R") as defined in Sect. 1. Using the
topology of Z(R%) we obtain a Borel structure on the cascades, which will allow
us to define measures.

To define the probability measure 7,(dX™) we first have to choose n numbers
x;between O and 1: 0 < x; < x, < -+ <x, < 1. The definition will proceed in several
steps.

First, we introduce a probability measure v, (dY™) on cascades Y™ =
(a5 >1e,...,)- We proceed by induction. For n=1, we let v;(dYV)=m, (dY")
as in Sect.2. For n> 1 we impose that

(image of v,(dY™) by the map Y" Y™ V=(n,,,...,n, , ))=v,_(d¥Y""V).

For fixed ay,...,0,, let us write Y, =(1,,. ,,), the definition of v,(dY™) is
completed by requiring that the Y; ,  have independent identical distributions
given by m, (dY).

As a second step we define a map p: Y™ — X™ of cascades such that

oLy g €.

1 2
(éa;’ agazs o :1.A.an)=p(rlij’r’§1a2"'"’721..41")
n
=(’101u’17;1’731az"“’ I—[ nél...aj)>
j=1

and let m,(dX™) be the image of v,(dY™) by p. To summarize: the probability
measure m,(dX™) is obtained by picking first X* = (£Z,) according to the Poisson
distribution m, (dX"), then for each «, picking the unordered sequence Y2
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according to m,(dY2) and writing X2 =¢2 Y2 =(&2,,). Similarly, X7, =
2 =(&3 ,..)s Etc. In this manner we obtaln a probability distribution
&y 0200373 p

3% 5] amz
on cascades X™ = (&L, &2, &3 ..., -); this is precisely m,(dX ™).
For the third step we let X — X be the map defined by

: &)
(éal’ o2’ dlaz an (an 1A "t T IDALA2...Un/?

where

E:wzz an = auzz an/ Z éﬂxﬂz -Bn

and

—_\Zi
- ; gal...aj_lﬁj'
i

Notice that X® is completely determined by the unordered family (&, ), ie.,
by the last component of X™. The image of m,(dX™) by the map X®™ — X® is
the desired probability measure ,(dX™)*.

For the formulation of the proposition below, it is convenient to write
m(dX™)=m, _.,(dX®™) and similarly for m(dX™).

3.1. Proposition. Omitting &; from (,...,E,) defines a map X®—Xy~Y. The
image of i, (dX™) by this map is my, oy (@x@-n),

We cons1der first the case j<n.For 31mphc1ty, we omit the indices a;,...,0;_,
and write o;_; =&, ;= f, a;,; =7, so that

X0 = (. G T kg S gl )
where (17],) is distributed—for fixed a—according to m, (dY), and similarly for

nigt, etc. If &' and ni; are fixed, the distribution of (&~ 'nimis') is

Poisson, with density (&~ '#5,)+1 @, _ (.) (see Proposition 2.2). Therefore, if & ™!
and (&},) are fixed, the dlStrlbuthH of (f’ 'nignis,) is Poisson, with density

()7 ) 0y,
We write
= (; (nig)st1) s, (3.1)
and

Xg‘_l):("'aéi_l’éi ! aﬂfktal, )>

where (pih)) is distributed—for fixed a—according to m,, (dY,). For the

4 In the original language of Boltzmann factors we would have

Caverian = XD — BlEg, + + + b2y
where the ¢

1. have. a Poisson distribution with density p;e?”, and p;/f = x;. The & .. are the
normalized probabilities corresponding to these Boltzmann factors
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determination of X¢'~ 1, it is equivalent to start from
X0 = (. 7282 8 2 el )
Xee V= 87887 e, 720 Yelng s ),
because the last components are the same. We may also write
X V= 87887 a, Okl ),

where n* =i~ !c,. We shall now need the following:

or

3.2. Lemma. (n¥) has Poisson distribution with density Co,, (%) for some
constant C > 0.

The c, are independently identically distributed with some density h and,
approximating ?y, by an integrable function, one sees that (1*) has Poisson
distribution with denSity ¢ such that

] © <] 1
@)= [ hwdu | ¢, _ (v)dvd(n — uv)= | h(u)du @y, (0)dv=06(v — n/u)
0 0 0 0 u

[ )= ., (/) =g, (1) [ W+
0 u o »

= q)xj— 1(’7) g h(u)qu_ldu = Cquj_l(n)’

provided the last integral above converges. According to (3.1) this integral is the
expectation value of

(-,
and is easily seen to be finite; in fact
C= fmxj(dY)(;(ﬂg)"f* D= fm, (dY ) Y [-1P1 = (m (dY)| Y [,
3.2)

with X = X;/X;4 1,8 = X;_1/Xj4 1.

We return now to the proof of Proposition 3.1. In view of the above lemma
we may write #¥ = C*p}*, where (n¥*) has Poisson distribution with density
@, [(7**) provided C*i-1 = C, and C is given by (3.2). We do not change X Xxe-0
if we replace ¥ by n** in X, Y, so that we may obtain X~V from

XD = (o 72,807 s 6 peh ),
where (7¥*) and (7)%)) have Poisson distributions with densities ¢.,_, and
Py, respectively Therefore X‘”‘“ is distributed according to

,,,,,

For]—n we have
X(n)=( 6" 2 f" 2 -1 'f" Zn“—ln:ﬂ),

where (17,4) is distributed—for fixed a—according to m,(dY). We can determine
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X1 from
X§U=(., et ;n:p),

n—1

which has the appropriate last component. Writing ¢, = n4;, n¥ =13~ 'c,, we
]

can proceed as in the case j < n, with the same conclusion.
33 Corollary. The map XWX defined by (&,,....28 )&, ) sends
(dX ®) to m, (dX .

,,,,,

4. Continuous Probability Cascades

Using an interval I = (0, 1) instead of the finite set {x,,...,x,} we shall replace the
X™ by continuous probability cascades Z, and the probability measure 7,(dX™) by
mdZ).
Remember that we have
X(n) (galzl’ ajo2’ Egl...an)

with a,,...,a, belonging to countable infinite index sets, such that

g{;p..aj > 0,
NI {&‘1 -

and permutations 7 preserving the tree structure of {a;,...,a,) are allowed.
We shall now introduce more general cascades Z® to form a set K,
compact topology. We write

forj>1
forj=1

.....

n) —
Z _(Zm’zmaz""’zalman)

with the following restrictions:

(a) zal...a,- > O’

(b) Given ay,...,a;_,, the index «; varies in « countable set, which may be
infinite or finite

z, . forj>1
< oya g
(C) azjzal...aj——{l fOI'j= 1
(d) We allow permutations 7 (ay,.. ,,)—>(oc’1, ..,0) such that

((11 ﬂla _] l—ﬁj 1>a #ﬁ;)lmphes (al ,BI: _] l_ﬁ] 1,0( #ﬁ)
Given a>0 and a finite set S of multiindices (ocl, ces0l,), @ nelghborhood u of
Z™ in K, . is defined by the condition that for each (a;,...,%,)eS there

.....

be («},.. ,,) such that

max 'Zoz'lu-a} — Zalv»»ajl <eé&.
1gj<n
It is not hard to see that K """ ) is metrizable compact with this topology. [Note

------
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N(e) values of the multiindex (ay,...,%,) such that min z, , >eé].

1<j<n
If {xy,...,x,} = {x},...,Xy}, there is a natural majp
K{xl ..... Xy} - K{x ..... X} (4‘1)

obtained by deleting from Z'™ the (2..;) such that x; “¢{x1,...,%,}, and lumping
together indices as needed. This map is clearly continuous and onto. Under the
above conditions, a natural construction (“inverse limit” or “projective limit”)
gives a compact set K, and continuous maps of K onto all K, =, commuting
with the maps of (4.1). Because of the compatibility conditions of Proposition
3.1, there is a natural measure #(dZ) on K which is mapped to
Ay, @dX®)oneach K, ;#(dZ)is the pr0]ectwe limit of the i, (dX™)
[see N Bourbak1 (1] Integratlon Ch. 111, §4,n°5].

We have thus completed the promised continuous extension of Derrida’s
GREM. A word of caution is however in order. The compact set K is not metrizable,
which means that we do not have the standard setup of integration theory, and some
theorems do not apply. We would obtain a metrizable set by taking the projective
limit of the Ky, .., where the x; are restricted to the set of rationals (which is
countable); th1s definition has however the disadvantage of some arbitrariness. The
two definitions are however compatible, and it is not inconvenient in practice to use
both, with the advantage that one is canonical and the other leads to a standard
probability measure.

We conclude this section by an example of calculation, namely that of the
correlation functions p,, ., (p1,...,P,) of a cascade. By definition, p,, -+ X,(p1,...,Pn)
is the probability density of finding a decreasing sequence of clusters of sizes
py > .- >p, for the values x,...,x, of the parameter x. Thus

pxl...x..(pla 9pn)_jm{xl X, }(dX(n)) Z 5([’1 al) 5(pn Eal a,.)

,,,,,
®Afeenln

,,,,,

4.1. Proposition. The correlation functions are given by

PSS P e Yl (' Al
AR CR I(x;) I(x, —xy) I, —x,-q)  T'(1—x,)
4.2)

Let us write

V= ; Zﬂ NeMpip2 " Npy.pn = [ X",

Val...aj = Z ”Ia, e ”'rlazl...ﬁn'
Bj+1-Bn

We have then

n nal/Val
pxl.ux"(pl, v 5pn) = m{xh,,,,x"}(dX( ));5<p1 _7>

. _ nauaz [-37:%) 11&11 an
;25<p2 v > 26<pn TPami >

oy n -y
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' v,
_fm{xl ,,,,, X, }(dX(n)),VZ<p1V ’7a,>25<l’21/ _plrlauaz>

. 'Za(pn’Vul~-~a"_1 — DPn- lnal...a,‘)'

on

We use now the same trick as for the calculation of p.(p) in Proposition 2.1, writing
Hay =MH1s-++>May..q, = o and lumping the other variables as V =(V,V,,...). The

integration dV will not be done explicitly.
We obtain thus

pxl...x,.(pla (R ,Pn)=§dV,f§0x1(’71)d7’l1 o j (px,.(rln)dnn(Vl + ’71(V2 + ’12(V3 + - )))

v 12
S, -
( 1V2+112(V3+---) (I—=pmy p2V3+;73(V4+...) (p1—Dp2)12

V,_
5(pn lV e/ _(pn 2™ p"_l)r’n—1>5(ann_(pn—l'—pn)"]n)-

The §’s in the integrand imply the following equalities:

pn Dn-1
n=_—Vn7 v, +r’n=——~Vn>
1 —1—Dn " DPn—1—""Pn
Dn—1—DPn Vn—l Dn-2
-1= ) 5 Vn— +r’n— (Vn+r’n)=————_Vn— 5
fIn=1 -2 7" Pn-1 Vn ! ! DPn-2—Pn-1 !
p2—P3 V>
Ny = 2 Vo+n,(Vat )= V,,
2 P1—p2 Vs 2+ mlVs ) —D2 z
_ 1
P S Y Vit m(Va+0a(Vat ) =7—V1.
l—py W P1

We have thus

2 N 2 D N A T T N
px;...x,.(pls 7pn) ( 2) <Q> _Fn-1  Fn
1-p, P1—D2 Pn-2—"DPn-1
( P >—xn-1. 111 1
Pn—1 = Pn 1=py 1=py P1—P2 Pa-2—Pn—1 Pn-1—Pa

Vv -V,
'§dVV1<pxl<7:>-~~¢X"_I<T1)<pxn(vn>

=K, (1=p)* " {(p1—pof* ™ 7 Py — P

_Xn—l_lp"xn"l
n b

where

v, V,_,
K jdVqu)xI(Vz) (px" 1< V )qox"(Vn)
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We know that
1
K= —
YT Tx)r(1—x,)
On the other hand
j"D"l---xv-(pl dce ,pn)pndpn = px1-~xn—1(p11 veesPn— l)pn— 1
so that
K,—1 =Pyt K[ (py-y — p)™ 1" 'p, *dp,
r(l—xn)r(x,,——xn_l)
r(l — Xp- 1) '

=K,[(1—py»-1"'p~*dp =K,

By induction, we see therefore that the coefficient given in (4.2) is correct.

4.2. Remark. Applying fdpj, with j<n, to p. . .(P1,...,p,) Yyields the
correlation function of n — 1 arguments corresponding to the set {x,,...,x,}\{x;}
of values of x. [This is readily checked from (4.2)]. Applying [ dp, yields co. Applying
[ pudp, yields p, .~ (P1s---sPu—1)'Pa-1 s already noted.

4.3. Remark. It is to be expected that changes in the temperature scale will
have a simple effect on the measures M (dX), m,(dX™), m(dZ). The appropriate
results are stated and proved in Appendix 2.

5. Conclusions

In this note we have shown that the REM and the GREM are “universal” probabi-
lity structures depending on very few parameters: x for the REM, and the interval
I for the GREM. It is not too astonishing that these structures should occur in
the study of disordered systems. Note that, for the SK model, random free energies
rather than random energies are involved; in this case we should take I=(0,x)
with some x depending on the temperature. Of course, the relevance of REM and
GREM to the SK model depend on Parisi’s solution being correct—which is not
proved. On the other hand the treatment of the SK model based on Parisi’s Ansatz
yields more specific results than those captured in the REM and GREM. It is
nevertheless interesting that a number of the explicit calculations pertaining to
Parisi’s solution only depend on the REM and GREM. One can therefore—as
we have shown—perform these calculations more systematically than is usually
done in the literature.

Appendix 1. The Space Z(0)

Let O be a locally compact (Hausdorff) topological space. We shall assume for
simplicity that the topology of @ has a countable basis. We denote by Z(0) the
space of functions X: O+ N such that

Y X(&) < + oo for every compact set K < 0.
teK
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Clearly, Z(0) is the disjoint union U, Z™UZ*, where

™ ={XeZ(0) ) X(&)=m},
e

and we may identify the elements of 2™, m finite or oo, with unordered sequences
(¢,), where the index set has m elements, and permutations of the index set are
allowed.

We define a topology on Z(0) by giving a basis of neighborhoods
{ANxWys... 500} of X, If Yy,..., ¥, are real continuous functions with compact
support in 0, we define

N x5 YD) ={YeZ(O)1 L Y{O)(X () - Y(§))l <1 for i=1,....k}.

[4=Y)
It is easily seen that this topology is compatible with a metric for which Z(0) is
complete®. Let us associate with X e%(0) the measure on @ defined by
dx =, X(&)9,,
&eO
where J, is the unit mass at . Then, X0y is a homeomorphism of Z(0)
to {6y XeZ(0)} equipped with the vague topology of measures.

Proposition. The Borel subsets of Z(0) constitute the o-ring generated by the sets
m={XeZ(0):. ;;X(é) =m},

where meN and B is a relatively compact Borel subset of 0.
The proof is easy, and left to the reader.

Appendix 2. Changes of Temperature Scale

Dividing the temperature by a number A>0 has the effect of replacing the
Boltzmann factor ¢ = e #E by ¢* = ¢ *£, The map f: R, —» R, defined by f¢ = &*
sends the Poisson distribution m, with density ¢, to a Poisson distribution m,,
where ¢* is determined by (1.4):

@*n) =121 (¢),  with n=¢*
or
xé—x-l

* =___=)_C. "x"l=i —x/A-1
®*(n) PRz ,16 i

= ‘Px/a('?)-

A.1. Proposition. Let 1 > x.
(@) The map X = (&) X*=((&)*) sends m, to m,;.
) If X=(&), write 7, =)/ ()" Then, the map X —X*|X* =7,
;

sends i, to M.

5 Tamindebted to O. Lanford for pointing this out to me a number of years ago. Notice that the existence
of the metric requires the topology of ¢ to have a countable basis
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(a) has been proved above; (b) results from the commutative diagram of maps:

s X
X’—*——-———)X:———

h X _ X
X7 IX7]

A.2. Proposition. Let 0<x1<x2<-~ <x <1, and 2> x,.

(a) The map X(")_(éul’ age2? al a")HX(")l ((é(ﬁ)lﬁ' (éulaz);l ""(521...11")1)
sends the measure my, .. to m{xl/,l ‘‘‘‘‘ %2}

(b) IfX(”)_(galub 122 gal az,.) write
nax aJ Z (Ezl...djﬁj+1,.,ﬁ")n/ﬂ Zﬂ (ngﬁn)

Bit+1s--sBn

Then, the map X™ > (X% = 1,72 4y - »1%..0,) Sends the measure iy,

,,,,,

m{x[/ ..... XA}

The proof of (a) is obtained by induction on n, using Proposition A.1 (a). From (a)
and the commutative diagram

X® —_— X®

XA > ( X(")‘)N =( X(””)N

one gets (b).

Clearly, Proposition A.2 (b) can be adapted to continuous probability cascades:
the measure A(dZ) corresponding to the interval I < (0, 1) is sent to the measure
corresponding to I/A (for instance, to (0,x/A] if I =(0,x] and 1 > X).

Acknowledgements. 1 am indebted to N. Sourlas, B. Derrida and C. de Dominicis for much needed
guidance in the mystifying field of Parisi’s Ansatz, REM and GREM.
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