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Abstract. We consider the scattering of a classical colored particle off an
instanton. That is, we investigate Wong's equations (or equivalently, the
Kaluza-Klein geodesic equations) for a color SU(2) particle under the
influence of a Euclidean instanton. We solve the equations in the limit in which
the instanton becomes singular. Our main result is that particles with head-on
trajectories scatter off the instanton with a scattering angle of π/3. This angle is
independent of the magnitude of the color charge and velocity of the particle as
long as both are nonzero. The plane in which the scattering takes place is
determined by the particle's initial position and color charge. We also solve for
the geodesies for the corresponding (singular) Kaluza-Klein metric on SΊ.

1. Wong's Equations

Some History

Wong (1970) introduced equations of motion for a classical colored spinless
particle under the influence of an external Yang-Mills potential A. The equations
reduce to the Lorentz equations in the abelian case. See Arodz (1982) or
Balachandran et al. (1983) for further discussion.

Kaluza-Klein (1921) proposed an alternative framework in which to describe
such a particle. In their framework the particle travels in a geodesic relative to a
certain metric on a principal bundle over space-time. Kerner (1968) generalized
Kaluza-Klein's idea from the abelian to the non-abelian case. The Wong and the
Kaluza-Klein formulations were symplecticized by Sternberg (1978) and Wein-
stein (1978) respectively. See Sniatycki (1979) or Montgomery (1984) for a
further discussion of symplectic aspects.

Wong's Equations over a General Manifold

Let X be a Riemannian manifold with metric g. We think of X as the space on
which our classical colored particle travels. Let G be a compact Lie group and g its
Lie algebra. We think of the dual g* of the Lie algebra as the space of "color
charges," or internal degrees of freedom, for our colored particle. Fix a bi-invariant
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metric K on g and so identify g with g*. Let G-^P^X be a principal bundle over X
with structure group G. Let A be a connection on P. A is the Yang-Mills potential
under whose influence our particle travels. F will denote the curvature of A and D
the covariant derivative with respect to A. Let V be the Levi-Civita connection on
X corresponding to g.

Wong's equations are equations for a curve Q(t) in the adjoint bundle
Ad(P) = PxAdg over X. Let y(t) denote the projection of Q(t) onto X, with
y = dγ/dt. We can think of Q(i) as a section of Ad(P) along γ. Wong's equations are:

p.y = <β,F.y>, (Wl)

D*Q = 0. (W2)

The right-hand side of (Wl) is the non-Abelian Lorentz force term. It is a vector
field along γ defined as follows. F is a two-form with values in Ad(P), so
F - y = — i^F is a one-form along γ with values in the same. Contracting F y with Q
via /c [which induces a fiber metric on Ad(P)] yields a standard one-form along y.
Finally, this one-form's indices can be raised by using the metric g, yielding the
vector field <β, F y) along y.

Equation (Wl) is the equation of a particle under the influence of a generalized
Lorentz force parameterized by the color charge Q. Equation (W2) says that the
color charge is parallel translated along this spatial trajectory. The norm \\Q\\2 of
the color charge is always a constant of the motion. This is a kinematic constraint,
independent of the external potential A.

We will also need the first-order, coordinate form of Wong's equations

dxμ/dt = pμ, (Wla)

dpμ/dt = - l/2(dg«ψxμ)paPv + QaF
a

μβ(x)pβ, (W lb)

dQJdt=-Qdc
d

abA\(x)p^ (W2)

where pμ = gμv(x)px. We have taken the mass and various other units equal to 1.
Spatial indices (i.e. indices referring to X) are Greek: μ, β, etc. and Lie algebra
indices are Roman: a, b, etc. The xμ are the particle's spatial coordinates. The pμ are
its spatial (as opposed to canonical) momenta. The Qa coordinatize the particle's
color-charge, i.e. they are linear coordinates on g* and so fiber coordinates on the
co-adjoint bundle (or via K on the adjoint bundle). The cd

ab are the structure
constants for the Lie algebra relative to this basis. The Fa

μβ are the components of
the Yang-Mills field strength. Spatial indices are lowered by g.

This coordinate version of Wong's equations defines an o.d.e. on the vector
bundle T*X0AdP, the Whitney sum of two vector bundles over X. T*X©AdP
is the phase space for Wong's equations. It is coordinatized by (xμ, pv, Q

a). The xμ are
coordinates for X, the pv are fiber coordinates on T*X, and the Qa are fiber
coordinates for Ad(P).

Remarks. 1. If the Qa are all zero, then Wong's equations reduce to the geodesic
equations on X.

2. If G is (7(1) then the equations reduce to the Lorentz equations.
3. The Wong phase space Γ*XφAdP is equal to the pullback of the adjoint

bundle Ad(P)->X to T*X by the cotangent projection T*X-*X. In Montgomery
(1984) the Wong phase space is always referred to as this pullback bundle.
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Kaluza-Klein Formulation

There is an alternative formulation of the dynamics of our "classical quark" due to
Kaluza-Klein and generalized to the non-abelian case by Kerner (1968). The
equations of motion are the geodesic equations on the principal bundle P with
respect to a metric dsA

2. Intrinsically dsA

2 is defined by declaring that (1) the
vertical and horizontal (with respect to A) subspaces are orthogonal, (2) that the
fiber inclusion G c> P is a Riemannian embedding, and (3) that the projection π: P
-*X is a Riemannian submersion. Locally

dsA

2 = gμv(x)dxμdxv + κab(θa + A\(x)dxμ) (θb + A\(x)dxv),

where the θa are the basis of right invariant one-forms on G dual to our coordinate
basis for g. Note that the structure group G acts by isometries relative to this
metric.

The two formulations are related as follows. Let σ(i) be a curve in P.
Consider Aσ(t)σ(i)e% the vertical projection of the velocity σ. Set
Q{i) = \_σ{t),Aσ{t)σ(i)]ekά{P). Then σ(t) is a geodesic w.r.t. dsA

2 iffβ(t) is a
solution to Wong's equations with the potential A.

Symmetries. This paper relies heavily on symmetry groups. By a symmetry we will
mean a bundle automorphism of P which

(i) covers an isometry on the base space X,
(ii) preserves the connection A.
Clearly such an automorphism is an isometry for ds 2

Ά

Any automorphism of P induces an automorphism of the Wong phase space
Γ * I 0 Ad P. An automorphism of the Wong phase space which is induced by a
symmetry will be called a symmetry of Wong's equations. It is clear from the above
correspondence between solutions of the Kaluza-Klein and Wong's equations that
a symmetry of Wong's equations maps solutions of the equations to solutions to
the equations.

Hamiltonian Formalism

Some Hamiltonian formalism will be used in arriving at our scattering result. Here
we summarize the formalism for Wong's equations. The Poisson brackets for
Wong's equations are non-canonical. The Hamiltonian for Wong's equations is
the particle's kinetic energy

H=\βgμ\x)pμpy. (1.1)

Define the canonical momenta by the minimal coupling procedure:

a

μ(x). (1.2)

Then in the (xμ, po a n

v, Qa) coordinates the Poisson brackets are given by

{*", pcan

v} = <S«V, {Qω Qb} = c\άQd, all other brackets zero.

These relations can be used to find formulas for the brackets of the {xμ,pv, Qa).
Hamilton's equations are given by df/dt = {f,H} for / any function on
Γ*XΘ Ad(P). In particular if we take for / the coordinate functions xμ, pv, and Qa

then Hamilton's equations are (Wla), (Wlb), and (W2a) respectively. See
Montgomery (1984) for more details.
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There is a kinematic constraint associated with the brackets of the β, namely
the Q must remain on whatever adjoint orbit they started on, independent of the
choice of Hamiltonian H. For the regular orbits this constraint is seen by the fact
that any adjoint-invariant smooth function of the Qs is a Casimir: its Poisson
bracket with all other functions is zero. One such Casimir is | | β | | 2 = κabQaQb. For
G = SU(2) this is the only Casimir.

Remark. The (xμ, p c a n

v, Qa) are best thought of as coordinates on the Poisson
reduced manifold T*P/G. The symplectic leaves of this Poisson manifold are the
"universal phase spaces" of Weinstein (1978). As mentioned the (xμ,pv, Qa) are
coordinates on T*XφAd(P). The symplectic leaves of this Poisson manifold are
Sternberg's (1977) phase spaces. The minimal coupling procedure (1.2) is an
isomorphism between these two Poisson manifolds. For more details see
Montgomery (1984).

Momentum Maps

Momentum maps are the Hamiltonian version of Noether conserved quantities.
Suppose we have a left action of a Lie group K on P by symmetries, where
symmetries are as defined above. This action induces an action of K on the Wong
phase space Γ * I © AdP which leaves the Hamiltonian invariant, and is canonical
(bracket preserving).

The action on T*X®AdP has a momentum map J: T*X0AdP->ϊ*. Here ΐ
denotes the Lie algebra of Kand ϊ* is its dual. For ξet, let ξE denote the
corresponding infinitesimal generator, a vector field on E. Let Jξ(e) = (J(e), ξ}.
Then J is essentially defined by the relation

df ζE — {f Jξ} for all smooth function / on E.

J is a conserved vector for the dynamics, since {Jξ, H}= — dH ξE =
-d{(expλξ)*H}/dλ = O.

The formula for J in our local coordinates is

β(x, p, Q) = <pcan, ξx(x)} + <β, ξP(x)) . (1.3)

Here ξx(x) e TXX is the infinitesimal generator for the action on X. ξP(x) e AdxP is
the infinitesimal generator of the K action on P. It represents an infinitesimal
automorphism of P. In a local trivialization ξP(x)eq and the infinitesimal
automorphism has the form g ι-> ξP(x)g, geG.

2. Our Problem and the Statement of its Solution

For the rest of this paper we take G->P-^X to be the quaternionic Hopf fibration
Sp(l)->S7->S4. Recall that Sp(ί) is isomorphic to SU(2) which is topologically S3.
We take the standard metrics on the fiber S3 and on the base S4, with radii 2 and 1
respectively, and we take A to be a self-dual connection for this bundle, i.e. an
instanton with instanton number 1. We will begin by reviewing instantons. For
further details regarding instantons we suggest Freed and Uhlenbeck (1984, pp.
100-105).
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Review of Instantons

Let H = R4 denote the space of quaternions. Throughout this paper we identify S4

with H u { oo } = quaternionic projective space HP 1 , via stereographic projection so
that oo corresponds to the north pole and 0 to the south pole. H P 1 is the space
whose points consist of right quaternionic lines in H x H. We write points of H P 1

in homogeneous coordinates: [^i,^2]
 = [^i^?^2^] (Caveat: Freed and Uhlen-

beck use left quaternionic lines, hence many of their formulas are the quaternionic
conjugate of ours.) The affine coordinate of a point [x, 1] e H P 1 is x e H. The point
[1,0] corresponds to oo. In this manner H P 1 = Hu{oo}. The standard metric on
S4 is then

( Y Re{dxdx}, xeH. (2.1)
+ 11*11

Consider S 7 c H x H as consisting of pairs (ql9 q2) with

[The correct choice for r is 2. This insures that the Kaluza-Klein metric
corresponding to the central instanton (see below) is the standard metric on S7(2).]
The action of the structure group is given by (qu q2) 0 = G?i05 q^g)-

The Hopf projection S7->S4 is simply given by (^i,^2)
l~>[^ri?^2] The

standard local section s over H is

The corresponding local trivialization over H is (x,g)\-+s(x) g, which is a
diffeomorphism, H x Sp(l)-^S^.

Every self-dual connection for the quaternionic Hopf fϊbration is characterized
up to gauge equivalence by its center beS4 and its width λ, 0 < Λ ^ l . This is a
fundamental result due to Atiyah et al. (1978). The space of gauge equivalence
classes of self-dual connections is known as the moduli space. Topologically the
moduli space is a unit 5-ball, with (b, λ) e S4 x (0,1) corresponding to (1 — λ)b e B5.
The connections with width 1 are thus all gauge equivalent and correspond to the
center of the ball. The Kaluza-Klein metric corresponding to this central
connection is the standard metric on SΊ.

A point (b, 0) on the boundary represents a singular connection with
singularity at beS4 = dB5. Our goal in this paper is to solve the Wong system
corresponding to such a singular connection. The SO(5) symmetry of the situation
allows us to reduce the problem to the case b = 0 = south pole. See Remark 3 at the
end of this section. From now on we will assume b = 0.

After being pulled back by our standard local sections the connection Aλ with
width λ and center b = 0 is given by

x)=T2—7-j2lm{^dx}, xeU. (2.2a)

We have identified the Lie algebra of Sp(l) with the pure imaginary quaternions
ImH. In the local trivialization over H

+ 11x11
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The curvature of Aλ is given by

For each λ we then have a system Wλ of Wong's equations over Hu{oo}. Our
problem is then to solve these Wong's equations in the limit λ-+0. If we simply set
Λ = 0 then both the connection and its curvature are singular at x = Q. The
curvature in fact acts like a (S-function. The Wong system Wo is thus ill-defined at
x = 0.

Naively, our classical quark acts like a charged particle travelling in a magnetic
field B(x) = δ(x)B0. As long as the particle misses the origin there is no force on it
so it travels in a geodesic. However if it goes through the origin it is instantaneously
subject to an infinite deflecting force. In general it would seem that the particle's
trajectory would no longer be well-defined after it passes through the origin.
However if the ^-function is "nice enough" the particle should scatter by some
finite angle and continue along on a geodesic. This is the case for our classical
quark: the scattering angle in π/3 and the scattering plane is determined by the
quark's initial position and internal degree of freedom.

Recall from the previous section that Wong's equations can be written as o.d.e.
s on the vector bundle T*S4©AdS7 over S4. Our local trivialization of S^ over H
CS4 induces a local trivialization Ad(S7)H~H x ImH. The Wong phase space in
this local trivialization is then (T*S 4 0AdS 7 ) H ^HxHxImH, and a typical
element in it will be written (x,p, Q). Set

β=\\x\\2. (2.4)

Then Wong's equations [Wla,b, W2] for the instanton Aλ read:

x = 1/4(1+jS)2p, (Wλla)

p= -1/2(1 +β)\\pfx-Ύ±ΊLPLϊPQ, (WΛlb)

Q = —1/4 -

Here ' means d/dt, and the brackets [ , ] are the Lie brackets in H:
[#> h] = qh — hq, which is always an element of ImH.

Initial conditions at time t = t0 for our Wong's equations are given by
(χo> Po> δo) e H x H x ImH. We will always assume that x0 φ 0. Let (x(t, λ), p(t, λ),
Q(t, λ)) be the solution to the Wong system Wλ with these initial conditions. By
definition the solution to Wong's equations for the singular connection Ao and the
same initial conditions (x0, pθ9 Qo) is the path (x(ί), Q(ή) = lim (x(ί, λ)9 Q(t9 λ)) in

HxImH. We allow x(ί) = oo corresponding to the north pole. We also write
pit) = lim pit, λ) however as we will see this limit does not exist when x(ί) = 0 (see

Fig. 1).
Away from x = 0,

Fλ->0 and Aλ->A0 = lm{xdx/\\x\\2}. (2.5)
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Wong's equations (Wl,2) of Sect. 1 then become

Vtf = 0 and D°y = 0 for γ(t) + 09 (2.6)

where D° is the covariant derivative for Ao. Let (x(ί, 0), p(ί, 0), Q(t, 0)) denote the
solution to these equations with initial conditions (xo?Po?6o) The convergence
(2.5) is uniform over compact sets of Huoo\{0} = S4\{0}. A standard argument
using GronwalΓs lemma then says that (x(0, p(0> 6(0) = (x(t, 0), p(ί, 0), Q(t, 0)) as
long as x(ί,0)Φ0.

The curves x(ί, 0) are just the stereographic projections of arcs of great circles.
As long as x 0 φ oo and p 0 φ cx0 with c real, these circles do not go through the south
pole, x = 0, and so x(0 corresponds (under stereographic projection) to a great
circle for all t. 6 ( 0 *s parallel translated around this circle w.r.t. the connection Ao.
Since the curvature, F o = 0 away from 0 it follows that Q(t0 + T) = Q0 where T is
the geodesic's period

II -Λ/V ΛII C 4 Λ i Q || ^ | | * V /

We will call the exceptional initial conditions

scattering data = {(x0, p 0 , 6o): x 0 = oo or p 0 = cx0 with c real}.

The corresponding curves, x(ί) are the interesting ones, since they go through the
singularity.

Proposition 1. Assume that x0, p 0 , and Qo are all nonzero. Then the solution
(x(0> 6(0) a s defined above to Wong's equations for the singular connection with
initial conditions (xθ9 p 0 , Qo) exists for all t and is given as follows:

If (xθ5 Po> βo) a r e scattering data then the trajectory is as in Fig. 1: x(t) consists
of 6 rays through the origin. These rays all lie in the 2-plane P spanned by x0 and
X0QQ. The rays are travelled by x(t) in such a way that the angle between a successive
incoming and outgoing ray is π/3 relative to the orientation {x0, x0Q0} of the 2-plane.
At oo (the north pole) the great circles are traversed in the standard way: there is no
discontinuity in x(t)'s derivative at oo. On S 4 this trajectory is the union of three
great circles through the south pole. The trajectory is periodic with period 3 T, with T
given by (2.7). 6 ( 0 = βo ϊ 5 constant throughout.

If (*o> Po> 6o) a r e n o t scattering data then x(t) is the stereographic projection of
a great circle on S4. 6 ( 0 is parallel translated along this geodesic w.r.t. the
connection Ao. All such trajectories are periodic with period T.

Outline of Proof The proof of the theorem for non-scattering data follows from
GronwalΓs estimate, as mentioned above. Proving the theorem for scattering data
occupies the rest of this paper. A priori, it is not even clear that \imx(t,λ) exists for

A->0

t>tc where x(tC9 0) = 0. This proof is broken into two parts. In the first part,
presented in the next section, we reduce the problem to an o.d.e. in the plane. This is
done by using the fact that Sp(l) x Sp(l) acts as a symmetry group for the Wong's
equations (Wλ), λ > 0. In the second part, presented in Sect. 4, we analyze this o.d.e.
in the limit /ί->0 by using methods from classical scattering theory and singular
perturbation theory.
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Fig. 1

Remarks. 1. We will discuss what the scattering looks like up on the bundle in
Sect. 5. That is, what are the geodesies for the singular Kaluza-Klein metric on SΊΊ
When the curve passes through the fiber S3cSΊ over the singularity 0 it jumps
along an arc of a great circle of the fiber. The angle subtended by this arc is π/3.

2. The fact that Q(t) is constant on the scattering trajectories is globally
consistent even though Ad(S7) is a nontrivial bundle over S4. From a topological
point of view this constancy of Q(i) is possible because the vector bundle Ad(S7)
-+S4 is trivial over every S2 in S4.

3. By symmetry, the proposition also holds for all the other singular self-dual
instantons with instanton number 1 connections over S4. Such a connection is
represented by a point (b, 0). We define the Wong dynamics just as in the case b = 0:
it is the limit λ-+0 of the one-parameter family of Wong dynamics corresponding
to the connections (b, λ). Let R e SO(5) be any isometry of S4 which takes 0 (the
south pole) to b. R is covered by an automorphism R of SΊ which takes the
connections (0, λ) to the connections (b, λ). So the two families of Wong dynamics,
and hence their limits, are conjugate by R. Thus the proposition above holds for
any singular connection except that 0 is replaced by the singularity b and oo by the
point antipodal to b.

4. The adjoint bundle AdS7, which is more or less the configuration space for
Wong's equations is a vector bundle over S4. Its unit sphere bundle E can be
identified with the twistor space [see Atiyah (1979), or Atiyah et al. (1978)] whose
fiber Ex9 x e S4, consists of the set of complex structures on TXS

4. E is diffeomorphic
to CP3. T*S4®E can be identified with the symplectic quotient of Γ*S7 by the
action of the structure group Sp(l).

5. We chose a particular path, namely (b,λ), approaching (fc,0) in order to
define the singular dynamics. If we chose a different path (b(λ),λ), db/dλ + 0 for
λ = 0, it is likely that the singular dynamics would be different.

6. The π/3 scattering result in Proposition 1 probably also holds for any
Riemannian 4-manifold X which admits concentrated instantons. A result of
Taubes states that if X is a simply connected spin manifold then it admits such
connections. The Donaldson Theorem then says that such an X is either S4 or the
connected sum of CP2s.
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3. Symmetries, Conserved Quantities and Reduction to an O.d.e. in the Plane

In this section we work entirely in stereographic coordinates. The two main results
of this section are:

Lemma 1. If (xo>Po>δo) a r e scattering data then x(t,λ) (and hence p(t,λ)J is
restricted to lie in the two-plane

P = SpanR{x0,x0<20}cH. (3.1)

(Note that since Qo= —Qo that x0 and x0Q0 are orthogonal.)

Lemma 2. Let (ρ, θ) be polar coordinates on the two-plane P where the plane is

oriented according to {xo>
xoδo} Set ρ2 = β so that

\\χ\\2=β

as in Eq. (Wλ) above. Then x(t,λ) obeys the o.d.e.:

1/4/? = 2Hβ((ί + β)/2f - ((1 + β)βfa{β, λf, (3.20)

βψ = ((i+β)/2)*a(β,λ)2, (3.20)

where

MR n._ Λ2 || 6011 d o - I )

As a corollary we will show:

Corollary 1. // (x0, p 0 , Qo) is scattering data then the component Q(t, λ) of the Wong
trajectory is constant: Q(t,λ) = Q0 for all t,λ>0.

In proving these three results, we will omit the details of a number of
calculations. These details are available upon request.

These two lemmas are obtained by using the fact that SKI) x Sp(ί) acts as a
symmetry group (in the sense of the first section) on the Wong system Wλ. An
element (gug2) of Sp(l)xSp(l) acts on S 7 c H x H by (#i,02)'(<?i><?2)

) In the standard trivialization of S7 over H this action is:

929)' (3.3)

The transformation of the base, x^gxxg^1 is an element of SO(4) hence an
isometry of S4. This action also preserves the connections Aλ\

Lgί,β2*Aλ = Aλ, (3.4)

where Lgug2 is the transformation (3.3). Hence this action is an action by
symmetries as defined in Sect. 1.

The induced action of Sp(l) x Sp(ί) on the Wong phase space T * S 4 0 Ad(S7) is
given in our local trivialization by:

(0i, Qi)' (x> V, Q) = (01*02 \ QiPQi \ Q2QQ2 X) (3.5)

There is a momentum map, or conserved vector, J corresponding to this action (see
end of Sect. 1). J is a function on Wong phase space with values in the dual of the
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Lie algebra of the symmetry group. Identify this dual Lie algebra with ImH
xlmH. Then using formula (1.3) we find that J = (/1? J 2), where

\\x\\2), (3.60

+\\x\\2). (3.62)

From general theory we know that J is conserved by the Wong dynamics [_Wλ~], i.e.
dJ/dt = O. This can also be checked by a direct but tedious calculation.
Proof of Lemma 1. We can consider J as taking values in the Lie algebra of
SO(4) since this Lie algebra is isomorphic to the Lie algebra of Sp(ί) xSp(l).
Then (Ji,J 2) *s thought of as the skew-symmetric endomorphism

h\-+J1h-hJ2 (3.7)

of H = R4. Every skew symmetric endomorphism of R4 has two orthogonal
invariant two-dimensional subspaces P + and P_. Consequently, these subspaces
are invariants of the Wong dynamics.

Let x+ and x_ denote the projections of x [the x of J = J(x,p, Q)~\ onto these
subspaces. A calculation shows that

| |x+ | |2 = α+ | |x | | 2 with α+ = i( l

and

||x_||2 = α_||x||2 with α_ =£(1 + cosμ), (3.8a)

where μ is the angle between Jxx and xJ2> which satisfies

2 c o s μ =

Since the α+ depend only on J and ||Q||2, Eq. (3.8) are dynamical constraints: they
constrain the position variable x to lie on a certain cone in H which is generally
3-dimensional. However, on scattering data xopo is real, so that lm{poxo}
= Im{xopo} = 0 and

Jiixo, Po, Go) = λ2Q0/(λ2 + | |x0 II2) (3.92)

It follows that

on scattering data. Plugging this result into (3.8b) we see that cosμ = 1 and hence
α+ =0 and α_ = 1. Thus xo = xo_, i.e. x0 lies on the invariant two-plane P = P_.
Since α+ and P_ are invariants of the ^-dynamics, it follows from Eq. (3.8a) that
x(t, λ) remains on P for all t.

A priori, P_ depends on λ through J. However, on scattering data P_ is
independent of λ. This is most easily seen by substituting h = x0 and then h = xoQo
into the endomorphism (3.7) with Jx and J2 given by (3.9). The result is that under
this endomorphism spanR{x0} \-+ spanR{xoβo} and spanR{xoβo} i—• sρanR{x0}
and thus P + =spanR{x0,x0Q0}. This completes the proof of Lemma 1.
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Proof of Lemma 2. The energy (1.1) of our system is

H = \((\+β)β)2\\p\\2 (3.11)

and is conserved. A calculation shows that in general

I I P I I 2 = Γ H
where

Φ(β,λ) = λ2\\Jί\\2/(λ2 + β) + β\\J2\\2/(λ2 + β)-λ2\\Q\\2β/(λ2 + β)2. (3.12)

Combining these results gives the equation:

ψ = 2Hj»[(l +/0/2]2 - [(1 +/0/2]4Φ(β λ). (3.13)

Using (3.9) and (3.10) we calculate that Φ(β, λ) = a(β, λf. Plugging this into (3.13)
yields the first desired equation, (3.2/?).

Remark. Equation (3.13) is the reduced dynamical equation in the sense of
symplectic reduction [Arnold (1978, Appendix); Abraham and Marsden
(1978, Chap. 4)]. Form the symplectic quotient of T*S7 by the group
H = Sp(ί) x Sp(ί) x Sp(ί). The first Sp(ϊ) factor is the structure group and it acts on
the right, the other two factors act on the left as in the paragraph above. A
dimension count shows that the symplectic reduced space is two-dimensional. The
reduced Hamiltonian thus provides a complete integral of the motion. Alterna-
tively, form the (singular) quotient SΊ/H. This is a one-dimensional Riemannian
manifold coordinatized by β and (3.13) is a form of the geodesic equation.

Since x is constrained to P = P_ we have

\\X\\2 = Q2 + Q2P

in the polar coordinates (ρ,0). Substituting β=ρ2 yields

U\\2 = ~
Now the energy

H =

is conserved. These last two equations yield

Plugging the β equation (3.2)8) into this yields (3.20), and completes the proof of
Lemma 2.

Proof of Corollary 1. Recall that Eq. (Wλ2) for Q has the form Q = g(β)[xp, β] . The
Eqs. (3.2/?, θ) of Lemma 2 determine (x(t, A), p(t9 λ)) and are independent of Q
(recall that the magnitude ||Q|| is automatically constant) so we can solve for
x(t, λ), p(t, λ) without solving for Q(t, λ). Given these solutions, Eq. (Wλ2) becomes
a linear non-autonomous o.d.e. for Q. Recalling the formula (3.62) for the
conserved vector J2 we can rewrite the Q equation in the form β =/(/?) [̂ 2? δ l
Initially lm(xp) = 0 so that [J2> Q] = 0. J2 is constant of the motion. If β(ί, λ) is also
constant, then the bracket [J2> Q] is constant and hence zero. Thus Q(t, λ) = Qo is a
solution to (Wλ2). Uniqueness of solutions implies it is the solution.
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4. Asymptotic Analysis of the O.D.E.

If Proposition 1 were to hold, then for λ small, we would expect the following
qualitative picture for the dynamics in the P+ plane:

Conversely, if this picture is correct, and if

πβ, (4.1)

then we will have proved the main proposition. (We will be more precise below
regarding what we mean by "this picture being correct.") We take as a definition of

Δθ(λ)'' ΔΘ(λ) = θ(tl9λ)-θ(t09λ),

where t0 is the initial condition time and t1 = t^λ) is the next time t > t0 for which

j8(U) = j8o (recall j8o=ll*oll2)
The method of arriving at (4.1) is one used in classical scattering theory [see for

instance, Newton (1966)]: find a differential equation for dθ/dβ in terms of β and
then integrate it. The key which makes the integration tractable is that we can solve
asymptotically for the distance o(λ) of Fig. 2. The square of this distance is denoted
βm(λ). It is the largest zero of the right-hand side of the β equation (3.2/?) which lies
in the interval (0, β0) and persists as λ->0. We will show later that asymptotically

, (4.2a)

where

L=[||Qoll78ff]1/3 (4 2b)

In order to obtain the dθ/dβ equation, take square roots of (3.2/?, θ):

β= ±2γ2Hβl(l +j3)/2]2-[(l +β)/2Ta(β,λ)2 ,
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We will only be concerned with these equations in the range to^t^t1. Let ίm(/l),
ί0 <L tm(λ) S ti be the time of closest approach of the trajectory to the singularity:
\\x(tm(λ), λ)\\2 = βm(λ). Then the correct choice of signs is

β= -2γ2Hβl(ί +β)β¥-[(1 +β)/2Ta(β,λ)2 , for to£t£tm(λ)

= +2γ2Hβl(ί + β)/2T-[(1 + /0/2]4fl(/f,λf , for tjfi^t^h (4.3/0

[Note βm(λ) = β(tm(λ)9 λ) is a zero of the right-hand sides.] And

0 = ± -Jj [(1 + β)/2Ya(β, λ) for all ί. (4.30)

It is clear that the initial choice of sign for β should be negative, since we want
the particle moving inwards initially. [That is, it suffices to look at scattering data
with p0 = — cx0 with c>0. If the particle were moving outwards initially, i.e.
po = cxo, c>0, then the limiting trajectory x(t) would be an outward pointed ray.
When continued through oo this ray yields initial conditions ( — xo?Po?6o)? i e

inwards pointed initial conditions.] If the particle is to "scatter" off the singularity
as we expect, then the β sign must switch from negative to positive as β goes
through βm(λ). This has been verified, as has the choice of sign for θ.

The correctness of the qualitative features of Fig. 2 follows from the θ equation:

0 is

and

Now divide the 0 equation by the β equation

dθ/dβ = θ/β =

where

/ 2 V 1
G{β'λ)=2Hβ{ττβ) «jΰ?=2Hβ[ΊTβ) 1 WQMo-β) \ •

The sign of dθ/dβ must be chosen consistent with the β and θ signs. It is initially
negative and switches at the turning point βm(λ). Then

= θ(t1,λ)-θ(t0,λ)= ϊ ^dt= l^dβ,
d β (4 <5Ϊ

βψ) dβ h ΛR W J)

~~ βo 2βγG(β,λ)-l+βm<»

dβ

>0

= 0

<0

for

for

for

β<βo

β-βo

β>βo

0 as

oo as

(although this

λ->0 with

β->0 with
β

λ

is unimportant),

fixed,

fixed.

βnA» β\/G(β,λ)-ί'
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And thus

is given by the limit 2->0 of this last integral. Simply setting 2 = 0 in this integral

cannot be justified and in fact leads to the wrong answer yAΘ= J" dβ/βγco=OJ.
To proceed we take advantage of (4.2) and make the substitution

β = λ4/3Lb. (4.6)

Then βm(λ) = λ4/3Lbm(λ) which implies bm(λ) = 1 - O(λ2/3). So

Aθ(λ)=λ T°/ Γ

where G(b, λ) = G(β, λ). One calculates

b(b + λ2'3/L)2(β0

Gφ,λ)=-
(l + λ4/3Lb)2(β0-λ4/3Lb)2'

so that limλ_0G(fc, λ) = b3. Thus

(4.7a)

(4.7b)

(4.7c)

(4.7d)

This completes the proof of the proposition, except that we owe the reader a
verification of the following three facts:

1. The fact that βm(λ) is given by (4.2) and that for λ small it is the largest zero of β
which lies between 0 and β0.

2. The fact that the integral (4.7c) equals π/3.

3. The validity of interchanging the limit λ-+0 with the integration in going from
(4.7b) to (4.7c).

Fact 1. Regarding βm(λ). By definition βm(λ) is the largest zero of the right-hand
side of the β equation (3.2/J) which lies in the interval (0, βo~]. Multiplying this right-
hand side of (3.2j8) by (λ2 + β)2[2/(l +j?)] 2 yields the equation

for βm(λ). Substituting in β = λcB, c > 0 changes this to

3 2 . Q /Λ +Po/
( 2 I D I \ 2
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One easily sees that if either one or the other of these two terms dominate as λ-^0
then there is no positive nonzero solution B. Thus we choose the exponent c so as
to balance the two terms. [If our "applied math" reasoning makes the reader
uncomfortable, have patience. Once we obtain the answer (4.2) we will prove its
correctness.] If c ̂  2 then the second term is easily seen to dominate. For c < 2 we
rewrite the equation as

Thus 3c=4 or c = f. Dividing through by λ4 we obtain

^ ) 2 (4.6,

This equation can be written in the form 2HB3-i\\Q\\2 + O(λ2β) = 0. Thus our
zero is Bm(λ) = L+O(λ2/3\ or βm(λ) = λ*/3L+O(λ2) where L={||<2||2/8#}1/3.

The existence and local uniqueness of this zero follows from the inverse
function theorem. Let f(B, λ) denote the right-hand side of (4.6). It is a smooth
function of B and λ2/3 whose partial derivative w.r.t. B at (J5, λ2'3) = (L, 0) is
6L2 Φθ. Thus for λ close to zero the equation f(B, λ) has a unique local solution

^ 3

We now show that for λ small βm(λ) is the largest zero in the interval (0,β0].
This follows if we can show that when λ is small enough f(B, λ) is a monotone
increasing function of B in the interval [Bm{λ), λ~4l3β0~]. Monotonicity of/ is clear
upon taking derivatives: df/dB = 6HB2 + O(λ2/3) where the bound is uniform on
our interval. It follows that for λ small enough df/dB > 0 and hence / is monotone.

Fact2. Evaluation of the Integral. The substitution y = b3 reduces the integral to
iί dy/yγy — 1 which can be done by residues on the Riemannian sphere.
Alternatively, the successive substitutions y2 = b3, coshw = y, x = ew converts the

20 0

integral to - J 2dx/x2 +1 = π/3.
3 i

Fact 3. The Limit and Integral can be Interchanged. The act of bringing the limit
inside the integral in going from (4.7c) to (4.7d) can be justified by a slight
generalization (Royden, Proposition 18, p. 232) of the Lebesgue dominated
convergence theorem. This generalization says that if gλ(b) <; hλ(b) are integrable
functions and lim f hλ < oo, then lim lgλ=\ lim#A. For gλ we take the integrand of
(4.7c):

where χ is the characteristic function of the given interval. And we take

The inequality gλ(b) S hλφ) is not difficult to prove in the case β0 ^ 1. This case is
sufficient since Aθ does not depend on the initial condition β0. Finally, it is easily
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seen that f hλ< oo. In fact using residues as in the proof of Fact 2 we find that

$hλ=]/2{bm(λ)}-3'2πβ.

5. Meanwhile, Back Up on the Principal Bundle...

Armed with the solution to Wong's equations in the singular limit Λλ-^A0 we
return to the principal bundle S7. Let gλ be the Kaluza-Klein metric corresponding
to Λλ. Then gλ-+g0, the singular Kaluza-Klein metric. We will now solve for the
geodesies for g0.

We continue to work in the same local trivialization S^H
According to the discussion of Sect. 1,

= (x(t9λ)9g(t9λ))eHxSp(l)

is a geodesic for the metric gλ if and only if

with

Q(t,λ) = Aλ(yλ(ή) yλ(t) = g-ιg + g-'{lmxx/(λ2 + β)}g (5.1)

is a solution to the Wong system Wλ.
We rewrite (5.2) as an o.d.e. for g:

g(t, λ) = g(t, λ)Q(t9 λ) - Im {x(t, λ)x(t9 λ)/(λ2 + β(t9 λ)}g(t9 λ). (5.3)

For non-scattering data we can simply set λ = 0 in (5.3) and solve for g(t) = g(t, 0).
As usual the interesting case is the case where x scatters, and this is the only case
which we will solve.

For scattering data (x0 = oo or p 0 = cx0 with c real) we know Q(ί, λ) = Qo. We
also know x(t9 λ) and x(t9 λ) lie in the plane P spanned by x0 and x0Q0. Using these
facts we find that (5.3) can be written as

dg(t9 λ)/dt = g(t9 λ)Q0 -f(β)Qog(t, λ), (5.3a)

where

β(t9λ) is the solution to (3.2j8) and where Qo=
II G o II

The solution is

g(t9 λ) = exp j ( - 1 f(β(t, λ), λ)dt]j ρ 0 } g0 exp {(ί - ίo)6o, (5-4)

as can be directly checked by differentiating this expression. To calculate
= \imλ^og(t,λ) we need only calculate the limit λ^O of the integral

h{i)=-\f(β{Uλ\λ)dt. (5.5)
ίo
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Making the same change of variables b — λ 4 / 3 L xβ(t,λ) as in the preceding
section we find that:

limλ_>oIλ(t) = 0 for to^
= -π/3 for tc<t<tc+T, (5.7)

where Γ, which is given by (2.7) is the period of a geodesic on S 4 which is being
travelled at a speed ||ι?0lls

4> a n d tc is the first time greater than t0 at which x(ί) = 0,

tc = t0 + dist s 4(x0,0)/Γ= t0 + cos" ' {(β0 -

(assuming po= — cx0 with c positive). Thus

Γ. (5.8)

The fiber coordinate #(ί) of our geodesic suffers a discontinuous jump at tc

when the particle goes through the curvature singularity (Fig. 3).

Fiber over

Fig. 3 IH

This jump is between the points ^in = ^o e xP{( ίc~ ίo)2o} a n d the point
#out — e x P { ~ π/36o}#in These points are the endpoints of the geodesic arc

a(s) = exp { - sQ0}gin, 0 ̂  5 ̂  π/3 (5.9)

on S3 (the S3 which is the fiber of S7 over 0 e S4), so the length of the jump is rπ/3
= 2π/3. One wonders if in some sense the geodesic γ(t) = (x(i), g{i)) actually travels
the arc (0, a(s)).

This is in fact the case. Consider sequences λn->0, tn->t9 and the corresponding
sequences y(tn, λn) = (x(tn, λn), g(tn, λn)) in S7. Redefine y(t) to be the set of limit
points of all such sequences in S7. For t φ tc + nT, n an integer, y(t) consists of just a
single point, the old y(t). For t = tc one can show that y(tc) is in fact the entire
geodesic arc between gin and gout:

(5.10)
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From the expressions (5.4), (5.5), and (5.9) we see that this is equivalent to showing

that the set of all possible limit points of sequences of real numbers of the form Iλ(t),

where λ = λn->0, and t = tn->tc is the interval [ - π/3,0]. Equivalently, the set of all

possible limits of the form limA_»0 — Iλ(t(λ)), where limA_^0 t(λ) = tc is the set [0, π/3],

which is not difficult to show.

Finally, we note that the scattering geodesies on SΊ are not necessarily periodic,

even though when projected from T*S 7 to the Wong phase space they are periodic

with period 3Γ. In fact, by analyzing (5.8) it is easily seen that a scattering geodesic

is periodic precisely when

(1 + β0) is rational.

This completes our discussion of geodesies for the singular Kaluza-Klein metric.
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