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Abstract. The large system limit of the Random Energy Model (REM) and
generalized Random Energy Model (GREM) of Derrida is investigated, and
found to be universal. This permits systematic calculations of relevance in
particular to Parisi's solution of the Sherrington-Kirkpatrick spin-glass model.

Introduction

B. Derrida has recently introduced two statistical models called respectively
Random Energy Model (REM) [2,3] and Generalized Random Energy Model
(GREM) [4,5]. These models are particularly interesting because they describe the
thermodynamic behavior of the Sherrington-Kirkpatrick (SK) model [14,8] ex-
pected on the basis of Parisi's Ansatz. For a discussion of the SK model in the light of
Parisi's Ansatz [12,13], we refer to Mezard et al. [9,11], and references quoted there.
For the connection with the REM and GREM, see Mezard, Parisi and Virasoro
[10], Derrida and Toulouse [6] and, most clearly, de Dominicis and Hilhorst [7].

In Derrida's formulation of the REM and GREM, certain limits are implicit
(JV-> oo, and for the GREM, number of levels of the hierarchy -» oo). The purpose of
the present paper is to give a mathematical reformulation where the appropriate
limits have already been taken. Our approach has the advantage of showing that no
hidden difficulties lurk behind these limits. It also permits an easier discussion of
certain problems, as we shall see below.

We shall proceed dogmatically by defining certain spaces and probability
measures. The connection with Derrida's definitions should then be rather clear, and
is discussed only briefly.

1. Poisson Distributions

The usual Poisson distribution describes (infinite) configurations of points on the
line R, with given density φ, and such that any two disjoint intervals of U behave
independently. This setup can be variously generalized, we shall use an extension
where IR is replaced by a nonempty open set Θ a W, and the density by a continuous
function φ ̂  0 on Θ. A configuration X of points in Θ will be represented by an
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occupancy function X: (9 -» N (the natural integers 0,1,2,...) such that £ X(ξ) <
ξeK

+ oo whenever KaG, and K is compact.1 This means that points of the
configuration can accumulate only on the boundary of Θ or at oo; multiple
occupancy is allowed but will turn out to have zero probability.

The space S£(Θ) of allowed configurations in Θ has a natural topology
corresponding to convergence away from the boundary of Θ and oo (see Appendix 1
for a precise definition). To the topology oiX{0) is attached a Borel structure, which
can be used to define Borel probability measures on $C(Θ).

Let now B be a relatively compact Borel subset of & (i.e. B is a bounded Borel
subset of (Rv, and closure B cz Θ). We denote by 9C(B) (respectively %m(B)) the space of
functions Y: B-^N such that £ Y(ξ)< + oo (respectively £ Y(ξ) = m). Clearly

ξeB ξeB

3£{B) is the disjoint union of the

There is a natural Borel structure on each 2Cm(B\ and therefore also on &(B). The
map πB\9£(Θ)-+%{B) which sends l e f (Θ) to its restriction πBX = X\B is Borel2.
We shall also need the Borel map Y\Bm^2£m{B) such that

(Y(ξl9.. >,ζm))(η) = (number of indices i such that ξt = η).

Finally, if Bx, B2 are relatively compact Borel subsets of Θ, and B1nB2 = φ,we can
make the identification

X(B1\JB2) = %{Bγ) x X(B2\ (1.1)

where Y\BιvB2-+N corresponds to (Y\B^ x (y|J32)
We are now equipped to define Poisson distributions. First we consider a

relatively compact Borel set BaΘ, and a Lebesgue integrable function ψ ^ 0 on B.
The Poisson distribution corresponding to B and φ is the probability measure mB

φ

defined on X(B) by

(1.2)

when 4̂ is a bounded Borel function on #*(£), and we have written

1 The reader may choose to go rather lightly over the details given below, and ignore completely the

Appendix. Physically, the Poisson distribution mφ corresponds to the distribution of positions of particles

in a free gas at temperature 1, contained in the (usually infinite) region Θ, the particles of the gas being

subjected to an external potential — log φ

2 Note that for compact K cz 0, &(K) has a natural locally compact topology, and that πκ: 3C(0) -• 9£(K\

which is Borel, is not continuous
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It is readily checked that, corresponding to (1.1), the following formula holds:

mφ = mφ\B1

 X mφ\B2' U'^)

Let now φ ^ 0 be a locally integrable function on Θ (i.e. such that J φ(ξ)dξ < + oo

for every compact set K a Θ). We define the Poisson distribution corresponding to φ
as the probability measure mφ on 9C(Θ) such that πBmφ = m^B for every relatively
compact Borel set B a Θ. If 0 is written as a countable union of disjoint relatively
compact Borel subsets Ba, one can make the identification

Using (1.3) one can see that this definition is unique.
Consider now another open set Θ* c [Rv, and let / : Θ -> Θ* be a diffeomorphism

(i.e. / has a unique inverse f~lm.Θ*^Θ9 and both /, / - 1 are differentiate). It is
not hard to see that the image by / of the Poisson distribution mφ on $£{&) is a
Poisson distribution mφ* on

9 ^ 1η\ (1.4)

where J denotes the Jacobian determinant:

2. The Random Energy Model (REM)

In the REM one is interested in the distribution of "Boltzmann factors" e~βE

9

where the E have a Poisson distribution, and its density φ on U is exponential3:
φ(ξ) = pepξ. We are in the situation of the preceding section, with Θ = U9 Θ* =
U>={ηeU:η>0} and f(ξ) = e~pξ, with 0<p<β. Therefore the "Boltzmann
factors" have a distribution with density φ* on IR> such that

-lpη-Plβ-β(- l0gη\ pexp pi - - l o g ^ j =j8

(see Eq. (1.4)). Defining x = p//?e(0,1), we have thus φ*(ξ) = xξ x x. Since φ*
depends on p, β only through x9 we shall write φ* = φx9 mφ* = mx.

Note that mx is a measure on objects X which are unordered sequences X = {ξΛ}
of points of (R>, such that £α->0 with probability 1. Write | X\ = Σξa. It is easy to
see that | X \ < oo for mx — almost all X, but

(this is readily obtained from (1.2) by a limit of the type used in the proof of the
next proposition). The map X-*X/\X\ sends mx to a measure rhx on (unordered)

3 In Derrida's original formulation [2,3], φ is taken to be Gaussian, so that $φ(ξ)dξ is finite; a limit N
-> oo is subsequently performed. In the equivalent treatment of Mezard, Parisi and Virasoro [10], φ is
exponential, but with a cut off so that J φ(ξ)dξ is again finite; here a limit M, fc-> oo has to be performed.
The use of Poisson distributions avoids these limits
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sequences X = {<fα} with Σj;a = 1. Note that mx is not a Poisson distribution. The
study of the probability measure mx constitutes a good part of the literature on
the REM and of the treatment of the SK model based on Parisi's Ansatz. The
proof of the proposition below shows that it is particularly easy to discuss mx

using the fact that mx is a Poisson distribution.

2.1. Proposition. Define a density px associated with mx such that

Then

PΛP> Γ(x)Γ(l-x)

It is easily verified that

ε->0

where mx is the Poisson distribution associated with the density φε

x such that

0 iϊξ<ε

With the obvious definition of Ξ we have

= S7-1 f I f *(ξ)dξ

oo 1

Letting ε->0, we obtain

(2-1)
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1

Since J px(p)pdp = 1, we have
o

1 1 x), (2.2)

and the proposition follows.

2.2. Corollary, (a) We have

In particular,

(b) From (2.1) and (2.2) we obtain also

(c) With a proof similar to that of the Proposition, we have, for Res < x,

and

\mx{dX)\X\° = I. . xJ
i (1 — 5J

(d) y4s α consequence of(b) and (c) we Ziαi e α/so

2.3. Proposition. Let X a U> be distributed according to mx(dX) (Poίsson distribution
with density φx). Ifa>0, then aX has a Poisson distribution with density axφx.

As discussed at the end of Sect.l, aX has Poisson distribution with density φ*
given by (1.4):

3. The Generalized Random Energy Model (GREM)

In this section, we shall describe the GREM as a probability measure mn(dX{n))
on finite probability cascades X(n). This corresponds to the situation originally
discussed by Derrida; in the next section we shall replace finite by continuous
cascades.

We choose an integer n^.1 and consider unordered families (£αi...αJ with the
following properties

(a) f.1...β n>0,
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(b) each index α l 5 . . . , α n runs over a countable infinite set, for which we may
for instance take the set f\J of natural integers,

(c) £«!...«„->0 whenαw->oo,
(d) the family (£αi...αJ is unordered in the sense that we allow all permutations

π: ( α 1 , . . . , α n ) ^ ( α ' 1 , . . . , α ^ such that if αx = βu...,uj_1 =βj-1 VjΦβp then
OL\ = β'1,...,(xf

j-1 = βj-i, oc'jφβ'j [in other words, we allow permutations which
preserve the tree structure of the index set corresponding to the ultrametric distance
rf((αi,...,αj, (βu...,βn)) = exp(-min{j:α, φβj).

Note that for n=l, the unordered families just described reduce to the
unordered sequences of Sect. 2.

If π: (aί,... ,α j -• (αΊ,... X ) is an allowed permutation then, in view of (d), for
each j (from 1 to n) there is a uniquely defined permutation (α t , . . . ,0,-) -• (a\,... α}),
which we shall again denote by π.

We may now consider cascades,

y v vSαi ? Sαiα2'* * ' ' ^ α i . αn/5

where the (ξilmmmOlj) satisfy (a), (b), (c) as above; we allow permutations π of the
indices as in (d), provided the same permutation is used for (αj, (α1α2), ...9(OLU... ,αj .
Notice that, in view of (c) for each ε > 0 there are only finitely many values of the
multiindex (oc1,... ,αΠ) such that

In view of this a cascade—considered as an unordered sequence of points in
R>—can be identified with an element of #"(IR>) as defined in Sect. 1. Using the
topology of #"(IR>) we obtain a Borel structure on the cascades, which will allow
us to define measures.

To define the probability measure mn(dX(n)) we first have to choose n numbers
Xjbetween 0 and l:0<x1<x2< - <xn<l. The definition will proceed in several
steps.

First, we introduce a probability measure vn (dY{n)) on cascades Y(n) =
(*/ί1,...,f7U1...flJ We proceed by induction. For n= 1, we let v1(dY(1)) = mxι(dY{1))
as in Sect. 2. For n > 1 we impose that

(image of vn(dY™) by the map y ( ϊ l ) -y ( "- 1 ) = (ίίβ l,...,^ 1...β | i. 1)) = vll

For fixed aιl9...9aιn-l9 let us write Y"1..mΛn_1=(ηaι...an), the definition of vn(dY(n)) is

completed by requiring that the Yn

Λ α _ have independent identical distributions
given by mXn(dY).

As a second step we define a map p: Y{n) -• X{n) of cascades such that

(Pl P2 zn \ _ n / M l y.2 nn \
VSαi •> ^αiα2' * * ' ' ^ α i . - α j FVlai» A/αiα2' * * * v/αi...αM/

and let mn(dX(n)) be the image of vn(d7(M)) by p. To summarize: the probability
measure mn(dX(n)) is obtained by picking first X1 = (ξlj according to the Poisson
distribution mXl(rfX1), then for each ocί picking the unordered sequence Y \x
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according to mX2{dY2J and writing Xi = ξlji, = (ξiiΛ2l Similarly, Xl1(t2 =
^^2^0102 = (̂ αi«2α3)»

 e t c I n this manner we obtain a probability distribution
on cascades *<"> = (£α\, £α

2

i α 2, £α

3

iα2«3 •••); this is precisely mn{dX^).
F o r the third step we let X{n)-^X{n) be the map defined by

(ί1 t2 ίn λ^(lι I1 ln )

where

and

Notice that X(n) is completely determined by the unordered family (ξ^ίm##flJ, i.e.,
by the last component of Z(M). The image of mn(dX(n)) by the map X(n)->X(n) is
the desired probability measure mn(dX(n))4'.

For the formulation of the proposition below, it is convenient to write
in)) and similarly for mn{dX{n)).

3.1. Proposition. Omitting ξj from (ξu...,ξn) defines a map X ( n ) ->X£~ υ . The

image of m{Xi ^}(dX(n)) by this map is *{χ1,...,χJl}\{xJ}(^*"1)).

We consider first the case j < n. For simplicity, we omit the indices α x,..., α7- _ 2 ,
and write α7 _ i = α, α7- = β9 aj+1= y, so that

where (//̂ ) is distributed—for fixed α—according to mXj(dY), and similarly for
f/ίjjy1, etc. If ^ i " 1 and ^ are fixed, the distribution of (ξί'Waβiίβy1) i s

Poisson, with density (ξi~1η{β)
χj+1φx.+ 1{') (see Proposition 2.2). Therefore, if ξ{~x

and ( ^ ) are fixed, the distribution oί(ξ{~1η{βη{^) is Poisson, with density

We write

and
γ(n-ί)_( £j-l Pj-lr y,j+l \

where ( ^ t i ) i s distributed—for fixed α—according to ^ ^ ^ d y j . For the

4 In the original language of Boltzmann factors we would have

where the εai_Λj have a Poisson distribution with density Pjepμ, and pjβ = xj. The fj1>ttβn are the

normalized probabilities corresponding to these Boltzmann factors
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determination of X%~1], it is equivalent to start from

V(n-1)_( κ/-2 zj-2 j-1 zj-2 j-1 j+l \
Λ * — V >ζ>. > S . Hoc > ζ . ' / α L a Ί * a δ >• •/

or
γ ( n - l ) _ / ' f j - 2 z j - 2 j - 1 zj-2j-l j + 1 \

because the last components are the same. We may also write

where ?/* = η{~1ca. We shall now need the following:

3.2. Lemma. (?/*) /zαs Poίsson distribution with density Cφx. (?/*) /or some
constant C > 0.

The cα are independently identically distributed with some density /ι and,
approximating φx._l by an integrable function, one sees that (η*) has Poisson
distribution with density φ such that

oo oo oo 1

φ(η) = j h{u)du J φ x . (υ)dvδ{η - uv)= J h(u)du$φx. (v)dv-δ{v - η/u)
0 0 J 0 o 7 W
00 du °° /7w

= J h(u)~Ψx.4

^du = Cφ (η),
0 J

provided the last integral above converges. According to (3.1) this integral is the
expectation value of

and is easily seen to be finite; in fact

C = lmXj(dY)(Yj(ηβP
+ψ-^+ί =SmXj/Xj+i(dY*)\ Y*\XJ-^J^ = \mx{dY)\ Y\\

(3.2)

with x = Xj/xj+ u s = XJ-JXJ+1.
We return now to the proof of Proposition 3.1. In view of the above lemma

we may write η% = C*/y**, where (η**) has Poisson distribution with density
φx {η**) provided C*^" 1 = C, and C is given by (3.2). We do not change X j " 1 }

if we replace η% by ?/** in ^ ~ 1 ) , so that we may obtain ^ J ~ 1 ) from

γ(n-ί)_( Zj-2 zj-2n** £i-2n**y]}+\ \

where (yy**) and ( ^ i ) r i a v e Poisson distributions with densities φx._1 and

φ x. respectively. Therefore X%~1] is distributed according to

™{x1,...,xn}\{χ-}(dX*~ί)), proving the Proposition for j <n.

For j = n, we have

where (f/"̂ ) is distributed—for fixed α—according to mx (d7). We can determine
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)_( μn-2
— V J S >

which has the appropriate last component. Writing ca = Ση"β, η% = ria~1ca9

 w e

β

can proceed as in the case j < n, with the same conclusion.

3.3. Corollary. The map X^-+P defined by ( & , . . . , & J - ί δ L Λj) sends
{)) to m l

4. Continuous Probability Cascades

Using an interval / c (0,1) instead of the finite set {xl9...9xn} we shall replace the
X{n) by continuous probability cascades Z, and the probability measure mn(dX(n)) by
m(dZ\

Remember that we have

Y(n) = (μ p. ?n \
^ VSαi» Sαiα2» * ' * >*»αi...αn/

with α!, . . . ,α π belonging to countable infinite index sets, such that

and permutations π preserving the tree structure of {α l5...,αΠ) are allowed.
We shall now introduce more general cascades Z(M) to form a set K^ ^ with

compact topology. We write

γ(n) _ / 7 _ \
^ Vz'αi5z'αiα2» ' * ' ' ^ α i αn/

with the following restrictions:
(a)z α i . . . α j >0,
(b) Given <xί9...,oij_ί9 the index α7- varies in α countable set, which may be

infinite or finite

for j = l

(d) We allow permutations π: (α 1,...,αj->(α /

1,...,α^) such that
(αx =βl9...9oij-ί= βj. uocjφ βj) implies (αΊ = β\,... ,α}_ λ = β)_ 1,OL'JΦ β'j).

Given ε > 0 and a finite set S of multiindices ( α l 5 . . . , α n ) , a neighborhood u of
Z(n) in K { x i ^ is defined by the condition that for each (oc1,...,otn)eS there
be ( α Ί , . . . χ j such that

m a x | z ^ . v . - z α i . . . α . | < ε .

It is not hard to see that K^ x^ is metrizable compact with this topology. [Note
that, for every ε > 0, there is N(ε) such that, for all Z{n)eK{Xi> x^, there are at most
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N(ε) values of the multiindex (oc1,... ,απ) such that min zαi αj. ^ ε].

If {x1,... ,xπ} cz {χ\,... ,χ^}9 there is a natural map

obtained by deleting from Z'(N) the (z'a> ...α0 such that xfjφ{xl9...,xw}, and lumping
together indices as needed. This map is clearly continuous and onto. Under the
above conditions, a natural construction ("inverse limit" or "projective limit")
gives a compact set K, and continuous maps of K onto all K{x^ _^ commuting
with the maps of (4.1). Because of the compatibility conditions of Proposition
3.1, there is a natural measure rh(dZ) on K which is mapped to
m{Xv Xn]{dX{n)) on each K{xi ^ m(dZ) is the projective limit of the m{x^ Xn](dX{n))

[see N.πBourbaki [1] Integration, Ch. Ill, §4,n° 5].

We have thus completed the promised continuous extension of Derrida's
GREM. A word of caution is however in order. The compact set K is not metrizable,
which means that we do not have the standard setup of integration theory, and some
theorems do not apply. We would obtain a metrizable set by taking the projective
limit of the K^ x } J where the xf are restricted to the set of rationals (which is
countable); this definition has however the disadvantage of some arbitrariness. The
two definitions are however compatible, and it is not inconvenient in practice to use
both, with the advantage that one is canonical and the other leads to a standard
probability measure.

We conclude this section by an example of calculation, namely that of the
correlation functions pXι_Xn [pγ,... ,pn) of a cascade. By definition, pXι xn(pί,... ,pM)
is the probability density of finding a decreasing sequence of clusters of sizes
pγ > - > pn for the values xί9...,xn of the parameter x. Thus

4.1. Proposition. The correlation functions are given by

Pxi...xn(Pl>' ->Pn) =

Let us write

Γ{Xl) Γ{x2-x1) Γ(xπ-*„_!) Γ(l-xn)
(4.2)

βl .βn

βj+l-

We have then
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αi \ r cci / <*2 \ ' αi<X2 /

We use now the same trick as for the calculation of px(p) in Proposition 2.1, writing
ηaί = ηί9...9ηaι_an = ηn a n d l u m p i n g t h e o t h e r var iab les as V = (Vl9 V29...). T h e
integration dV will not be done explicitly.

We obtain thus

' ( 5 ( P M - 1 7 V (Pn-l-Pn-l)in-iy(PnVn-(Pn-l-Pn)rin)'

The (5's in the integrand imply the following equalities:

Pn y γ + Pn-l y
n Pn-x-Pn ^ " H Pn-l-Pn

^ _ i = Pn-l-Pn 7n-l ? γ ^ , ^ ^ , ?yJ = P*-2

P»-2-Pn-l »̂ " " " Pn-2-Pn-l

^Pi-PsVi
Άl Pi-Pi V3

9

We have thus

P n v * " " 1 1 1 1 1 1

Pn-1-Pn/ 1-Pl I"Pi P1-P2 Pn-2-Pn-lPn-l-Pn

where



236 D. Ruelle

We know that

K
 ι

1 r{Xί)Γ{\-Xly
On the other hand

ί PXι...xn(Pu >Pn)PndPn = Pxy.-x^iPl* ,Pn- l)Pn- 1>

so that

J^n-l — Pn-l^n) \Pn-l ~ Pn) Pn aPn

By induction, we see therefore that the coefficient given in (4.2) is correct.

4.2. Remark. Applying Jdpj, with 7 < n, to pXί...Xn(Pι, .. ,pΛ) yields the
correlation function of n— 1 arguments corresponding to the set {x1?...,xn}\{xj}
of values of x. [This is readily checked from (4.2)]. Applying \dpn yields 00. Applying
\PrAPn yields pXy..Xn_i(pu...,pn-1)'pn-1 as already noted.

4.3. Remark. It is to be expected that changes in the temperature scale will
have a simple effect on the measures mx(dX\ mn(dX{n)\ m(dZ). The appropriate
results are stated and proved in Appendix 2.

5. Conclusions

In this note we have shown that the REM and the GREM are "universal" probabi-
lity structures depending on very few parameters: x for the REM, and the interval
I for the GREM. It is not too astonishing that these structures should occur in
the study of disordered systems. Note that, for the SK model, random free energies
rather than random energies are involved; in this case we should take / = (0, x)
with some x depending on the temperature. Of course, the relevance of REM and
GREM to the SK model depend on Parisi's solution being correct—which is not
proved. On the other hand the treatment of the SK model based on Parisi's Ansatz
yields more specific results than those captured in the REM and GREM. It is
nevertheless interesting that a number of the explicit calculations pertaining to
Parisi's solution only depend on the REM and GREM. One can therefore—as
we have shown—perform these calculations more systematically than is usually
done in the literature.

Appendix 1. The Space

Let Θ be a locally compact (Hausdorff) topological space. We shall assume for
simplicity that the topology of Θ has a countable basis. We denote by SC{Θ) the
space of functions X:Θ\->N such that

]Γ X(ξ) < + 00 for every compact set KczΘ.
ξeK
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Clearly, 9£{G) is the disjoint union u ^ Γ u f 0 0 , where

ξeΘ

and we may identify the elements of ΘCm, m finite or oo, with unordered sequences
(ξa\ where the index set has m elements, and permutations of the index set are
allowed.

We define a topology on SC(Θ) by giving a basis of neighborhoods
{^xiΨi'- -'Ψk)} °f X- If Ψι> -iΨk a r e r e a l continuous functions with compact
support in Θ, we define

l for/=l,...,/c}.
ξeΘ

It is easily seen that this topology is compatible with a metric for which 9E(Θ) is
complete5. Let us associate with l e f ( ^ ) the measure on 0 defined by

ξeΘ

where δξ is the unit mass at ξ. Then, Xh+δx is a homeomorphism of
to {δx\Xe9C(Θ)} equipped with the vague topology of measures.

Proposition. The Borel subsets of ΘC(Θ) constitute the σ-ring generated by the sets

S { Σ }
ξeB

where meN and B is a relatively compact Borel subset of Θ.
The proof is easy, and left to the reader.

Appendix 2. Changes of Temperature Scale

Dividing the temperature by a number λ>0 has the effect of replacing the
Boltzmann factor ζ = e~βE by ξλ = e~λβE. The map / : R> H> U> defined by fξ = ξλ

sends the Poisson distribution mx with density φx to a Poisson distribution mφ*,
where φ* is determined by (1.4):

φ*(η) = \λξλ-1\-χφx(ξ), with η = ξλ

or

, O * / M Λ _
X μ-x-λ X

A.I. Proposition. Lei Λ, > x.

(a) Tfte map X = (ξa)\^Xλ = ((ξa)
λ) sends mx to mx/λ.

(b)If X = &), write ήa = (ξy/Σββ)λ' Then, the map X-+Xλ/\Xλ\ = (ή
β

sends rhx to rhx/λ.

5 I am indebted to O. Lanford for pointing this out to me a number of years ago. Notice that the existence
of the metric requires the topology of & to have a countable basis
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(a) has been proved above; (b) results from the commutative diagram of maps:

y, >γ_ X

T~\X\

xλ

\xλ\ \xλ\
A.2. Proposition. Let 0 < xt < x2 < <x n < 1, and λ>xn.

(a) The map X(n) = (ξlι9ξlιa2,...9ξllmmma

the measure m{x^^Xn] to m { X i / λ ) Xπ/λ}.

Γftew, ίfte map Xin)^(Xm)~ = (ήaι,ήiίΛ2,. .9ήli...aJ s e n d s t h e measure ^{Xl,...,Xn) to

The proof of (a) is obtained by induction on n, using Proposition A.I (a). From (a)
and the commutative diagram

χ(n) , >%(n)

χ(n)λ , , (X(»)λ)~ = (l^)λ)~

one gets (b).
Clearly, Proposition A.2 (b) can be adapted to continuous probability cascades:

the measure m(dZ) corresponding to the interval I a (0,1) is sent to the measure
corresponding to I/λ (for instance, to (0, x/X] if I = (0, x] and A > x).

Acknowledgements. I am indebted to N. Sourlas, B. Derrida and C. de Dominicis for much needed
guidance in the mystifying field of Parisi's Ansatz, REM and GREM.
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