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A Phase Cell Approach to Yang-Mills Theory

I. Modes, Lattice-Continuum Duality*
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Abstract. For the abelian Yang-Mills theory, a one-to-one correspondence is
established between continuum gauge potentials and compatible lattice
configurations on an infinite sequence of finer and finer lattices. The
compatibility is given by a block spin transformation determining the
configuration on a lattice in terms of the configuration on any finer lattice.
Thus the configuration on any single lattice is not an "approximation" to the
continuum field, but rather a subset of the variables describing the field.

It is proven that the Wilson actions on the lattices monotonically increase
to the continuum action as one passes to finer and finer lattices. Configurations
that minimize the continuum action, subject to having the variables fixed on
some lattice, are studied.

0. Introduction

We consider an infinite sequence of finer and finer lattices. To each bond of each
lattice there is assigned a group element, in the additive group of real numbers.
There is a compatibility requirement to these assignments; the assignments to any
one of the lattices are determined in terms of the assignments to any finer lattice, by
an averaging procedure due to Balaban. Given a continuously differentiable gauge
potential, Aμ(x), one can define compatible assignments to the lattices, as above,
such that, in a suitable sense, the lattice "fields" approach Aμ(x) as one passes to
finer and finer lattices. The Wilson actions likewise approach the continuum
action \ J (dA)2. A particularly useful feature of the above duality between lattice
fields and continuum fields is the following: let p be a plaquette in any of the
lattices, then the group assignment to p, Adp9 is given in terms of an integral with the
continuum field

Adp=Sχp(x).A(x), (0.1)

where χp(x) is a function associated to p.

* This work was supported in part by the National Science Foundation under Grant No.
PHY-85-02074
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We consider fixing the group assignments on one of the lattices. We then seek a
continuum field Aμ(x) compatible with this assignment, and minimizing the
continuum action subject to this constraint. [This does not determine Aμ(x)
uniquely.] To be specific, let the assignments be fixed on a lattice of length scale L
(edge size). Assume these assignments are zero (the zero element) for bonds at
distance greater than cLfrom some point z. We will find an Aμ(x) compatible with
this assignment, minimizing the continuum action, and "smooth" enough, so that
the following results hold for the induced assignments to the finer lattices, and for
Aμ(x). We let \A(m)\ be the largest assignment, in absolute value, at the length scale
L.

Estimate 0.1.

Estimate 0.2.

\DAμ(x)\ < ̂  e-*χ-z"L\A(m)\, (0.3)

where D indicates any first partial.

Estimate 0.3.

x)-DA μ(y)\< —^r-e~γ\x~zl/L\A(m)\ each ε>0, (0.4)
Ix-j l 1 -

where

\x-y\<cL. (0.5)

Estimate 0.4. Let e be an edge at length scale /, and A(e) the corresponding
assigned group element

\A(e)\<c-e-'*d(e z)IL\A(m)\. (0.6)

Estimate 0.5. Let eγ and e2 be parallel (oriented) edges at length scale /,

where
d(elίe2)<cL. (0.8)

[We understand here parallel edges to have same orientation, and d(eί,e2) is
measured between corresponding vertices.]

Estimate 0.6. Let p be a plaquette at length scale /, and Adp the corresponding
group assignment,

/ / v
MW< C 7 e~yd(P'z}/L\A(m)\. (0.9)
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Estimate 0.7. Let pί and p2 be parallel (oriented) plaquettes at length scale /,

P2)Y~£-^e~yd(pί'z}/L\A(m)\ each ε > 0> (αι°)

(0.11)

where d(/?1?p2) is measured between corresponding vertices and

d(Pl,p2)<cL.

One has an elegant stability theorem.

Abelian Stability Theorem. For any set of compatible assignments to the lattices, the
Wilson Actions are a monotonically decreasing function of the length scale. That is,
averaging decreases the action. We mil "write Sr

0 for the action at length scale
lr = ί/2r. Then we have

If r>s. (0.12)

Finally we note that we have not used any results of Balaban. He has some
similar results, though none that include ours, since he always works with a fixed
finest lattice on which the action is minimized. He has discrete analogs of Estimates
0.4-0.7, that at the early stages of our research, provided guidelines of what results
to expect. (See Proposition 1.3 of [1].) He did not have our stability theorem, (but a
weaker result with a constant c in (0.12)). (See Theorem 7.1.1 of [2].) In each case
our technique of proof is different.

1. Averaging

We deal with compatible lattices, JSP°, JS?1, J*?2,..., with the edge size of JS?r,
£r = l/2r. (It is a trivial modification to deal with edge size l/Wr.) $£r is viewed as
(1/2'Z)4 in R4, and we often identify points of the lattices in this way. To an edge e
we have associated the real number A(e), and to e with the opposite orientation,
— e, we have A( — e) = — A(e). To each vertex in Sfr, there is associated a vertex in
J^r+ ί (the same point in jR4), the "base point" of a "block" of 24 vertices m&r+1.
(Here the base point will be a corner of the block, for (γ = 1/JV other locations of
base points are possible, which leads again to trivial modifications.) In a 2 — d
situation we picture a bond in J£r and the two blocks in ̂ r+1 associated to its
vertices

Fig. 1

The points A and B in 5£r+1 are base points of the circled blocks. Averaging (we
refer to as Balaban averaging) is defined in Eq. (1.8) of [1]. We establish a maximal
tree in each block. We let x be a point in one of the blocks, x' the corresponding
point in the other block. Γx is a path between base points, along portions of the
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Fig. 2

maximal trees and a straight line segment joining x and x'. If we pick the maximal
trees in Fig. 1 to be composed of ea, ec, ee, and eg, ep et in the two blocks, we may
write in a natural notation

A(e) = i(4Γl + AΓ2 + AΓ3 + AΓ4),

Art = A(ea) + Λ(eb) + A(ed) - A(eg),

AΓ2 = A(ec) - A(ee} + A(ed) + A(eh) + A(ej

(1.1)

(1.2)

In general, A(e) is the average over the AΓχ. (For any oriented path,
AΓ= Σ ^4(O> where Γ is composed of the ea9 with proper orientations.)

Γ,

We now make a number of related observations all having to do with the fact
that in many situations the contributions, by averaging, of contributions along the
maximal trees cancel.

Plaquette Averaging - Closed Loop Averaging

Let v be a vertex in &r; in J£r+1 there are 24 vertices in the block with base point v;
m^r+2 there are 28 vertices in the 24 blocks with base points the 24 vertices above
in JS?r+1. By such a "cascade process" there are 24(s~r) vertices in j£?s, s>r,
associated to υ, the vertices in a "superblock" with base point v. Let Γ be a closed
path in JS?r, with one vertex v. We consider Γα, a parallel translation of Γ, in <^s,
where the vertex corresponding to v has been translated to the vertex α, one of the
vertices in the superblock. There are 24(s~r) such Γα, one of them the original Γ,
viewed in the lattice ̂ s. If Γ has n edges in JS?r, then each Γα has 2(s~r}n edges in J5?s.
We then have

1 „ .
(1.3)

^ α

(Here it is understood that on the left side of the equation AΓ is calculated in ̂ r,
and on the right side, each AΓa in &s.) The particular case that Γ is a plaquette is of
greatest interest. If we label plaquettes at level r, by Pb and plaquettes at level r +1
by PJ we find from (1.3)

(1.4)AdPί = Σ α(Oj

for non-negative numbers α(/)J . We illustrate this in a 2 — J situation. We consider
two levels r and r + 1. ABCD are the vertices of a plaquette at the r level. The
integers name nine plaquettes at the r +1 level. There are four squares, sα, sb, sc, sd
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sb is illustrated in dotted lines, the others are translations of sb with lower left
vertices a, c, d. The group element assigned to the plaquette ABCD at the r level is
the average of the "integral" around the four squares taken at the r + 1 level. In
terms of plaquettes we may see this is equivalent to the following.

ί D*aι +Ad3 + AdΊ + Ad9 + 2(Ad2 + Ad4 + Ad6 + AdS) + 4Ads].

Proof of the Abelian Stability Theorem

The α(i)j above satisfy

Σ«(0, = l/22, (1-5)

ΣXO; = 22. (1.6)

By the Schwarz inequality and (1.4) and (1.6) it follows that

(AeP)
2ί22Σx(ί)j(Adp)

2, (1.7)
j

and summing over i using (1.5)

)2, (1.8)

and thus

So^So+1. (1-9)

Pαί/i Averaging

Let Γ be an oriented path in jS?r joining vertices ^4 and 5. Let 7^ be a translation of
Γ in JSfr+ 1, carrying the vertex corresponding to ,4 to α a vertex in the block with
base point ,4. Let Γα be a path in J2?r+1 joining 1̂ and B consisting of Γα, and
portions of the maximal trees in the blocks with base points A and B. We then have

Ar=^ΣAf, (1.10)
£ α

(where on the left side assignments are from £?r, on the right side from Jδf r+ 1). By
iterating we obtain a similar formula for AΓ as an average over paths in d^s, s>r,

^r=*F^Σ4f.. (1.11)
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Here oc is summed over vertices in a superblock with base point A. Γα is a union of Γα

and paths in the two superblocks associated to A and B. The paths in the
superblocks are pleasant to analyze, we leave this to the reader. The only fact we
here need is that if Γ has n edges in ϊ£r, then fa in £?s has ^(n + c)2s~r edges. This
may be shown by induction from the considerations leading to (1.10).

The Continuum Limit of Plaquette Averaging

From the statement of plaquette averaging above, Eq. (1.3), one is led to the
following construction of plaquette assignments to a continuum field ^(x).

On [0,2] x [0,2] we define A(x, y), B(x, y)

x

-y
2-x

y
Ά(x,y)
B(x,y\

(1.12)

— x
-2 + y.

2-yJ

We consider the plaquette, p, in JS?r, parallel to the i —j direction, with vertices as
drawn below

Fig. 4

We set

t

= ί dxt
dx

- xt\ 2\y - yi

j

dx J dy
Xj

) + B( - )A3{ - )]
(1.13)

Here J5( ) has the same arguments as A in the first term, and At( - ) and Aj( -) have i
andj coordinates x and y respectively, and t and s coordinates dummy xt and xs.
The assignments via Eq. (1.13) automatically satisfy the consistency requirements,
of Balaban averaging. We introduce a vector function χp(x) for each plaquette p
such that we may write (1.13) as follows:

Adp = ί d*x χp(x) A(x) = (χp9 A). (1.14)

The right side of (1.13) is the average value of J A ds over translates of a square
of edge size 2~r and parallel to the i—j coordinate axes. The position of one corner
of the square varies over the cube xk^xk^xk + 2~r with equal weighting during
averaging.
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Equations (1.9) and (1.14) are beautiful features that attest to the correctness of
the Balaban averaging procedure. Each would seem to almost uniquely require
this averaging procedure (among the class of gauge invariant procedures).

2. Bond Assignments Corresponding to a Given Aμ(x)

This section is properly a continuation of the considerations of the previous
section. In Eqs. (1.13)-(1.14) we have the correct plaquette assignments associated
to the continuum field Aμ(x)9 in a very simple form. The bond assignments are not
so easy to come by, they depend on the particular (arbitrary) choice of maximal
tree in each block. (Amazingly the plaquette assignments are independent of these
choices - an infinite number of choices may be made.) Not surprisingly the bond
assignments are derived by a limiting procedure. For each r, we define an
"r-approximate" bond assignment on the & s for s g r. The actual bond assignment
will be the limit of these r-approximate assignments as r->oo. [We always assume
Aμ(x) is continuously differentiate.]

r- Approximate Bond Assignments

We first define the assignments to £gr of the r-approximate procedure. We consider
a bond (edge) at level r, joining (xi9 xj9 xt9 xs) and (xt + 2~r, xj9 xt9 xs). We associate
to this bond (with an orientation in the + xt direction) the group element

xt + 2~r xs+2~r Xi + 2-2~r Xj + 2~r

23r ί dxt ί dxs ί dx ί dyc(x)A{ ), (2.1)
χt χs x, xj

where

(2'(x-xύ

It is easy to ferret out that this assignment yields the correct plaquette variables. At
levels s < r the bond assignments are obtained from the level r assignments by the
use of Balaban averaging.

Convergence of the r- Approximate Assignments

We assume the following bounds on the Aμ(x) :

(2.3)

(2.4)

We denote by A(e9 r0) the assignment to edge e by the r0-approximate assignments
due to Aμ(x). If e is at level r0? we easily see from (2.1), (2.2), and (2.3) that

Using the bound on the number of edges of averaged paths, the Γα, given shortly
after (1.11), we see that (2.5) implies

(2.6)
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where t(e) = ts if e is at (length) scale s, i.e. f(e) is the length of e. Similarly if e^ is
parallel to e2 and at the same scale

\A(el9 r0) - A(e29 r0)| ̂  cd(^, ̂ 2)52/(^) . (2.7)

[Here to obtain this estimate we compare the assignments to the JΓ at scale r0 that
are averaged to get A(el9 r0) with those averaged to get ^4(e2,

 ro)? using (2.1), (2.2),
and (2.4). Again we need the bound on the number of edges in fα.] Note that the
bounds in (2.6) and (2.7) are independent of r0.

We now note that if the assignments to edges at scale r0 are changed with a

bound ε \δA(e)\<s9 (2.8)

we find that the corresponding assignments at higher scales, as determined by
averaging, are changed with bound

\δA(e)\<c(t(e)/ίrJ*9 (2.9)

again by consideration of path averaging and a bound on the edges in Γα.
Now let e be an edge at level r0. We view the difference A(e9 r0) — A(e, r0 -h 1),

\A(e, r0)-A(e, r0 + 1)|< cBtf0 . (2.10)

\_A(E, r0) is expressed as an average over Apκ9 where AfΛ = AΓχ + contributions
along the maximal trees. The contributions along the maximal trees, at the two
ends of Γα, try to cancel, with a difference bounded in (2.10); the average of the AΓχ

actually add up to A(e, r0).]
Using (2.9) and (2.10) we get for any edge at level s<r0

(PΫ
\ J \ » ,2 (2.11)

This proves that the limit of r-approximates exists and we get the edge assignments
corresponding to Af(x), ^

-

The limit assignments satisfy (2.6) and (2.7) and in fact we may write

\A(e)\<ct(e) Sup
d(x,e)<ct(e

and for e1||e2 at the same level, and satisfying

\A(e)\<ct(e) Sup \Aμ(x)\9 (2.13)
d(x,e)<ct(e)

), (2.14)

\A(e1)-A(e2)\<cd(e1,e2y(eί) Sup \DAμ(x)\. (2.15)
d(x,e)<cL

Equations (2.13) and (2.14) follow from (2.6) and (2.7) and the nice observation that
A(e) depends only on Aμ(x) for d(x9 e) < ct(e)\ as some reflection on the averaging
procedure shows.

It is immediate that a given compatible set of assignments to the lattices arises
from (is associated to) at most one continuously differentiable Aμ(x).

3. Modes

For the purposes of the present paper a level r mode is a compatible assignment of
bond averages, to the Jδ?1", arising from an Aμ(x) (continuously differentiable) such
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that for some point z, and for level r edges eh

A(et) = 0 if d(ei9z)>cSr. (3.1)

We also require Aμ(x) to minimize the continuum action, subject to the constraint
of having the bond assignments at level r fixed.

By scaling arguments it is enough to study level 0 modes, and to prove
Estimates 0.1-0.7 with L=l. By translation in variance and linearity we may
restrict our study to the single configuration of bond assignments at level 0 having
exactly one non-zero value, for a bond at the origin. We must find Aμ(x)9 and
associated bond assignments to the <&r, such that Estimates 0.1-0.7 hold with
L = l , z = 0.

In this section (and Part II of this paper) we construct a potential, A%(x),
satisfying Estimates 0.1-0.3, yielding the correct plaquette assignments at level 0,
and minimizing the continuum action subject to this constraint. But A%(x) does
not yield the correct bond assignments at level 0. (From our previous discussions it
is not surprising that it is harder to satisfy bond assignments than plaquette
3-2 assignments.) In the next section we will construct Aμ(x) from A%(x) and prove
Estimates 0.1-0.7 for this Aμ(x) and associated bond assignments. Aμ(x) will be a
gauge transformation of Aμ(x)9

Aμ(x) = A%(x) + dμΛ. (3.2)

From this it easily follows Aμ(x) minimizes the continuum action subject to the
constraint of bond assignments at level 0. We postpone to Part II of this paper the
proof that A*(x) satisfies Estimates 0.1-0.3, and here prove all else assuming this.

We proceed to find A(x) = A%(x) minimizing the continuum action and having
prescribed plaquette averages at level 0. (We do not immediately impose the
condition that these assignments are due to a single non-zero bond assignment.)
We thus have prescribed

(χp9A) = βp9 PG^Q. (3.3)

The βp are not arbitrary but must arise from a possible assignment of group
elements to the bonds (edges) in Jδf °. We seek a minimum of the action S, for a
Landau gauge A', a gauge transformation of A.

Σ ((χP,Λθ-/g2, (3.4)
c)Λf\2

r +
OXjJ

and then take the limit α-»oo. (Alternatively one could use Lagrange multipliers.)
We let D be the differential-integral operator

D = - J + α 2 Σ x Λ (3.5)
y

The sum over y is understood to be over plaquettes in Jδf °. We now exhibit the
Fourier transform of C = D ~ l ,

= Mab = Σ (2π)4Pa(p + 2πn) Ph(p + 2πn) . (3.7)
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n signifies a vector with integer coefficients. P (and M) are a vector (and a matrix) in
a 6 dimensional space, one dimension for each possible pair of spatial coordinate
axes. P is also a_ four dimensional vector. In (3.7) the four dimensional vector
components of Pα and Pb are understood to be contracted with each other. If a is
the pair of axes, i and 7, then Pa is the Fourier transform of the function

lA(xi9 xj it + B(xi9 xj) ij-] χίj' , (3.8)

where χψ is the characteristic function of the set

l}. (3.9)

We have taken an arbitrary fixed orientation of the axes to get this expression. In
Appendix A of [3] a similar Fourier transform expression is employed in a discrete,
non-matrix version, to get exponential fall-off of certain functions,

Taking the limit α-»oo we find in terms of Fourier transforms,

xίPΛ-ftij). (3-10)

From (3.4) we see the minimizing A' will satisfy

, (3.11)

(3.12)

Here ε is a positive quantity that approaches zero (i.e. the lim is understood), γ is
ε^0 +

the pair of coordinate axes determined by the plaquette γ; y is parallel to these axes.
For the plaquette drawn in Fig. 3, γ is its lower left corner.

Equation (3.12) is a delicate relation. M is a singular 6 x 6 matrix. It has pitiable
rank 3. The well-definedness of (3.12) depends on the vector (ε + M) ~ 1 is applied to.
The βy are picked to correspond to a single bond entering the origin with non-zero
assignment. A%(x) is the Fourier transform of A(p), where Ai(p) = Aι(p)+piX(p)
for a suitable X(p) to be specified in Part II. We there show:

, (3.13)

M, (3.14)

y)\<cΛe-W9 (3.15)
\χ-yr

for each ε>0, |x —j;|<l.

4. Some Proofs, A Basic Gauge Transformation

We begin with some easy implications.

Estimate 0.5 => Estimate 0.6, immediate.
Estimate 0.2 => Estimate 0.6, using (1.14).
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(2.13) and (3.13) => Estimate 0.4, immediate.
(2.15) and (3.14) => Estimate 0.5, immediate.
Estimate 0.3 => Estimate 0.7, using (1.14).

We are left with the necessity of showing that we can pick A in (3.2) such that
Aμ(x) as given in (3.2) leads to correct bond assignments at level 0, and such that
Aμ(x) satisfies the same bounds as Aμ(x), in (3.13)-(3.15).

The Gauge Transformation, A(x)

For e, at level 0, we let AN(e) be the bond assignment to e by A%(x), and A(e), the
correct bond assignment, the assignment due to Aμ(x), which we will soon specify.
Aμ(x) and A%(x) are related by A in (3.2), we must find A. By (2.13) and (3.13) we
have

d(e'°\ (4.1)

Clearly \A(e)\<ce~ *«*•». (4.2)

(A(e) is zero almost everywhere.) We set up a gauge field h(x) on Z4 by

A(e) - AN(e) = h(b) - h(a) (4.3)

for e = ab. Recall since AN(e) and A(e) yield the same plaquette variables, they are
related by a lattice gauge transformation. We require h(x) - >0. We deduce

χ-> oo

\h(x)\<ce~ylxl. (4.4)

We now find A(x) in ^(K4) satisfying

Λ(x) = h(x), xeZ 4 , (4.5)

and \DΛΛ(x)\<cΛe"^9 (4.6)

as is trivial to accomplish. We let this be the A(x) of (3.2). Clearly Aμ(x) given by
(3.2) satisfies the bounds in (3.13)-(3.15). Mirabile dictu the bond assignments to e
at level 0, due to this Aμ(x), are exactly the A(e). As a final note we point out it is
straightforward to show the lattice actions Sr

0 approach the continuum action as
r->oo.
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